303 Third Street

Cambridge, Massachusetts

Brian Tufts

AE 482 - Thesis
Advisor: Dr. Ali Memari
Thesis Final Report
April 9, 2008

303 Third Street Cambridge, MA Mixed-Use Development

BRIAN TUFTS - STRUCTURAL OPTION

Project Team

Owner: Extell Development Corporation \&
Equity Residential
Architect: Cetra/Ruddy Inc GC/CM: Bovis Lend Lease
Structural Engineer: McNamara/Salvia Inc MEP Engineer: MGJ Associates Civil Engineer: Tetra Tech Rizzo Geotechnical Consultart: McPhail Associates, Inc

Structural System

* 5 " slab on grade reinforced concrete
* 20 deep caissons bear on 3 TSF tearing material
*WF beams and girders typically cambered $1 / 2^{2}-11 / 2^{2}$
*Floors typical composite construction $41 / 2$ " slabs
${ }^{*} 25$ 'typical beam span
Electrical System
*2 primary power distribution boards
* 2300 kVA transformers provide $12 \mathrm{O} / 208 \mathrm{~V}$ to panels
* Backup power via 750 kW generator

General Building Data

Location: 303 Third St Cambridge. MA
Number of Floors: Between 5 and 8 above grade 2 below grade parking levels Occupancy. Primarily residential with some retail Size: 485.227 SF residential and 7.500 SF retail Construction Date: July 2006 - October 2008 Total Project Development Cost: \$246 million Delivery Method: Design-bid-build with a GMP

Mechanical System

* 2 cooling towers each for north and south building totaling - 150.000 CFM per building
* 5 water cooled AC units serice lobby and fitness areas
* 14 rooftop air conditioning units service corridors * 4 boilers totaling $23,300 \mathrm{MBH}$

Lighting System

*Residential units typically lit with 208 V pole mounted lights with 175W Metal Halide lamps
*Service areas lit with 120 V flush mounted fixtures with two T5 lamps

Architecture

330 Third Street is a large mixed-use development situated in urban Cambridge. MA. The site is located a short distance from the Massachusetts Institute of Technology and other prominent Cambridge landmarks. As such. 303 Third Street aims to create a green outdoor space within the site and a modern, elegant façade to attract busy city professionals. It consists of two large building (North and South) segments forming a U. with a green space filling the center. The design seeks to maximize rentable space while maintaining a comfortable living environment for its occupants.

TABLE OF CONTENTS

Executive Summary 4
Credits/Acknowledgements 5
Introduction 6
Site and Architecture 7
Depth Study 8
Codes 7
Computer Modeling 12
Composite Steel System. 12
Open-Web Steel Joist System 13
Vibration Performance/Serviceability 15
Comparison 17
Conclusions 20
Mechanical Breadth Study 21
Architectural/Materials Breadth Study 24
Summary/Conclusions 26
Appendix 27

EXECUTIVE SUMMARY

303 Third Street is a cutting edge residential apartment building currently in the final framing stages in upscale Cambridge, MA. The building utilizes composite steel framing with lightweight concrete slabs, braced frames in each direction, some moment frames, and a large concrete below grade parking structure. Before the building is completed, the following thesis has been prepared to document some alternative building systems that could have been utilized.

Building weight is a major contributor to seismic base shear. In areas where seismic activity is a concern and typically governs lateral design, whenever a building can be made lighter, the lateral system can be decreased. The decrease in lateral bracing members, moment connections, as well as frame beam and column sizes can help decrease the overall cost of a project. It is in the best interest of the building owner to have as lightweight of a structure as possible.

Open-web steel joists are a great way to minimize the structural weight of a building. The joists themselves are lightweight and much more efficient in terms of quantity of material versus strength. By optimizing the material performance, a joist is able to span great distances and carry considerable load. It is also easier to frame with steel joists because they are much lighter than steel members and the connections are generally simpler to make.

Steel joists have drawbacks though, which is why they have not taken over as a predominant framing system. In office occupancies, steel joist systems may cause serviceability issues such as vibration. Vibration is a major reason why steel joists have been avoided in recent years. With lower weight framing systems, the dynamics of buildings is harder to predict and occupant comfort is a very important part of engineering, after all it is a customer based industry. There are also fireproofing issues with steel joists as it is very difficult to spray them with cementitious fireproofing without wasting a lot of material and still maintaining the proper cement coating for fire rating.

The purpose of my breadth study was to evaluate the implementation of an open-web steel joist system at 303 Third Street in terms of building structure, performance, and serviceability. My breadth studies seek to determine the potential LEED accreditation of 303 Third Street, as Cambridge is a very intellectual area where people value and desire the implementation of green design. By fine tuning the structural system, evaluating the building envelope performance, and researching additional green materials, this report aims to provide alternative strategies for building design.

After a careful analysis of the building system, it was determined that steel joists are a viable alternative framing system for 303 Third Street. The typical bay analyzed passed the qualifications of Design Guide 11 for walking excitation and an appropriate alternative fire proofing strategy was found. Furthermore, the mechanical breadth study determined that the existing building façade does not meet the Massachusetts Energy Code and remediation strategies were recommended. LEED accreditation of 303 Third Street would not add a great deal of cost to the building and would pay long term dividends to the developer.

CREDITS/ACKNOWLEDGEMENTS

McNamara/Salvia Inc. Consulting Engineers - Boston, MA
Specifically
Mark Aho, P.E.
John Matuszewski, P.E.
Adam McCarthy, P.E.
Robert McNamara, P.E., S.E.
Joseph Salvia, P.E.
William Waterston, AIA - Wiss, Janney, Elstner Associates, Inc. - Cambridge, MA
Hank Klein - Extell Development Company -Boston, MA
Andrew Copelotti - Equity Residential -Boston, MA
Mark Pasciuto - Bovis Lend Lease LMB, Inc.- Boston, MA
Woth Ngan - Bovis Lend Lease LMB, Inc.- Boston, MA
Martin Turnbull - AHA Consulting Engineers - Lexington, MA

INTRODUCTION

303 Third Street is a $\$ 246$ million project that consists of a north and south building, ranging in story number from five to eight, which are joined below grade by two parking levels spanning nearly the entire area of the site. The building is a mixed use facility planned to offer 485,227 SF of rentable residential space and $7,500 \mathrm{SF}$ of retail space. 303 Third Street is situated on a 3.3 acre site urban site a short distance from the Massachusetts subway system as well as the Massachusetts Institute of Technology.

303 Third Street is a steel frame building with composite floor slabs. Lateral load resistance is provided by both moment frames and concentrically braced frames. The braced frames add stiffness in the plane of the lateral load and transfer the load to the columns. The moment frames rely on the strength of the connection between the floor slab and the columns for translation of loads vertically.

The Massachusetts State Building Code $-6^{\text {th }}$ Edition was used in the design of 303 Third Street. My analyses primarily rely on the use of the Building Officials and Code Administrators (BOCA) code of 1993 which the technical provisions of the Massachusetts State Building Code are based on. Also, I used the Thirteenth Edition of the AISC Steel Construction Manual in performing my calculations. Small discrepancies between my own calculations and those of the engineers are expected due to load assumptions and design methodology. In no way does this report make the claim that any of the designer's approaches, assumptions, calculations or resulting designs are incorrect or unsuitable.

Figure 1: Site Plan

SITE AND ARCHITECTURE

Architecture:

330 Third Street is a large mixed-use development situated in urban Cambridge, MA. The site is located a short distance from the Massachusetts Institute of Technology and other prominent Cambridge landmarks. Cambridge is known for its technology companies, diverse population, and progressive attitude. As such, 303 Third Street aims to create a green outdoor space within the site and a modern, elegant façade to attract busy city professionals.

303 Third occupies a 3.3 acre site and consists of two large building (North and South) segments forming a U, with a green space filling the center. Parking is available via two below grade parking levels. The design seeks to maximize rentable space while maintaining a comfortable living environment for its occupants.

Site:

Zoning: 303 Third Street is located in Cambridge Zone PUD-KS which is designed for mixed use - office, residential, and retail spaces of at least $40,000 \mathrm{SF}$.

An existing 1-2 story brick building was located at the northeast corner of the site and an existing 1 -story brick building fronts onto Potter Street to the south. The southwest and southeast corners of the site are occupied by electrical and steam easements, respectively. The portions of the site not occupied by the existing buildings were typically blanketed by bituminous concrete pavement. The existing ground surface across the subject site was relatively flat, prior to construction

Building envelope:

Floor-to-ceiling heights are typically $10^{\prime}-0^{\prime \prime}$ and the exterior is sheathed primarily in a curtain wall with a terra cotta veneer. This gives the building a regal appearance which is quite breathtaking in contrast to the metal sheathing on other curtain walls. The intent of the design is to encourage busy city professionals to settle down near Kendall Square and MIT, just a short walk from the subway.

By varying the heights of the various buildings, 303 Third Street creates an active roofline giving different angles for the occupants and spectators. Buildings vary in number of floors from 5 to 8 above grade floors. The roof system consists of roof girders supporting 3 in 16 gage composite deck with $31 / 4$ lightweight concrete and waterproofing membrane.

STRUCTURAL DEPTH STUDY

Problem:

303 Third Street is designed utilizing composite action between concrete slab and steel beams. The weight of this system is significantly more than if the floor system were designed using KSeries open web steel joists supporting the floor slab.

Increased structure weight results in larger member sizes of columns and more bracing, since an increased structure weight increases the seismic base shear. Since 303 Third Street is situated in Cambridge, MA with poor soil conditions, reducing the seismic load of the building would save money by possibly reducing the number of moment connections necessary in the building and reducing the number and/or size of braced frame members.

In an effort to save construction and material costs, 303 Third Street was redesigned utilizing open web steel joists as the primary floor system. Using BOCA 1993, Massachusetts State Building Code- $6^{\text {th }}$ Edition, and joist catalogues as well as finite element software (RAM
Structural System), it will be determined whether or not this alternative floor system is a viable alternative to the as-designed system.

Code:

Massachusetts State Building Code $-6^{\text {th }}$ Edition

Design Criteria:

Gravity Loads:

- Uniformly Distributed Loads:

Live Load
Residential 40 psf
Dead Load

Floor Finish	1 psf
Extra Concrete	5 psf
Slab	57 psf
Deck	2 psf
Structure	6 psf
HVAC	5 psf
Ceiling	3 psf
Partitions	20 psf

Live Load Reduction: Where live load reductions are permitted by code,

$$
\mathrm{L}=\mathrm{NL}_{0}
$$

Where $\mathrm{N}=$ the largest of the following:

$$
\begin{aligned}
& \mathrm{N}=1-0.0008\left(\mathrm{~A}_{\mathrm{T}}-\mathrm{A}_{\mathrm{B}}\right) \\
& \mathrm{N}=0.75-0.20\left(\mathrm{D}_{\mathrm{O}} / \mathrm{L}_{\mathrm{O}}\right)
\end{aligned}
$$

$\mathrm{N}=0.50$ for member supporting load from more than one floor, or 0.60 for members supporting loads from only one floor.
and,
$\mathrm{L}=$ Reduced design live load for the member,
$\mathrm{L}_{\mathrm{o}}=$ Basic design live load.
$\mathrm{D}_{\mathrm{O}}=$ Dead load on member
$\mathrm{A}_{\mathrm{T}}=$ Loaded area tributary to the member, square feet
$A_{B}=$ Basic tributary area defined as follows:
$A_{B}=100 \mathrm{SF}$ for members supporting load from more than one floor.
$A_{B}=250 \mathrm{SF}$ for members supporting load from one floor only.
Snow Loads: \quad Snow Zone $=2,30 \mathrm{psf}$
Wind Loads: Wind Zone $=3$ Exposure - B
Basic Wind Speed $(\mathrm{mph})=90$
Base Velocity Pressure: Pv = 26 psf
Seismic Loads: $\mathrm{Aa}=0.12 \quad \mathrm{~S}=3.0 \quad \mathrm{R}=5.0 \quad \mathrm{Cd}=4.5, \mathrm{~N} / \mathrm{S}$
$\mathrm{Av}=0.12$
$\mathrm{R}=5.0 \mathrm{Cd}=4.5, \mathrm{E} / \mathrm{W}$

Combination of Loads:

D = Dead Load
W = Wind Load
L = Live Load
E $=$ Seismic Load
S = Snow Load

$\underline{\text { Basic Load Combinations Strength Design }}$

1. $\quad 1.4$ Dead
2. 1.3 Dead +1.6 floor live +0.5 roof live (or 0.5 snow)
3. $\quad 1.3$ Dead +0.5 floor live +1.6 roof live (or 1.6 snow)
4. $\quad 1.3$ Dead +0.5 floor live +0.5 roof live (or 0.5 snow) +1.3 wind
5. 1.3 Dead +1.6 roof live (or 1.6 snow) +0.8 wind
6. 0.9 Dead -1.3 wind
7. 1.3 Dead +1.0 floor live +0.7 snow +1.0 seismic
8. $\left(0.90-0.5 \mathrm{~A}_{\mathrm{v}}\right)$ Dead -1.0 seismic

Alternate Seismic Load Combinations Strength Design (when required by Seismic Provisions)
9. 1.3 Dead +1.0 floor +0.7 snow $+/-(2 R / 5)$ seismic
10. (0.9-0.5Av) Dead $+/-(2 \mathrm{R} / 5)$ seismic

Deflection of Flexural Members:

- Steel Members: Limit live load deflection to span/360 or 1" max.

Beams Supporting Masonry: Limit deflection to span/ 600 or $3 / 4$ " max. under weight of masonry plus live load.

Composite Steel Beams: Camber for 85% of computed deflection under weight of wet concrete within the standard practice described in AISC Manual, $8^{\text {th }}$ Edition, Page 1-123.

Building Drift:

Wind: Limit each story drift to story height/500.
Seismic: Limit each story drift to story height/50.
Secondary Drift Effects: Account for "p-delta" forces created by building drift. Approximate method is to increase lateral loads by an amplification factor.

Reference Design Standards:

- Structural Steel:
"Specification for Design, Fabrication and Erection of Structural Steel for Buildings", AISC - 532678.
"Specification for Structural Joints Using ASTM A325 or A490 Bolts", AISC - 5314-78.
"Structural Welding Code", AWS D1.1-79.
- Lightgage Steel Deck and Joists:
"Specification for Design of Cold-Formed Steel Structural Members", AISI - 86.
"Specification for Welding Sheet Steel in Structures", AWS D1.3-78.
"Steel Deck Diaphragm Design Manual", SDI - 87 .
- Reinforced Concrete:
"Building Code Requirements for Reinforced Concrete", ACI 318-95.
"Reinforced Steel Welding Code", AWS D12.1-75.
- Masonry:
"Specifications for Design and Construction of Load Bearing Concrete Masonry", NCMA -70.
"Building Code Requirements for Masonry", ANSI A41.1-70.

COMPUTER MODELING

Composite Steel System:

Figure 2: Composite Steel Joist System - RAM Model

In order to compare the two floor systems, an accurate computer model of the existing design structural system was created using the same design criteria. Extra care was taken to assign the appropriate member sizes where the model deviated from the structural construction documents. It is also important to note that both models were created from the ground up. If a heavier alternative system was to be analyzed by this method, the model would need to start from the foundation, because the foundations would need to be augmented. However, since steel joist systems are significantly lighter than composite steel construction, it was assumed early in the modeling process that the existing foundations would be more than adequate for the redesign.

Figure 3: Typical Bay - Composite Steel Joists

Open-Web Steel Joist System:

Figure 4: Typical Bay - Composite Steel Joists - RAM Model

RAM Structural System is slightly limited when it comes to designing an open-web steel joist system. RAM will not factor in member self weight or design joist-girders. Using the Vulcraft joist catalog and analyzing the typical bay (see Figure 5), an average floor dead load of 24.8 psf was added to the entire building structure. This accounted for the joists, slab system, deck, MEP allowance, and ceiling construction (see Figure 6) as well as the 1.3/1.2 multiplier which must be used to scale up dead loads for the Massachusetts State Building Code to comply with the load combinations listed in the Design Criteria.

After designing the gravity system, tuning of the lateral system was performed. Since the joist system significantly reduced the building weight, seismic story shears were decreased substantially. To save additional steel tonnage, the lateral system could then be lightened up, but must still comply with AISC Standard Provisions as well as the Seismic Provisions, which limit bracing members based on width/thickness ratio (b/t), strength, and braced length (KL/r) under amplified loading.

Figure 5: Typical Bay - Open-Web Steel Joists

TYP FLOOR/CEILING ASSEMBLY
at NORTH BUILDING LIVING AREAS

Figure 6: North Building Ceiling Sections

Vibration Criteria/Serviceability:

Whenever an open-web steel joist system is proposed for an office, residential, or industrial building, a couple major questions must be answered. How will it be fireproofed? Will vibration cause the occupants to be dissatisfied with the building's performance?

After discussions with engineers in the field, the best way to fireproof steel joists is by using spray-on cementitious fireproofing. The process is not simple as typically the joists may be wrapped in chicken wire first and then sprayed, or just sprayed outright. Since the joist system application at 303 Third Street would allow the majority of the 12 K series joists to be within the ceiling cavity, the best alternative would be to specify a fire rated ceiling assembly. Figure 7 shows a 2 hour Underwriter's Laboratory specified ceiling assembly for a joist that is within the ceiling.

Gypsum Wallboard Floor/Ceilings - Steel Framing (steel joists with concrete floor) (CAD FILE NAME GOLDP.DWG OR GOLDP.DXF OR GOLDR.DWG OR GOLDR.DXF)

Figure 7 - Steel Joist Fireproofing Assembly courtesy of National Gypsum Company

To evaluate the floor system for vibration considerations, AISC Design Guide 11- Floor Vibrations Due to Human Activity was used. Analyzing the typical bay for walking excitation would give the design engineer a good idea whether or not the steel joist system would be acceptable for residential as well as a future retrofit for office space occupancies. Since a lot of vibration issues occur due to a lack of slab dead load or joists that are not deep enough, it was decided early in the redesign process not to alter the slab dimensions from the original design.

Since the majority of vibration complaints occur in office spaces, the typical bay (Figure 5) was analyzed for a future office space retrofit. Analyzing the 12K1 joists with VLH24 joist-girders with a 3 " deck and $31 / 4 "$ LWC topping, it was found that the deflections induced in the joists and girders were quite close ($\Delta \mathrm{j}=0.186$ in and $\Delta \mathrm{g}=0.266 \mathrm{in}$). The frequency of the system was determined to be 5.263 Hz and consequently $\mathrm{a}_{0} / \mathrm{g}=0.003$, which is below the acceptable upper bound of 0.005 for an office and residential occupancy. It can be safely assumed that for the current residential occupancy for the typical bay, vibration will not be an issue if the proposed open-web steel joist system is implemented.

COMPARISON

	Composite Steel	Steel Joists
W (Kips)	33744.66	32111.80
V (Kips)	1551.23	1476.17
Max Drift (in)	1.554	1.758
Gravity Col (Tons)	117.6	115.2
Lateral Col (Tons)	196.6	178.9
Lateral Beams/Braces (Tons)	234.1	196.6
Total Tonnage (Cols + Lateral)	548.3	490.7
Cost	$\$ 1,919,050.00$	$\$ 1,717,450.00$
Savings		$\$ 201,600.00$

Figure 8 - Comparison Chart - Columns and Lateral System

Using current pricing figures obtained from McNamara/Salvia Inc, an approximate cost savings due to decreasing column sizes, slimmer bracing members, and smaller lateral beams was calculated based on the tonnage. The approximate cost for steel including union erection in Boston, MA is about $\$ 3500$ per ton of steel. Since RAM does not size joist girders, a gravity beam takeoff could not be performed to quickly determine how many tons of open-web steel joists would be required. However, in a previous tech report the RSMeans catalog had been used to calculate a rough cost/SF for the typical bay beam framing (Figure 9).

Criteria	Composite	Steel Joist
Cost/SF	27.25	22.54
Fireproofing	Spray On	Special Detail
Constructability	Medium	Easy
Deflection Issues	None	None
Vibration Resistance	Average	Below Average
Slab Width	6.25"	6.25"
Total Depth	20.25"	20.25"
Weight relative to Orig Design	As Designed	Slightly Lighter
Durability Issues	Steel Fatigue	Steel Fatigue
Column Grid Changes	No	No
Lateral System Effects	No	Minor
Viable Solution?	Yes	Yes

Figure 9 - Comparison Chart - Typical Bay Framing

Figure 10 - Braced Frames Along Line E- Composite Steel Framing

Figure 11 - Braced Frames Along Line E- Steel Joist Framing

Conclusions:

Open-web steel joists are a viable alternative solution for 303 Third Street. All concerns regarding the implementation of the system were alleviated once a careful side-by-side analysis of the two systems was performed. Boston is regarded in the profession as a "steel city." Union erectors prefer the typical composite steel joists system that was originally designed. If more developers became aware of the potential savings due to a lighter framing system, open-web steel joist systems may become more commonplace. The major drawback is the vibration considerations and the lack of an easy back of the envelope vibration check. The dynamic properties of vibration analyses are a hindrance to the easy implementation of a steel joist system devoid of vibration issues. More study in the field of floor vibrations will eventually lead to the easier implementation of open-web steel joist floor systems.

MECHANICAL BREADTH STUDY

After consulting with a local mechanical engineer, it was determined that the most effective way for improving a building's energy efficiency is through the building envelope. Focusing on the Massachusetts Energy Code, the baseline energy efficiency can be determined by using a compliance check program (COMCheck 3.5.3). The program allows the user to input specific parameters such as the building location, building area, wall U-values, window U-values and the corresponding wall and window areas. Using the regional azimuth angles with the appropriate wall orientations, the program uses the ASHRAE Handbook of Fundamentals procedure for calculating the approximate code compliance.

Figure 12 - Typical Wall Sections - North Building
Using the two wall sections above, appropriate U values were calculated using the ASHRA Handbook of Fundamentals Chapter 20 - Design Heat Transmission Coefficients along with the printed resistance values obtained from manufacturer data (when available). See Figures 13 and 14.

Metal Panel Wall	
Material	Resistance (R)
Outside Air Film	0.17
Loose-Lock Seam Metal Panel	0.61
2 " Extruded Polystyrene Board Insulation	$5.4 / \mathrm{in}$
5/8" Densglass	0.47
Interior Air Space	0.97
5/8" Gypsum Wall Board	0.56
Interior Air Film	0.68
$\sum R$	14.26
U	0.07013

Figure 13 - U-Value Calculation for Metal Panel Wall

Terra Cotta Wall	
Material	Resistance (R)
Outside Air Film	0.17
Terra Cotta Veneer	0.22
2" Extruded Polystyrene Board Insulation	$5.4 / \mathrm{in}$
3/4" Cement Board	0.52
Interior Air Space	0.97
5/8" Gypsum Wall Board	0.56
Interior Air Film	0.68
	13.92
U	0.07184

Figure 14 - U-Value Calculation for Terra Cotta Wall
Using the architectural elevations, appropriate wall areas and window areas were calculated for each elevation. The internet was used to obtain appropriate U-values and SHGC values for the specified $1 / 4$ " clear single-pane flat glass specified in the bid package Project Specifications dated January 27, 2006. After running COMCheck for the Massachusetts Energy Code, the building envelope fails the current code by about 30% (see Figure 15).

Figure 15 - COMCheck Input Parameters and Envelope Energy Compliance
Upgrading from single pane glass to double pane glass improves energy code compliance from 30% to -17%. A 13% increase in energy performance could qualify the building for 2 LEED points under the Optimize Energy Performance section. A 14\% increase in energy cost savings versus the ASHRAE/IESNA Standard 90.1-2004 baseline building performance rating corresponds to 2 LEED points.

This quick analysis using the COMCheck utility allows the mechanical engineer to alert the architect that the building envelope as designed may not meet the appropriate energy code. The low wall section R values are a major contributor to the building's failure of the current Massachusetts energy code.

With increased window efficiency comes increased initial cost. After calling a few architects for a rough cost/SF for single versus double-paned clear glass, an increase from \$35/SF to \$45-50 can be expected. This cost includes window framing and installation. To obtain the LEED credit and the corresponding decreased energy costs over the course of the building life, the increased initial cost is well worth it. Depending on the rental agreement, by increasing energy efficiency of the building envelope and including heat in the rent, the owner may be able to make more money off of the units and the building may actually meet the building energy code.

ARCHITECTURAL MATERIALS BREADTH STUDY

To achieve a LEED Bronze rating, a minimum of 26 points must be earned. A fair amount of these points can be earned by employing a conscientious contractor who will take special care to minimize construction waste. However, a lot can be done by the architect to ensure that appropriate recycled, reused, local, low-emitting, and renewable materials are employed. By researching manufacturers in the Massachusetts area, some alternative materials were found to improve the LEED qualification of 303 Third Street.

Since the residential space of 303 Third Street is intended to be rented out as apartments, the use of a carpet floor may not be in the owner's best interest. In rental spaces, carpets are usually worn out exceptionally fast due to lack of maintenance and care on the part of the renter. A great way to avoid the hassle of replacing the carpet every time a new renter moves in is to install durable, rapidly renewable bamboo or cork flooring.

Grade A bamboo flooring can be purchased at about $\$ 2 / \mathrm{SF}$ depending on the supplier. Bamboo flooring comes in multiple shades and hardness. Since bamboo is technically a grass, it can grow in China up to a foot in a week. This rapid growth qualifies bamboo as a rapidly renewable resource. The downside to bamboo is that it is almost exclusively produced grown in China and it is very hard to verify that the bamboo is naturally grown or if forests were destroyed to provide the space necessary to grow it. As this is the case, it does not qualify as a regional material, but it does qualify for Materials and Resources Credit 6 - Rapidly Renewable Materials. The low cost and durability may make this a very appealing alternative to the building owner.

An alternative floor system that may qualify for two LEED credits is cork flooring. Though less durable than bamboo, cork flooring produced in the United States is often comprised of at least 10% recycled cork from wine stoppers (Materials and Resources Credit 4.1 - Recycled Content: 10%). Since the majority of cork comes from Spain, the floors do not qualify as a regional material, but if a certain percentage can be proven recycled locally, the developer can count that toward LEED certification. Cork is inherently softer than bamboo and thus more likely to be damaged by renters. Cork flooring is also more expensive than bamboo flooring at over $\$ 3 / \mathrm{SF}$.

After performing the building envelope mechanical breadth, it became apparent that the exterior walls need better insulation. A great insulator that has a total recycled content of 82% is blown in cellulose insulation. Cellulose insulation also required only $750 \mathrm{btu} / \mathrm{lb}$ to manufacture as compared to $12,000 \mathrm{btu} / \mathrm{lb}$ for standard fiberglass insulation. The initial cost for cellulose insulation is a bit higher than fiberglass, but it is more than made up for by the increased performance as well as the environmental impact. Figure 16 shows the U-value calculation for each wall type if 3 " of cellulose insulation was blown in to the metal stud cavity.

Metal Panel Wall		Terra Cotta Wall	
Material	Resistance (R)	Material	Resistance (R)
Outside Air Film	0.17	Outside Air Film	0.17
Loose-Lock Seam Metal Panel	0.61	Terra Cotta Veneer	0.22
2" Extruded Polystyrene Board Insulation	5.4/in	2" Extruded Polystyrene Board Insulation	5.4/in
5/8" Densglass	0.47	3/4" Cement Board	0.52
3" Blown-in Cellulose Insulation	3.7/in	2" Blown-in Cellulose Insulation	3.7/in
Interior Air Space	0.97	Interior Air Space	0.97
5/8" Gypsum Wall Board	0.56	5/8" Gypsum Wall Board	0.56
Interior Air Film	0.68	Interior Air Film	0.68
$\sum \mathrm{R}$	25.36	\R	25.02
U	0.03943	U	0.03997

Figure 16 - U Values for Cellulose Insulated Walls
Cellulose insulation would contribute toward LEED Materials and Resources Credit 4.1:
Recycled Content, Credit 5.1: Regional Materials, and Energy and Atmosphere Credit 1:
Optimize Energy Performance. There is a cellulose insulation manufacturer (National Fiber) located in Belchertown, MA, which is about 80 miles from Cambridge. Cellulose insulation would be an easy way to improve the energy efficiency of 303 Third Street without having a negative impact on the environment.

SUMMARY/CONCLUSIONS

Every small step involved in designing a building has immense consequences toward building efficiency in terms of energy costs and building performance. Coordinating an efficient design that optimizes the use of materials structurally, architecturally, and mechanically is a challenge that every team of engineers and architects accept. Through the introduction of new building methods and materials, buildings will continue to be more efficient as materials become more scarce and expensive. What may cost more initially often is the cheaper alternative when taking in to account the life span of the building. Developers must be more cognizant of the payback period of certain upgrades so that new technologies are adopted more readily.

By reducing the weight of the structural system, the controlling lateral load (seismic) was reduced and thus initial costs were saved in terms of tons of steel needed to erect 303 Third Street. Steel joists are a viable alternative floor system when fire rated ceiling assemblies are utilized and vibrations are controlled. Pressure must be exerted on contractors and unions to adopt new construction methods that promote the efficiency of building systems because it costs the developers more money in initial cost and drains the environment of resources. The alternative floor system proposed for 303 Third Street is a viable alternative to composite steel framing for this residential occupancy.

To achieve a LEED Bronze certification, 26 points need to be earned. By increasing the efficiency of the building envelope, using rapidly renewable materials, regional materials, and hiring a responsible general contractor who will manage site waste, 26 LEED points would add minimal initial cost to 303 Third Street. The location of the building is ideal for LEED because there are many credits that could be easily earned due to it's urban location under Sustainable Sites (Credits 1, 2, 3, 4.1, 4.2, etc). To appeal to the intelligent Cambridge society, LEED accreditation would be a feather in the cap to 303 Third Street, making it more rentable.

APPENDIX

Wide Flange:
Steel Grade: 50 Size

W14X109
W14X120
W14X132
W14X145
W14X159

$\#$
7
18
21
2
6
54

Length
$\mathbf{f t}$
105.0
270.0
315.0
30.0
90.0

Weight	UnitWt $\mathbf{p s f}$
11433	
32431	
41588	
4359	
14302	
104113	2.35

Beams:

Wide Flange
Steel Grade: 50
Size

W12X30
W14X22
W14X43
W14X30
W14X34
W14X38
W16X50
W18X65
W18X71
W21X73

$\#$
15
2
2
2
1
1
1
19
2
1
46

Length ft	Weight lbs
271.2	8113
52.0	1148
54.8	2351
50.0	1506
26.0	885
26.0	991
18.1	905
456.0	29636
41.9	2967
18.1	1323

UnitWt
psf
1.12

Braces:

Tube:
Steel Grade: Other
Size
HSS7X7X1/2
HSS8X6X1/2
HSS9X7X1/2
HSS9X7X5/8
HSS9X5X5/8
HSS9X9X1/2
HSS9X5X1/2
Length
$\mathbf{f t}$
19.9
178.6
39.7
39.7
108.5
116.5
175.1

Weight
lbs
786
7051
1824
2215
5168
6065
6913
30022

UnitWt
psf
0.68

TOTAL STRUCTURE FRAME TAKEOFF

Floor Area (ft**2): 317872.6

Columns:

Wide Flange:
Steel Grade: 50
Size

W14X61
W14X68
W14X90 W14X74
W14X82
W14X109
W14X120
W14X132
W14X145
W14X159

$\#$
78
78
104
28
4
14
36
42
4
12
400

Length ft	Weight lbs
799.0	48666
780.0	53082
1040.0	93779
280.0	20770
40.0	3267
175.0	19055
450.0	54052
525.0	69313
50.0	7265
150.0	23836

UnitWt
psf
1.24

Beams:

Wide Flange:
Steel Grade: 50

Frame Takeoff
RAM Frame v11.2
DataBase: 303 Third Street - Steel

Size	$\#$	Length ft	Weight lbs	UnitWt psf
W12X14	1	18.1	256	
W12X26	3	54.2	1412	
W12X30	113	2043.4	61118	
W14X22	2	52.0	1148	
W14X43	46	1139.7	48863	
W14X30	4	98.0	2951	
W14X48	31	684.7	32849	
W14X26	1	24.0	628	
W14X53	21	497.9	26431	
W14X61	21	497.9	30328	
W14X34	1	26.0	885	
W14X68	28	665.9	45319	
W14X38	2	50.0	1906	
W14X74	14	329.9	24473	
W16X50	1	18.1	905	
W18X65	19	456.0	29636	
W18X71	2	41.9	2967	1323

Braces:
Tube:
Steel Grade: Oth Siz

		$\mathbf{f t}$
HSS4X3X3/8	2	27.7
HSS4X4X3/8	2	27.7
HSS5X5X1/2	2	30.7
HSS6X4X5/16	4	55.4
HSS6X4X3/8	15	207.5
HSS6X4X1/2	21	283.1
HSS7X7X1/2	1	19.9
HSS7X7X5/8	8	107.9
HSS7X5X3/8	25	332.1
HSS7X5X1/2	45	605.8
HSS7X5X5/8	50	686.5
HSS8X6X1/2	10	178.6
HSS9X7X1/2	2	39.7
HSS9X7X5/8	2	39.7
HSS9X9X1/2	6	116.5
HSS9X5X1/2	49	710.2
HSS9X5X5/8	47	694.9

Weight	UnitWt $\mathbf{l b s}$
386	
451	
824	
992	
4363	
7591	
786	
5138	
8566	
20079	
27331	
7051	
1824	
2215	
6065	
28031	
33105	
154798	

Note: Length and Weight based on Centerline dimensions.

RAM Steel v11.2
DataBase: 303 Third Street - Steel
Building Code: MASS

Gravity Column Design TakeOff

Steel Grade: 50

I section

Size	$\#$	Length (ft)	Weight (lbs)
W12X40	146	2966.5	118104
W12X45	11	225.0	10030
W12X50	14	295.0	14656
W12X53	29	625.0	33177
W12X58	5	110.0	6363
W12X65	19	430.0	27947
W12X72	3	75.0	5385
W12X87	6	150.0	13067
W12X96	2	50.0	4798
W12X106	1	15.0	1593
	$\boxed{236}$		235119

RAM Frame v11.2
DataBase: 303 Third Street - Steel

LOAD CASE: SEISMIC 2

Seismic
Av: 0.120
Provisions for: Force
Ground Level:

Dir	Eccent
X	+ And -
Y	+ And -

Dir	Ta
X	0.562
Y	0.562

Total Building Weight (kips) $=33744.66$

APPLIED DIAPHRAGM FORCES

Type: EQ_BOCA96/99_X_+E_F
Level
Roof
Eighth
Seventh
Sixth
Fifth
Diaph.
1
1
1
1
1
1
1
1

APPLIED STORY FORCES
Type: EQ_BOCA96/99_X_+E_F
Level
Roof

Eighth
Seventh
Sixth
Fifth
Fourth
Third
2nd

Fourth
Third
2nd
1

R
5.0
5.0

Ta Equation
$\mathrm{Std}, \mathrm{Ct}=0.020$
$\mathrm{Std}, \mathrm{Ct}=0.020$
Ca
1.620
1.620
T
1.645
1.341

BOCA 96/99 Equivalent Lateral Force Aa: 0.120

Base

Soil Type: S3

Building Period-T
Calculated
Calculated

T-used	Cs
0.911	0.0460
0.911	0.0460

Ht	Fx kips	Fy ft
85.50	409.00	0.00
75.00	199.92	0.00
65.00	326.92	0.00
55.00	198.39	0.00
45.00	170.99	0.00
35.00	120.39	0.00
25.00	80.83	0.00
15.00	44.79	0.00

Fx	Fy
kips	kips
409.00	0.00
199.92	0.00
326.92	0.00
198.39	0.00
170.99	0.00
120.39	0.00
80.83	0.00
44.79	0.00
1551.23	0.00

RAM Frame v11.2
DataBase: 303 Third Street - Steel

Eighth	1	75.00	0.00	199.92
Seventh	1	65.00	0.00	326.92
Sixth	1	55.00	0.00	198.39
Fifth	1	45.00	0.00	170.99
Fourth	1	35.00	0.00	120.39
Third	1	25.00	0.00	80.83
2nd	1	15.00	0.00	44.79

APPLIED STORY FORCES
Type: EQ_BOCA96/99_Y_+E_F

Level	Ht
	ft
Roof	85.50
Eighth	75.00
Seventh	65.00
Sixth	55.00
Fifth	45.00
Fourth	35.00
Third	25.00
2nd	15.00

Fx	
kips	Fy kips
0.00	409.00
0.00	199.92
0.00	326.92
0.00	198.39
0.00	170.99
0.00	120.39
0.00	80.83
0.00	44.79
0.00	1551.23

APPLIED DIAPHRAGM FORCES

Type: EQ_BOCA96/99_Y_-E_F

Level	Diaph.\#
Roof	1
Eighth	1
Seventh	1
Sixth	1
Fifth	1
Fourth	1
Third	1
2nd	1

APPLIED STORY FORCES

Type: EQ_BOCA96/99_Y_-E_F			
Level	Ht	Fx kips	Fy kips
	ft	0.00	409.00
Roof	85.50	0.00	199.92
Eighth	75.00	0.00	326.92
Seventh	65.00	0.00	198.39
Sixth	55.00	0.00	170.99
Fifth	45.00	0.00	120.39
Fourth	35.00	0.00	80.83
Third	25.00	0.00	44.79
2nd	15.00		

RAM Frame v11.2
DataBase: 303 Third Street - Steel

LOAD CASE: WIND 2

Wind BOCA 96/99
Exposure: B
Basic Wind Speed (mph): 90.0 Importance Factor: 1.000
Internal Pressure Coeff GCpi: +0.25/-0.25 (Condition 1)
Mean Roof Height (ft): Top Story Height + Parapet $=85.50$
Ground Level:
Base
WIND PRESSURES:

Gh $=1.330$
Height
ft
85.50
75.00
65.00
55.00
45.00
35.00
25.00
15.00
0.00
${ }_{\mathrm{Kz}}{ }^{\text {CpWindward }=0.80}$
CpLeeWard
Y
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
$\mathrm{Pv}=20.74 \mathrm{psf}$
Pressure (psf)

25.411
24.416
23.550
22.436
21.202
19.804
18.161
16.093
16.093
28.58
27.59
26.56
25.45
24.22
22.82
21.17
19.11
19.11

APPLIED DIAPHRAGM FORCES

Type: Wind_BOCA96/99_X
Level

Roof
1
Eighth
1
Seventh
1
Sixth
Fifth

Diaph.\#	Ht ft
1	85.50
1	75.00
1	65.00
1	55.00
1	45.00
1	35.00
1	25.00
1	15.00

Fx

kips \quad| Fy |
| ---: |
| 31.01 |

APPLIED STORY FORCES

Type: Wind_BOCA96/99_X

Level	Ht
	ft
Roof	85.50
Eighth	75.00
Seventh	65.00
Sixth	55.00
Fifth	45.00
Fourth	35.00
Third	25.00
2nd	15.00

Fx	Fy
kips	kips
31.01	0.00
59.02	0.00
56.59	0.00
55.16	0.00
52.11	0.00
48.64	0.00
44.52	0.00
50.35	0.00
397.39	0.00

RAM Frame v11.2
DataBase: 303 Third Street - Steel

CRITERIA:
Rigid End Zones: Include Effects: 50.00\% Reduction
Member Force Output: At Face of Joint
P-Delta:
Yes Scale Factor:
1.33

Ground Level:
Base
Wall Mesh Criteria :
Wall Element Type : Shell Element with No Out-of-Plane Stiffness
Max. Allowed Distance between Nodes (ft) : 8.00

LOAD CASE DEFINITIONS:

E5	SEISMIC 2	EQ_BOCA96/99_X_+E_Drft
E6	SEISMIC 2	EQ_BOCA96/99_X_-E_Drft
E7	SEISMIC 2	EQ_BOCA96/99_Y-+E_Drft
E8	SEISMIC 2	EQ_BOCA96/99_Y_--E_Drft
W3	WIND 2	Wind_BOCA96/99_X
W4	WIND 2	Wind_BOCA96/99_Y

Level: Roof, Diaph: 1
Center of Mass (ft): (-199.41, -125.43)

LdC	Disp X in
E5	1.55420
E6	1.54306
E7	0.19752
E8	0.21884
W3	0.39762
W4	0.09748

$\begin{array}{r} \text { Disp } \\ \text { in } \end{array}$	Theta Z rad
0.16543	-0.00014
0.19687	0.00003
1.48095	0.00029
1.42107	-0.00003
0.04865	-0.00001
0.61121	0.00001

Level: Eighth, Diaph: 1
Center of Mass (ft): (-199.35, -124.87)

LdC	Disp X in
E5	1.32599
E6	1.31565
E7	0.17068
E8	0.19048
W3	0.35304
W4	0.08803

$\left.\begin{array}{rr}\text { Disp Y } \\ \text { in }\end{array} \quad \begin{array}{r}\text { Theta Z } \\ \text { rad }\end{array}\right]-0.000122$.

Level: Seventh, Diaph: 1
Center of Mass (ft): (-199.70, -116.49)

LdC	Disp X in
E5	1.11054
E6	1.09049
E7	0.12667
E8	0.16512
W3	0.30457
W4	0.07718

$\begin{array}{r} \text { Disp } \\ \text { in } \end{array}$	$\begin{array}{r} \text { Theta } Z \\ \text { rad } \end{array}$
0.12792	-0.00010
0.14554	0.00002
0.95588	0.00018
0.92203	-0.00004
0.03950	-0.00001
0.44249	0.00000

Level: Sixth, Diaph: 1 Center of Mass (ft): (-199.05, -120.19)

LdC	Disp X
	in
E5	0.87757
E6	0.86566
E7	0.10888
E8	0.13177
W3	0.25276
W4	0.06513

$\left.\begin{array}{rr}\text { Disp Y } \\ \text { in }\end{array} \quad \begin{array}{r}\text { Theta Z } \\ \mathbf{r a d}\end{array}\right]-0.00008$

Level: Fifth, Diaph: 1
Center of Mass (ft): (-191.22, -125.18)

LdC	Disp X in
E5	0.65968
E6	0.65500
E7	0.09142
E8	0.10043
W3	0.20080
W4	0.05279

\(\left.$$
\begin{array}{rr}\text { Disp Y } \\
\text { in }\end{array}
$$ \quad \begin{array}{r}Theta Z

\mathbf{r a d}\end{array}\right]\)| -0.00006 |
| ---: |
| 0.07267 |
| 0.09060 |
| 0.59187 |
| 0.55726 |
| 0.02646 |
| 0.29219 |

Level: Fourth, Diaph: 1

Center of Mass (ft): (-195.62, -122.36)

Level: Third, Diaph: 1

Center of Mass (ft): (-195.65, -122.37)

LdC	Disp X in
E5	0.30926
E6	0.30604
E7	0.04318
E8	0.04942
W3	0.10632
W4	0.02887

\(\left.\begin{array}{r}Disp Y

in\end{array}\right\}\)| 0.03678 |
| ---: |
| 0.04324 |
| 0.26274 |
| 0.25020 |
| 0.01442 |
| 0.14724 |

Theta Z
rad -0.00003 0.00000 0.00005 -0.00001 -0.00000 -0.00000

Level: 2nd, Diaph: 1

Center of Mass (ft):	$(-197.66,-121.99)$
LdC	Disp X
	in
E5	0.17235
E6	0.17051
E7	0.02502
E8	0.02859
W3	0.06368
W4	0.01765

$\left.\begin{array}{r}\text { Disp Y } \\ \text { in }\end{array}\right\}$

Theta Z rad
-0.00001
0.00000
0.00003
-0.00001
-0.00000
0.00

Size
HSS5X3X1/2
HSS5X4X3/8
HSS5X5X1/2
HSS7X7X5/8

$\#$	Length $\mathbf{f t}$	Weight $\mathbf{l b s}$	UnitWt $\mathbf{p s f}$
2	27.0	552	
4	60.1	1120	
28	377.5	10122	
2	31.2	1488	
36			13283

Level: 2nd
Floor Area (ft**2): 44373.7
Columns:

Wide Flange:

Steel Grade: 50

Size	$\#$
W14X90	3
W14X99	2
W14X109	30
W14X120	13
	6

Length
$\mathbf{f t}$
45.0
30.0
450.0
195.0
90.0
\(\left.\begin{array}{r}Weight

lbs\end{array}\right\}\)| 4058 |
| ---: |
| 2971 |
| 48999 |
| 23423 |
| 11882 |
| 91332 |

UnitWt
psf
2.06

Beams:

Wide Flange:

Steel Grade: 50 $\begin{array}{lr}\text { Size } & \# \\ & \\ \text { W12X14 } & 1 \\ \text { W12X26 } & 2 \\ \text { W12X30 } & 13 \\ \text { W14X22 } & 2 \\ \text { W14X30 } & 2 \\ \text { W14X26 } & 2 \\ \text { W14X34 } & 1 \\ \text { W14X38 } & 1 \\ \text { W18X35 } & 2 \\ \text { W18X65 } & 17 \\ \text { W18X71 } & 2 \\ \text { W21X73 } & 1 \\ & 46\end{array}$
Length
$\mathbf{f t}$
18.1
36.2
235.1
52.0
50.0
54.8
26.0
26.0
48.0
408.0
41.9
18.1

Weight lbs	UnitWt $\mathbf{p s f}$
256	
941	
7031	
1148	
1506	
1435	
885	
991	
1682	
26517	
2967	
1323	
46682	

Braces:

Tube:
Steel Grade: Other Size

HSS5X3X1/2
HSS5X4X3/8
HSS5X5X1/2 HSS7X7X5/8
Length
$\mathbf{f t}$
35.0
74.9
421.3
78.1

UnitWt
psf
0.39

TOTAL STRUCTURE FRAME TAKEOFF

Floor Area (ft**2): 317871.2
Columns:
Wide Flange:
Steel Grade: 50
Size

W14X43
W14X48
W14X53
W14X61
W14X90
\#
Length
$\mathbf{f t}$
102.5
223.0
123.0
490.5
635.0
\(\left.\begin{array}{r}Weight

lbs\end{array}\right\}\)| 4395 |
| ---: |
| 10699 |
| 6529 |
| 29876 |
| 57259 |

UnitWt
psf

Size	$\#$	Length	Weight	UnitWt
W14X68	100	1000.0	68054	
W14X74	6	60.0	4451	
W14X99	4	50.0	4951	
W14X82	38	380.0	31033	
W14X109	60	750.0	81665	
W14X120	26	325.0	39038	
W14X132	12	150.0	19804	
				357754
	400		1.13	

Beams:

Wide Flange:

Steel Grade: 50
$\left.\begin{array}{rr}\text { Length } \\ \text { ft }\end{array} \quad \begin{array}{r}\text { Weight } \\ \text { lbs }\end{array}\right\}$

UnitWt
psf

Size	
W12X14	
W12X26	24
W12X22	2
W12X30	98
W14X22	32
W14X43	8
W14X30	39
W14X48	16
W14X26	36
W14X61	12
W14X34	
W14X68	10
W14X38	
W14X74	1
W18X35	
W18X65	
W18X71	
W21X73	31

\#

1
24

98
2
32
8
39
16
36
12
7
2

10
17
1

Braces:

Tube:

Steel Grade: Other Size	
	$\#$
HSS4X4X3/8	2
HSS5X5X1/4	2
HSS5X3X1/2	4
HSS5X4X3/8	12
HSS5X5X3/8	20
HSS5X5X1/2	221
HSS6X4X1/2	2
HSS7X5X1/2	2
HSS7X7X5/8	14
	279

279
Length
$\mathbf{f t}$
25.1
27.7
62.0
195.1
275.6
3117.3
27.0
27.0
234.3

Weight	UnitWt
$\mathbf{l b s}$	$\mathbf{p s f}$
409	
405	
1270	
3637	
5796	
83585	
723	
894	
11163	
107882	

Note: Length and Weight based on Centerline dimensions.

Gravity Column Design TakeOff

RAM Steel v11.2
DataBase: 303 Third Street - Steel Joist
Building Code: IBC

Steel Grade: 50

I section

Size	$\#$	Length (ft)	Weight (lbs)
W12X40	149	3031.5	120692
W12X45	14	285.0	12704
W12X50	15	300.0	14904
W12X53	23	520.0	27603
W12X58	13	280.0	16197
W12X65	11	260.0	16898
W12X72	2	50.0	3590
W12X79	5	125.0	9868
W12X87	3	75.0	6533
W12X96	1	15.0	1439
	$\boxed{236}$		230429

RAM Frame v11.2
DataBase: 303 Third Street - Steel Joist

LOAD CASE: SEISMIC 2

Seismic
Av: 0.120
Provisions for: Force
Ground Level:

Dir	Eccent
X	+ And -
Y	+ And -

Dir	Ta
X	0.562
Y	0.562

Total Building Weight (kips) $=32111.80$

APPLIED DIAPHRAGM FORCES

Type: EQ_BOCA96/99_X_+E_F

Level	Diaph.\#
Roof	1
Eighth	1
Seventh	1
Sixth	1
Fifth	1
Fourth	1
Third	1
2nd	1

APPLIED STORY FORCES
Type: EQ_BOCA96/99_X_+E_F
Level
Roof

Ht	Fx	Fy ft		
kips			\quad	kips
---:				
85.50				

RAM Frame v11.2
DataBase: 303 Third Street - Steel Joist

	1	75.00	0.00	189.10	-1
Eighth	1	65.00	0.00	310.60	-1
Seventh	1	55.00	0.00	187.61	-1
Sixth	1	45.00	0.00	161.79	-1
Fifth	1	35.00	0.00	113.60	-1
Fourth	1	25.00	0.00	76.15	-1
Third	1	15.00	0.00	42.12	-1
2nd					

APPLIED STORY FORCES
Type: EQ_BOCA96/99_Y_+E_F
Level

Roof
Eighth
Eighth
Seventh
Ht
ft
85.50

Sixth
Fifth
Fourth
85.50
75.00
65.00
55.00
45.00
35.00

Third
25.00

2nd
15.00

Fx	
kips	Fy
0.00	395.18
0.00	189.10
0.00	310.60
0.00	187.61
0.00	161.79
0.00	113.60
0.00	76.15
0.00	42.12
0.00	1476.17

APPLIED DIAPHRAGM FORCES

Type: EQ_BOCA96/99_Y_-E_F

Level	Diaph.\#
Roof	1
Eighth	1
Seventh	1
Sixth	1
Fifth	1
Fourth	1
Third	1
2nd	1

APPLIED STORY FORCES
Type: EQ_BOCA96/99_Y_-E_F
Level
\(\left.$$
\begin{array}{rrr}\mathrm{Ht} \\
\mathrm{ft}\end{array}
$$ \quad $$
\begin{array}{r}\text { Fx } \\
\text { kips }\end{array}
$$ \quad \begin{array}{r}Fy

kips\end{array}\right]\)| 85.50 |
| ---: |

RAM Frame v11.2
DataBase: 303 Third Street - Steel Joist

LOAD CASE: WIND 2

Wind BOCA 96/99
Exposure: B
Basic Wind Speed (mph): 90.0 Importance Factor: 1.000
Internal Pressure Coeff GCpi: +0.25/-0.25 (Condition 1)
Mean Roof Height (ft): Top Story Height + Parapet $=85.50$
Ground Level:
Base
WIND PRESSURES:

Gh $=1.330$
Height
ft
85.50
75.00
65.00
55.00
45.00
35.00
25.00
15.00
0.00

CpWindward $=0.80$
Kz
0.798
0.752
0.706
0.656
0.600
0.536
0.462
0.368
0.368

X
-0.356
-0.356
-0.363
-0.363
-0.363
-0.363
-0.363
-0.363
-0.363

CpLeeWard
CpLeeWard
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
-0.500
$\mathrm{Pv}=20.74 \mathrm{psf}$
Pressure (psf)
X
25.412
24.416
23.550
22.436
21.202
19.804
18.162
16.093
16.093
28.58
27.59
26.56
25.45
24.22
22.82
21.17
19.11
19.11

APPLIED DIAPHRAGM FORCES

Type: Wind_BOCA96/99_X
Level

Roof
1
Eighth
1
Seventh
1
Sixth
Fifth

Diaph.\#	Ht ft
1	85.50
1	75.00
1	65.00
1	55.00
1	45.00
1	35.00
1	25.00
1	15.00

Fx

kips \quad| Fy |
| ---: |
| 31.01 |

APPLIED STORY FORCES

Type: Wind_BOCA96/99_X

Level	Ht
	ft
Roof	85.50
Eighth	75.00
Seventh	65.00
Sixth	55.00
Fifth	45.00
Fourth	35.00
Third	25.00
2nd	15.00

Fx	Fy
kips	kips
31.01	0.00
59.02	0.00
56.59	0.00
55.16	0.00
52.11	0.00
48.64	0.00
44.52	0.00
50.35	0.00
397.40	0.00

RAM Frame v11.2
DataBase: 303 Third Street - Steel Joist

CRITERIA:
$\begin{array}{ll}\text { Rigid End Zones: } & \text { Include Effects: 50.00\% Reduction } \\ \text { Member Force Output: } & \text { At Face of Joint }\end{array}$ At Face of Joint
P-Delta:
Yes
Scale Factor:
1.33

Ground Level: Base
Wall Mesh Criteria :
Wall Element Type : Shell Element with No Out-of-Plane Stiffness
Max. Allowed Distance between Nodes (ft) : 8.00

LOAD CASE DEFINITIONS:

E5	SEISMIC 2	EQ_BOCA96/99_X_+E_Drft
E6	SEISMIC 2	EQ_BOCA96/99_X_-E_Drft
E7	SEISMIC 2	EQ_BOCA96/99_Y-+E_Drft
E8	SEISMIC 2	EQ_BOCA96/99_Y--E_Drft
W3	WIND 2	Wind_BOCA96/99_X
W4	WIND 2	Wind_BOCA96/99_Y

Level: Roof, Diaph: 1
Center of Mass (ft): (-199.35, -125.46)

LdC	Disp X in
E5	1.75780
E6	1.74743
E7	0.26674
E8	0.28738
W3	0.53768
W4	0.14830

Disp Y in	Theta Z rad
0.22771	-0.00014
0.24134	0.00003
1.52038	0.00024
1.49388	-0.00011
0.07426	-0.00001
0.72279	-0.00003

Level: Eighth, Diaph: 1
Center of Mass (ft): (-199.03, -124.88)

LdC	Disp X in
E5	1.53605
E6	1.52601
E7	0.23540
E8	0.25541
W3	0.48730
W4	0.13651

$\left.\begin{array}{rr}\text { Disp Y } \\ \text { in }\end{array} \quad \begin{array}{r}\text { Theta Z } \\ \text { rad }\end{array}\right]-0.000122$.

Level: Seventh, Diaph: 1
Center of Mass (ft): (-199.04, -116.35)

LdC	Disp X in
E5	1.32346
E6	1.30219
E7	0.19049
E8	0.23301
W3	0.43267
W4	0.12667

$\left.\begin{array}{rr}\text { Disp Y } \\ \text { in }\end{array} \quad \begin{array}{r}\text { Theta Z } \\ \mathbf{r a d}\end{array}\right\}$

Level: Sixth, Diaph: 1 Center of Mass (ft): (-198.72, -120.32)

LdC	Disp X in
E5	1.09367
E6	1.08109
E7	0.16916
E8	0.19438
W3	0.37456
W4	0.11072

\(\left.$$
\begin{array}{rr}\text { Disp Y } \\
\text { in }\end{array}
$$ \quad \begin{array}{r}Theta Z

\mathbf{r a d}\end{array}\right]\)| -0.00008 |
| ---: |
| 0.15409 |

Level: Fifth, Diaph: 1
Center of Mass (ft): (-190.79, -125.41)
\(\left.\begin{array}{lr}LdC \& Disp X

in\end{array}\right\}\)| E5 | 0.86778 |
| :--- | ---: |
| E6 | 0.86296 |
| E7 | 0.14598 |
| E8 | 0.15568 |
| W3 | 0.31319 |
| W4 | 0.09337 |

\(\left.\begin{array}{r}Disp Y

in\end{array}\right\}\)| 0.12082 |
| ---: |
| 0.13014 |
| 0.66657 |
| 0.64785 |
| 0.04706 |
| 0.37874 |

Theta Z
rad
-0.00007
0.00001
0.00009
-0.00007
-0.00000
-0.00003

Level: Fourth, Diaph: 1
Center of Mass (ft): (-195.35, -122.50)

LdC	Disp X in
E5	0.66163
E6	0.65615
E7	0.11484
E8	0.12592
W3	0.25119
W4	0.07846

Disp Y in	Theta Z rad
0.09929	-0.00005
0.10245	0.00001
0.48076	0.00006
0.47438	-0.00005
0.03924	-0.00000
0.29178	-0.00002

Level: Third, Diaph: 1

Center of Mass (ft): (-195.37, -122.51)

LdC	Disp X
	in

\(\left.\begin{array}{r}Disp Y

in\end{array}\right\}\)| 0.06930 |
| ---: |
| 0.07112 |
| 0.31169 |
| 0.30800 |
| 0.02879 |
| 0.20150 |

Theta Z

rad

 -0.00003 0.00001 0.00004 -0.00004 -0.00000 -0.00002
Level: 2nd, Diaph: 1

Center of Mass (ft):	
LdC	Disp X
	in
E5	$0.16,-122.15)$
E6	0.25921
E7	0.04728
E8	0.05201
W3	0.11194
W4	0.03559

\(\left.\begin{array}{r}Disp Y

in\end{array}\right\}\)| 0.04030 |
| ---: |
| 0.04080 |
| 0.16192 |
| 0.16091 |
| 0.01739 |
| 0.11292 |

Theta Z
rad
-0.00002 0.00000 0.00002 -0.00002 -0.00000 -0.00001

