TECHNICAL REPORT II Gen*NY*Sis Center for Excellence in Cancer Genomics

Rensselaer, NY

Meral G. Kanik Structural Option Advisor: A. M. Memari December 12, 2007

Table of Contents

Executive Summary3
Introduction4
List of Codes and References4
Gravity Loads5
Lateral Loads5
Composite Steel (Existing System)6
Alternate Analysis7
Composite Steel (Existing)7
Two-way Post Tensioned Slab8
Two-way Flat Slab9
Precast Hollow Core Planks10
Open Web Steel Joists
System Comparison12
Conclusions13
Appendix A: Typical Structural Layout13
Appendix B: Important Structural Details14
Appendix C: Construction Photographs15
Appendix C: Construction Photographs16
Appendix D: Two-Way Post-Tensioned Slab Calculations17
Appendix E: Two-Way Flat Slab Calculations
Appendix F: Precast Hollow Core Plank Calculations37
Appendix G: Open Web Steel Joist Calculations

Executive Summary

The following is an exploration into alternative floor systems for the Gen*NY*Sis Center for Excellence. Four options of alternate flooring systems, in addition to the existing system, are evaluated based on the factors of constructability, fire protection, cost, serviceability, and architecture, to determine their practicality. The current system in place consists of composite steel decking with composite steel beams, which permits large live loads (for the corridor) and larger steel spans (open plan for labs and offices). Other systems investigated are:

~Post tensioned two-way slab

~Precast one-way slab

~Two-way concrete flat slab

~Open web steel bar joists

It appears through this report that the most suitable alternate to the original composite steel floor system is a precast hollow core plank system. Not only can precast planks withstand the heavy live load of the corridor and it's vibrations, but It would allow a thinner system with an open grid plan and no additional fireproofing, and at a cheaper price. The use of an alternative lateral system will be investigated in a later report.

Introduction

Gen*NY*Sis Center for Excellence in Cancer Genomics is University at Albany owned, state-funded medical research lab. Standing four stories tall with the first floor partially below grade, the Center for Genomics sits atop a hill with a beautiful outlook over Rensselaer, NY and the Hudson River. The Research Center houses research laboratories, offices, an animal facility, a seminar room, mechanical rooms and a loading dock.

As the signature building of University at Albany's East Campus Technology Park, the Research Center is a model for the co-location of academia, industry, and government. To signify its technological presence, a glass curtain wall and exposed frames promote a fresh, new look for the campus.

A main design goal was to maximize vertical space for utilities in the corridor and in the laboratories. Another concern was the minimization of vibration from foot-traffic in the corridor through the center of the building so a 100 psf live load was predominantly used for designing. The use of composite steel with concrete slab on deck forms the 117,400 square feet plan with a typical bay size of 21 feet by 27 feet. The lateral system is a series of braces frames spaced throughout the plan of the building.

This report examines four alternate floor systems for Gen*NY*Sis Center for Excellence in Cancer Genomics. Each floor system is compared and evaluated in five categories: cost, constructability, fire protection, serviceability, and architecture. The goal of this report is to provide a simpler comparison of options in structural framing for consideration in my thesis proposal. This paper is not an exhaustive analysis of each floor framing system. All calculations and designs are considered preliminary and schematic design.

List of Codes and References

Gen*NY*Sis Tech Report II

2003 International Building Code Minimum Design Loads for Buildings and Other Structures (ASCE 7-05) Building Code Requirements for Reinforced Concrete (ACI 318-05) Specifications for Structural Steel Buildings (AISC 13th Edition) Wind and Seismic Provisions for Structural Steel Buildings (AISC 13th Edition) Steel Joist and Joist Girders Catalog (Vulcraft 2001) Pre-Stressed Concrete Institute Handbook (6th Edition) RS Means Building Construction Cost Data (meancostworks.com)

Gravity Loads

Dead Loads	
Construction Dead Load	
Concrete	150 pcf
Steel	490 pcf
Construction Dead Load	
Partitions	20 psf
M.E.P.	10 psf
Finishes	5 psf
Windows and Framing	20 psf
Roof	20 psf
Construction Dead Load Partitions M.E.P. Finishes Windows and Framing	20 psf 10 psf 5 psf 20 psf

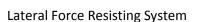
Live Loads

Laboratories	60 psf
	70 psf for office/lab flexibility
Offices	70 psf
Lobbies	100 psf
First Floor Corridor	100 psf
Corridors above First Floor	80 psf
Stairs and Exits	100 psf
Seminar Room	100 psf
Catwalks	40 psf
Balcony/Terrace	100 psf
Mechanical Rooms	Weight of equipment

Lateral Loads

	WIND			SEISMIC		
	Load (kips)	Shear (kips)	Overturning Moment (ft-kips)	Force (kips)	Shear (kips)	Overturning Moment (ft-kips)
Penthouse	71.4	0	6212	45.8	0	3984
Roof	51.4	71.4	3392	103.6	45.8	6840
3rd	49.4	122.8	2470	69.6	149.4	3482
2nd	45.2	172.2	1537	38.7	219.0	1315
1st	46.3	217.4	833	20.9	257.7	375
BASE	263.7	263.1	14444	278.6	278.6	15997

Foundation


Typical footings are 9-feet square 25-inches deep calling for 11#9 reinforcing bars each way on bottom. Typical continuous wall footings are 1-foot deep by 2-feet wide calling for 3#5 continuous bars and 1#5 bar at 12-inches on center, transverse.

Floor Framing

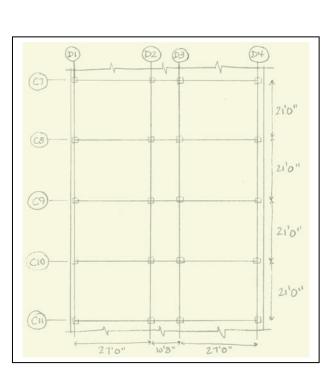
The floor system of the Center for Genomics is composed of a composite steel system with a typical bay of 21 feet by 27 feet. It includes 2.0 inch, 20-gage composite decking with a 4.5" normal weight concrete slab, and ¾" diameter, 4" long studs. A 2 hour-rated construction is provided for all columns and beams supporting all floors. Typical floor beams are W16x31 spaced 7-feet apart and 20 shear connectors. Filler beams across the 10-foot corridor are W10x12 spaced 7-feet apart. Girders along the interior column lines and along the exterior walls are W18x35 with 32 shear connectors. Camber is not be accounted for due to relatively short spans.

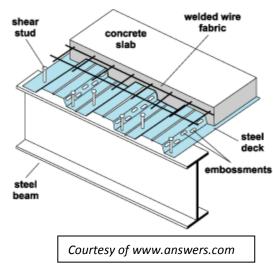
Columns

Typical columns are W12x72 members at the lower tier and W12x53 member at the top tier. Using W12 columns as a minimum size simplifies fabrication of connections of beams framing into the columns. Perimeter columns bear on footings 1-foot below the Ground Floor elevation of 175.0'.

Steel braced frames will resist wind and seismic lateral loads. An expansion joint at the intersection of the two building wings will isolate the two sections from each other. The expansion joint will require a row of columns along each side of the joint, with the building structures separated by a distance sufficient to provide seismic isolation—approximately 6 to 8-inches. Each building section has braced frames across the ends, and two bays of bracing along the length of each exterior wall. Bracing diagonals are typically HSS8x8x5/16 in non-moment-resisting eccentrically braced frames. The building is designed for wind loading drift criteria of H/400, including second order effects.

Composite Steel (Existing System)


Gen*NY*Sis Tech Report II

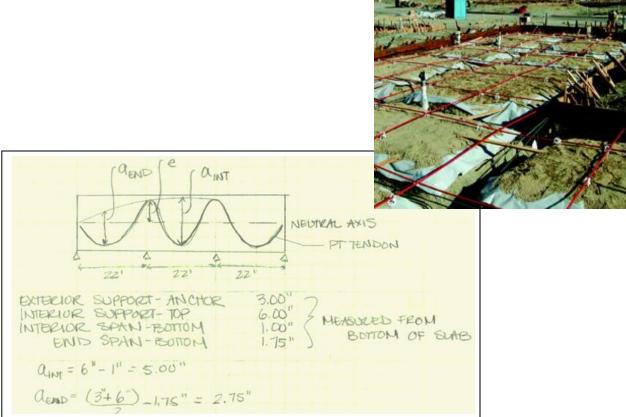

System Advantages

Composite steel can operate under significant live loads and still maintain long spans to keep an open floor plan. With a 6.5" thick decking and concrete slab, it also complies with the required 2-hour fire rating for the desired storage of chemicals and research labs. The necessary deep and heavy steel sections for the long spans also help to conquer the vibration control for the labs. Bearing on fill and indigenous soils, footings are used as the foundation for the weighty structure. Cost is minimal since forms and shoring are not required for construction. Most of the cost goes into renting a crane for steel erection. Although it has an involved shape, pouring the slab is relatively simple especially since there are relatively minimal slab openings, allowing fast pouring.

System Disadvantages

The amount of material used in this system amounts to about 24 inches think which takes away from the amount of floor-to-floor space. The majority of this system is in the deep sections of steel which is increasing in price every year.

Post Tensioned Two-Way Slab


Gen*NY*Sis Tech Report II

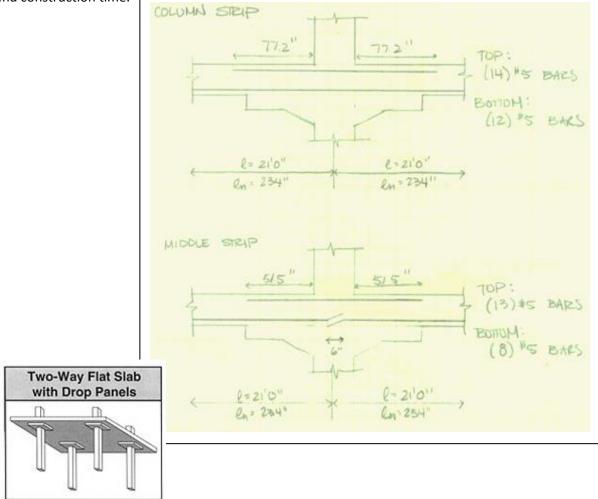
System Advantages

Post-tensioning is a way to strengthen a concrete member by stressing the reinforcing tendons after the concrete has set. This means that slabs of this kind can manage heavy live loads as well as large spans for open floor plans. This slab can also be supported using concrete instead of steel columns which allows the lateral loads to be taken by the concrete frame instead of the steel braces. With 6-inch thick concrete, 2-hour fire-proof rating is achieved so additional is needed. Since the floor thickness is small, there is more space allotted for the floor-to-floor measurement. Because of the use of concrete, the vibration is controlled for the labs. Less materials and formwork are needed to place a post-tensioned slab so the material construction cost is minimal and thus a rather fast formation.

System Disadvantages

To make a sufficient spacing for the tendons, the bay size needs to be changed and in my calculations I created a new 21' x 22' typical bay, which doesn't particularly fit the existing plan. With the weight of the concrete frame, the foundations need to be slightly increased to hold the extra weight. However, post-tensioning is requires a lot of experience to construct so it costs more for the specialized labor. In addition, safety is of utmost importance when jacking the tendons into place, so extra attention is needed when putting the slab into place. Also, once the slab is set and the tendons are jacked, putting in any new slab penetrations risks breaking into a tendon, so all slab openings must be planned and accounted in the plan.

Two Way Flat Plate


System Advantages

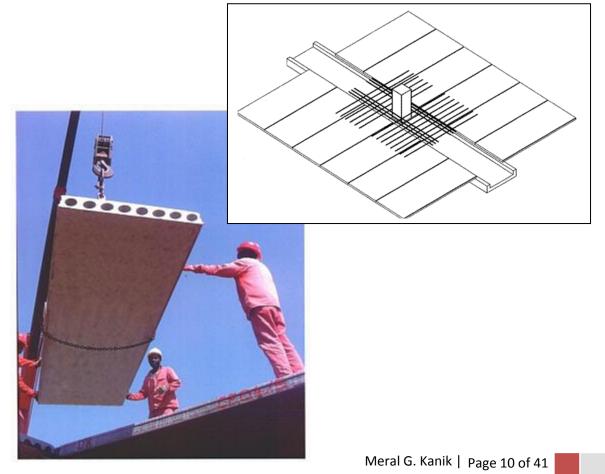
This two way flat slab that consists of a reinforced concrete slab can manage large live loads with a relatively small thickness of concrete. The slim section of flooring allows for a higher floor-to-floor dimension. A flat slab also fits into the current grid of columns and bays. Due to the denseness of concrete, no additional fireproofing is needed and the vibration in the floor is controlled. Concrete needs minimal formwork and only basic field labor. Columns can also be made of reinforced concrete which would lead to the use of shear walls to handle the lateral forces.

System Disadvantages

The use of concrete flat slabs needs a rather exact ratio of column spans, which doesn't always guarantee an open plan. In fact, this ratio requires a smaller sized bay which could mean more columns, but not for a typical bay taken into account for this building. The increased amount of concrete requires an increased amount of reinforcement. Since the columns are also reinforced concrete there is a complicated construction of intermingled reinforcement where columns and floors meet which can

extend construction time.

Precast Hollow Core Plank

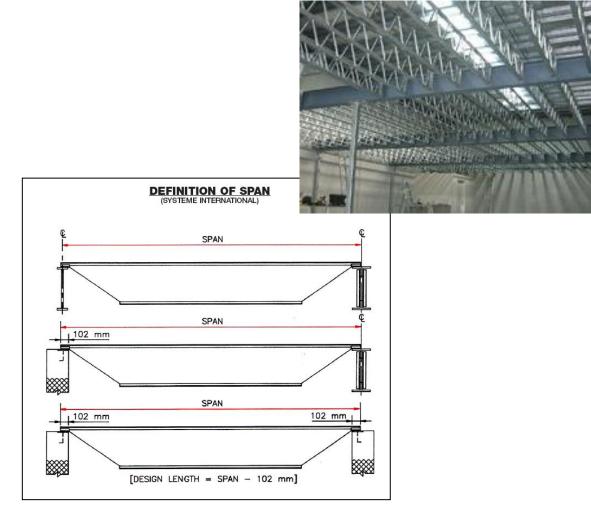

Gen*NY*Sis Tech Report II

System Advantages

Precast concrete is made up of pre-stressed concrete rectangular bays that are quality-controlled off-site at the fabricator's shop. The precast concrete planks are able to carry heavy live loads as well as keep large column spacing, which can allow an open plan to be utilized. Hollow core planks provide a slim section of 10 inches of plank with a 2-inch concrete topping, and can be provided at the spans required to fit the current grid. To support this flooring, reinforced concrete columns or precast columns may be used. In either case, the lateral force resisting system is changed to the concrete frame or shear walls. The construction of this system has a quick assembly time and a minimal amount of manual labor. Part of the labor is the application of spray-on fire-proofing to reach the 2-hour fire-rating.

System Disadvantages

The long spans in this system are likely to induce vibrations instead of stop them. Lead time for precast concrete is a considerable amount ahead of on-site construction, which means that plans must be set pretty far ahead of construction. Also, any field cuts into the slab must be checked with the structural engineer. A crane is also required for the placement of the slabs which can become a costly expense as time lapses. Another costly expense is the addition of spray-proofing because it takes minimal and inexperienced effort but it still adds more cost and labor to the construction of the system.


Open Web Steel Joists

System Advantages

A series of parallel trusses, open web steel joists are an option that can manage heavy loads and large column spacing of an open plan. A 2-hour fire-rating can be reached with the addition of spray-on fire-proofing. This is another simple form of construction which uses small amounts of formwork for the 2.5-inch slab on top of the steel decking, much like the composite steel system. The lateral frame can continue to use the eccentric braced frames that are currently designed. Because of the light weight, the current foundation sizes are sufficient for this system.

System Disadvantages

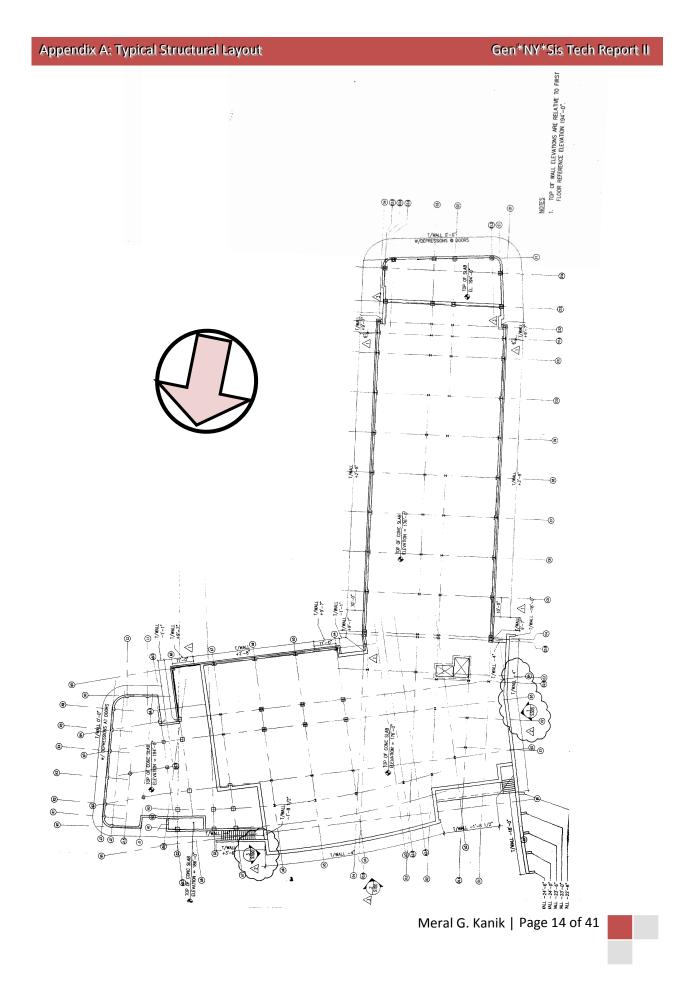
The section of the open web steel joists required for the typical bay is about 20-inches in depth which limits the amount of floor-to-floor height. This depth doesn't include the ducts that will need to wind through the slab, which takes up more of the floor height. In addition, the spray-on fire-proofing requires some expertise to apply it the correct way. Because of its light weight, the steel joists are not a good suppressant of vibrations.

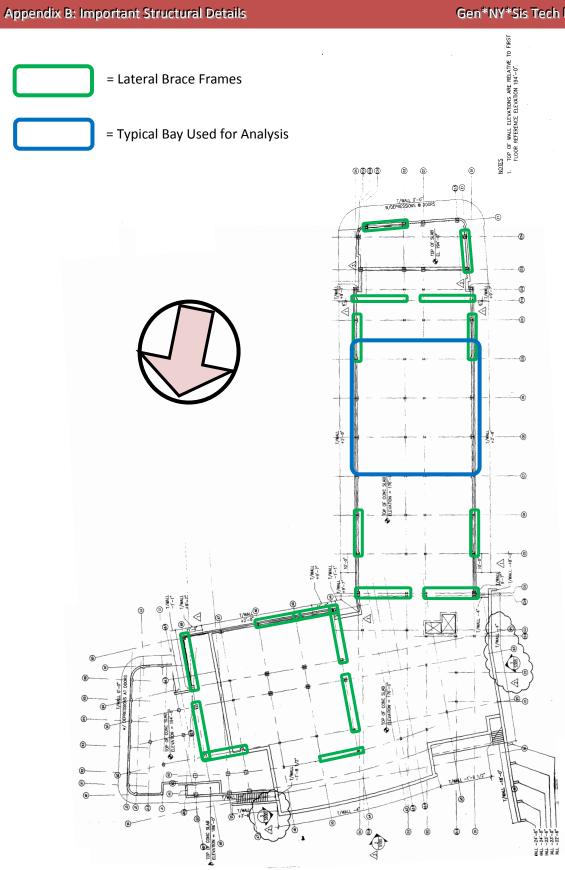
System Comparison

	Composite Steel (NWC)	Two-Way Post Tensioned	Two-Way Flat Slab	Precast Hollow Core	Steel Joists
Depth	24"	6"	7"	12"	22.5"
Weight	71 psf	104 psf	125 psf	93 psf	30 psf
Foundation	9' x 9' x 25"	increase	increase	increase	decrease
Vibration	minimal	minimal	minimal	minimal	no control
Additional Fire Proofing	needed	none	none	none	needed
Floor-to-Floor Height	16'	increased	increased	increased	increase
Open Floor Plan	yes	minimal	minimal	no	yes
Lead Time	average	shorter	average	longer	average
Total Cost	\$48.92	\$86.65	\$33.87	\$12.04	\$57.20
Feasibility	original	no	yes	yes	no
	good	better	best		

The following chart is a comparison of the five different floor layout systems.

Figure 11. Comparison Chart


The Gen*NY*Sis Center for Genomics is made up mostly of laboratories, offices, and chemical storage rooms, which makes vibration and an open floor plan critical for comparison. Based solely on vibration, which can be intrusive to experiments and chemical, open web steel joists cannot be used. Due to a reorganization of the grid system, two-way post tensioned, two-way flat slab, and precast hollow core planks don't allot for an open floor plan. Schematic design to grand opening lasted about 17 months, so lead time was especially critical in the fast-tracking of this project. Personally, I think the use of steel enhances the technological look meant for this building. Based strictly on cost, which is more realistic, then precast hollow core planks are the option to choose.


Conclusion

This report is an investigation into alternative structural floor designs for the Gen*NY*Sis Center for Genomics. The original schematic design narrative has been used as a basis for comparison and guidelines for evaluating and choosing these alternatives. The research included structural systems using composite steel, two-way post-tensioned concrete slab, two-way flat concrete slab, precast hollow core planks, and open web steel joists.

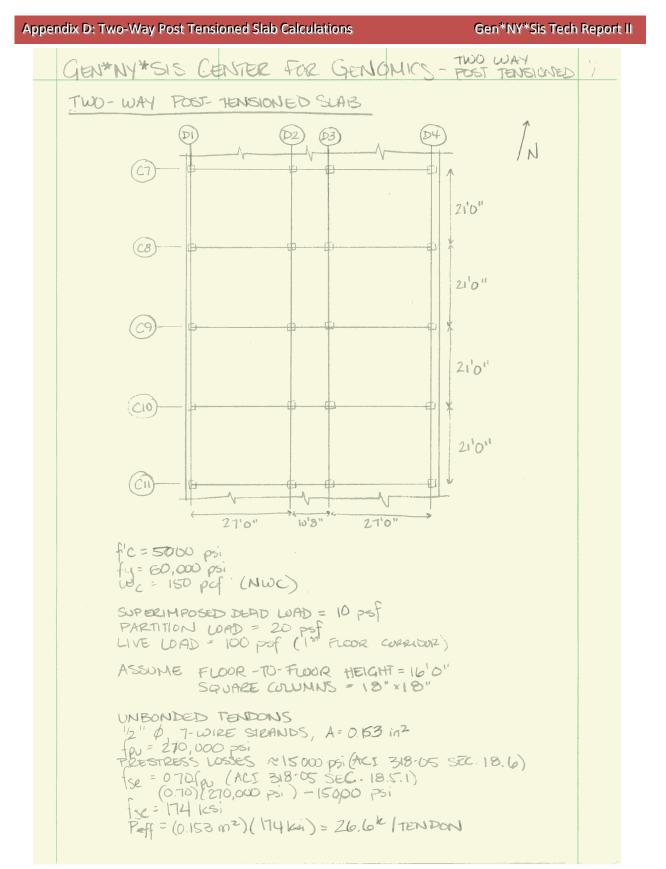
Given that this building contains sensitive equipment and some sizing accommodations, a few demands need to be addressed. First off, many of the rooms are designed at a certain size and the typical bay is created around a 10-foot 8-inch hallway in between, so in this aspect there needs to be an open plan applicable to form the hallway and make sure that the rooms remain column-free. Also, most of the rooms contain chemicals and laboratories which need to stay as motionless as possible so vibration control is of the utmost importance. Based on the original schematic design, a fast track was used for construction, but is not considered an important factor in this comparison (although it is observed).

It can be determined that precast hollow core planks are a viable alternative. This system provides an open plan and minimum vibration at an affordable price. Furthermore, no additional fireproofing is needed with the precast concrete which also adds to the dimension from floor-to-floor. However, the planks system weighs considerably more than the existing composite steel system so the columns will be thicker which amounts to larger foundation footings. Another possible holdback is that precast planks require a longer lead time than most systems. Based on these factors, precast hollow core planks are the most feasible alternate for the structural system of the Gen*NY*Sis Center for Genomics.

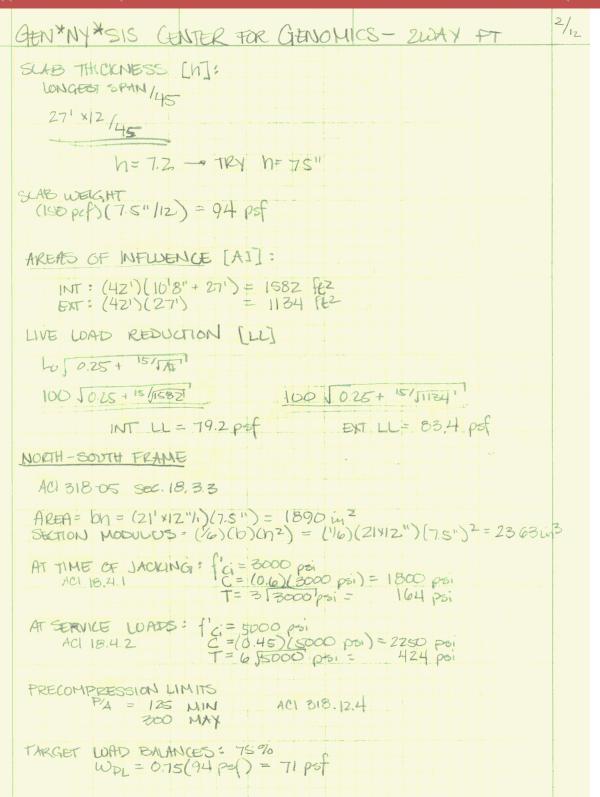
Meral G. Kanik | Page 15 of 41

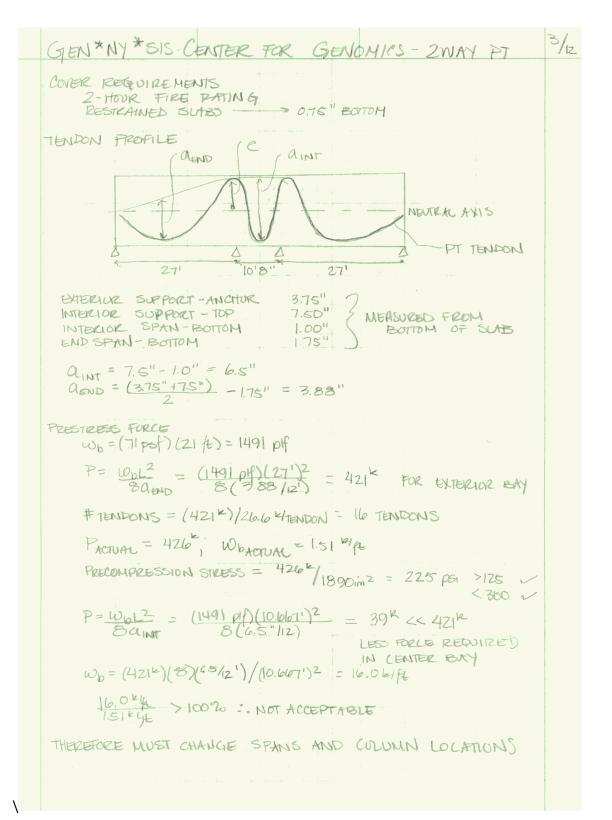
Picture 1: Typical Structural Column on Pier

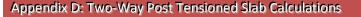
Appendix C: Construction Photographs

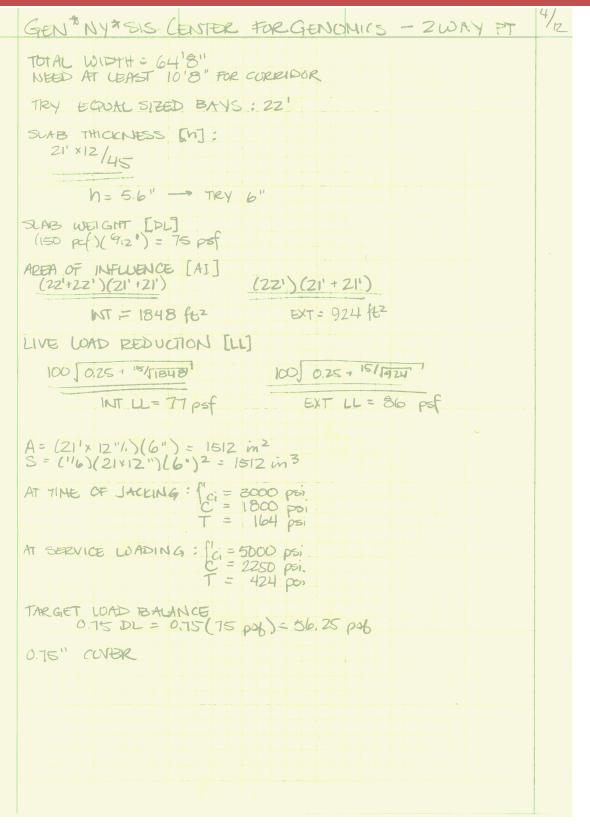


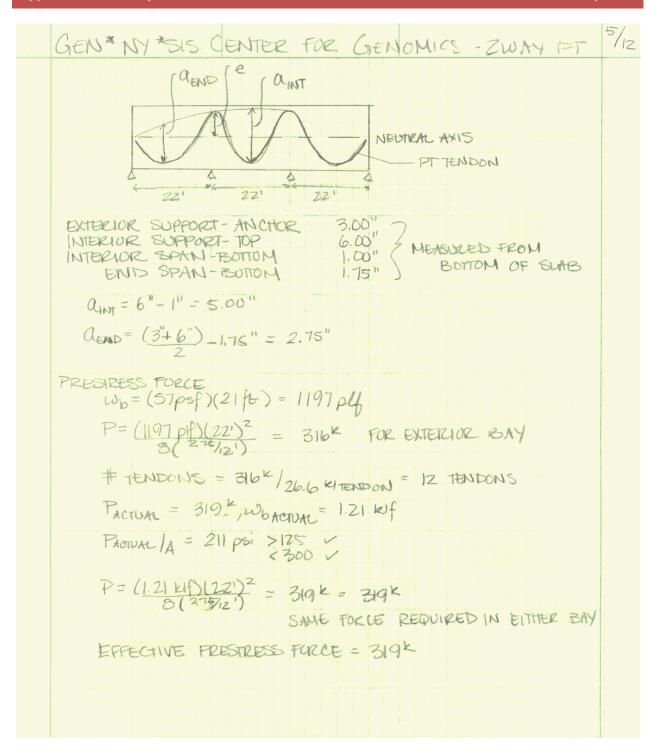
Picture 4: Typical Lateral Brace Connection

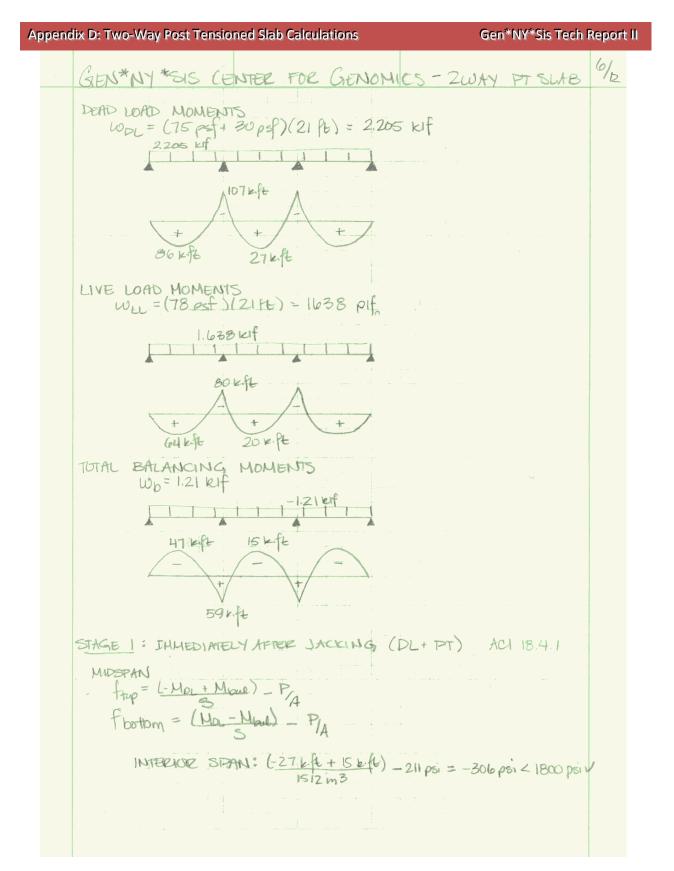



Picture 5: Typical Column-Girder Connection

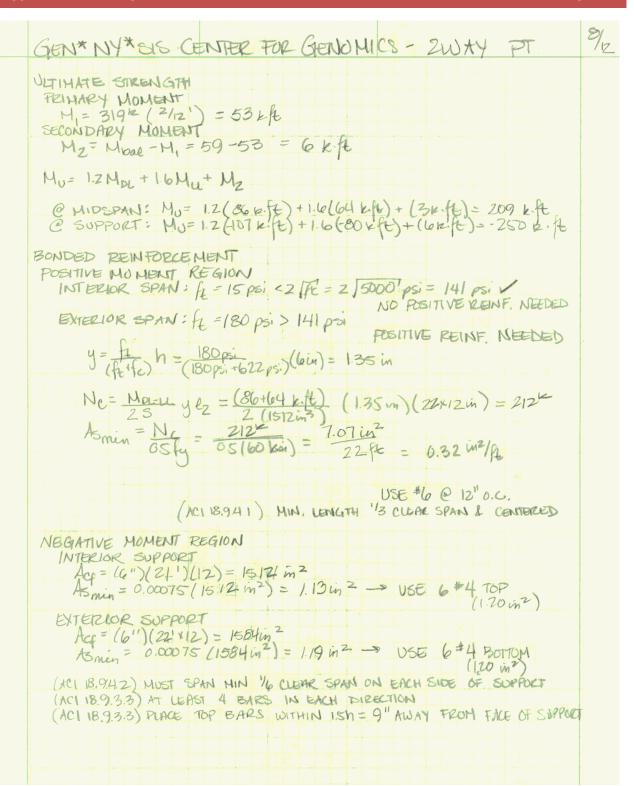


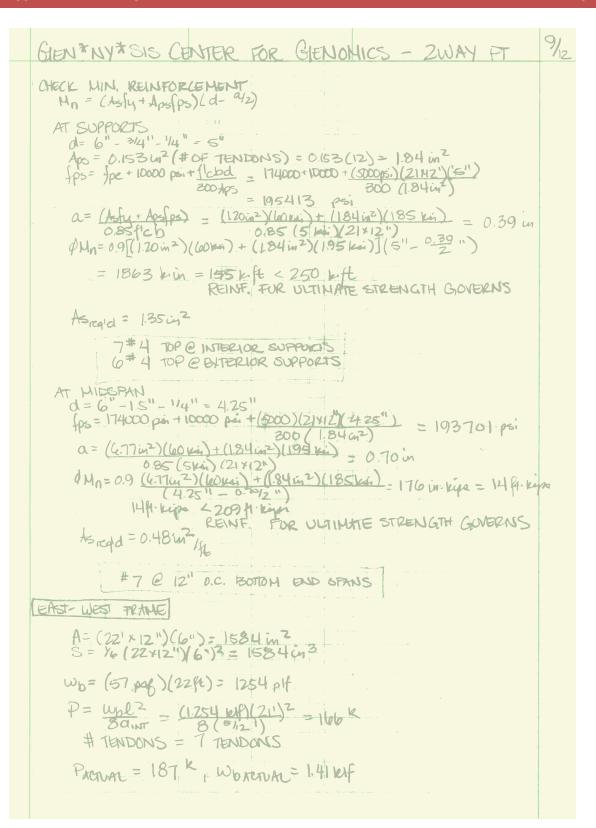

Meral G. Kanik | Page 18 of 41

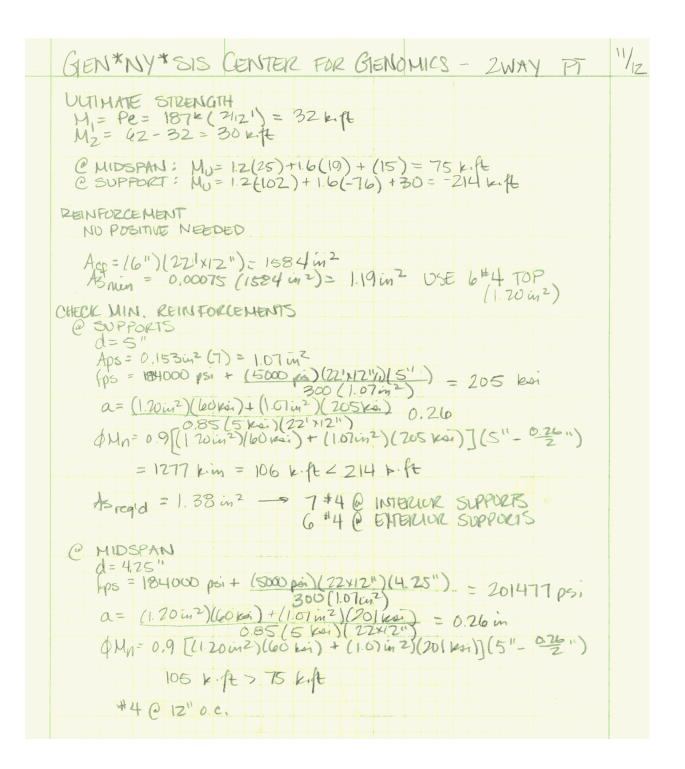


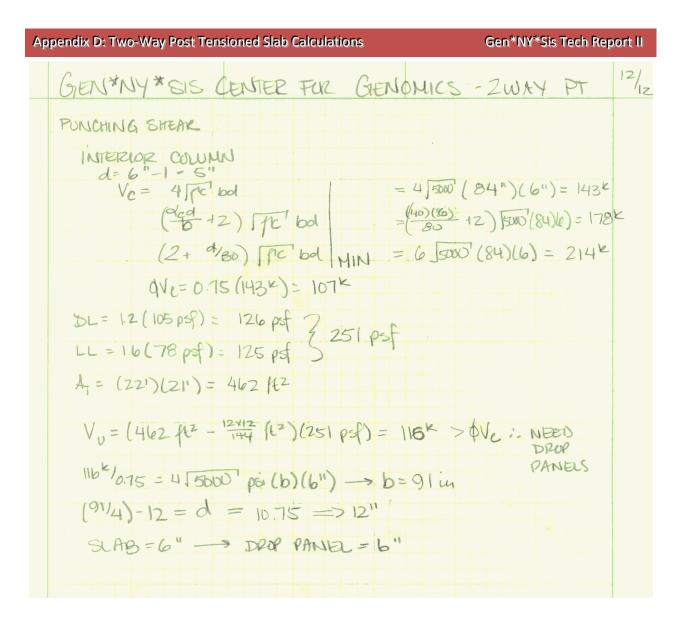


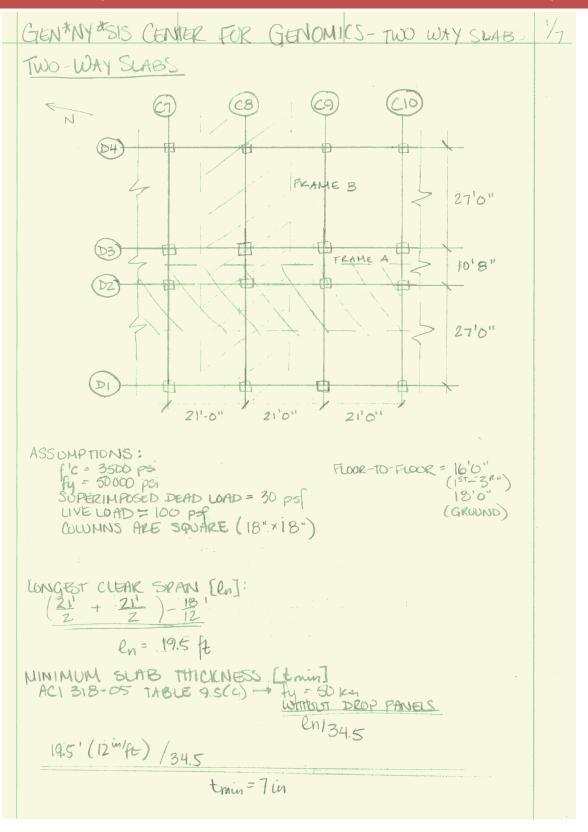
Meral G. Kanik | Page 20 of 41





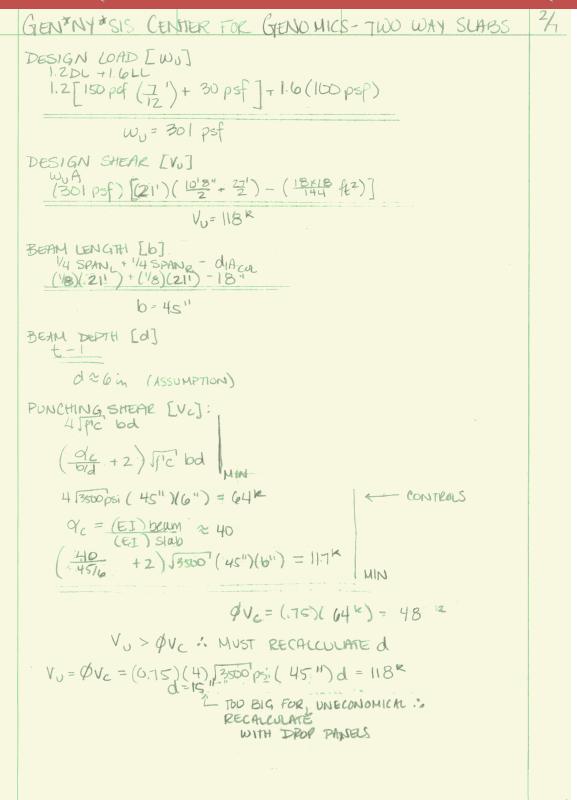

Meral G. Kanik | Page 23 of 41

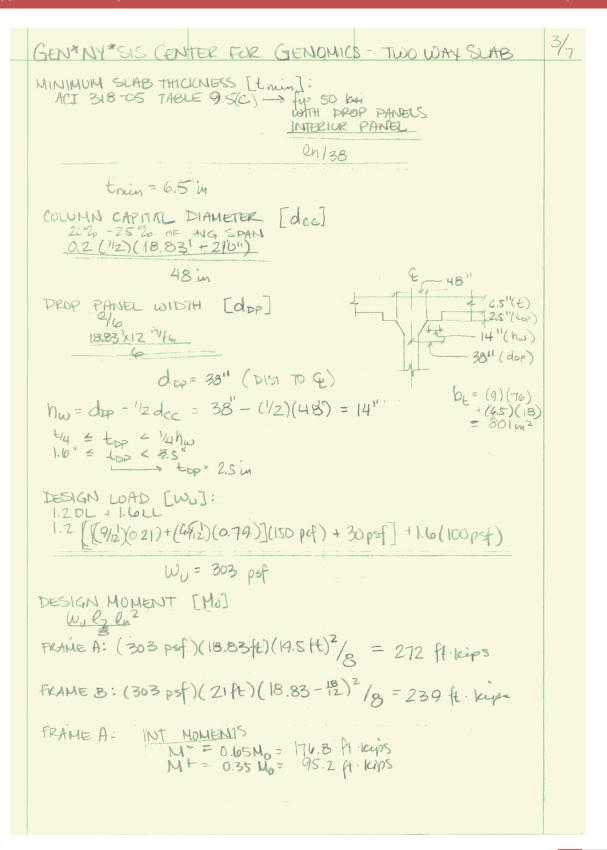




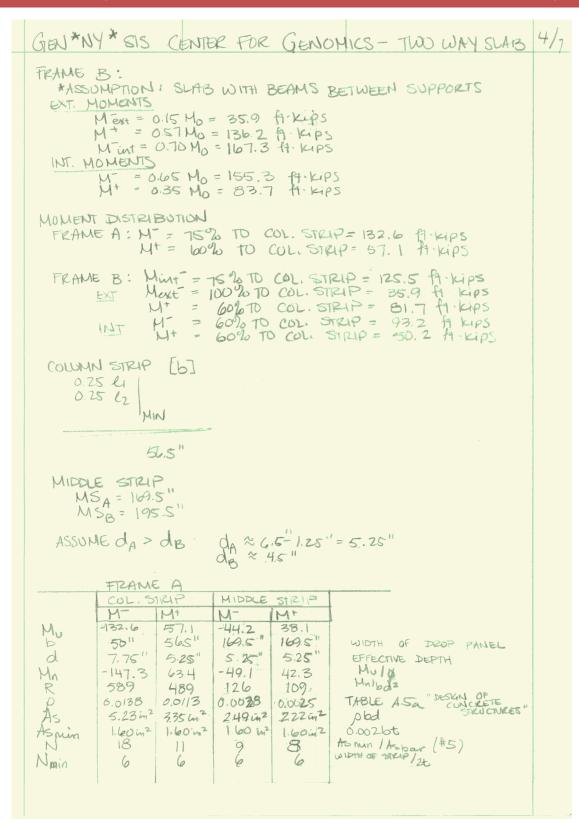
Gen*NY*Sis Tech Report II

Meral G. Kanik | Page 27 of 41

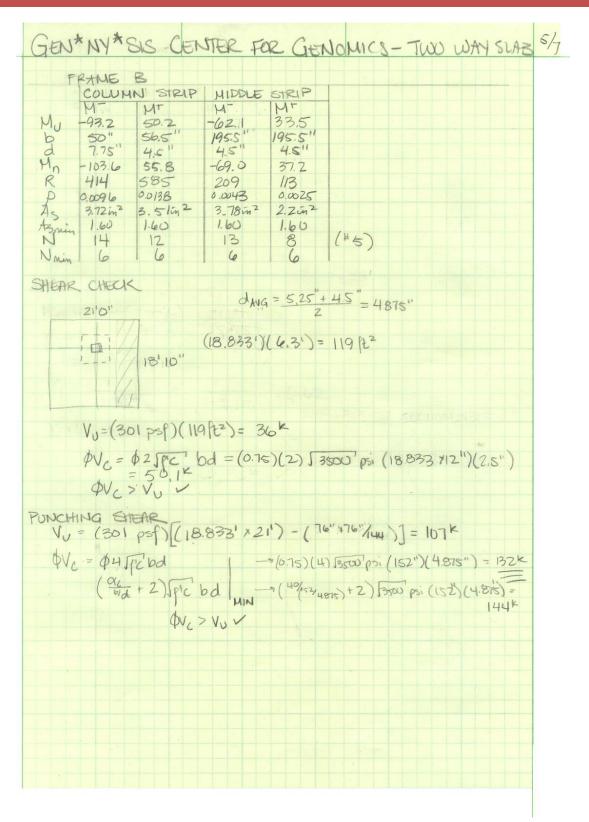



Meral G. Kanik | Page 30 of 41

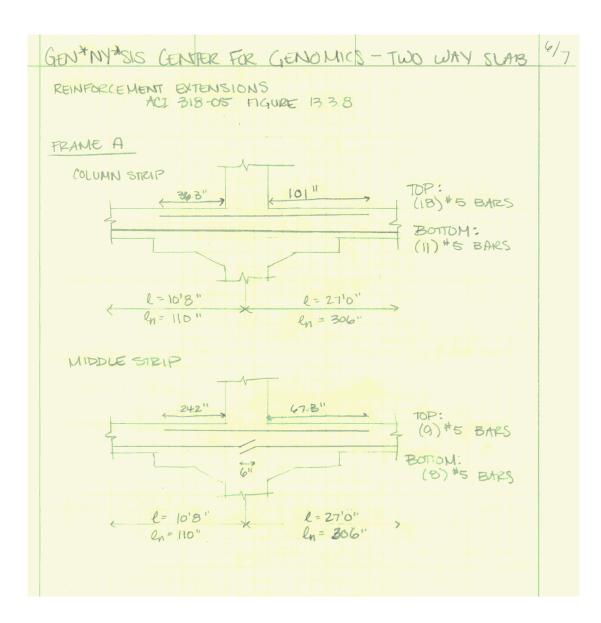
Gen*NY*Sis Tech Report II


Meral G. Kanik | Page 31 of 41

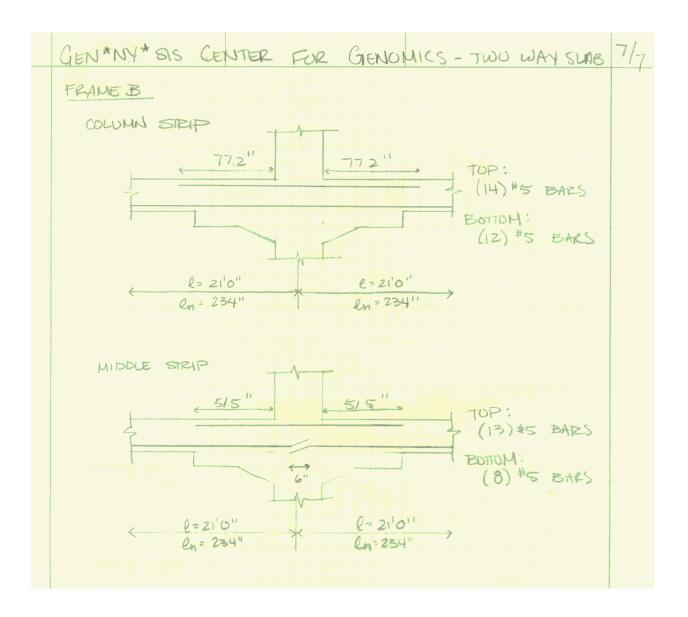
Gen*NY*Sis Tech Report II


Meral G. Kanik | Page 32 of 41

Gen*NY*Sis Tech Report II


Meral G. Kanik | Page 33 of 41

Appendix E: Two-Way Flat Plate Calculations


Meral G. Kanik | Page 34 of 41

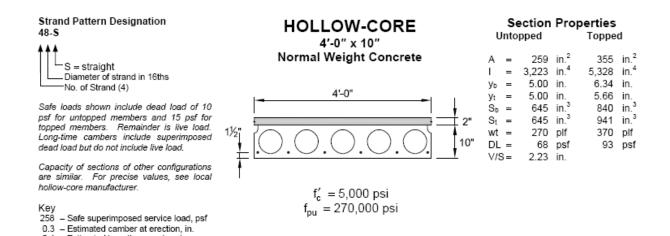
Gen*NY*Sis Tech Report II

Meral G. Kanik | Page 35 of 41

Appendix E: Two-Way Flat Plate Calculations

Meral G. Kanik | Page 36 of 41

Appendix F: Pre-Cast Hollow Core Plank Calculations


Gen*NY*Sis Tech Report II

Meral G. Kanik | Page 37 of 41

Appendix F: Pre-Cast Hollow Core Plank Calculations

Gen*NY*Sis Tech Report II

4HC10 + 2

Table of safe superimposed service load (psf) and camber (in.)

0.4 - Estimated long-time camber, in.

2 in. Normal Weight Topping

Strand													S	oan,	ft												
Designation Code	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
48-S	308 0.3 0.3	287 0.3 0.3	256 0.3 0.3	228 0.3 0.2	204 0.3 0.2	183 0.3 0.2	165 0.3 0.1	148 0.3 0.1	133 0.3 0.0	119 0.2 0.1	107 0.2 0.2	96 0.2 0.3	86 0.1 -0.4	74 0.1 0.6			43 0.2 1.2										
58-S	317 0.4 0.4	298 0.4 0.4	282 0.4 0.4	267 0.5 0.4	252 0.5 0.4	237 0.5 0.4	219 0.5 0.4	198 0.5 0 3	180 0.5 0.3	0.5	148 0.5 0.1	0.4		105 0.4 0.2		80 0.2 0.5	U.L	59 0.1 –0.9	50 0.0 –1.2		33 0.3 1.8						
68-S	326 0.5 0.5	307 0.5 0.6	291 0.6 0.6	273 0.6 0.6	0.6		234 0.7 0.6		12).7).5	0.7	188 0.7 0.4	171 0.7 0.4	153 0.7 0.3	137 0.7 0.2				84 0.5 –0.5		64 0.3 0.9			38 0.1 1.8				
78-S	335 0.6 0.7	313 0.7 0.7	297 0.7 0.7	279 0.7 0.8	267 0.8 0.8	252 0.8 0.8	240 0.9 0.8	0.9 0.8	218 0.9 0.8	200	196 0.9 0.7	189 1.0 0.7	181 1.0 0.6	165 1.0 0.5		135 0.9 0.3	122 0.9 0.2	109 0.8 0.0		86 0.7 0.4	76 0.6 0.6	67 0.5 0.9	58 0.4 –1.2	50 0.3 –1.6	42 0.1 –1.9		-0.2
88-S	344 0.7 0.8	322 0.8 0.8	306 0.8 0.9	288 0.9 0.9	273 0.9 1.0	258 1.0 1.0	246 1.0 1.0	234 1.1 1.0	221 1.1 1.0	211 1.2 1.0	202 1.2 1.0	195 1.2 1.0	184 1.2 0.9	178 1.2 0.9		158 1.2 0.7	144 1.2 0.6	130 1.2 0.4	118 1.2 0.3	1.1	96 1.1 0.1	87 1.0 0.3	77 0.9 0.6	68 0.8 –0.9	60 0.7 –1.3	52 0.5 –1.6	

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f'_c}$; see pages 2–7 through 2–10 for explanation.

Appendix G: Open Web Steel Joist Calculations

Gen*NY*Sis Tech Report II

1/ GEN*NY*SIS CENTER FOR GENOHICS- STEEL JOIST SUPERIMPOSED PEAD LOAD = 30 psf LIVE LOAD = 100 psf (CORLIDIR) = 70 psf (LAB/OFFICE) = 32 psf VULCEAFT STEE JOIST AND GIRDEK CATALOG TOTAL UNIFORM LOAD = 30-100 + 32 = 162 psf x 21"0c. = 284 plf 27' SPAN HILLE W= 7.7 pH 16K5 W= 7.5 pH 18K4 W= 7.2 pH 20K4 W= 7.6 pH AND DEPTH 10'8" SPAN 8KI W= 5.1 10 AL 27' SPAN DL = 30 pg + 32 pg + 7.5 of 167.6 pg 27' LL= 100 pro(0.25 + 15 - 100 pro 1.20L+16LL= 242.pol $\begin{array}{c} (242\,\rho_{0})(27\,\rho_{1})(\frac{21}{12}') = 11.4\,^{\prime\prime} k = 5.7\,^{\prime\prime} p_{2} y_{12} = 3.6\,^{\prime\prime} \rho_{1} \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 6t \\ M_{0} = (3.6\,^{\prime\prime} \rho_{1})(21')^{2} = 198\,^{\prime} k_{1} - 210 \\ M_{1} = 199 \\ M_{1} = 199 \\ M_{1} = 109 \\ M_{1} = 219 \\ M_{1} = 1330 \\ M_{1} = 100 \\$ 211

Meral G. Kanik | Page 39 of 41

Appendix G: Open Web Steel Joist Calculations

Gen*NY*Sis Tech Report II

JOIST	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
DESIGNATION																
DEPTH (IN.) APPROX. WT.	8 5.1	10 5.0	12 5.0	12 5.7	12 7.1	14 5.2	14 6.0	14 6.7	14	16 5.5	16 6.3	16 7.0	16 7.5	16 8.1	16 8.6	16 10.0
(lbs./ft.)	· · ·	0.0	0.0		1.1				1					0.1	0.0	10.5
SPAN (fL) J																
8	550															
9	550 550															
	550															
10	550 480	550 550														
11	532 377	550 542														
12	444 288	550 455	550 550	550	550 550											
13	377	479	550	550 550	550											
14	225 324	363 412	510 500	510 550	510 550	550	550	550	550							
15	179 281	289 358	425 434	463 543	463 550	550 511	550 550	550 550	550 550							
	145	234	344	428	434	475	507	507	507							
16	246 119	313 192	380 282	476 351	550 396	448 390	550 467	550 467	550 467	550 550						
17		277	336 234	420	550	395 324	495 404	550	550 443	512	550	550 526	550	550	550	550
18		159 246	299	291 374	366 507	352	441	443 530	550	488 456	526 508	550	526 550	526 550	526 550	526 550
19		134 221	197 268	245 335	317 454	272 315	339 395	397 475	408 550	409 408	456 455	490 547	490 550	490 550	490 550	490 550
~		113	167	207	269	230	287	336	383	347	385	452	455	455	455	455
20		199 97	241 142	302 177	409 230	284 197	356 246	428 287	525 347	368 297	410 330	493 386	550 426	550 426	550 426	550 426
21			218 123	273 153	370 198	257 170	322 212	388 248	475 299	333 255	371 285	447 333	503 373	548 405	550 406	550 406
22			199	249	337	234	293	353	432	303	337	406	458	498	550	550
23			106 181	132 227	172 308	147 214	184 268	215 322	259 395	222 277	247 308	289 371	323 418	351 455	385 507	385 550
24			93 166	116 208	150 282	128 195	160 245	188 295	226 362	194 254	216 283	252 340	282 384	307 418	339 465	363 550
			81	101	132	113	141	165	199	170	189	221	248	269	298	346
25						180 100	226 124	272 145	334 175	234 150	260 167	313 195	353 219	384 238	428 263	514 311
26						166 88	209 110	251 129	308	216 133	240 148	289 173	326	355 211	395 233	474 276
27						154	193	233	285	200	223	268	302	329	366	439
28						79 143	98 180	115 216	139 200	119 186	132 207	155 249	173 201	188 306	208 340	246 408
29						70	88	103	124	106 173	118 193	138 232	155 261	168 285	186 317	220 380
										95	106	124	139	151	167	198
30										161 86	180 96	216 112	244 126	266 137	296 151	355 178
31										151	168	203	228	249	277	332
32										78 142	87 158	101 190	114 214	124 233	137 259	161 311
										71	79	92	103	112	124	147

Meral G. Kanik | Page 40 of 41

Appendix G: Open Web Steel Joist Calculations

JOIST	18K3	1864	18K5	18K6	18K7	18K9	18K10	20K3	2064	20K5	20K6	20K 7	20K 9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K
DEPTH (N.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
APPROX. WT.	6.6	7.2		8.5	9.0	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8.0	8.8	9.2	9.7	11.3	12.6	13.
(bs./ft.)																					
SPAN (IL)																					
18	550	550	550	550	550	550	550														
~	550	650	550	550	550	550	550														
19	514	550	550	550	550	550	550														
	494	523	523	523	623	523	623														
20	463	550	550	550	550	550	550	517	550	550	550	550	550	550							
	423	490	490	490	490	490	490	617	650	650	550	550	550	650							
21	420 384	506 426	650 460	550 480	550 460	550 460	550 480	468 453	550 520	550 520	550 520	550 520	550 520	550 520							
22	382	460	518	550	550	550	550	426	514	550	550	550	550	550	550	550	550	550	550	550	55
-	316	370	414	438	438	438	438	393	461	490	490	490	490	490	548	548	548	548	548	548	64
23	349	420	473	516	550	550	550	389	469	529	550	550	550	550	518	550	550	550	550	550	55
	276	323	362	393	418	418	418	344	402	451	468	468	468	468	491	518	518	518	518	518	51
24	320	385	434	473	526	550	550	357	430	485	528	550	550	550	475	536	550	550	550	550	55
25	242 294	284 355	318 400	345 435	382 485	396 550	396 550	302 329	353 396	396 446	410 486	448 541	448 550	448 550	431 438	483 493	495 537	495 550	495 550	495 550	49 55
20	214	250	281	+30 305	337	337	337	266	312	350	380	421	426	426	381	427	464	474	474	474	47
26	272	328	369	402	448	538	550	304	366	412	449	500	550	550	404	455	496	550	650	550	55
	190		249	271	299	354	381	236		310	337	373	405	405	338	379	411	454	454	454	45
27	262	303	342	372	415	495	550	281	339	382	416	463	550	650	374	422	459	512	550	550	654
	169		222	241	267	315	347	211		277	301	333	389	389	301	337	367	408	432	432	43
28	234	282	318	346	385	463	548	261	315	355	386	430	517	550	348	392	427	475	650	550	65
29	151 218	177 263	199 296	216 322	239 359	282 431	331 511	189 243	221 293	248 330	209 380	298 401	353 482	375 550	270 324	302 365	328 396	364 443	413 632	413 550	41
2	136	150	179	194	215	254	298	170	199	223	242	268	317	359	242	272	295	327	387	300	30
30	203	245	276	301	335	402	477	227	274	308	336	374	450	633	302	341	371	413	497	550	55
	123	144	161	175	194	229	269	153	179	201	218	242	285	338	219	245	266	295	349	385	38
31	190	229	258	281	313	376	446	212	258	289	314	350	421	499	283	319	347	387	465	550	55
	111 178	130	146	158 264	175 294	207 353	243	138	162 240	182 271	198	219 328	259 395	304 468	198 265	222 299	241 326	267	316 436	389 517	30 54
32	1/6	215	242 132	144	150	188	418 221	199 126	147	105	295 179	199	235	276	180	201	219	363 242	267	337	35
33	168	202	228	248	276	332	393	187	226	254	277	309	371	440	249	281	306	341	410	488	63
	92	108	121	131	145	171	201	114	134	150	163	181	214	251	164	183	199	221	281	307	33
34	158	190	214	233	260	312	370	178	212	239	261	290	349	414	235	265	288	321	386	458	51
	84	96	110	120	132	156	184	105	122	137	149	185	195	229	149	167	182	202	239	260	31
35	149	179	202	220	245	294	349	166	200	226	248	274	329	390	221	249	272	303	364	432 257	494
38	141	90 169	101	110 208	121 232	143 278	168 330	96 157	112	213	137 232	151 259	179 311	210 369	137	238	167 257	185 286	219 344	408	48
~	70	82	92	101	111	132	154	88	103	115	125	139	164	193	126	141	153	169	201	236	28
37								148	179	202	220	245	294	349	198	223	243	271	325	386	44
								81	95	106	115	128	151	178	116	130	141	156	185	217	24
38								141	170	191	208	232	279	331	187	211	230	258	306	386	41
39								74 133	87 161	98 181	106 198	118	139 285	164 314	107 178	119 200	130 218	144 243	170 292	200 347	22 39
								60	81	50	190	109	129	151	98	110	120	133	157	185	21
40	_							127	153	172	188	209	251	298	169	190	207	231	278	330	37
								64	76	84	91	101	119	140	91	102	111	123	146	171	19
41															161	181	197	220	284	314	35
															85	95	103	114	135	159	18
42															153 79	173 83	188 98	209 106	252 126	299 148	34 16
															148	60 165	96 179	200	240	165	32
43																-	89	99		138	15
43															13	02	0.9	364	117.1	130	15
4															139	157	171	191	229	272	31