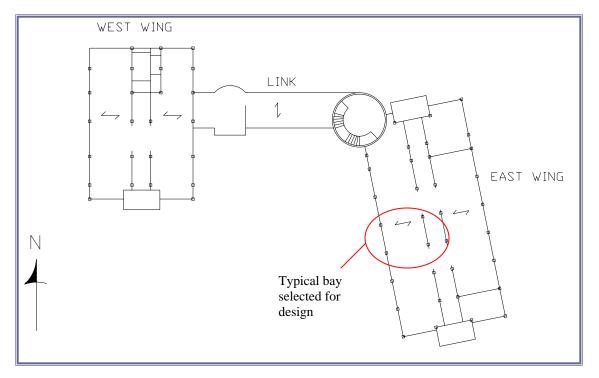


Chris Shelow Structural Advisor: M. Kevin Parfitt Koshland Integrated Natural Science Center 10/31/05 AE 481W

Structural Technical Report 2 Pro-Con Structural Study of Alternate Floor Systems

Executive Summary


The purpose of this report is to provide a descriptive analysis of, as well as a comparison between, the existing floor system of the Koshland Integrated Natural Science Center and the design of four alternate typical floor systems. The report provides detailed information on the current floor system and also the factored loads that were used to design the existing system. The design loads were taken from the drawings and confirmed with the BOCA 1993 code. The analysis focused on a typical bay of the current floor system which was calculated by hand and was also verified with the PCI Manual for the Design of Hollow Core Slabs (2nd Edition) and the CRSI Handbook (2002). The alternative floor designs were also analyzed by hand calculations which can be reviewed in the Appendices following this report.

The following portion of this report consists of the designing of four floor systems as alternatives to the existing system. All four systems are significantly different from one another. The floor systems that were selected for design include a one-way pan joist system, an open-web steel joist system, a composite beam/composite slab system, and a precast double tee beam system. In this section of the report, each alternative floor system is described, followed by a sketch of the typical bay incorporating the system described. In addition, several advantages and disadvantages of each of the alternative systems are discussed and compared briefly. Also, as referenced in the body of the report, calculations, design tables, and complete design details are included in the report as Appendices.

Finally, the last section of the report compares the advantages and disadvantages of each system in table format. The categories that are compared as the advantages and disadvantages are floor depth, self weight of the system, impact of construction schedule, and cost. With the information from the comparison table, the conclusion of the report emphasizes that the existing system proved to be the most efficient overall for this building. However there are other systems that could be considered as realistic possible alternatives such as the open web steel joist system or the double tee beam system.

Existing Floor System Design

The Koshland Integrated Natural Science Center combines four stories of laboratory and class room spaces with additional office space, library, and mechanical rooms. Laboratory spaces are located on each of the four floors. In addition, mechanical rooms are located on the ground floor and the fourth floor, classrooms are found on the first floor, offices are found on the second floor, and the third floor is the location for the library. The library area has a second mezzanine level which is on the fourth floor. The floor framing is typical throughout the East and West wings of the building, with the exception of the second level library found on the fourth floor of the West Wing. The similarities include member sizes, locations, and spans. Below is a diagram of the typical floor layout for the entire building.

The existing floor design of a typical lab floor layout is comprised of precast concrete hollow core planks that are supported by precast beams. For this analysis, a typical framing bay from the East Wing spanning from column lines 16 to 17 and U to W has been selected. The typical span for the hollow core planks is 31'-5''. The beams typically span 21'-0''. Currently, the design calls for hollow core planks that are 10'' deep with a 2'' topping slab. It is assumed that the planks have a length of 4' in the short span direction. Also, since the reinforcement is not called out on the drawings, it is assumed to be (6) - 0.6'' diameter prestressed tendons. The precast beams that support the floor system are dimensioned at 20''x12''. The reinforcement of the beams is unknown, therefore, it is assumed to be two layers of (7) - 0.6'' diameter prestressed strands at the bottom and (6) - #11 bars in compression at the top. The precast concrete is also assumed to have a compressive strength of 5 ksi.

Floor Loads

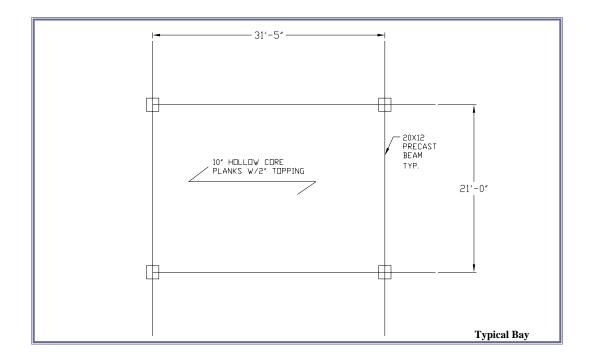
The loads used in the analysis of the existing floor system were taken as typical floor loads for the chosen bay. These floor loads used for this typical bay may not be representative of the entire structure due to specified increased loading requirements for other locations throughout the building. The following is a breakdown of the dead and live loads that were used for the typical bay.

Live Loads (psf):

•	Typical floors	100
	<u></u>	

Dead Loads (psf):

•	Ceiling	5
•	Mech., elec., & plumb.	10
•	Framing	15
	10" hollow core planks w/2" topping	91
•	Partitions	30


Hollow Core Floor System Design

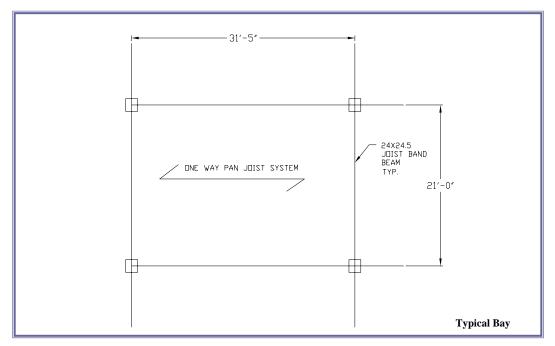
	Dead Loads (psf)		Live Loads (psf)
Ceiling	5	Typical floor	100
MEP	10		
Framing	15		
Hollow core			
planks w/topping	91		
Partitions	30		
Total:	151	Total:	100

Span (ft.)	Tributary Width (ft.)	Tributary Area (sq. ft.)	T _{LL} (psf)	T _{DL} (psf)	w _u (psf)	w _u (klf)	M _{max} (ft. kips)
31.42	4	125.68	100	151	341.2	1.36	142.9

<u>Analysis</u>

The existing floor system was analyzed by hand calculations. The results of these calculations are available for review in Appendix B. Certain information about the existing floor system was not available on the drawings. Therefore, assumptions had to be made to carry out the analysis, which are noted in the calculations. These assumptions include the width of the hollow core planks, the strength of the precast concrete, and the prestressed reinforcement used in the planks.

From the drawings, it is noted that the floor system currently used is a 10" precast hollow core plank system with a 2" topping slab from SpanDeck. However, when running the analysis it was found that there is no 10" plank section from SpanDeck in the PCI Manual for the Design of Hollow Core Planks, 2^{nd} Edition. Several manufacturers' websites were reviewed for a similar section. Ultimately, the most similar section found was manufactured by DyCore and was used in the calculations. The results from the analysis of the existing floor system showed that the 10" hollow core planks with a 2" topping slab is sufficient to carry the applied floor loads. The required reinforcement in the planks was determined to be (6) - 0.6" diameter prestressed tendons.

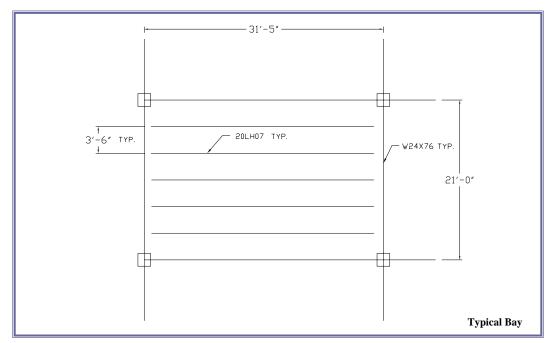

Some advantages to using the existing system may not be seen from the calculations. One of the greatest advantages to using the precast hollow core system is the time efficiency that it allows. The precast concrete does not require the curing time of the concrete that cast-in-place concrete would require. Therefore, it allows for a faster construction schedule which could directly relate to lower costs. Conversely, precast concrete does require more upfront planning. Also, the hollow core system produces a shallower floor depth which provides more room for mechanical or electrical equipment.

Alternate Floor System Designs

During the design of alternate floor systems, both steel and concrete systems were considered. The four alternate systems that were chosen are significantly different than the existing system. The systems that were chosen include a One-way Pan Joist system, a precast Double-T system, open-web steel joists with slab on metal deck, and composite beams with a composite deck. When conducting the designs of possible alternate floor systems, several design aids were used in the process. These design aids are included in the reference section in Appendix A.

One-Way Pan Joist System

The typical bay that was used for these alternative designs has a short span of 21' and a long span of 31'-5". With this in consideration, a one-way pan joist system would work well in this situation. Below is a sketch of the typical floor layout.

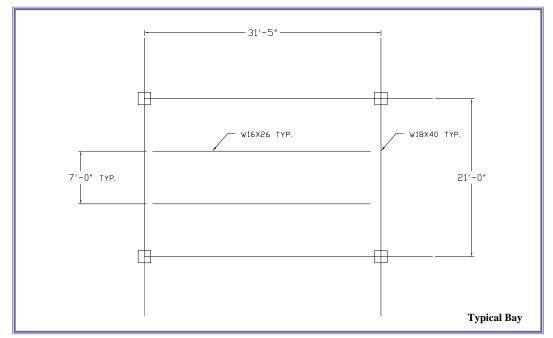

For the design of this floor, the load tables from the CRSI 2002 handbook were used as design aids to size the slab system. All relevant information that was gathered from the handbook can be reviewed in Appendix C. The design that was chosen is a one-way pan joist system with 30" forms and 6" ribs at 36" on center. The total depth of the system is 23" comprised of 20" deep ribs and a 3" slab. Below is a section of this system. The girders that were designed to support this slab system are 24"x24.5" joist band beams.

This one-way pan joist system is a cast-in-place concrete system, different from the existing system. Therefore curing time for the concrete is necessary during construction. Again, this will increase construction time and possibly project cost. Also, the one way pan joist system has a self weight of 91 psf, as per the CRSI handbook. This is exactly the recorded self weight of the existing hollow core system. Therefore, no increased

loading due to self weight will occur. However, as previously stated, this system has a total depth of 23" which is much larger than the existing system. This is one disadvantage of incorporating the one way pan joist system. The increase in depth will take away from ceiling space for mechanical and electrical systems.

Open Web Steel Joist System

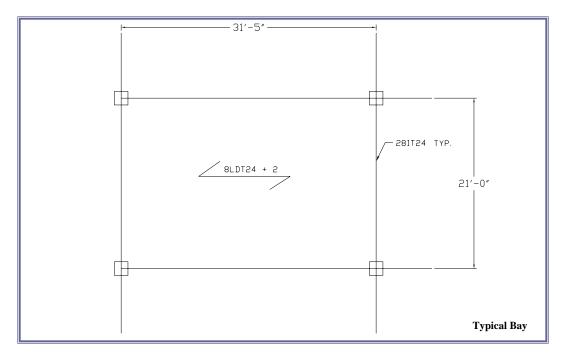
When designing the second alternative floor system, an open web steel joist system, the Wheeling Deck Product Catalog was used as a design aid. The design produced a non-composite 3" concrete slab on a 9/16" Tensilform metal deck. The second design aid used with this open web steel joist system was the New Columbia Joist Company (NCJ) Joist Catalog. From the design tables in the catalog, a 20LH07 open web steel joist was selected for the design. The depth of the joist is 20". Three rows of 2x2x1/8 steel angles for bridging are required in the design of the open web joists. The third design aid used for this floor system was the LRFD Manual of Steel Construction (Third Edition) and it was used to design the steel girders to support the open web joists. From the design tables, the girder was sized to be a W24x76. All design details from design aids and calculations are available for review in Appendix D.



The depth of the open web steel joist system was designed to be 20". This produces a greater ceiling depth. However, space for mechanical and electric systems may not be compromised. Since the joists are constructed with open webs, the voids in the webs will provide adequate room for MEP systems. In addition, the total weight of the slab on deck and joists is 51 psf. This is significantly less than the 91 psf self weight of the existing floor system. This reduction in self weight could result in smaller framing members. However, this system does require a spacing of 3'-6" for the open web steel joists. For a typical span, this produces seven joists per span. With this in consideration, and the use

of steel W24x76 girders, the cost of materials is considerably higher than the existing precast hollow core system.

Composite Beam/Composite Slab


The third alternative floor system that was considered is a composite beam with a composite slab on deck system. Design aids that were used for this floor system design were the Wheeling Deck Products Catalog and the LRFD Manual for Steel Construction (Third Edition). The design for the composite slab resulted in a 4" slab on a 1-1/2" metal deck. The composite beam was designed to be a W16x26 steel beam. From the calculations, a total of 26 shear studs are required for full composite action for the beams. When designing for the steel girders, the results yielded a W18x40 steel girder with 40 shear studs to ensure full composite action. Below is a typical floor layout for this floor system. For full design details and calculations, see Appendix E.

The total depth of the composite beam/composite slab system is 30". When compared to a depth of 12" from the existing precast hollow core system, this alternative system will certainly decrease ceiling space. This is considered a disadvantage for the location of the MEP systems as well. Also, the self weight of this floor system is substantially larger than that of the existing system. This could cause increased loading on the framing members in flexure, as well as raise the cost of materials for the floor system. However, this system presents a spacing of 7' for the steel beams which results in fewer members. This could actually decrease the cost of the materials for the floor system.

Precast Double Tee Beam System

The final consideration for an alternative floor system was a double tee beam system. The design aid used for this floor system was the PCI Manual. Using the applied floor loads, the design resulted in an 8LDT24 + 2 system. This particular section is an 8' wide double tee beam that is 24" in depth. A two inch topping is applied on top of the double tee beams. The double tee beams are reinforced with (6)-1/2" prestressed strands that run straight through the section. For a girder to support this floor system, a 28IT24 inverted tee beam was selected in the design. This girder has beam seat depth of 12" and an overall depth of 24". It is reinforced with (11)-1/2" diameter low-lax prestressed strands. For full design details and calculations, see Appendix F.

The overall depth of the double tee beam floor system is 24". This is considerably larger than that of 12" from the existing system. With this increase in depth, the ceiling space will be reduced forcing a larger plenum space for MEP systems. However, this system is still advantageous. Since this floor system is precast concrete, the concrete will not need to cure once it is installed. This will cut down on time in the construction schedule and reduce cost. In addition, the double tee beam system has a self weight of 40 psf, which is lighter than the 91 psf self weight of the existing system. This results in lighter loading on framing members which could reduce the size of the framing members, which, in return, saves cost of materials.

Floor System Design Comparisons

System	Description	Total Depth (in)	Self Weight (psf)	Impact on Schedule	Cost (R	.S. Means Va \$/sq.ft.)	alues,
				1-5 (1=worst, 5=best)	Mat'l.	Labor	Total
Existing	Hollow Core Planks	12	91	5	6.10	2.32	8.42
Alternate #1	One Way Pan Joist	23	91	2	4.62	8.15	12.77
Alternate #2	Open Web Steel Joist	20	51	1	8.50	4.63	13.13
Alternate #3	Comp. Beam/Comp. Slab	20	40	3	9.30	5.40	14.70
Alternate #4	Double Tee Beam	24	62.5	4	4.96	1.70	6.83

Conclusion

The results from the comparisons of the existing and alternate floor systems conclude that the existing floor system is the most efficient in physical properties, construction time, and cost. However, some of the alternate systems may be seen as realistic solutions to an alternative floor design. For instance, open web steel joist system offers a lighter solution for the floor system, although it sacrifices some ceiling space. Also, the double tee beam offers a design that is lighter than the existing hollow core system and is almost as time efficient as the existing system. In addition, the double tee beam system is the most cost effective system that was analyzed. However, the overall depth of the double tee beam system is twice that of the existing hollow core system. The above table compares all floor systems that were analyzed in a number of different categories.

Appendix A

References

- PCI Design Handbook, Precast and Prestressed Concrete, 5th Edition
 PCI Manual for the Design of Hollow Core Slabs, 2nd Edition
- CRSI Handbook, 2002
- Wheeling Deck Product Catalog
- New Columbia Joist Catalog
- LRFD Manual for Steel Construction, 3rd Edition
- R.S. Means 2005, Assemblies Cost Estimates

Appendix B

Existing Floor System Design Precast Hollow Core Planks

Project No .: 210 Arnold Avenue, Suite F Point Pleasant Beach, New Jersey 08742 Voice: (732) 892-6979 Fax: (732) 892-6976 Hollow - COIPE Subject: Sheet _/___ of ___ Prepared By: Date: www.villeanie Checked By: Date: HOLLOW - CORE PLANIK FLOOR SYSTEM - SPOT CHELIC SPAN = 31-6" = 31.5' d = 10" CLEAR SPAN = 29' dTOPPING = 2" ON PLANS, IT IS SPECIFIED THAT A 10" SPANDECK HOLLOW - CORE System is USED. As PER MANUAL FOR THE DESIGN OF HOLLOW CORE SLABS, ZND EDITION - PCI, THERE IS NO ID" DEEP SECTION OF SPANDECE, ALTERNATE SYSTEM USED : Dy- CORE Section: 4'.0" x 10" Weight: 81 ps= LOADS Assume: 1) A'c: 5000 psi DL = Cening = 5 pest 2.) low lay tendons MED : 10 pef FRANTING = 15 PSt 5.) fp= = 270 KS. PARTITIONS 5 30 pst 4.5 fpe = 0.55 fp= 148.5 60 psf Self wit = 91 psf 151 pst LL = Typ. = 100 pet Wu= 12(151 pst(4')) + 1.6 (100 psf(4)) = 1364,8 plt Mu= 1.36 (29) = 14/2.9 14 = 1.36 KIR Tey (6)-0.6% PRETENSIONED STERNOS Apr = 6 (0,216) = 1,296 ... 2

210 Arnold Avenue, Suite F Point Pleasant Beach, New Jersey 08742 Voice: (732) 892-6979 Fax: (732) 892-6976 www.gillespieengineering.com Hollow - Cope Subject: Sheet Date: Prepared By: Checked By: $= 270 \left[1 - \frac{0.28}{0.8} \left(0.0008 \frac{270}{5} \right) \right] \qquad dp = 9.0''$ $l_p = \frac{A_{PS}}{bd_e^2} = \frac{1.296}{20(9)^2} = 0.0008$ We = lefts = 0.0008 (265.9) = 0.0425 < 0.36 = 0.288 = 0k $a = \frac{Ap_{s} f_{ps}}{\sigma_{.85} f_{c} b} = \frac{1.296 (265.9)}{\sigma_{.85} (5)(20)}$ = 4.05" AMn= A [Aps fps (dp- = 1) = 0.9 [1.296 (265.9) (9. 4.05)] = 2163.6 In-16 = 180.3 1 = 142 11 . OK By JUDGEMENT USE 6- 20 STRANDS IN 10" HOLLOW- CORE SYSTEM W/2" TOATING

Appendix C

Alternate Floor System #1 One Way Pan Joist System

MATTERNATE #1 - ONE WAY PAN JOIST SYSTEM
DEVEN ANDS: CRSI Handbook (2002) ps. 8-25, 8-10,
12-90
* CRSI - FACTORED LOADS - Wu = 14DL + 1.7LL
• ONE WAY PAN JOIST (p3, 6-25, 8-0), MULTIPLE SPHANS
SPAN - 31-5" -> USE 32' for 4bb volues
Wu = 1.4(45) +
$$\mu$$
7(100) = 253 pst
END SPAN TABLES
• SELECTED:
30" FROMS + 6" RIBS C 36" C. -C.
20" DEEP RIB + 3.0" TOP SLABE = 28" TOTAL PERTH
WHLOW = 280 pst > Wu = 233 pst : ok
REINFORCEMENT: TOP -> 46 Q 11"
BOTTOM = #7, #7
Self of = 91 pst (TABLE 8-1)

Auterware #1 (control) - GIRDER + JOIST BAND BEAM

$$M_{a} = 1.4(46+91) + 1.7(100) = 360.4 pst$$

 $SDAN = 21' \rightarrow Use 22' for tabus$
 $4rib, w = 22,5'$
 $W_{a} = 360.4 pst(22.5') = 8109 rdt = 8.109 rdt$
 $Joist - BAND BEAM - END SPAN TABLE (PS. 12-40)$
 $L SQUERED:$
 $ZU'' \times Z4.5'' JOIST - BAND BEAM
 $WALLOW = 12.7 KLt \rightarrow W_{a} = 8.109 kLt : 0K$
REINFORCE CMENT : TOP $\Rightarrow (4).41/4$ bars
 $BOTDOM = 846$ 2 Jayers$

One Way Pan Joist (CRSI 2002)

			Span Deff. Coeff.	<u> </u>		6.168	CR 2033	7.985	150.6	10.176	11,427	12.790	14.272	15.878	17.617	19.494	21.518	23.695	26.034	,su								
= 4,000 psi = 60,000 psi		t0 # 00	1 # 1 #	2.29	7	440*	417*	396*	376*	358*	341*	325	301	0 278 6	257	0 238 0	220	203	188 0	eds pua		2.04	1.07	21.6	.309	1.20	21.6	.263
$f_{c}^{i} = f_{\gamma}^{i} =$		4 th	# 7 # 7	1.88	R SPAN		404		340		288	265	243	0 224		0.08	173	159	0 145 0	ends. 5 for e		1.64	80	21.7	.265	1.04	13	.231
(PSF)	Depth	# 5 8	9 # 9 #	1.63	NTERIOR SPAN		323		269	246	224	205	187	170	154	140	127	115	103 0	$\ell_n^{\rm const}$	CF/SF) (4)	1.43	.75	21.7	.239	88	11.	.200
OAD (Total	# 5 9.5	# 2 # 0 #	1.36	4	1	256	232	210	190	172	155	139	125	1150	0 00 0	68	0 82	0 89 0	ul tapen ness ≥ leftectic	4 CF/S	1.21	.63	21.7	.209	.75	.09 8 1 C	.173
ED USABLE SUPERIMPOSED LOV	$b = 23.0^{"}$	# 5 12	# 5 # 5	1.11		212	-	-		135	120	106	93 93	0 6	0 2 0	0 00 0	2 To 1	42	0	r specië e (thick elastic c	ETE .64	96	.50	21.7	174	62	08	.146
FACTORED USABLE SUPERIMPOSED LOAD (PSF))* Top Slab	-	Span Defi.			10.023	11,428	12.975	14.675	16.536	18.569	20.784	23.191	25.802	28.627	31.678	34.967	38.505	42.305	For gross section properties, see Table 8-1. First load is for standard square joist ends: second load is for special tapered joist ends. Computation of deflection is not required above horizonal line (thickness $\geq \ell_n/18.5$ for end spans, $\ell_n/21$ for interior spans). Exclusive of bridging joists and tapered ends. throlled by shear capacity. +Capacity at elastic deflection = $\ell_n/360$.	DESIGN (CONCRETE	I						
SUPE	$\operatorname{Rib} + 3.0^{\circ}$	# 6 9.5	1	1.89							251 1			12.12		160 3		133 3	121 4	econd I ove hori +Cap	GN (C	1.71	80	21.6	.272	1.39	-17	.298
SABLE	20° Deep Rib	# 00 # 00	4 2.# 4 2.#	1.63 1	END SPAN		585 0	0.05		20	500	0.00	-24		-	121				ction properties, see Table 8-1, for standard square joist ands; st nof deflection is not required ab incor spans), bridging joists and tapered ends hear capacity.	BESI	1.43	.75	21.7	.239	1.20	15	263
RED U	2(# 5 9.5	-	1,40 1	END	-		State .		173 2	156	140	125		- 21	0 8 0		67	0 8 0	see Tab irre joist not requ d taper	PROPERTIES FOR	1.21	.63	21.7	209	1.04	.13	231
ACTO		#5 11	9 # 9 #	1.20 1		-	24.50	12 1	200		120	66		0	0 64 0	0 4 0	45	0	_	erties, : rd squa tion is r tion is an oists an	ERTIE	1.04	.55	.35	.186	.88	= 2	200
		# 5 #	# 2 # 6	1.03 1		-	- Contract			0 88	0 92	64 0	54.0	0 4	0		-			section proper is for standard ion of deflectio interior spans) of bridging jois	PROF	96	20	.32	.174	.75	60.	173
SPAN		Size .	**	-	Z				1945			-	-							ss secti ad is for tation o or inter ve of br by she		MENT	(MHO	RED)		VENT Q.IN.)	1	ź "
ONE-WAY JOISTS "		TOP SARS	BOTTOM BARS	Steel (psf)	CLEAR SPAN	30'-0"	311-0 ^u	32'-0"	33'-0"	34"-0"	35'-0"	36'-0"	37-0	38-0"	39'-0"	40'-0"	41'-0"	42-0"	43"-0"	(1) For gross section propert (2) First load is for standard (3) $l_{m}/21$ for interior of deflection $l_{m}/21$ for interior spars). (4) Exclusive of bridging joist *Controlled by shear capacity		NEGATIVE MOMENT	STEEL % (UNIFORM)	(TAPERED)	- ICR/IGR	POSITIVE MOMENT STEEL AREA (SQ. IN.)	STEEL %	EFE UEPTH, IN +ICR/IGR
= 60,000 psi		lnt.	Defl.	(3)		6.001	6.842	7.769	8.787	9.901	11.118	12.445	13.886	15.449	17.141	18.967	20.936	23.055	25.330	Jans,	1		1 47	* (0.10	4	0	0.10
= 60.0		9 # C	# 6	2.01	AN	395*	458° 374*	355*	337*	360	332 305*	306	. 261	240	222	204	188	174		r end s	P	1 76		0 .64	- 7	8 1.04	13	
) fx		φ # α	9 # #	1.66	INTERIOR SPAN	375	343	314	287	263	241	221	202	185	091	TO.	141	128	117	1 5 fo 18.5 fo	(4)	1 30	-	50 .50	-			0 .220
ASY) C	al Depth	ທ ແ # ອ	0 9 * *	1.38	INTER	301	274	249	226	206	0187	0/1	154	139	126	÷	102	0 16		ered jo $\geq \ell_n/$		1 1 2	_		219		-	0 .190
IMPOSED LOAI	Top Slab = 23.0" Total Dept	# 21	ທ ທ # #	1.18		228	206	185	168	0	51	0	106	_			63	54	040	scial tap ickness ickness ickness	NCRETE .60 CF/SF)		-	37			_	4 .160
POSEI	Slab = 2	¥ #	* * *			-	4	100	-	100		-		52 0				_		for spe line (th at elast	RETE	6	-47 -	.29	.162	μ.	10.	21.7
	1.4	1 25	Span Deft.	Coeff. (3)		9.752	11.119	12.625	14.278	16.089	18.067	20.222	22.565		27.853	30.822	34.022	37 464		cond load is for special tapered joist ends ve horizonal line (thickness $\geq \ell_n/18.5$ for +Capacity at elastic deflection = $\ell_n/360$	(CONC		_	_	_		246	
ILE SU	20" Deep Rib + 3.0	9 #	2#	1.69	7	334*	340	283	259	236	216	197	180	164	149	135	123	0	0.00	secon above h ds.	SIGN	1 44	.85		21.0	1.20		21.6
ED USABLE SUPER	20" De	# 2 #	9 #	1,44	FND SPAN	278	253	229	208	0 881	171	154	139	125	112	0 101	0 0	002	0020	able 8-1 st ends quired ered er	OR DE		.73		21.1	1 04		21.6
ORED		# #	9 #	1.23	NH.	218	0 196	1.76	158	0 141	0 126	112	0 66	0	0 76	0 99	20	0 4	090	s, see T uare jo s not re and tap	IES F(57 IO		199	88		21.6
FACT		# 4	#5 #6	1.04		167	0 148	131	0	0 102	089	0	0 99	56	0.47	0				opertie dard sq ection i ans). 1 joists a	PROPERTIES FOR DESIGN (CO	0	53.53	0	179	75	_	21.6
S (i) NS		# 4	9 4 2 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4	.85		117	0 101	0 87	0 74	0 83	52	42	0							tor stan or stan of defi erior sp bridging ear cap	PRC	1	.42	.26	21.8			21.7
ONE-WAY JOISTS (1) MULTIPLE SPANS		TOP Size	WO	(Jsd	CI FAR SPAN	30'-0"	31*0*	32:-0"	33-0	34-0"	35'-0"	36'-0"	37".0"	38-0*	39'-0"	40'-0"	41'-0"	0.07	43'-0"	(1) For gross section properties, see Table 8-1. (2) First load is for standard square jost ends, second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness $\gtrsim t_{n}^{\prime}/18.5$ for end spans, $t_{n}^{\prime}/21$ for interior spans). (4) Exclusive of bridging joists and tapered ends. -Controlled by shear capacity.		NEGATIVE MOMENT	STEEL % (UNIFORM)	(TAPERED)	EFF. DEPTH, IN. ICR/IGR	POSITIVE MOMENT	STEEL %	EFF, DEPTH, IN. + ICR/IGR

CONCRETE REINFORCING STEEL INSTITUTE

	DEFL	-	× 10 ⁻⁹	353 312	257	222	231	1/1	153	175	172	129	116		noment section = C x ad load
BARS	+ФМ _п	- MMo	(6) ft-kip	350 350 350	086	685 886 886	471 580 580	669	956 1010 1261	701	102	1213	1633		esign r angular n (in.) tabulate
2			STEFL WGT Ib.	685 1115 828	1258	1676 1853 2170	942 1485 1162	1881 2042	2578 2546 3245	1248	1362	2734	3250 3250 4369		(6) $+\varphi M_n$, and $-\varphi M_n$, are design moment strength capacities for rectangular section b \times h. (7) Midspan elastic deflection (m.) = C \times (wri.i.o) \times (f., where w = tabulated load
	1	26 ft	Al. Sq.	- 1.9	an_ i ¢	0 · 0	27	27	27	1.4	3 1 9		3.6		d — ф) apacitie elastic (, 4, wt
E E		, (ⁿ =	φT _n tt- köps	18 73 18	£2 ∰ [282	33 131	131	131 33 131	49	68 H		48 194		+φM, and - strength cape b × h. Midspan els (w/1.6) × ℓ _n ⁴
DEAM	4	SPAN,	STIR, TIES (5)	133H 166H 133H	165H 164H	223E	133H 523A	225E 166H	265D 175EdH 315C	133H	133H	1/JoEdH	395B		(6) +\$\$M_n strengt b × h (7) Midsp (w/1.6)
			(4) (4) (4)	5.4	9.1	11.2	22	14.2	16.4	10.4	114	19.7	21.8		2-4. At ups) of
			STEEL WGT Ib.	645 1001 779	1175	1728 2140	875 1341 1082	1770	2391 2375 3026	1159	1277 1827	2549	3085 4054		7. first line is for open stirrups, secondline is for closed ties. See Fig. 12.4, tabulated for "Interior Spans". For b > 24 in., provide 4 legs (two stirrups) stead. For stirrup nomenclature, see page 12-13. STIRRUPS ARE NOT RECOURED MAXIMUM Spacing is LESS THAN 3 INCHES, NOT RECOMMENDED
4		24 ft	Aľ sq.	1.61	<u>ma</u> 1 e	n 1	26	- 2.8	28	1.1.0	10	1 4 6	3.6		4 legs
	(2)77(3)	(n =	φT _n ft- kips	\$\$ \$\$ \$\$	222	382	888	128	52 C 25	49	49	66	49 49		closed rovide 3.
	$U = 1.4D + 1.7L^{(3)}$	SPAN, $l_n =$	STIR. TES (5)	133H 155H 133H	155H 154H	245D	123H 155H 133H	調査	245D 166EeH 295C	123H	133H	165EeH	185DiH 365B		rre is for 24 itt., p ige 12-13
	U = 1		(F) (F)	6.4 8.7	2'0	3.1	9.0	19.6	19.3	12.2	13.4	23.1	25.6		secondi . For b > e, see pa IRED
	TOTAL CAPACITY		STEEL WGT Ib.	995 932 721	1058	1959 2109	818 1438 1126	1621.	2359 2244 3466	1081	1296 1298	2365	3139 4218		 first line is for open stimups, secontabulated for "Interior Spans". For labulated for "Interior Spans". For atte, For stimup nonemblature, see STIRRUPS ARE NOT REQUIRED MAXMAIN second so reserved.
	CAP	22 ft	A. B.	1.61	6) / c	6	2.8	8.8	28 1 8	140	1 68	1	3.7		ar oper "Interic up non RE NC
	OTAL	= ""	φT _n #-	印 22 15 15 15 15 15 15 15 15 15 15 15 15 15	61 92	2.61 22	882	5 <u>8</u> 8	138 138 138	09	202	388	50 199		ne is for ted for or stim UPS A
_		SPAN, (n =	STIR, TIES (5)	123H 135H 123H	135H 134H	264C	123H 195E	196E 135H	205C 26AC 446A	123H	124H	166EH	265C		n, first I tabula lated. F STIRR
END SPANS			(4) (4)	7.6	127	15.6	10.7	19.8	23.0	14.5	15.9	27.5	30.4		For each beam design, first line is for open stirrups, secondline is for closed ties. See Fig. 12.4. At free ends, use stirrups tabulated for "Interior Spans". For b > 24 in, provide 4 legs (two stirrups) of size and spacing tabulated. For stirrup nomenclature, see page 12-13. In - STIRRUPS ARE NOT RECOURED is mortation. WA - MAXIMM SEARMOR IS LESCURED
END SPANS			STEEL WGT Ib.	546 858 871	974 1220 1	1531 1943	751 1304 1035	1471	2172 2329 3170	1099	1212 2276	2214	2889 3859		(5) For each be free ands, us size and spa Other notation:
SP		20 ft	Al Sq. in,	' <u>क</u>		13	2.8	2.8	28, 28	1 or	1 00	1 0	1 00 00		(5) For free size
S A		$\ell_n =$	$\begin{array}{c} \varphi T_n \\ f_r \\ kips \end{array}$	61 92 16	19 19	19	24 23 23	37 27	5% 8 8 8	51	in Sur	358	52 52 52		1000
<u>5</u> ш		SPAN, In	STIR. TIES -(5)	113H 125H 123H	125H 125H	2440	113H 175E 124H	175E	245C 245C 405A	114H	124H	155DhH	245C 405A		For gird a for bot bars. t 1.4 x s
			LOAD (4) K/ft	9.2 9.6	15.4	18.9	13.0	-	27.8	521	19.3	33.2	36,8		- 12-1. F 2"). of layers s for top y, deduc
		TOP		4# 9	4#14	5414	5#10	2#14	7#14	01#9	11#9	7#14	9#14		 See 'Recommended Bar Details', Fig. 12-1. For girders, use tabulated beam depth — 2 inpes (b — 2 '). (2) In 'Layers' column, first line is number of layers for hottom bars. second line is for number of layers for top bars. (3) For supterimposed factored load capacity, deduct 1.4 x stem weight.
ā :ē	Sm	Lay-			- ~ -	- 01	40.000 A		- 64				- ENI		ar Det h — 2 line is numbe ed loae
d O	BARS	BOTTOM	0.875	01#10	70 6.	9#6	2#10	4#10	14# 6	3#10	3410	01#5	18# 6		nded B am depi mn, first a is for d factor
= 60,000 psi		BOT	$l_{n+1}^{\ell_{n+1}}$	2#10 2#10	9 #8	9 #01	2#10 3#10	4#10	14# 6	01版	3#10	01#9	19# 6		comme lated be s" colur cond lin
	STEM	4	o je		24			38	_			89			ee "Re te tabul "Layer irs, sec ir super
f.	ST	-4	e d					5.4.5							(1) St us (2) In ba (3) Fo

Joist Band Beam – Girder (CRSI 2002)

12-90

CONCRETE REINFORCING STEEL INSTITUTE

Appendix D

Alternate Floor System #2 Open Web Steel Joist System

CAMPAL 22-142 100 SHEETS

Non-Composite Metal Deck (Wheeling Deck Products)

Tensilform/Tensilvent 50, S3

Maximum Allowable Unshored Construction Clear Spans

		14	5 pcf Normal	Weight Concre	te	1	15 pcf Lightv	eight Concre	te
Slab Depth	Туре	Slab Wt psf	Single Span	Double Span	Triple Span	Slab Wt psf	Single Span	Double Span	Triple Span
	28	28	2'-2"	2'-10"	2'-10"	23	2'-3"	2'-11"	2'-11'
2-1/2"	26	28	2'-8"	3'-5"	3'-6"	23	2'-9"	3'-7"	3'-7"
	24	28	3'-6"	4'-7"	4'-7"	23	3'-8"	4'-9"	4'-10'
	22	28	4'-1"	5'-4"	5'-2"	23	4'-3"	5'-7"	5'-7"
	28	34	2'-1"	2'-9"	2'-9"	28	2'-2"	2'-10"	2'-10
3"	26	34	2'-6"	3'-3"	3'-4"	28	2'-8"	3'-5"	3'-6"
	24	34	3'-4"	4'-4"	4'-5"	28	3'-6"	4'-7"	4'-8"
	22	34	3'-10"	5'-1"	4'-10"	28	4'-1"	5'-4"	5'-3"
	28	41	2'-0"	2'-7"	2'-8"	32	2'-1"	2'-9"	2'-9"
3-1/2"	26	41	2'-5"	3'-2"	3'-3"	32	2'-7"	3'-4"	3'-4"
	24	41	3"-2"	4'-2"	4'-3"	32	3'-4"	4'-5"	4'-6"
	22	41	3'-8"	4'-10"	4'-7" _	32	3'-11"	5'-2"	4'-11
	28	47	1'-11"	2'-7"	2'-7"	37	2'-1"	2'-8"	2'-8"
4"	26	47	2'-4"	3'-1"	3'-1"	37	2'-6"	3'-3"	3'-3"
	24	47	3'-1"	4'-0"	4'-1"	37	3'-3"	4'-3"	4'-4"
	22	47	3'-6"	4'-8"	4'-5"	37	3'-9"	5'-0"	4'-9"
	28	53	1'-11"	2'-6"	2'-6"	42	2'-0"	2'-7"	2'-8"
4-1/2"	26	53	2'-3"	3'-0"	3'-0"	42	2'-5"	3'-2"	3'-2"
	24	53	2'-11"	3'-11"	3'-11"	42	3'-2"	4'-2"	4'-2"
	22	53	3'-4"	4'-6"	4'-3"	42	3'-7"	4'-10"	4'-7"
	28	59	1*-10"	2'-5"	2'-5"	47	1'-11"	2'-7"	2'-7"
5"	26	59	2'-2"	2'-11"	2'-11"	47	2'-4"	3'-1"	3'-1"
	24	59	2'-10"	3'-9"	3'-9"	47	3'-1"	4'-1"	4'-1"
	22	59	3'-3"	4'-4"	4'-1"	47	3'-6"	4'-8"	4'-4"

Allowable Uniform Superimposed Loads for Reinforced Concrete Slabs - psf

Slab	Reinforce	ment		т	hree Span C	condition - Ce	enter to Cent	er	
Depth	W.W.R.	As (in²/ft)	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"
	6x6-W1.4xW1.4	0.028*	249	151	98	66	45	31	
2-1/2"	6x6-W2.0xW2.0	0.040*	362	223	148	103	73	53	38
	6x6-W2.9xW2.9	0.058*	400	329	221	156	114	85	65
	6x6-W1.4xW1.4	0.028*	299	182	118	79	54	37	
3"	6x6-W2.0xW2.0	0.040*	400	269	178	124	88	64	46
	6x6-W2.9xW2.9	0.058	400	397	267	189	138	103	78
	6x6-W2.0xW2.0	0.040*	400	314	208	193	140	103	77
3-1/2"	6x6-W2.9xW2.9	0.058*	400	400	313	286	211	159	123
	6x6-W4.0xW4.0	0.080	400	400	400	392	292	224	175
	6x6-W2.9xW2.9	0.058*	400	400	359	356	263	200	155
4"	6x6-W4.0xW4.0	0.080	400	400	400	400	367	282	221
	4x4-W2.9xW2.9	0.087	400	400	400	400	400	315	248
	6x6-W4.0xW4.0	0.080*	400	400	400	400	400	339	267
4-1/2"	4x4-W2.9xW2.9	0.087	400	400	400	400	400	379	299
	4x4-W4.0xW4.0	0.120	400	400	400	400	400	400	400
	6x6-W4.0xW4.0	0.080*	400	400	400	400	400	397	313
5*	4x4-W2.9xW2.9	0.087*	400	400	400	400	400	400	349
	4x4-W4.0xW4.0	0.120	400	400	400	400	400	400	400

 *A_s does not meet A.C.I. criteria for temperature and shrinkage reinforcement (0.0018Ac)

STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES

Based on a Maximum Allowable Tensile Stress of 30 ksi Adopted by the Steel Joist Institute May 25, 1983; Revised to May 1, 2000 – Effective August 1, 2002

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **LH-Series** Steel Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables.

The RED figures in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of ½∞0 of the span. LIVE loads which will produce a deflection of ½∞0 of the span may be obtained by multiplying the RED figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is ½ inch per foot. If pitch exceeds this standard, the load table does not apply. Sloped parallel-chord joists shall use span as defined by the length along the slope.

Where the joist span is in the RED SHADED area of the load table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed.

Where the joist span is in the BLUE SHADED area of the load table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed.

The approximate moment of inertia of the joist, in inches⁴ is; $I_1 = 26.767(W_{LL})(L^3)(10^3)$, where $W_{LL} = RED$ figure in the

Load Table, and L = (clear span + .67) in feet.

When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas.

The top chords are considered as being stayed laterally by floor slab or roof deck.

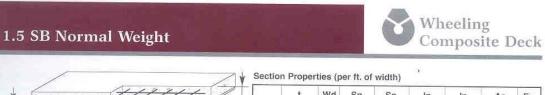
The approximate joist weights per linear foot shown in these tables do not include accessories.

Joist Designation	in Lbs. Per	in	SAFE LOAD* in Lbs. Between 21-24	25	26	27	28	29	30	CLE/	AR SP	AN IN	FEET	35	36				
18LH02	10	18	12000	468	442	418	391	367	345	324	306	289	273	259	245	-	-	+	-
				313	284	259	234	212	193	175	160	147	135	124	114				
18LH03	11	18	13300	521	493	467	438	409	382	359	337	317	299	283	267	-	-	-	-
	L.C.II		111111111111111111111111111111111111111	348	317	289	262	236	213	194	177	161	148	136	124				
18LH04	12	18	15500	604	571	535	500	469	440	413	388	365	344	325	308	-	-	-	1
				403	367	329	296	266	242	219	200	182	167	153	141				
18LH05	15	18	17500	684	648	614	581	543	508	476	448	421	397	375	355				
				454)	414	378	345	311	282	256	233	212	195	179	164				
18LH06	15	18	20700	809	749	696	648	605	566	531	499	470	443	418	396				
				526	469	419	377	340	307	280	254	232	212	195	180				
18LH07	17	18	21500	840	809	780	726	678	635	595	559	526	496	469	444				
				553	513	476	428	386	349	317	288	264	241	222	204				
18LH08	19	18	22400	876	843	812	784	758	717	680	641	604	571	540	512				
				577	534	496	462	427	387	351	320	292	267	248	226				
18LH09	21	18	24000	936	901	868	838	810	783	759	713	671	633	598	566				
				616	571	527	491	458	418	380	346	316	289	266	245				1
			22-24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20LH02	10	20	11300	442	437	431	410	388	365	344	325	307	291	275	262	249	237	225	215
				306	303	298	274	250	228	208	190	174	160	147	136	126	117	108	101
20LH03	11	20	12000	469	463	458	452	434	414	395	372	352	333	316	299	283	269	255	243
		-		337	333	317	302	280	258	238	218	200	184	169	156	143	133	123	114
20LH04	12	20	14700	574	566	558	528	496	467	440	416	393	372	353	335	318	303	289	275
				428	406	386	352	320	291	265	243	223	205	189	17.4	161	149	139	129
20LH05	14	20	15800	616	609	602	595	571	544	513	484	458	434	411	390	371	353	336	321
0.01110.0				459	437	416	395	366	337	308	281	258	238	219	202	187	173	161	150
20LH06	15	20	21100	822	791	763	723	679	635	596	560	527	497	469	444	421	399	379	361
20.00 V 1.100.00		20.00		506	561	521	477	427	386	351	320	292	267	246	226	209	192	178	165
20LH07	17	20	22500	878	845	814	786	760	711	667	627	590	556	526	497	471	447	425	404
0.0111/0.0				547	599	556	518	484	438	393	362	331	303	278	256	236	218	202	187
201 H08	19	20	23200	908	873	842	813	785	760	722		The second second	621	588	558	530	503	479	457
0011105				669	619	575	536	500	468	428	395	365	336	309	285	262	242	225	209
20LH09	21	20	25400	990	953	918	886	856	828	802	778	755	712	673	636	603	572	544	517
0011116				729	675	626	581	542	507	475	437	399	366	336	309	285	264	244	227
20LH10	23	20	27400	1068	1028	991	956	924	894	865	839	814	791	748	707	670	636	604	575
				786	724	673	626	585	545	510	479	448	411	377	346	320	296	274	254

Appendix E

Alternate Floor System #3 Composite Beam/Composite Slab

$$\begin{array}{c} \underline{Auternumer} & \underline{H} & \underline{3} & - Composite Bern / Comp. SLAB} \\ \hline \underline{Auternumer} & \underline{H} & \underline{3} & - Composite Bern / Comp. SLAB} \\ \hline \underline{Destron Aros}: \cdot Whiching, Deck Product Catalog. ... & LRFD Manual for Steel Construction (3rd Editors) \\ \hline \underline{LRFD Manual for Steel Construction (3rd Editors) \\ \hline \underline{LRFD Manual for Steel Construction (3rd Editors) \\ \hline \underline{LEP D St} & \underline{U} = 100 \text{ pst} \\ \hline \underline{TL} = 1/2 (45) + 1/6 (100) \\ = 214 \text{ psf} \\ \hline \underline{Scecteo}: & \underline{4''} Scars w / 6×6 - WI.4 + WI.4 (75.00-13) \\ \hline \underline{Srew} = 71-0" \\ \underline{VSE} = 1/5 SB Neenul WT. \\ & Wallow = 292 \text{ psf} > Weedol = 214 \text{ psf} :... & Wallow = 292 \text{ psf} \\ \hline \underline{A_c}: 20.6 \text{ m}^2 \\ \hline \underline{Composite Bernm} \\ W_u = 1/2 (45+3b) + 1/6 (100) = 2576 \text{ psf} (7) = 1/803 \text{ kH} \\ \hline M_u = \underline{W}_{u}^2 = 1/803 (21/5^2) \\ = 225.6 \text{ m} \\ \hline \underline{Composite Bernm} \\ W_u = 1/2 (45+3b) + 1/6 (100) = 2576 \text{ psf} (7) = 1/803 \text{ kH} \\ \hline M_u = \underline{W}_{u}^2 = 1/803 (21/5^2) \\ = 225.6 \text{ m} \\ \hline \underline{Composite Bernm} \\ W_u = 102 (45+3b) + 1/6 (100) = 2576 \text{ psf} (7) = 1/803 \text{ kH} \\ \hline \underline{M_u} = \underline{W}_{u}^2 = 1/803 (21/5^2) \\ = 225.6 \text{ m} \\ \hline \underline{Composite Bernm} \\ W_u = 102 (45+3b) + 1/6 (100) = 2576 \text{ psf} (7) = 1/803 \text{ kH} \\ \hline \underline{M_u} = \underline{W}_{u}^2 = 1/803 (21/5^2) \\ = 225.6 \text{ m} \\ \hline \underline{Composite Bernm} \\ W_u = 102 (45+3b) + 1/6 (100) = 2576 \text{ psf} (7) = 1/803 \text{ kH} \\ \hline \underline{M_u} = \frac{W_{u}}{25} = 225.6 \text{ m} \\ \hline \underline{Composite Bernm} \\ \hline \underline{Composite Bernm} \\ \hline \underline{W}_{u} = 102 (45+3b) \\ \hline \underline{Composite Bernm} \\ \hline \underline{W}_{u} = 102 (45+3b) \\ \hline \underline{Composite Bernm} \\ \hline \underline{W}_{u} = 255 \text{ m} \\ \hline \underline{W}_{u} = 256 \text{ m} \\ \hline \underline{W}_{u} = 256 \text{ m} \\ \hline \underline{W}_{u} = 258 \text{ m} \\ \hline \underline{W}_{u} = 2236 \text{ m} \\ \hline \underline{Composite Bernm} \\ \hline \underline{W}_{u} = 256 \text{ m} \\ \hline \underline{W}_{u} = 208 \text{ m} \\ \hline \underline{W}_{u} = 225.6 \text{ m} \\ \hline \underline{W}_{u} = 208 \text{ m} \\ \hline \underline{W}_{u} = 225.6 \text{ m} \\ \hline \underline{W}_{u} = 208 \text{ m} \\ \hline \underline{W}_{u}$$


ANNPALT 22-144 200 SHEETS

1

$$Mitekan PTF = 4 3 (c_{0.1}td) - Guerre - WSHAPE
Reaction from beams = $\frac{WL}{Z} = \frac{1203(35).5}{2} + \frac{1003(15).5}{2} = 40.6^{K}$
 $\frac{WL}{Z} = \frac{1203}{Z} + \frac{120}{Z} + \frac{1$$$

CAMPALI 22-142 100 SHEETS

Composite Metal Deck (Wheeling Deck Products)

	Section	roper	ues (p	per it, of	width)				
Y SHELL BOTTON	Gage	t in	Wd psf	Sp in ³	Sn in ³	Ip in4	In In4	As in ²	Fy ksi
1-1/2" SLAB	22	0.0295	1.7	0.172	0.180	0.146	0.182	0.478	50
1-1/2" A DEPTH	20	0.0358	2.0	0.218	0.229	0.190	0.221	0.581	50
	18	0.0474	2.7	0.301	0.311	0.284	0.294	0.769	40
145 pcf Normal Weight Concrete	16	0.0600	3.4	0.388	0.394	0.374	0.373	0.973	40

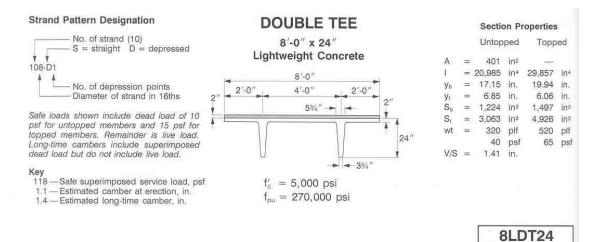
Total Slab Depth D			num Uns lear Spa		11252201200	posite erties			Su	perim	posed	Live	Loads	- psf:	No St	uds		
Wt. Conc.	Gage	Single	Double	Triple	lavg	Sc					Sp	an - F	eet ar	nd Inc	hes	_	_	
Area Conc.		Span	Span	Span	in 7/1	ins/ft	6'-0"	6'-6	7-0	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6'
1	22	5'-10"	7'-9"	7'-11"	3.573	0.887	400	343	292	251	217	189	166	146	129	114	101	90
4 [*]	20	6-9	9'-0"	9-2	3.854	1.052	400	400	352	303	262	229	201	178	158	140	125	111
36.3 psf	18	7'-2"	9'-5"	9'-8"	4.333	1.345	400	400	360	310	269	235	206	182	161	142	128	115
20.6 in2	16	8'-4"	10'-6"	10'-11"	4.782	1.638	400	400	360	310	269	235	206	182	161	142	128	115
	22	5'-6"	7*-5*	7'-6"	5,107	1.087	400	400	360	309	268	233	205	180	160	142	126	113
4-1/2"	20	6°-4°	8'-7"	8'-8"	5.496	1.291	400	400	400	373	324	283	249	220	195	174	156	140
42.4 psf	18	6'-9"	8"-11"	9'-3"	6.160	1.653	400	400	400	383	332	290	255	226	200	179	160	143
24.8 in ²	16	7'-10"	10'-0"	10'-4"	6.789	2.018	400	400	400	383	332	290	255	226	200	179	160	143
	22	5'-3"	7'-1"	7'-2"	7.022	1.293	400	400	400	370	320	279	245	216	191	170	152	136
5"	20	6'-1"	8'-2"	8'-4"	7.544	1.538	400	400	400	400	388	339	298	264	235	209	187	168
48.4 psf	18	6'-5"	8'-6"	8'-9"	8.431	1.972	400	400	400	400	398	348	307	271	241	215	193	173
29.3 in2	16	7'-6"	9'-6"	9'-10"	9.280	2.415	400	400	400	400	398	348	307	271	241	215	193	173
	22	5'-0"	6'-9"	6'-10"	9.360	1.503	400	400	400	400	374	326	287	253	224	199	178	159
5-1/2"	20	5'-10"	7'-10"	7'-11"	10.036	1.791	400	400	400	400	400	397	349	309	275	245	220	197
54.4 psf	18	6'-2"	8'-2"	8'-5"	11.187	2.301	400	400	400	400	400	400	360	318	283	253	227	204
34.1 in2	16	7'-2"	9'-2"	9'-5"	12.298	2.824	400	400	400	400	400	400	360	318	283	253	227	204
	22	4'-10"	6'-6"	6'+7"	12.157	1.717	400	400	400	400	400	374	329	290	258	229	205	183
6*	20	5'-7"	7'-6"	7'-8"	13.012	2.048	400	400	400	400	400	400	400	355	316	282	253	227
60.5 psf	18	5'-11"	7'-10"	8'-1"	14.468	2.636	400	400	400	400	400	400	400	366	326	291	261	235
39.4 in ²	16	6'-10"	8'-9"	9'-1"	15.883	3.242	400	400	400	400	400	400	400	366	326	291	261	235

								5	Superi	mpos	ed Liv	e Loa	ds - ps	sf: Stu	ds @	1'-0" O	.C.				
D We Ac	Gage	Single	Double	Triple Span	Stud F	actors															
D, Wc, Ac 4" 36.3 psf 20.6 in ² 4-1/2" 42.4 psf 24.8 in ² 5" 48.4 psf 29.3 in ²	uage	Span	Span		2' o.c.	3' o.c.	6'-0"	6'-6"	7'-0"	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6'			
	22	5'-10"	7'-9"	7'-11"	0.91	0.84	400	400	400	371	305	255	215	182	156	135	118	103			
and in the second	20	6'-9"	9'-1"	9'-2"	0.88	0.82	400	400	400	400	329	275	231	197	169	146	127	111			
36.3 psf	18	7'-2"	9'-5"	9'-5"	0.86	0.80	400	400	400	400	370	309	260	221	190	164	142	125			
20.6 in ²	16	8'-4"	10'-6"	10'-11"	0.83	0.78	400	400	400	400	400	341	287	244	209	181	157	138			
	22	5'-6"	7'-5"	7'-6"	0.92	0.85	400	400	400	400	387	339	299	261	224	193	168	147			
4-1/2"	20	6'-4"	8'-7"	8'-8"	0.89	0.83	400	400	400	400	400	392	330	281	241	208	181	158			
42.4 psf	18	6'-9"	8'-11"	9'-3"	0.87	0.81	400	400	400	400	400	400	370	314	270	233	203	177			
24.8 in ²	16	7'-10"	10'-0"	10'-4"	0.84	0.79	400	400	400	400	400	400	400	347	297	257	223	195			
	22	5'-3"	7'-1"	7'-2"	0.93	0.86	400	400	400	400	400	393	347	307	274	245	220	198			
5"	20	6'-1"	8'-2"	8'-4"	0.89	0.84	400	400	400	400	400	400	400	371	330	285	248	217			
48.4 psf	18	6'-5*	8'-6"	8'-9"	0.88	0.82	400	400	400	400	400	400	400	392	350	314	277	243			
29.3 in ²	16	7'-6"	9'-6"	9'-10"	0.85	0.81	400	400	400	400	400	400	400	400	400	351	305	267			
	22	5'-0"	6'-9"	6'-10"	0.93	0.87	400	400	400	400	400	400	395	350	312	279	250	225			
5-1/2"	20	5'-10"	7'-10"	7'-11"	0.90	0.85	400	400	400	400	400	400	400	400	378	339	305	276			
54.4 psf	18	6'-2"	8'-2"	8'-5"	0.88	0.83	400	400	400	400	400	400	400	400	400	359	323	292			
34.1 in ²	16	7'-2"	9"-2"	9'-5"	0.85	0.82	400	400	400	400	400	400	400	400	400	400	400	354			
	22	4'-10"	6'-6"	6'-7"	0.94	0.88	400	400	400	400	400	400	400	392	349	313	281	253			
6"	20	5'-7"	7'-6"	7'-8"	0.91	0.86	400	400	400	400	400	400	400	400	400	381	343	310			
60.5 psf	18	5'-11"	7'-10"	8'-1"	0.89	0.84	400	400	400	400	400	400	400	400	400	400	363	328			
39.4 in ²	16	6'-10"	8'-9"	9'-1"	0.86	0.83	400	400	400	400	400	400	400	400	400	400	400	400			

CD-4

Refer to the Design Notes, Note 7 for information on live load limits for fire-rated construction. See Page CD-3.
 If stud spacing exceeds 1'-0" o.c., reduce live load by applicable stud factor listed above for actual stud spacing.
 If welded wire fabric is not used, the live loads should be reduced by 10%.

Appendix F


Alternate Floor System #4 Double Tee Beam System

ALTERNATE 44 - DOUBLE TEE BEAMS
DEDIGN ALOSS PEL MANNER

$$M_{2}$$
 465 + 100 = 145 PSF (Service)
 $SPAN = 31-5" = 0.52 32'$
 $Seccrete BLDT24 + 2$
 $Seccrete BLDT24 + 20 est - 20 est - 11.5''
 $Seccrete BLDT24 + 20 est - 20$$

(CAWPAD 22-142 100 SHEETS

Double Tee Beam Load Table (PCI Design Handbook)

Table of safe superimposed service load (psf) and cambers (in.)

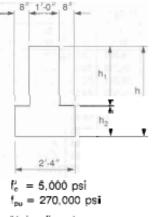
Strand	e _{e, in.}											S	pan,	ft										
Pattern	e _{c, in.}	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80
68-S	11.15 11.15	118 1.1 1.4	103 1.2 1.4	89 1.2 1.5	78 1.3 1.5	69 1.3 1.5	60 1.4 1.5	53 1.4 1.4	46 1.4 1.4	40 1.3 1.2	35 1.3 1.0	30 1.2 0.8						1						
88-S	9.15 9.15	144 1.2 1.6	126 1.3	110 1.4 1.7	97 1.5 1.8	86 1.6 1.8	76 1.6 1.8	67 1.6 1.8	59 1.6 1.7	53 1.6 1.6	47 1.6 1.5	41 1.6 1.3	36 1.5 1.0	32 1.4 0.7										
88-D1	9.15 14.40		176 1.9 2.4	156 2.1 2.6	139 2.2 2.8	124 2.4 2.9	111 2.5 3.0	99 2.7 3.1	89 2.8 3.2	80 2.9 3.2	72 3.0 3.2	64 3.0 3.1	58 3.1 2.9	52 3.1 2.8	47 3.0 2.6	42 3.0 2.4	38 2.9 2.1	34 2.8 1.8					>	
108-D1	7.15 14.15								113 3.3 3.9	102 3.4 4.0	93 3.6 4.1	84 3.7 4.1	76 3.8 4.1	69 3.9 4.0	63 4.0 3.9	57 4.1 3.8	52 4.1 3.5	47 4.0 3.2	43 3.9 2.8	38 3.8 2.4	35 3.6 1.9	31 3.4 1.3		
128-D1	5.48 13.9					÷.,	b . (~	65 4.8 4.7	59 4.9 4.5	54 4.9 4.2	50 4.9 3.8	45 4.8 3.4	41 4.7 2.8	38 4.5 2.2	34 4.3 1.5
148-D1	4.29 13.65																		- the	2.0		2.0	46 5.6 3.8	42 5.5 3.2

8LDT24+2

No Topping

Strand	e _{e, in.}		Span, ft																				
Pattern	e _{c, in.}	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68
48-S	14.15 14.15	193 0.6 0.6	159 0.6 0.6	132 0.7 0.7	110 0.8	92 0.8 0.7	76 0.9 0.6	63 0.9 0.6	52 1.0 0.5	43 1.0 0.4	34 1.0 0.2												
68-S	11.15 11.15		ě.	185 0.9 0.9	157 0.9 0.9	133 1.0 0.9	113 1.1 0.9	96 1.2 0.9	82 1.2 0.9	70 1.3 0.8	59 1.3 0.7	50 1.4 0.5	41 1.4 0.3	34 1.4 0.0									
68-D1	11.15 14.65					166 1.2 1.2	143 1.4 1.3	123 1.5 1.3	106 1.6 1.3	91 1.7 1.3	79 1.8 1.2	68 1.9 1.1	58 1.9 0.9	49 2.0 0.7	42 2.0 0.5	35 2.0 0.2							
88-D1	9.15 14.40						200 1.8 1.8	175 1,9 1,9	153 2.1 1.9	134 2.1 1.8	117 2.4 2.0	103 2.5 1.9	90 2.7 1.9	79 2.8 1.7	70 2.9 1.6	61 3.0 1.3	53 3.0 1.0	46 3.1 0.6	40 3.1 0.2				
108-D1	7.15 14.15			-										106 3.3 2.4	94 3.4 2.3	84 3.6 2.1	74 3.7 1.9	66 3.8 1.6	58 3.9 1.3	51 4.0 0.8	45 4.1 0.3		44-
128-D1	5.48 13.90			•									The									53 4.8 0.7	46 4.9 0.1

Table of safe superimposed service load (psf) and cambers (in.) 2" Normal Weight Topping


Strength based on strain compatibility; bottom tension limited to $12\sqrt{f_c}$; see pages 2-2–2-6 for explanation. Shaded values require release strengths higher than 3500 psi.

PCI Design Handbook/Fifth Edition

Inverted Tee Beam – Girder Design (PCI Design Handbook)

INVERTED TEE BEAMS

Normal Weight Concrete

1/2 in, diameter

low-relaxation strand

Key 6,929 — Safe superimposed service load, plF 0.3 — Estimated camber at erection, in. 0.1 — Estimated long-time camber, in.

		1	Sectio	on Prope	rties			
Designation	h in.	h ₁ /h ₂ in.	A In ²	I in4	y _h in.	S _b in ²	S ₁ in ³	wt plf
28/T20	20	12/8	368	11,688	7.91	1,478	967	383
28/T24	24	12/12	480	20,275	9.60	2,112	1,408	500
28IT28	28	16/12	528	32,076	11.09	2,892	1,897	550
28IT32	32	20/12	576	47,872	12.67	3,778	2,477	600
28IT36	36	24/12	624	68,101	14.31	4,759	3,140	650
28IT40	40	24/16	736	93,503	15.83	5,907	3,869	767
28IT44	44	28/16	784	124,437	17.43	7,139	4,683	817
28IT48	48	32/16	832	161,424	19.08	8,460	5,582	867
28IT52	52	36/16	880	204,884	20.76	9,869	6,558	917
28IT56	56	40/16	928	255,229	22.48	11,354	7,614	967
28/160	60	44/16	976	312,866	24.23	12,912	8,747	1,017

1. Check local area for availability of other sizes.

Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore additional top reinforcement is required.

3. Safe loads can be significantly increased by use of structural composite topping.

Table of safe superimposed service load (plf) and cambers

Desig-	No.		1.00	1000	2003	204	2.05	200	100		Spa	n, ft	120		10.1		12			
nation	Strand	0	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
	2.1	4.097	6929	5402	4310	3502	2887	2409	2029	1723	1473	1265	1091							
28IT20	9	5.82	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.8	0.8							
		111 200	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.1							
			9714	7580	6054	4925	+066	3398	2868	2440	2090	1799	1556	1351	1175	1024				
28IT24	11	6.77	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0,B				
			0,1	0.1	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.2				
					8505	6951	5768	4848	4118	3529	3047	2648	2313	2030	1788	1579	1399	1242	1103	96
28IT28	13	8.44			0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.
1.1		Sec. 247			0.1	0.1	0,1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	-0.
						9202	7646	6435	5474	4698	4064	3538	3097	2724	2406	2132	1894	1687	1505	134
28IT32	15	9.17				0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.
	1.1.1	1.1				0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.
	1.0							8485	7236	6227	5402	4718	4145	3660	3246	2890	2581	2311	2075	186
28IT36	16	10.81						0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.
1.2 3.5 4		1.	-					0.1	0.1	0.1	6433	0.1	0.1	0.1 4361	0.1	0.1	0.0	0.0	2475	-0.
28IT40	19	11.28							0.4	7415	0433	0.5	4938	4361	0.7	0.7	0.8	2/56	24/5	0.
201140	19	11.20							0.4	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
			-					-	W, 1	9308	8092	7083	6239	5524	4913	4388	3932	3535	3186	287
28IT44	20	12.89								0.4	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.
201144	20	12.00								0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
		-	<u> </u>							0.1	9741	8539	7532	6680	5952	5326	4783	4310	3894	352
28IT48	22	14.16									0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.
											0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
01.21.255			<u> </u>								911	0.1	8935	7934	7080	6345	5707	5151	4664	423
28IT52	24	15.44											0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.
													0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
· · ·														9284	8294	7442	6703	6059	5493	499
28IT56	26	16.74												0.5	0.6	0.6	0.7	0.7	0.8	0
28.0														0.1	0.1	0.1	0.1	0.1	0.1	0.
															9590	8613	7766	7027	6379	580
281160	28	18.04	-												0.6	0.6	0.6	0.7	0.7	0.
															0.1	0.2	0.2	0.2	0.2	0.