Senior Thesis Report:

Feasibility and Consequences in Staggered Truss Construction

River Tower at Christina Landing

Joseph Bednarz

Structural Option

Spring 2006

Presentation Outline

- Building Introduction
- Existing Structural System: Post-Tensioned Slab with Concrete Columns and Shear Walls
- Project Criteria
- Proposed System: Staggered Truss System
- Construction Feasibility and Cost Analysis
- Fire Protection Systems
- Conclusions

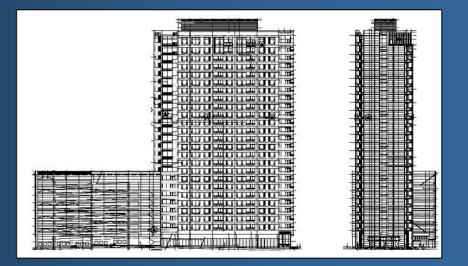
Building Introduction

- Project Location
 - Wilmington, DE
- 25-story condominium tower
- 7 story adjacent parking garage structure
- Entire structure has 435,000 SF
- Design-Bid-Build Project
- Overall cost of \$46 Million

Project Team

<u>Senior Thesis Report:</u> Feasibility and Consequences of Staggered Truss Construction

Project Overview

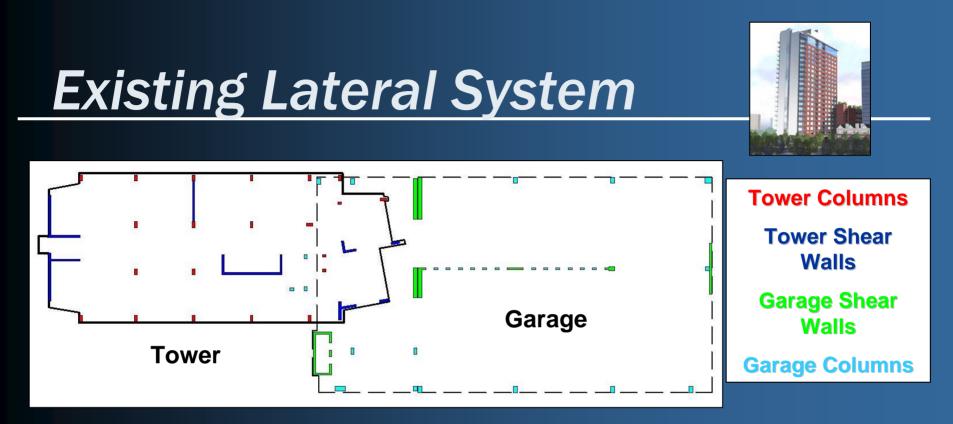

Architecture

- First seven floors interface with a parking garage
- Eighth floor contains condo units with some public areas: Great Room, Fitness Center
 - Opens to open terrace (on roof of parking structure) with inground pool, roof garden, and observation deck
- 23 stories of luxury condominium units
 - Top floors house penthouses and mechanical equipment
- Building Envelope
 - Brick-faced precast panels
 - Self-supporting

Existing Foundation System

- HP steel piles driven to 225 tons with a net bearing capacity of 200 tons
- Pile caps transfer loads from columns, where most piles are grouped
- Concrete grade beams support exterior walls

Existing Floor System



PENNSTATE

- First floor: 12" thick reinforced slab with #7's spaced at 12 inches o.c., T&B
- Post-tensioned flat plate
 - 8" thickness
 - ½" round type 270 ksi tendons
- Concrete columns
 - Typical bay of 28'-6" by 23'-0"
 - Typical interior columns:
 - 16" x 52"
 - Typical exterior columns:
 - 16" x 36"

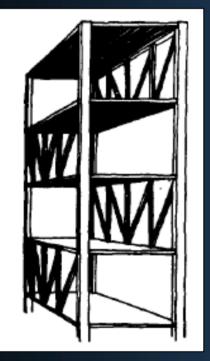
River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Concrete shear walls

- Vary 12-16" in depth, depending on location

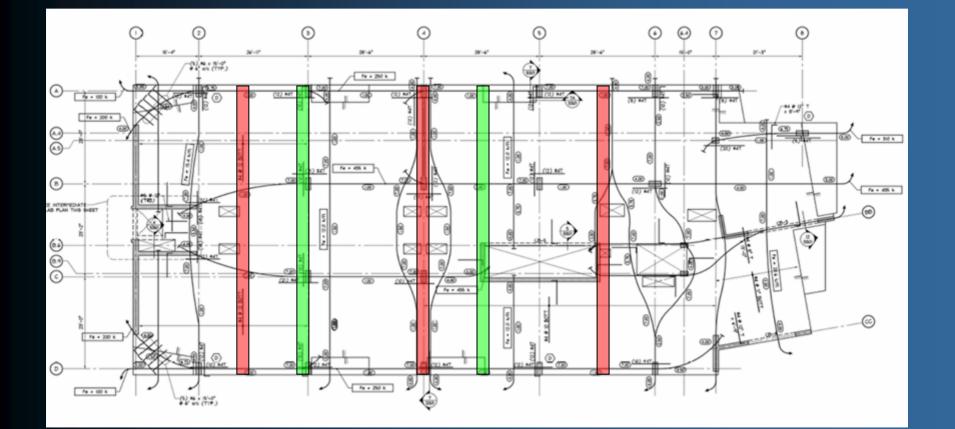
 Concrete columns oriented in the strong direction to provide additional lateral resistance

Project Criteria



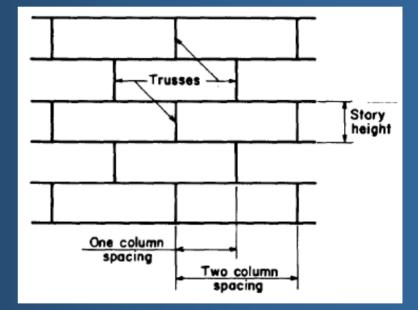
- Open up architectural column layout
- Maintain floor thickness as best as possible
- Reduce system weight
- Improve cost efficiency and installation times

Proposed Structural System


- Staggered Truss System
 - Trusses placed on alternating column lines
 - Columns oriented to resist lateral forces along with transverse trusses
 - Floor system acts as diaphragm, spanning from top chord of one truss to bottom chord of another

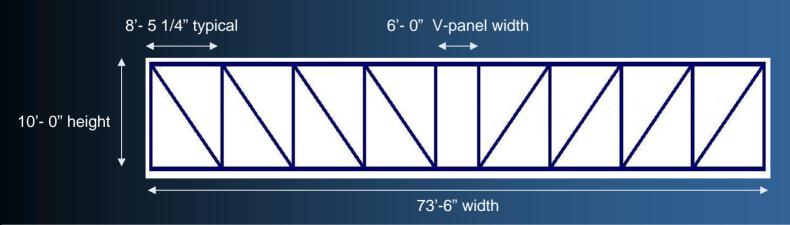
River Tower at Christina Landing – Joseph Bednarz Spring 2006 <u>Senior Thesis Report:</u> Feasibility and Consequences of Staggered Truss Construction

Existing & Flatan

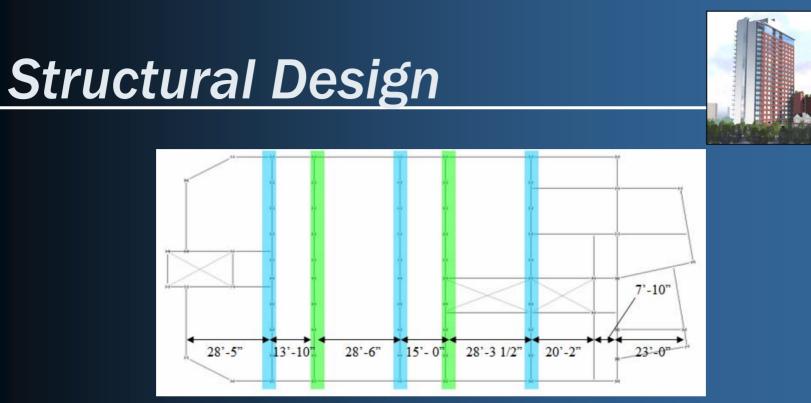


River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Potential Advantages


- Large column-free spaces while minimizing floor spans
- Columns that do remain will be smaller in size than the concrete columns
- Drifts minimized due to efficiency of truss
- Easier, faster, and potentially cheaper construction and erection

Specific Applications



- Trusses span full 73.5 ft width of the tower in the transverse direction
- Trusses oriented against controlling lateral (wind) forces
- Vierendeel Panel in center of each truss allows for existing corridor spaces

River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

- Staggered Trusses placed in existing unit walls
- Moment frames used in irregular spaces at extreme ends of the building

PENNSTATE

 8" precast hollow-core planks used as flooring system, laid in longitudinal direction (max span = 29 ft)

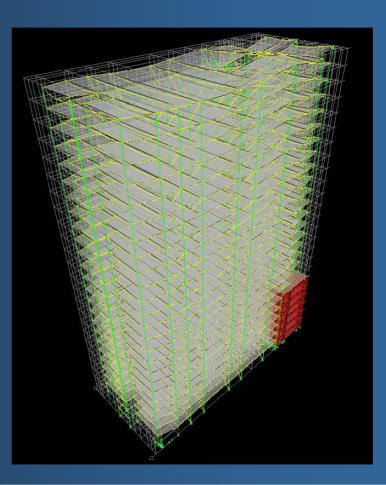
Methods of Design

- Based on AISC Design Guide 14
- BOCA 1996 Building Code and ASCE 7
- Accounted for direct shear and torsional rigidity

 Including accidental torsion
- Method of Joints used to calculate forces in each truss member

Based separately on gravity and lateral forces

- Transverse shear capacity verified in the precast plank diaphragm
- Truss columns designed to account for axial forces and bending



Structural Design

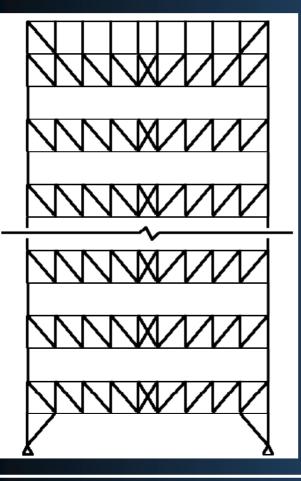
ETABS Output

- Resulted in larger truss chord and exterior column sizes
- Several iterations using rigid diaphragm and nonrigid assumption
- Based on similarities between design guide loads and those of past projects, hand calculations were judged more accurate
- Discrepancy accounted for in cost estimates

River Tower at Christina Landing – Joseph Bednarz Spring 2006 Senior Thesis Report: Feasibility and Consequences of Staggered Truss Construction

Design Consequences

Foundation


- HP piles would still be required (soil type)
- Less concentration of piles and pile caps due to lower system dead weight
- Wind loading changes would be minimal due to the theoretical increase in floor thickness
- Seismic Forces
 - Story forces are reduced compared to existing condition with this lower building weight
 - Response Modification factor

Design Results

PENNSTATE

Steel framing

- Moment Frames: range
 from W18 to W36 members
- W10 top and bottom chord members
- Large W12 and W14 columns
- HSS members for truss diagonal members

River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Additional Concerns

Connections

- Moment frame connections are difficult to install and expensive
- Welded gusset plates used to connect web members to truss chords
- Architecture
 - Hallways and closets within truss openings in individual condominium units
 - Not enough width for typical ADA door frame

River Tower at Christina Landing – Joseph Bednarz Spring 2006 Senior Thesis Report: Feasibility and Consequences of Staggered Truss Construction

Feasibility of Construction

- Post-tensioned Concrete, columns, and shear walls rely on speed of wet trades
- Staggered truss construction relies on prefabrication
 - Hollow-core planks
 - Trusswork
- Height of tower, along with width of trusses, produces potential complexities (crane usage, etc.)
- Not much leeway in the field for truss placement
- Moment and truss connections are difficult and expensive

River Tower at Christina Landing – Joseph Bednarz Spring 2006 <u>Senior Thesis Report:</u> Feasibility and Consequences of Staggered Truss Construction

Cost Analysis

Existing System: Post-Tensioned Concrete Slab				
Type of Construction	Unit	Cost per Unit (Total Incl. O&P)	Estimated Total Cost	
Prestressed Concrete	442.10 CY	\$1,150.00	\$7,689,638.27	
CIP Concrete	1416.66 CY	\$78.00	\$110,499.30	
Shear Walls	6886.64 CY	\$283.50	\$125,335.58	
Concrete Columns	129.08 CY	\$1,075.00	\$138,765.14	
Cost/SF = \$31.27		Total Estimate:	\$8,064,238.29	
		Plus 5% Waste:	\$8,467,450.21	

River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Cost Analysis

Proposed System: Staggered Truss System				
Type of Construction	Unit	Cost per Unit (Total Incl. O&P)	Estimated Total Cost	
Steel Column	698.54 tons	\$2,419.00	\$2,025,773.25	
Steel Braces	707.32 tons	\$2,419.00	\$2,051,213.50	
Steel Beams/Chords	207.07 tons	\$2,419.00	\$600,501.55	
Precast Planks	270,809 SF	\$10.50	\$2,843,494.50	
Cost/SF = \$31.94		Total Estimate:	\$7,520,952.80	
		Plus 5% Waste:	\$7,897,000.44	
		Plus 10% Connections:	\$8,649,095.72	

River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Comparison of Systems

- Proposed Staggered Truss System is \$181,645.51 more expensive than existing system
- Supposed benefits of staggered trusses?
 - Wilmington, DE: Premium for steel rather than concrete
 - High-rise construction: leads to cost increases for steel erection
 - Crane usage is necessary for higher elevations
 - Floor thickness still increases from existing 8 inches

River Tower at Christina Landing – Joseph Bednarz Spring 2006 Senior Thesis Report: Feasibility and Consequences of Staggered Truss Construction

River Tower Fire Systems

- Standpipe and Sprinklers
 - Wet Pipe Combined System
 - Constant flow of water
 - Main riser serves as the standpipe and services the sprinkler branch systems as well
 - Standpipe in each major stairwell to allow for maximum access
- Stairwell Pressurization
 - Open-air vents in each stairwell
 - Provides ventilation for evacuees and fire personnel while forces the smoke out when fire doors opened

Fire Protection Systems

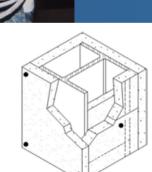
- Overview of Existing Conditions
 - Existing concrete structure provides plenty of inherent fire protection
 - River Tower: Primarily "light hazard," Type 1A classification by BOCA 1999
 - High-rise construction:
 - Levels over 75 feet: not reachable by fire department
 - Standpipes and sprinklers systems act against fire spread
 - Stairwell Pressurization provides smoke control

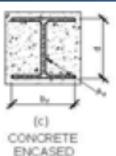
Types of Fireproofing

Concrete Encasement

Gypsum Wallboard

Spray-On Fire Resistant Material (SFRM)


River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction


Conclusions of Comparison

Concrete Encasement

- Thinnest: 1.35" average beyond flange thickness
- Difficult, lengthy application
- Spray-On Fire Resistant **Materials**
 - Isolatek 800
 - 1.75" thickness required
 - Quickest/easiest application
- Gypsum Wallboard
 - Thickest application = 2"
 - Easily painted surface for aesthetics

PENNSTATE

HADE

Conclusions

- Staggered Truss System is slightly more expensive than existing post-tensioned slab system
- Potentially faster/easier construction
 - Not as much reliance on wet trades
 - Proposed system has prefabricated materials
- Architectural difficulties despite potential opening of floor plan and column layout
- Negates the potential benefits of staggered truss system in this particular application

Questions?

River Tower at Christina Landing – Joseph BednarzSpring 2006Senior Thesis Report:Feasibility and Consequences of Staggered Truss Construction

Media Bibliography

Images

- <http://www.arcat.com/photos/templein/110191.jpg>
- <http://www.southerninsulation.com/images/fsspray.jpg>
- <http://www.conomos.com/images/applyfireproof.jpg>
- <http://archrecord.construction.com/resources/conteduc/archiv es/0202aisc-3.asp>
- <http://www.christinalanding.net>
- <http://www.aisc.org/Content/ContentGroups/Documents/Engi neering_Journal4/263_EJ_scalzi.pdf>
- Ruddy, John, et al. AISC Design Guide 19: Fire Resistance of Structural Steel Framing. American Institute of Steel Construction, 2003.
- <http://www.cala2.umn.edu/arch5512/KammerMcNallanGiese n_Fields/general/Rebar2.jpg>

Additional Information

River Tower at Christina Landing – Joseph Bednarz Spring 2006 Senior Thesis Report: Feasibility and Consequences of Staggered Truss Construction

Presentation Outline

- Project Criteria
- <u>Building Introduction</u>
- Existing Structural System: Post-Tensioned Slab with Concrete Columns and Shear Walls
- Proposed System: Staggered Truss System
- Fire Protection Systems
- <u>Construction Feasibility and Cost Analysis</u>
- <u>Conclusions</u>
- Additional Information

- Fire Protection for Proposed Design
 - Existing architecture relatively the same, so most of existing systems are still sufficient
 - Steel needs additional fireproofing
 - Staggered truss system limits steel to infill walls between units mostly
 - Hollow-core precast planks provide inherent fireproofing between levels
 - 2 hour general fire rating required by BOCA 1999
 - 3 hour fire rating for interior bearing walls, columns, and trusses

Comparison of Materials

- Factors to consider:
 - Constructability
 - Cost
 - Aesthetics
 - Thickness
- W12x72 column used for comparison
- All of these materials prevent enough thermal transfer to the structural steel
 - As long as the fire exposure does not cause the average temperature at any cross section to elevate above 1,000 degrees F

Beam and Truss Protection

- Steel Beams and Girders
 - Hollow core planks provide inherent 2 hour fire rated protection from above
 - Also provide finished flooring surface with coating
 - SFRM makes most sense for flooring undersides
 - Hidden by drop ceilings or aesthetic use of gypsum
- Staggered Trusses
 - Rest in infill walls (3 hr fire rating)
 - Gypsum wallboard most efficient material
 - Door openings: intumescent coatings
 - Thinnest application possible to use where thickness is at a premium

Design Loads

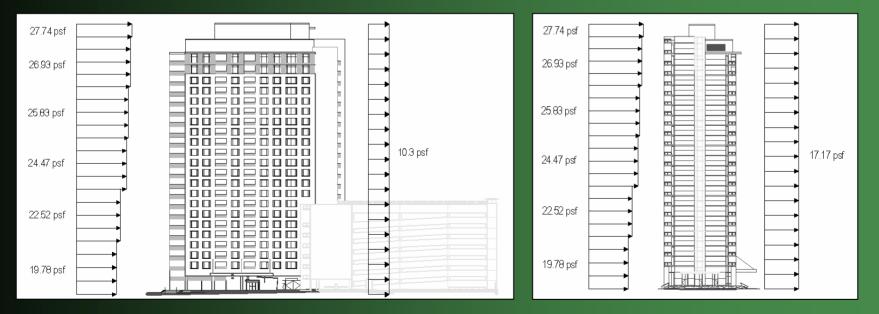
- Gravity Loads
 - Live: 70 psf
 - Dead
 - 8" plank with 2" topping: 82.5 psf
 - Leveling compound:
 - Structural Steel: 5 ps
 - Partitions/MEP:

5 psf 12 psf Total: 104.5 psf

5 psf

River Tower at Christina Landing – Joseph Bednarz Spring 2006 <u>Senior Thesis Report:</u> Feasibility and Consequences of Staggered Truss Construction

Seismic Lateral Loads



- Existing System
- Seismic Category B
- Basic Seismic Force Resisting System:
 - Dual system with shear wall and intermediate concrete frame
- Response Modification Factor, R = 6
- Site Coefficient, $S_4 = 2.0$
- Equivalent Force Method Analysis
- Base Shear = V = 849.73 kips

Wind Lateral Loads

- Existing System
- Wind exposure category C
- Importance Factor = 1.04
- Controlling case: Wind in North-South Direction

River Tower at Christina Landing – Joseph Bednarz Spring 2006 <u>Senior Thesis Report:</u> Feasibility and Consequences of Staggered Truss Construction