Christopher McCune Structural Option Eight Tower Bridge Faculty Advisor: Dr. Hanagan October 31st, 2005

Structural Technical Report #2 Pro/Con Study of Alternate Floor Systems

Executive Summary

This technical report deals specifically with the flooring system of Eight Tower Bridge located in Conshohocken, Pennsylvania. This sixteen story steel high-rise office tower currently employs a concrete slab poured over 2" metal deck in full composite action with wide flange steel beams. This report introduces five alternative flooring systems for the office tower. They include:

- Long span open web steel joists
- Short span open web steel joists
- Long span one-way concrete pan joists
- Short span one-way concrete pan joists
- Precast hollow core concrete deck

The five systems were evaluated on a number of different criteria including overall system weight, fire rating of the assembly and most importantly, and overall system depth.

Of the five alternative systems presented, both the long span open web steel joist system and precast hollow core concrete deck were deemed to have too deep of an overall system thickness, which cancelled out any possible benefits the system might have. The best alternative to further investigate was decided to be the short span, one-way concrete pan joist system.

Existing Floor System

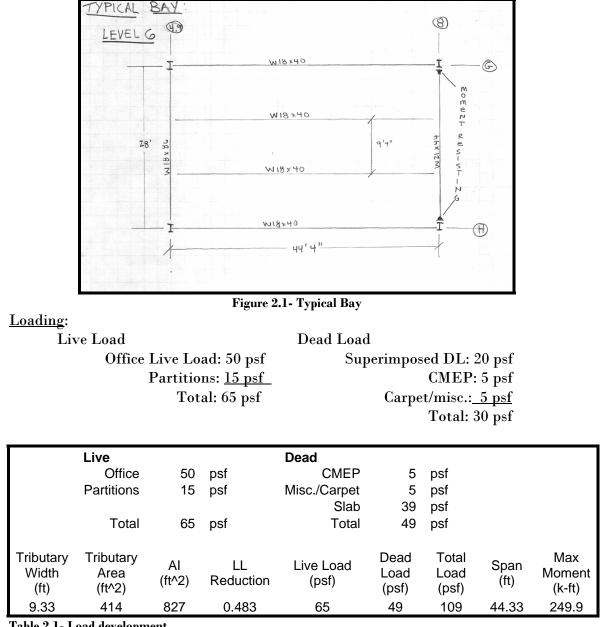
Eight Tower Bridge is a sixteen story steel framed office tower with a rooftop mechanical penthouse. The entire structure is dedicated to office space with the exception of the ground floor which houses limited parking facilities, a small retail area and a three story main entrance lobby. The geometry of the building allows for repetition in the floor layout for each level of Eight Tower Bridge. Floors 3-15 have been designed with almost identical members, neglecting the columns. A typical floor of Eight Tower Bridge is approximately 21,800 sq. ft. with close to 19,450 sq. ft. of it being occupiable office space.

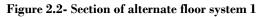
There are six different variations of flooring systems used in Eight Tower Bridge. The systems differ only in reinforcement and slab thickness, and have been designed to carry a range of loads found in different parts of the building (i.e. the mechanical room of each floor has a thickened slab). A deck slab schedule is included in Appendix E for comparison between different slabs. This floor system study will only deal with one of these slab decks.

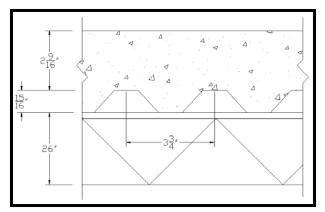
The typical bay being studied in this report falls between column lines 1 and 4.1 and F and G. The existing floor system employed at this typical office bay consists of poured concrete on metal deck with full composite action between the wide flange steel beams. Full composite action is developed between the beams and the concrete deck slab through ³/₄" diameter, 4" long shear studs spaced evenly along the length of the beam. Beams span a typical 44'4" spaced at every 9'4" on center, and are sized to at W18x40. The deck has 2" flutes and has been specified to a minimum of 20 gauge A446 steel with 2" overlap. The deck supports 3-1/4" lightweight concrete reinforced with 6x6-W1.4xW1.4 welded wire fabric, bringing the total slab depth to 5-1/4". The total floor system has a depth of 23-1/4".

Development of Floor Loads

Floor loadings for a typical bay are listed below. The typical bay being designed for in this report has arbitrarily been chosen to be from the 6th floor. Live load reductions corresponding to this location are applied. Other load cases are present in different parts of the building, but the loads below will be the only conditions applied to the bay being analyzed. The typical bay can be seen below in figure 2.1.




Table 2.1- Load development


Alternative Floor Systems

Open Web Steel Joist, Long Span

The first alternate flooring system being investigated is an open web steel joist system framing into non-composite steel girders spanning in the long direction. The system is comprised of 26K12 open web steel joists spaced at 3' on center. Joists span 44'4" and frame into non-composite 50 ksi W21x44 wide-flange girders. The joists were selected from New Columbia Joist Company catalog with loads based on a maximum tensile stress of 30 ksi. The girder designed for this system was an interior girder, so exterior wall loading was not taken into consideration. The joists support 4000psi light weight concrete poured over steel form metal deck with a total slab thickness 3-1/2", and reinforced with 6x6-W2.0xW2.0 wwf. The deck is 80 ksi Tensilform 75 deck manufactured by Wheeling and has been designated with a 2 hour fire rating by Underwriter Laboratories for the given assembly. The total depth of the system is 29-1/2", as seen below in figure 2.2. Relevant calculations can be found in Appendix A.

Open web steel joists are efficient engineered products. The relative light weight of each joist can reduce the size of beams and columns, reducing the overall building weight, thus lowering the overall cost of the project. The open webs of the joists permit passage for other systems through the member such as mechanical duct work, electrical conduit and plumbing systems. Additionally, construction with open

web joists is relatively quick. Once each joist is erected, decking can be laid across them to form a working surface or to begin pouring the concrete slab.

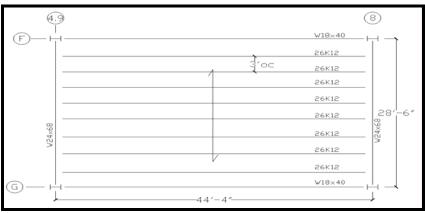


Figure 2.3- Open-Web Steel Joist, Long Direction

Open Web Steel Joist, Short Span (Alternate 2)

This alternative flooring system is comprised of the same decking and slab thickness, but contains open-web trussed spanning in the short direction of the bay. The joists selected are open-web 22k6 joists spaced at 4'0" on center, again from the New Columbia Steel Joist Company. The joists are framed into non-composite 50 ksi wide-flange steel girders sized at a W18x40 spanning 44'4". The total depth of the system is 25-1/2" and still retains a 2 hour fire rating designated by Underwriter Laboratories. Calculations for this system can be found in Appendix B.

A joist with a smaller depth could be selected for this system due to the decrease in span from the system above, which decreases the load per linear foot on the truss. The joists were also allowed to be spaced an additional foot apart for this system. The Tensilform 75 steel deck is capable of spanning 4'0" for both systems, but became the limiting factor for the selection of a joist spanning the long direction. Orienting the joists in the short direction as shown below in Figure 2.4 resulted in a longer center to center spacing, in shallower system depth.

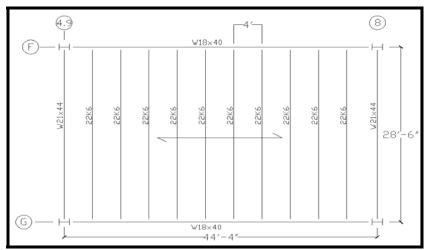
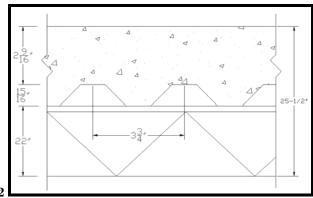
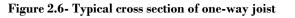
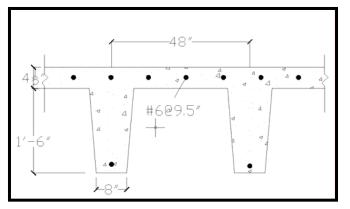


Figure 2.4- Open Web Steel Joist, Short Direction


Figure 2.5- Section of alternate floor system 2

Concrete Pan Joist Girders, Long Span (Alternate 3)

The third alternate floor system being evaluated is a one-way concrete joist system in the long span direction. The CRSI 2002 design handbook was used as the guide to this design. The system uses 4000psi strength concrete and 60ksi strength reinforcing bars in design. The clear span was found to be 41'10", but designed as a 42' end span. The joist girder system selected from the CRSI handbook uses 40" forms with 10" ribs spaced at 48" center to center. The ribs are 18" deep with a top slab of 4.5", bringing the total depth of the system to 22.5". The maximum factored usable superimposed load for this system is 447 lb/ft², which is greater than the calculated 396 lb/ft². Top reinforcing consists of # 6 bars at 9.5" on center, while bottom reinforcing consists of a single #8 bar. The one-way concrete joist frames into a rectangular concrete girder found to be 36"x24.5". Both a cross section and typical bay layout for this system can be seen below in figures 2.6 and 2.7.

The advantages of using a one way concrete pan joist system include the ability to span rather long distances and the overall relative lightweight of the system. The depth of the system can be minimized depending on the span condition.

Disadvantages of this system include costly formwork

assembly and tear down, as well as concrete curing time. Both of these factors can result in increased labor costs and lost time on the project schedule.

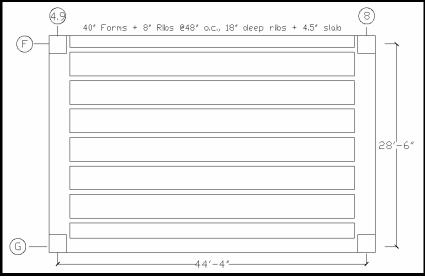
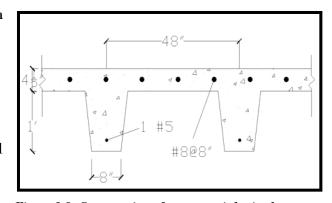



Figure 2.7- Typical bay layout for one-way concrete joist system, long span

Concrete Pan Joist Girders, Short Span (Alternate 4)

The forth alternative flooring system being evaluated is similar to alternative three, but spanning perpendicular to the original span. Similar to alternative 2, the floor system depth can be reduced when spanning in the short direction. The CRSI 2002 handbook was again used as the design aid for this system. Columns were assumed to be 30"x30" square, but were not

30"x30" square, but were not checked for strength. The system was designed for a clear span of 26'0", which resulted in the selection of a joist system with 40" forms and 8" ribs spaced at 48" on center. The ribs are 12" deep with a top slab of 4.5", yielding a total system depth of only 16.5". The maximum usable load for this system is 686 lb/ft², greater than the calculated 396 lb/ft². Top reinforcing consists of #8 bars at 8", which bottom reinforcing consist of 1 #5 bar. A concrete girder was also selected from the CRSI 2002 handbook and sized at 30"x 42". The typical cross section of the concrete joist system is shown to the right in figure 2.8.

This system has the same advantages and disadvantages as alternate system number 4, but the advantage that is most obvious is the reduction in system depth. This system allows for the depth of the floor to be reduced nearly six inches. When dealing with a high-rise office tower like Eight Tower Bridge, 6 inches per floor correlates to height reduction of 8', close to a fully story height. This affects the overall building weight, seismic and wind calculations, an also building cladding costs. A designer may be particularly interested in such a reduction when facing height restrictions.

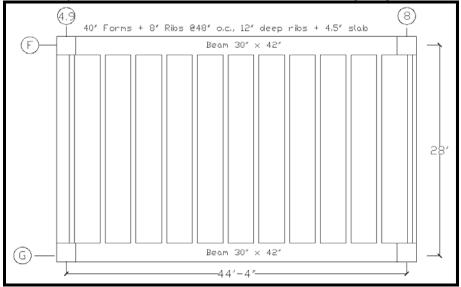


Figure 2.9- Typical bay layout for one-way concrete joist system, short span

Precast Concrete Hollow Core Deck (Alternate 5)

The final alternative flooring system developed is the use of precast concrete hollow core deck on wide flange beams. The Nitterhouse Precast Concrete Systems catalog was used as the design aid for this system. The planks were designed to span in the short direction of the typical bay. After developing an unfactored floor load of 95psf, it was determined that an 8"x4" prestressed span deck with 2"

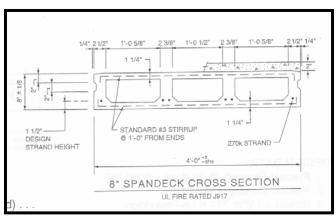


Figure 2.10- typical 8" spandeck cross section

cast-in-place concrete toping. The allowable superimposed load in psf for this system is listed as 132 lb/ft^2 . The 8 inch deep deck is cast from 5000psi concrete and reinforced with $\frac{1}{2}$ " diameter, 270k Lo-Relaxation prestessing tendons. The typical section of the precast spandeck is shown above in figure 2.10.

The precast spandeck will sit on wide-flange steel girders that span 44'4". There were two girders sized from LRFD Manual of Steel Construction that meet the required moment capacity of 1645 k-ft for an interior girder. The most economical member was a W33x130 beam. However, to minimize the depth of the system, a shallower but heavier W27x146 was selected as this system's girder. The overall system depth is therefore 37". The two inch topping was necessary in order to ensure an even floor finish, as the girder would have to be cambered due to deflection.

Precast concrete members pose many advantages. They can be cast in a controlled area, ensuring quality in strength. Hollow core plank and deck systems are relatively light in weight due to their hollow cores, which also pose thermal and acoustical benefits.

Conclusion

Out of the five alternative systems proposed, the two systems that seem to pose no real advantage or improvement to the structure are the precast hollow core concrete deck and the open web steel joist spanning the long direction. While both of these systems are fairly light and do work for the required loadings, the increase in floor system depth is too much. Weight reduction is not an issue with this structure, as the bulk of the weight lies at the building core, and not at the perimeter where our typical bay lies. Choosing a system that may be lighter than the current system does not pose an advantage if the overall structure height is increased. The remaining 3 alternative systems may have been viable options for the flooring system of Eight Tower Bridge. Most notably would be the one-way concrete pan joist system spanning in the short direction. The decrease in floor system depth of almost 6" could prove to be a very cost effective for the project. This system would also eliminate the need for long material lead time for steel members. However, the addition of form work assembly and disassembly, as well as concrete curing time may add time to the schedule. Additionally, the system requires a very large concrete girder, which may ruin all advantages of the system entirely. It may be worth while to investigate what shallow concrete framing members are available to span such a length. A summary table of the existing and alternative flooring systems is listed below.

System	Overall Depth	System Weight (PSF)	Advantages	Disadvantages	Further Invesitgate?
Concrete on metal deck with full composite wide flange beams	23-1/4"	55	•Relatively quick construction •Easy construction •Light framing system	•Material lead time •Welding shear studs •Spray on fireproofing needed	Existing
Concrete on metal deck with open web steel joists in long direction	29-1/2"	42	 Light framing system No shear stud welding Quick construction 	•Thicker floor system •Material lead time •Spray on fireproofing needed	No
Concrete on metal deck with open web steel joists in short direction	25-1/2"	33	•Light framing system •No shear stud welding •Quick construction	•Material lead time •Spray on fireproofing needed	Yes
One-way concrete pan joists spanning in long direction	24-1/2"	100	•No material lead time •Small floor depth	•Heavier system •Form work required •Curing concrete curing time	Yes
One-way concrete pan joists spanning in short direction	16-1/2"	95	•No material lead time •Small floor depth	•Heavier system •Form work required •Curing concrete curing time	Yes
Precast hollow core concrete deck on wide flange steel beams	37"	83	•Quality control in casting •Longer spans possible	•Material lead time •Thicker floor system •Taller building	No

Summary of Alternative flooring systems:

Appendix A Calculations for Alternative Floor System 1:

Open Web Steel Joist, Long Span

	STEEL JOISTS, LONG SPAN
	TOTAL SLAB THICKNESS B'12" A A A A A A A A A A A A A A A A A A A
	LIVE WAD: 65 PEF (BO OFFICE + 15 PARTITION) (MEP: 5PEF CARPET/MISC: 5PEF
50 SHEETS 100 SHEETS 200 SHEETS	SLAB WERGHT: 31 psc [WHEELING DECK CATALOG PFD-9]
50 S 100 S 200 S	total: 106 psf
22-141 22-142 22-144	TENSILFORM 75 DECK TO 31/2" SLAB, LT WT. CONC. [2HK. FIKE RATING
DAD'	WUSING 6x6 - WZO ZEINFORCING
ERMPAD'	ALLOWABLE UNIFORM LOAD: - 176 PER C 3'6"
5	" SPACING IS 3'0"
	-> JOISTS @ 3'0" O.C. [NEN COWMBIN STEEL JOIST CATALOG]
	TOTAL LIVE WAD (PLF) -> 65psf (3'0')= 195 16/1+
	CLEAR SPAN = 44.33' -> USE 45'
	SELECT 2 KIZ JOIST. MAX LIVE LUAD: 2/2 16/A > 19516/A MAX DIAL LUAD 389 16/A
	[NCST CATALOO, PZ5]
	TOTAL SYSTEM DEPTH: 26"+312"= 291/2"

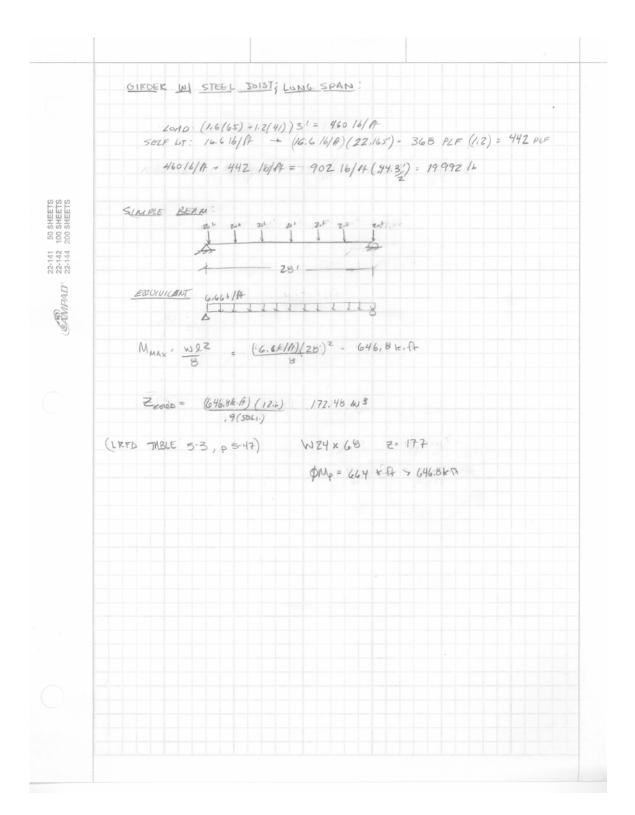
Wheeling Form Deck

Maximum Allowable Unshored Construction Clear Spans

		14	5 pcf Normal	Weight Concre	te	1	15 pcf Lightv	eight Concre	te
Slab Depth	Туре	Slab Wt psf	Single Span	Double Span	Triple Span	Slab Wt psf	Single Span	Double Span	Triple Span
	26	26	3'-7"	4'-8"	4'-8"	21	3'-9"	4'-10"	4'-11'
2-1/2"	25	26	4'-1"	5'-4"	5'-5"	21	4'-4"	5'-7"	5'-8"
	24	26	4'-10"	6'-4"	6'-5"	21	5'-1"	6'-9"	6'-10'
	22	26	5'-7"	7'-5"	7'-3"	21	5'-11"	7'-10"	7'-10
	26	32	3'-5"	4'-5"	4'-6"	26	3'-7"	4'-8"	4'-9"
3"	25	32	3'-10"	5'-1"	5'-1"	26	4'-1"	5'-4"	5'-5"
	24	32	4'-6"	6'-0"	6'-1"	26	4'-10"	6'-5"	6'-6"
	22	32	5'-3"	6'-11"	6'-9"	26	5'-7"	7'-5"	7'-3"
	26	38	3'-3"	4'-3"	4'-4"	31	3'-5"	4'-6"	4'-6"
3-1/2"	25	38	3'-8"	4'-10"	4'-11"	31	3'-11"	5'-1"	5'-2"
	24	38	4'-4"	5'-9"	5'-10"	31	4'-7"	6'-1"	6'-2"
	22	38	4'-11"	6'-7"	6'-5"	31	5'-4"	7'-1"	6'-10
	26	44	3'-1"	4'-1"	4'-2"	35	3'-4"	4'-4"	4'-5"
4"	25	44	3'-6"	4'-8"	4'-8"	35	3'-9"	4'-11"	5'-0"
	24	44	4'-1"	5'-6"	5'-7"	35	4'-5"	5'-10"	5'-11
	22	44	4'-8"	6'-4"	6'-1"	35	5'-1"	6'-9"	6'-7"
	26	50	3'-0"	3'-11"	4'-0"	40	3'-2"	4'-2"	4'-3"
4-1/2"	25	50	3'-4"	4'-6"	4'-6"	40	3'-7"	4'-9"	4'-10
	24	50	4'-0"	5'-4"	5'-4"	40	4'-3"	5'-8"	5'-9"
	22	50	4'-6"	6'-1"	5'-10"	40	4'-11"	6'-6"	6'-3"
	26	56	2'-10"	3'-10"	3'-10"	45	3'-1"	4'-1"	4'-1"
5"	25	56	3'-3"	4'-4"	4'-4"	45	3'-6"	4'-7"	4'-8"
	24	56	3'-10"	5'-1"	5'-2"	45	4'-1"	5'-5"	5'-6"
	22	56	4'-4"	5'-10"	5'-7"	45	4'-8"	6'-3"	6'-1"

Allowable Uniform Superimposed Loads for Reinforced Concrete Slabs - psf

Slab	Reinforce	ment		Т	hree Span C	ondition - Co	enter to Cent	er	
Depth	W.W.R.	As (in²/ft)	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"
	6x6-W1.4xW1.4	0.028*	78	52	34				
2-1/2"	6x6-W2.0xW2.0	0.040*	118	81	57	41			
	6x6-W2.9xW2.9	0.058*	176	124	90	66	50	37	
	6x6-W1.4xW1.4	0.028*	106	71	48	32			
3"	6x6-W2.0xW2.0	0.040*	160	111	79	57	41		
	6x6-W2.9xW2.9	0.058	240	169	123	92	69	53	40
	6x6-W2.0xW2.0	0.040*	203	176	127	94	- 70	53	39
3-1/2"	6x6-W2.9xW2.9	0.058*	303	260	192	145	111	87	68
	6x6-W4.0xW4.0	0.080	400	356	265	203	158	125	100
	6x6-W2.9xW2.9	0.058*	362	330	244	185	143	112	88
4"	6x6-W4.0xW4.0	0.080	400	400	339	261	204	162	131
	4x4-W2.9xW2.9	0.087	400	400	380	292	230	184	149
	6x6-W4.0xW4.0	0.080*	400	400	400	318	250	200	161
4-1/2"	4x4-W2.9xW2.9	0.087	400	400	400	356	280	224	182
	4x4-W4.0xW4.0	0.120	400	400	400	400	390	315	258
	6x6-W4.0xW4.0	0.080*	400	400	400	376	296	237	191
5"	4x4-W2.9xW2.9	0.087*	400	400	400	400	331	265	215
	4x4-W4.0xW4.0	0.120	400	400	400	400	400	373	306


 *A_s does not meet A.C.I. criteria for temperature and shrinkage reinforcement (0.0018Ac)

FD-9

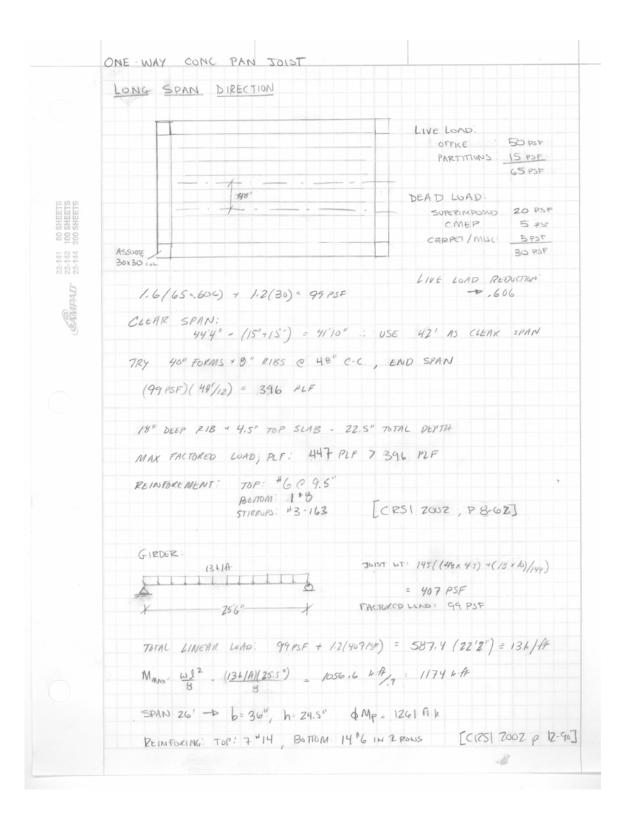
Joist Designation	24K4	24K5	24K6	24K7	24K8	24K9	24K10	24K12	26K5	26K6	26K7	26K8	26K9	26K10	26K12
Depth (In.)	24	24	24	24	24	24	24	24	26	26	26	26	26	26	26
Approx. Wt. (lbs./ft.)	8.4	9.3	9.7	10.1	11.5	12.0	13.1	16.0	9.8	10.6	10.9	12.1	12.2	13.8	16.6
Span (ft.) ↓							033	0.00				022	81.3		
24	520	550	550	550	550	550	550	550							
25	516 479	544 540	544 550	544 550	544 550	544 550	544 550	544 550							
20	479	540 511	520	520	520	520	520	520							
26	442	499	543	550	550	550	550	550	542	550	550	550	550	550	550
	405	453	493	499	499	499	499	499	535	541	541	541	541	541	541
27	410 361	462 404	503 439	550 479	550 479	550 479	550 479	550 479	502 477	547 519	550 522	550 522	550 522	550	550
28	381	429	467	521	550	550	550	550	466	508	550	550	522	522 550	522 550
	323	362	393	436	456	456	456	456	427	464	501	501	501	501	501
29	354 290	400 325	435 354	485 392	536	550	550	550	434	473	527	550	550	550	550
30	331	325	406	453	429 500	436 544	436 550	436 550	384 405	417 441	463 492	479 544	479 550	479 550	479 550
	262	293	319	353	387	419	422	422	346	377	417	457	459	459	459
31	310	349	380	424	468	510	550	550	379	413	460	509	550	550	550
32	237 290	266 327	289 357	320 397	350 439	379 478	410 549	410 549	314 356	341 387	378 432	413 477	444 519	444 549	444 549
52	215	241	262	290	318	344	393	393	285	309	343	375	407	431	431
33	273	308	335	373	413	449	532	532	334	364	406	448	488	532	532
34	196	220	239	265	289	313	368	368	259	282	312	342	370	404	404
34	257 179	290 201	315 218	351 242	388 264	423 286	502 337	516 344	315 237	343 257	382 285	422 312	459 338	516 378	516 378
35	242	273	297	331	366	399	473	501	297	323	360	398	433	501	501
0.00	164	184	200	221	242	262	308	324	217	236	261	286	310	356	356
36	229 150	258	281	313	346	377	447	487	280	305	340	376	409	486	487
37	216	169 244	183 266	203 · 296	222 327	241 356	283 423	306 474	199 '265	216 289	240 322	263 356	284 387	334 460	334 474
	138	155	169	187	205	222	260	290	, 183	199	221	242	262	308	315
38	205	231	252	281	310	338	401	461	251	274	305	337	367	436	461
39	128 195	143 219	156 239	172 266	189 294	204 320	240 380	275 449	169 238	184 260	204 289	223 320	241 348	284 413	299 449
00	118	132	144	159	174	189	222	261	156	170	188	206	223	262	283
40	185	208	227	253	280	304	361	438	227	247	275	304	331	393	438
41	109 176	122 198	133	148	161	175	206	247	145	157	174	191	207	243	269
41	101	198	216 124	241 137	266 150	290 162	344 191	427 235	215 134	235 146	262 162	289 177	315 192	374 225	427 256
42	168	189	206	229	253	276	327	417	205	224	249	275	300	356	417
10	94	106	115	127	139	151	177	224	125	136	150	164	178	210	244
43	160 88	180 98	196 107	219 118	242 130	263 140	312 165	406 213	196 116	213 126	238 140	263 153	286 166	339 195	407 232
44	-153	172	187	209	231	251	298	387	187	204	227	251	273	324	398
	82	92	100	110	121	131	154	199	108	118	131	143	155	182	222
45	146 76	164 86	179 93	199 103	220 . 113	240 122	285 144	370	179	194	217	240 133	261 145	310	389
46	139	157	171	103	211	230	272	185- 354	101 171	110 186	122 207	229	250	170 296	212 380
	71	80	87	97	106	114	135	174	95	103	114	125	135	159	203
47	133	150	164	183	202	220	261	339	164	178	199	219	239	284	369
48	67 128	75	82 157	90 175	99 194	107 211	126 250	163 325	89 157	96 171	107 190	117 210	127 229	149 272	192 353
40	63	70	77	85	93	101	118	153	83	90	100	110	119	140	180
49									150	164	183	202	220	261	339
50									78	85	94	103	112	131	169
50									144 73	157 80	175 89	194 97	211 105	250 124	325 159
51									139	151	168	186	203	241	313
									69	75	83	91	99	116	150
52									133	145	162	179	195	231	301

STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

I

Appendix B Calculations for Alternative Floor System 2:

Open Web Steel Joist, Short Span


STEEL JOIST, SHOET SPAN SLAB THICKNESS: 31/2" DECK THICKNESS : 15/16" LIVE LOAD: 65 psf DEND LOAD: HI psf WHEELING-USING 6×6 - W2.0 × W2.0 WWF. - TENSILFORM 75 @ 4'0" DECK CATALOG 50 SHEETS 100 SHEETS 200 SHEETS SPACING CHO W TENSILFORM 75 DECK [2hr FIKE RATING] 22-141 22-142 22-142 TOTAL LIVE LOAD (PLF) = (65 psF)(41) = 260 PLF SPAN@ 28' ERMPAD. SELECT ZZKG JOIST: MAX LIVE LOAD: 328 16/A > 260 16/AF MAX TOTAL LOAD: 427 16/14 7 424 16/14 [NCSJ (ATALOG, P-33] TOTAL SYSTEM DEPTH: 22" + 31/2" - 25'/2" GIRDER DESIGN LIVE LOAD 65 port (1.6) = 104 MSF DEAD LOAD: 41 PSF (1.2) - 49,2 rst-SELF NT: 258 16/FT (1.2) - 309.6 PLF TOTAL JOIST LOAD & GIRDER: ((104+49.2) 28' + 308.6/b/A) = 4,6 k 1.15 L (P) 466 4.6K 44' (282.5 1 A (12:3) = 75.3312 My= (1.15k/A) 44.35 = 282,54 A Zraco = ,9(50 kr) TRY WIBX40 \$My= 2944. A > 282.58. A [LEFD P 5-42] Z= 78, 4 ins 7 75.3 ins

16

Joist	4.41/0	401/2	00141	10115								\downarrow				-
Designation	14K6	18K5	22K4	16K6	20K5	24K4	18K6	16K7	22K5	20K6	18K7	22K6	20K7	24K5	22K7	24K6
Depth (In).	14	18	22	16	20	24	18	16	22	20	18	22	20	24	22	24
Approx. Wt. (lbs./ft)	7.7	7.7	8.0	8.1	8.2	8.4	8.5	8.6	8.8	8.9	9.0	9.2	9.3	9.3	9.7	9.7
Span (ft)															1.1.1	
14	550 550			-		-										
15	550 507															
16	550			550				550								
17	467			550				550								
17	550			550				550								
18	443 550	550		526				526								
18	408	550 550		550			550	550			550					
19	408 550	550 550		490			550	490			550					
19				550			550	550			550					
20	383	523		455			523	455			523					
20	525 347	550		550	550		550	550		550	550		550			
21	475	490		426	550		490	426		550	490		550			
21	475 299	550		548	550		550	550		550	550		550			
22	432	460 518	550	405 498	520		460	406		520	460		520			
44	452	414	548		550		550	550	550	550	550	550	550		550	
23	395	414	548	351 455	490		438	385	548	490	438	548	490		548	
20	226	362	491		529		516	507	550	550	550	550	550		550	
24	362	434	491	307 418	451	500	393	339	518	468	418	518	468		518	
24	199	318	4/5		485	520	473	465	536	528	526	550	550	550	550	550
25	334	400	431	269 384	396 446	516 479	345	298	483	430	382	495	448	544	495	544
20	175	281	381	238			435	428	493	486	485	537	541	540	550	550
26	308	369	404	355	350	456 .	305	263	427	380	337	464	421	511	474	520
20	156	249	338	211	412 310	442	402	395	455	449	448	496	500	499	550	543
27	285	342	374	329	382	405	271 372	233 366	379	337	299	411	373	453	454	493
21	139	222	301	188	277	361	241	208	422	416	415	459	463	462	512	503
28	265	318	348	306	355	381	346	340	337	301	267		333	404	406	439
20	124	199	270	168	248	323	216	186	392	386	385	427	430	429	475	467
29	124	296	324	285	330	354	322	317	302 365	269 360	239	328	298	362	364	393
20		179	242	151	223	290	194	167	272		359	398	401	400	443	435
30		276	302	266	308	331	301	296	341	242 336	215 335	295 371	268	325	327	354
		161	219	137	201	262	175	151	245	218	335 194		374	373	413	406
31		258	283	249	289	310	281	277	319	314	313	266	242 350	293 349	295	319
		146	198	124	182	237	158	137	222	198	175	241	219		387	380
32		242	265	233	271	290	264	259	299	295	294	326	328	266 327	267 363	289 357
		132	180	112	165	215	144	124	201	179	159	219	199	241		
33		228	249	112	254	273	248	144	281	277	276	306	309	308	242 341	262
		121	164		150	196	131		183	163	145	199	181			335
34		214	235	-	239	257	233		265	261	260	288	290	220 290	221	239
		110	149		137	170	120		167	140	122	100	290	290	321	315

Appendix C Calculations for Alternative Floor System 3:

Concrete Pan Joist Girders, Long Span

ONE-WAY JOI MULTIPLE SPA	0.000						22.5" POSED		epth (PLF)		4,000 60,000	
OP BARS NO	# 4	# 5	# 5	# 6	#6	End	# 4	#4	# 5	#6	#6	Int
AT	11.5	10.5	9.5	11.0	9.5	Span	8.5	5.0	7.0	8.0	7.0	Spa
BOTTOM BARS NO	2# 4	1# 5	2# 6	1# 8	1# 8	Defl.	2# 4	1# 5	2# 6	1# 8	1# 8	Def
BARS NO	1# 5	2#6	1# 6	1# 8	1#9	Coeff.	1#5	2# 6	1# 6	1# 8	1# 9	Coe
STEEL (PSF)	72	1.18	1.33	1.66	1.87	(2)	.64	.64	.64	.64	.64	(2
CLEAR SPAN			END	SPAN				11	NTERIO	R SPAN		
32'-0" (3)	142	610	736	979	1177	4.000	463	1144	1327	1680	1969	2.4
STIR	#3-38	#3-111	#3-122	#3-138	#3-134		#3- 66	#3-117	#3-124	#3-137	#4-144	
33'-0"	100	540	658	887	1073	4.523	402	1042	1214	1546	1818	2.7
STIR	3- 33	#3-111	#3-123	#3-140	#3-142		#3- 64	#3-118	#3-126	#3-140	#3-147	
34'-0"	61	476	587	802	978	5.097	346	949	1111	1424	1680	3.1
STIR	#3-28	#3-111	#3-123	#3-141	#3-151	5 704	#3-62	#3-119	#3-128	#3-142	#3-149	3.5
35'-0"		417	522	725	892	5.724	294	864	1016 #3-129	1312 #3-124	1554 #3-152	3.5
STIR		#3-110	#3-123	#3-142	#3-154	6.407	S#3- 60 247	#3-120 785	#3-129	#3-124	1437	3.9
36'-0"		363 #3-110	463 #3-123	655 #3-143	812 #3-156	0.407	#3- 57	#3-121	#3-130	#3-131	#3-155	0.0
STIR		314	408	590	738	7.149	204	713	850	1114	1331	4.3
37'-0" STIR		#3-109	#3-123	#3-144	#3-157	1.145	#3- 54	#3-121	#3-131	#3-139	#3-157	
38'-0"		268	357	530	671	7.953	164	647	777	1027	1232	4.8
STIR		#3-108	#3-123	#3-145	#3-159		#3- 51	#3-122	#3-132	#3-146	#3-159	1.20
39'-0"		226	311	474	608	8.824	127	586	709	947	1141	5.4
STIR		#3-106	#3-122	#3-146	#3-160	10.05-4	#3- 47	#3-122	#3-133	#3-150	#3-162	
40'-0"		187	267	423	550	9.765	93	529	646	872	1057	6.0
STIR		#3-105	#3-121	#3-146	#3-161	1.1323	#3-43	#3-122	#3-134	#3-151	#3-144	
41'-0"		151	227	375	496	10.778	61	476	587	803	979	6.6
STIR		#3-103	#3-120	#3-146	#3-162	44.000	#3-39	#3-122	#3-134	#3-153 738	#3-151 906	7.3
42'-0"		117	190 #3-119	331 #3-147	447 #3-163	11.869	32 #3-35	427 #3-122	533 #3-135	#3-154	#3-158	1.0
STIR		#3-101 86	155	290	400	13.040	#0= 00	381	483	679	839	8.0
43'-0" STIR		#3- 98	#3-118	#3-147	#3-164	10.040		#3-121	#3-135	#3-155	#3-166	
44'-0"		57	123	252	357	14.296		339	436	623	776	8.7
STIR		#3- 96	#3-116	#3-146	#3-164	2032	1.30	#3-121	#3-135	#3-156	#3-169	
	PR	OPER	TIES FO	OR DE	SIGN	CON	CRETE	.67 CF	/SF)			
NEGATIVE MOMENT												Τ
STEEL AREA (SQ. IN.)	.83	1.42	1.57	1.92	2.22	1.1	1.13	1.92	2.13	2.64	3.02	
ACTUAL STEEL %	.414	.704	.779	.958	1.109		.559	.951	1.057	1.317	1.505	
EFF. DEPTH, IN.	20.75	20.69	20.69	20.63	20.63	13,528	20.75	20.75	20.69	20.63	20.63	
- ICR/IGR	.119	.181	.196	.227	.253	1000	.152	.230	.247	.287	.315	
	13: 25	0.05	1	0.252	0.154		1000			1000		
POSITIVE MOMENT	71	1.19	1.32	1.58	1.79		.71	1.19	1.32	1.58	1.79	
STEEL AREA (SQ. IN.)		.575	.638	.768	.871		.342		.638	.768	.871	
ACTUAL STEEL %	.342	20.64	20.63	20.50	20.46		20.72		20.63	20.50	20.46	
EFF. DEPTH, IN.	.125		.220	.255	.284	-	.125		.220	.255	.284	
+ICR/IGR				1.1.1		- 155	1.2				21.1	
SINGLE LEG S	TIRRUI	P AT 10	DIN. C	ONST	ANT S	PACIN	G-DIS	TANCE	E (IN.)			
(1) For gross sec (2) Computation $\ell_n/21$ for inte (3) Single leg stir	of defle	ction is ins).	not req	uired ab								

	PACITY	<i>U</i> = 1	.4D + 1				•					+ΦM _n -ΦM _n	DEFL (C)
fi	STEEL WGT Ib.	LOAD (4) k/ft	SPAN STIR. TIES (5)	$\ell_n = \Phi_n$ ft- kips	24 ft Aℓ sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	SPAN, STIR. TIES (5)	$\ell_n = \Phi_n$ ft-kips	26 ft Al sq. in.	STEEL WGT Ib.	(6) ft-kip	(7) × 10 ⁻⁹ in.
- 9 - 9 - 9 - 9	595 932 721 1058 1194 1620 1663 2109	6.4 6.7 10.7 13.1	133H 155H 133H 155H 155H 245D	18 74 18 74 18 73 18 73	- 1.9 - 1.9 - 1.9 - 1.9	645 1041 779 1175 1306 1766 1728 2140	5.4 5.7 9.1 11.2	133H 165H 133H 165H 165H 225E 165H 225E	18 73 18 73 18 72 18 72	- 1.9 - 1.9 - 1.8 - 1.8	685 1115 828 1258 1401 1878 1853 2170	350 368 350 547 560 742 685 886	353 312 257 222
- 8 - 8 - 8 - 8	818 1438 1126 1621 1735 2359 2244 3466	9.0 11.1 16.6 19.3	123H 155H 133H 215E 155H 245D 165EeH 295C	33 133 33 133 33 133 33 133 33 132	- 2.8 - 2.8 - 2.8 - 2.7	875 1341 1082 1770 1904 2391 2375 3026	7.7 9.4 14.2 16.4	133H 523A 143H 225E 165H 265D 175EcH 315C	33 131 33 131 33 131 33 131 33 131	2.7 2.7 2.7 2.7 2.7	942 1465 1163 1881 2042 2578 2546 3245	471 580 580 697 885 956 1010 1261	231 222 177 153
- 7 - 7 - 7 - 7	1081 1665 1298 1882 2365 3320 3139 4218	12.2 13.4 23.1 25.6	123H 294C 133H 294C 165EeH 365B 185DiH 365B	49 197 49 197 49 197 49 196	3.7 3.7 3.7 3.7 3.6	1159 1826 1277 1933 2549 3603 3065 4054	10.4 11.4 19.7 21.8	133H ** 133H 314C 175EdH 395B 185EgH 395B	49 195 49 195 49 195 49 195 48 194	0.0 3.6 3.6 3.6	1248 1110 1362 2074 2734 3886 3250 4369	701 701 701 845 1213 1329 1339 1633	175 172 129 116
		23 3.0°										088 555 555 555 555	955 . 917 718
	rior Spans omenclatu IOT REQI	s". For b re, see p UIRED SS THAN FER THA	> 24 in., page 12-1 N 3 INCH N 10 $\sqrt{f_c'}$	provide 3. ES. N	e 4 leg	See Fig. s (two stir	rups) of	stre b × (7) Mi (w/ (k/f	ngth o h. dspan 1.6) x t.), ℓ _n i	capacil elasti ℓ _n ⁴ , v in ft.	DM _n are ties for red tic deflect where w = e load" is	ctangular ion (in.) = tabulate	section = C : ed load

Appendix D Calculations for Alternative Floor System 4:

Concrete Pan Joist Girders, Short Span

ONE WAY CONC. PAN JOIST SHORT SPAN DIRECTION: (28'0") FACTORED LOAD : 99 PSF CLEAR SPAN, la = 20' - (30")= 25"6", USE Z6'0" 40" FORMS - 8" RIBS @ 48" O.C., INTERIOR SPAN 50 SHEETS 100 SHEETS 200 SHEETS (99 PSF) (4'0") = 396 PLF + 12" DEEP RIB + 4.5" TOP SLAB = 16,5" TOTAL DEPTH 22-141 22-142 22-144 MAR FACTORED LOAD' 686 PLF > 396 PLF [CRS12002, P8-55] CAMPAD' TOP: #80 8" BOTTOM: 1 #5 REINFORCING: STIRRUPS: #3-93 GIRDER: (44'4') CLEAR SPAN: 41'10" SELF WT. JST : 145 PCF ((12"× 8") + (48"× 4.5 -> 314 PSF FACTORED LOND: 99 PSF 99 PSF + 1.2(314 PSF) = 476 PSF (28') = 13.3 k/A 13.3 K/At (MAMK= 13.3(41'10') = 2909 k.A 8 SPAN & USE 42' DISIGN, INTORIOK USE 30" 142" REET BEAM, OMA = 3122 flik REINFORCING: TOP 10+14 BOTTON: 3 14 IN ZLAYORS [CRS1 2002 # 12-76]

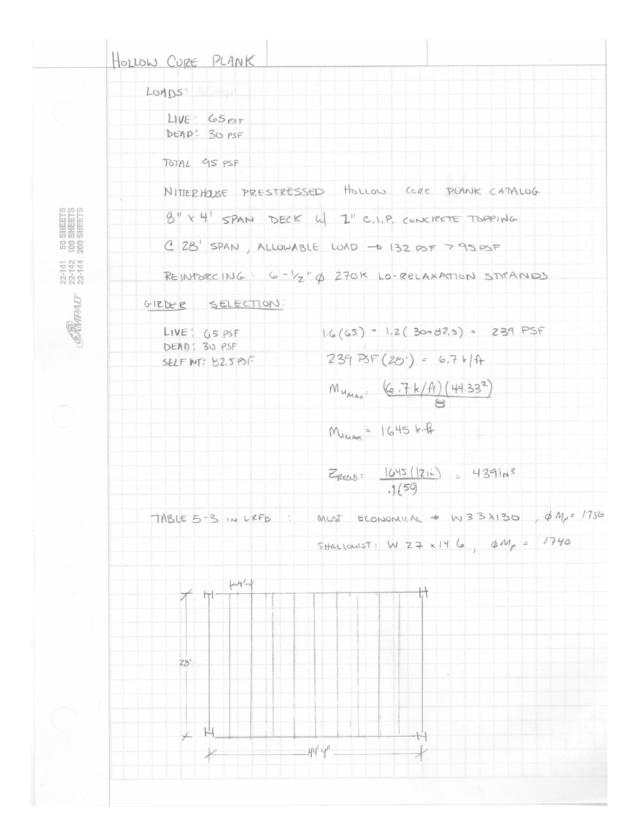
WIDE MC ONE-WAY MULTIPL	Y JOIS	STS	12″ FACT(Deep	Rib + 4	1.5″ Top	Ribs Slab = PERIMF	16.5"	Total D	epth		= 4,00 = 60,00	
TOP BARS	NO	# 4	# 4	# 4	# 5	#5	End	#4	#4	# 5 10.5	# 6 11.5	# 6 10.5	Int.
	AT	12.0	11.0	9.0	11.5	10.0	Span	12.0	8.0 1# 5	10.5	1# 6	1# 5	Span Defl.
BOTTOM BAP		1# 4	1# 5	1#6	1#6	1# 5	Defl. Coeff.	1# 4 1# 5	1# 5	1# 6	1# 0	2# 6	Coef
BARS	NO	1# 5	1# 6	1#6	1# 7 1.09	2# 6 1.20	(2)	.39	.39	.39	.39	.39	(2)
STEEL	(PSF)	.56	.76	.92) SPAN	1.20	·/	.00			R SPAI		
CLEAR SP		100	100			1002	1.265	459	888	1118	1399	1672	0.7
24'-0'	" (3) STIR	168 #3- 30	462 #3- 73	621 #3- 86	814. #3- 99	1002 #3-107	1.205	#3- 51	#3- 80	#3- 90	#3-100	#3-107	
25'-0'		117	389	535	713	886	1.490	386	781	993	1252	1504	0.91
	STIR L	#3-25	#3-72	#3-86	#3-100	#3-109	4 740	#3-49	#3-81	#3-91	#3-91	#3-109 1355	1.0
\rightarrow 26'-0'		73	324	459	623 #3-101	784 #3-111	1.743	321 #3-46	686 #3- 81	883 #3- 93	1122 #3- 99	#3-111	1.01
27'-0'	STIR	#3- 20 33	#3- 70 266	#3- 86 391	#3-101	#3-111	2.027	263	602	784	1006	1222	1.24
	STIR	00	#3- 69	#3- 86	#3-101	#3-112		#3- 44	#3- 81	#3- 94	#3-104	#3-114	
28'-0'	"		214	331	472	611	2.344	212	527	696	902	1103 #3-116	1.4
	STIR		#3-66	#3-85	#3-102 408	#3-114 537	2.698	#3- 41 165	#3- 81 459	#3- 94 617	#3-106 809	#3-116 996	1.6
29'-0			168 #3- 64	276 #3- 84	408	#3-115	2.050	#3- 37	#3- 81	#3- 95		#3-107	
30'-0	STIR		126	227	351	471	3.090	123	398	545	725	900	1.9
	STIR		#3- 61	#3- 83	#3-102	#3-115	0.500	#3- 34	#3-80	#3-95		#3-114 813	2.1
31'-0			#2 50	183	298	411 #3-116	3.523	86 #3- 30	343 #3- 79	481 #3- 95	649 #3-110	#3-119	2.
32'-0	STIR		#3- 58 53	#3- 81	#3-102 251	357	4.000	#3- 50	292	422	580	734	2.4
32 -0	STIR		#3- 55	#3-79	#3-101	#3-117	122	#3-26	#3-78	#3-95		#3-121	
33'-0)"			106	208	307	4.523		247	368	517 #3-111	662 #3-122	2.7
	STIR			#3-77	#3-100 168	#3-117	5.097		#3- 77 205	#3- 95 320		#3-122	3.1
34'-0	STIR			#3- 75	#3-99	#3-117	0.001		#3-76	#3- 95		#3-124	
35′-0				41	132	221	5.724		167	275		536	
	STIR			#3- 72	#3-98	#3-117	6.407		#3-74	#3-94 234			
36′-0					99 #3- 97	183 #3-116	6.407		#3-72				
	STIR												
		PF	ROPEH	THEST	-OR D	ESIGN	(CON	T	.50 C	1/31)			1
NEGATIVE M			07	1.07	1.29	1.49	- Second	.80	1.20	1.42	1.84	2.01	
STEEL AREA		.80		1.07	.955	1.098	00	.588	.882	1.046	1.362	1.492	
ACTUAL STE		14.75		14.75	14.69	14.69	12	14.75	14.75	14.69	14.63	14.63	
– ICR/IGR	IIN.	.139		.174	.200	.222	3	.139	.191	.214	.256	.273	
1010 IGH												11.2	
POSITIVE MO	JMENT							51	.75	.88	1.04	1.19	
STEEL AREA		1		.88	1.04	1.19		.51	1.22	.631	.748	.853	
ACTUAL STE		.364		.631	.748	.853		14.71			14.59	14.64	
EFF. DEPTH, +ICR/IGR	IN.	.116		.189	.218			.116	1.	.189	.218	.248	
										(1) 1 >	Contraction of the	Contraction of the	
SINGLE	LEG S	TIRRU	PAT 7	IN. C	ONST	ANT S	PACINO	G-DIST	ANCE	(IN.)			
		tion or	nortion	coo Ta	bla 8-3								
(1) For gr (2) Comp	oss sec	of defle	perties	, see la s not re	ouired a	above he	orizontal	line (thi	ckness	$\geq \ell_n/1$	8.5 for	end spa	ans,
0 /21	1 for inte	erior sp	ans).										
	1 for inte	erior sp	ans).										

(3) Single leg stirrup size span port at each end (in.).

	b->					Ĵ	BEAN	И		TOF		
CITY	U = 1	.4D + 1 SPAN,					SPAN.	0_ =	- 42 f	.]	+\$\$M _n -\$\$M _n	DEFL (C)
TEEL NGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	ΦT _n ft- kips	Al sq. in.	STEEL WGT Ib.	(6) fi-kip	(7) × 10 ⁻⁹ in,
1347 1913	7.6	104R 305F	30 122	- 2.8	1334 2000	6.9	114R 285G	30 121	- 2.7	1407 2007	784 1098	45
1347 1913 2575	7.6 13.2	104R 305F 185GIR	30 122 30	2.8	1334 2000 2670	6.9 11.9	114R 285G 195GIR	30 121 30	2.7	1407 2007 2805	784 1098 1424	45 34
3411 3227 4194	15.0	485C 235EqR 605B	122	2.8 - 2.8	3579 3288 4413	13.6	505C 235EqR 635B	121 30 121	2.7 2.7	3746 3428 4633	1913 1730 2179	· 30
1222 2302	7.1	103R 275G	41 165	3.3	1292 2406	6.5	103R 285G	41 163	- 3.2	1350 2509	791 1038	35
1862 2926 2857	10.0 14.5	114R 305F 1250cR	41 165 41	3.3	1945 3055	9.1	114R 285G	41 163	3.2	2028 3046	1113 1451	36 30
4140 3427	14.5 17.2	405D 145KfR	165 41	3.3	2982 4357 3577	13.2 15.6	1350cR 365E 145MfR	41 163 41	3.2	3145 4298 3728	1451 2261 1772 2409	30 27
5001 1749	10.2	405D 104R	165 59	3.3	4875 1827	9.2	425D 104R	163 59	3.2	5117 1905	2498 1051	30
2899 2445 3602	12.5	305F 114R 345E	236 59 236	4.0 - 4.0	3025 2389 3755	11.3	285G 114R 365E	234 58 234	4.0 - 4.0	3006 2493 3957	1478 1478 1814	28
3406 5112	18.1 21.5	145KfR 485C	59 236	4.0	3597 5360	· 16.5	145MeR 425D	58 234	4.0	3747 5219	1814 2742	24 21
4511 3016	21.5	175HjR 485C	59 236	4.0	4669 6311	19.5	165liR 505C	58 234	4.0	4826 6606	2446 3122	²¹ ←
1926 3367 2654	10.6 15.0	094R 345E 115R	79 314 78	4.8	2014 3506 2769	9.6 13.6	104R 365E 115R	78 311 78	- 4.7	2129 3696 2884	1060 1842 1496	22 25
1131 1155	21.8	405D 155lhR	314 78	4.8	4348 4295	19.8	365E 155JgR	311 78	4.7	4259 4478	2177 2177	20
5830 5226 7294	25.8	485C 205FnR 605B	314 78 314	4.8 - 4.8	6114 5455 7677	23.4	505C 195GIR 635B	311 78 311	4.7 - 4.7	6398 5643 8059	3234 2814 3747	18
Spans"	". For b > re, see pa		provide		See Fig. 1 s (two stirr		strei b ×	ngth c h.	capaciti	OM _n are o ies for rect c deflectio	tangular :	section
1853 42 K	dest itera kon	3 INCH	ES. N	OT RE	COMMEN	IDED) (w/1		ℓ_n^4 , w	here w =		

TO ATLENTING AND AND 12

 $(k/ft.), \ell_n$ in ft. "Average service load" is taken as w/1.6.


a los coltrometric

NTO STOCKED STOCKED

е. di.

Appendix E Calculations for Alternative Floor System 5:

Precast Hollow Core Concrete Deck

Prestressed Concrete 8" x 4' SpanDeck – U.L. – J917 (2" C.I.P. TOPPING)

	CAL PROPERTIES
397 In 3	Composite s n OB n = A
A' = 254 in. ²	$S'_{b} = 547 \text{ in.}^{3}$
l' = 2944 in.4	S't = 1124 in.3 (At Top of SpanDeck)
Y _b = 5.38 in.	C C C C C C C C C C C C C C C C C C C
Yt' = 2.62 in. (To Top of SpanDeck)	Wt.'= 330 PLF
$Y'_{tt} = 4.62$ in. (To Top of Topping)	Wt.'= 82.5 PSF
DESIGN DATA 1. Precast Strength @ 28 days = 5000 PSI. 2. Precast Density = 150 PCF 3. Strand = 1/2*Ø, 270K Lo-Relaxation. 4. Composite Strength = 3000 PSI. 5. Composite Density = 150 PCF.	
 Strand Height = 1.5 in. Ultimate moment capacities (when fully developed) . 4 - 1/2"ø, 270K = 94.6'K 	UL FIRE RATED J917
6 – 1/2"Ø, 270K = 133.3'K	
	trangth analysis of flavura and shear

10. Hie 11. Load values to the left of the solid line are controlled by ultimate strength. Load values to the right are controlled by service stress.

12. Shear values are the maximum allowable before shear reinforcement is required.

13. Deflection limits were not considered when determining allowable loads in this table.

14. All loads shown refer to allowable loads applied after topping has hardened.

				T				0	339	1 MA	9.2			SPA	AN (F	EET))									
STRAN	ID P	ATT	ERN	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Flexure	4	-	1/2"ø	795	718	650	590	500	426	366	317	275	240	210	184	162	142	125	110	96	84	73	60	49	39	V
Shear	4	-	1/2"ø	571																		115	103	93	84	\wedge
Flexure	6	-	1/2"ø	1155	1040	945	859	732	629	544	474	416	366	324	287	256	228	204	183	164	147	132	118	103	90	77
Shear	6	-	1/2"ø	589	525	472	428	391	360	331	308	286	266	249	235	220	207	195	184	175	160	145	132	120	110	100

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

REVISED 12/93

Appendix F

Slab Schedule for Eight Tower Bridge

Reinforced Metal Deck Slab Schedule							fc=4000psi
Deck Thickness	Slab Thickness	Superimposed Load (PSF)		Main Reinforcement		Wt. Conc (PCF)	Location
(in)	(in)	Live	Dead	Тор	Bottom	(, 0, 1)	
2	6	125	8	#5@12"	#4 @ 18"	145	Mech. ⊢an Room , Elev. Mach. Room
3	6	200	10	#4 @ 12"	#4 @ 18"	145	Mech. Penthouse
Composite Metal Deck Slab Schedule fc=4000psi							
Deck	Slab	Superimp	osed Load	One Layer		Wt. Conc	Location
Thickness	Thickness	Live	Dead	Reinforcing		(PCF)	Location
2	3-1/4	50	28	6x6-W1.4xW1.4		115	Typical Office
2	3-1/4	125	28	6x6-W1.4xW1.5		115	Mech. Level 2
2	3-1/4	30	75	6x6-W1.4xW1.6		115	Terrace Level 15
2	3-1/4	30	17	6x6-W1.4xW1.7		115	Penthouse Level