NATIONAL HARBOR BUILDING M OXON HILL, MARYLAND

Ryan Sarazen Structural Option Technical Report 2 Faculty Consultant: Dr. Andres Lepage

Table of Contents

Executive Summary	3
Structural Systems Overview	4
Loads	6
Floor System Overview	7
Floor System Comparison	12
Overall Comparison Chart	. 20
Conclusions	. 21
Appendix A	. 22
Appendix B	. 24
Appendix C	26
Appendix D	. 29
Appendix E	. 32
Appendix F	. 38

EXECUTIVE SUMMARY

This is a report analyzing and evaluating the current Composite flooring system and four proposed flooring systems (Non-Composite, Longspan Steel Joist, Concrete Flat Plate with Drop Panels and One-Way Concrete Beam and Slab) for National Harbor Building M. The report starts out with a description of the each floor system and diagram of a typical bay from each respective system. A number of evaluating criterions are introduced and each system is judged on their performance in each. The results of the evaluation are summarized in a comparison chart and conclusions are drawn for viable flooring systems as they apply to this project.

In conducting this analysis it was clear that there is a defiant relationship between amount of material used and overall cost of the system. That being said the Composite and Flat Plate Systems were the lightest and least expensive among the steel and concrete systems respectfully. Another inference which can be drawn from the comparison table is that with additional weight or mass of a building the better the vibration control becomes and the more critical the seismic lateral loads become. In the end it was clear that the Composite System's price and performance over the other steel systems made it the most viable out of that group. Additionally, while both concrete systems preformed well the savings in cost and building load the Flat Plate System boasted over the One-Way Beam and Slab System made it the best concrete option.

STRUCTURAL SYSTEMS OVERVIEW

Floor System:

The typical floor is a 6-1/4" thick composite concrete system. It is comprised of a 3-1/4" light weight concrete slab with 3000 psi compressive strength and 3"-20 gauge A992 (50 ksi) composite steel deck. The slab is reinforced with 6x6-10/10 draped welded wire mesh (WWM) and gains it composite properties from ³/₄" diameter 5-1/4" long steel studs. This composite floor system is supported by A992 wide-flange beams which are typical spaced at 10' on center, span 30'-5-1/2" in a normal bay, and have a 1" camber. These beams range in size from W14-22 to W16x26 and are in turn supported by a grid of wide flange girders. The girders typically are spaced at 30'-5-1/2" with a 30'-0" span ranging from W18x50 to W24x84 with a 1" camber.

Column System:

The columns are ASTM 572, grade 50 or A992 steel wide flanges and are laid out in fairly square bays (30'x30'-5-1/2" typ.) forming a mostly rectangular grid of 9 bays by 2 bays. They are the main gravity resisting members of the structure as well as a portion of the lateral resisting system. The purely gravity resisting columns range from W12x65 to W14x109 at the bottom level and are spliced 4' above the third floor level. There are lateral force resisting columns in both moment and braced frames which range from W14x99 to W14x211 at the bottom level, however they tend to be on the order of W14x150's. These columns are also spliced at a distance 4' above the third floor level.

Roof System:

The roof of this structure is constructed in two different systems: typical flat roof steel deck and a composite slab roof construction. The main roof is 3" 18 gauge wide rib, type N galvanized steel roof deck which is uniformly sloped. The other roof system is a 4-1/2" normal weight composite concrete slab with 3000 psi compressive strength and reinforced by 6x6-10/10 draped WWM supported by 3" 18 gauge composite steel deck. The composite action in this slab as in the standard floor slabs comes from $\frac{3}{4}$ " diameter 5-1/4" long equally spaced studs.

ROOF CONSTRUCTION PLAN

Foundation System:

The ground floor is constructed of a 4" thick slab on grade with a compressive strength of 3000 psi and reinforced with 6x6-10/10 WWM. The columns are supported by concrete footings, compressive strength of 4000 psi, which are in turn supported by driven 14" square precast prestressed concrete piles. The piles, which have an axial capacity of 110 tons, uplift capacity of 55 tons and a lateral capacity of 7.5 tons, are typically arranged in three pile pile group under the exterior columns. These pile group and footing combinations are connected by reinforced concrete gradebeams running around the exterior of the foundation system. The columns which form the braced frames around the elevator core are additionally supported by a reinforced concrete pedestal and a 43 pile mat-pile group footing.

Masonry Wall System:

The Eastern wall of the structure is backed up by a full height 8" CMU masonry wall running the length of the building, 243'-8". The wall acts as a barrier between the office building and an adjacent parking garage being concurrently constructed. It separats the two with a 4" expansion joint on the parking garage side and ties into the structure at every floor level with a standard bent plate connection every 32" on center. The wall is reinforced with one or two #6 bars at a spacing of 8"-24" on center depending on the location. It is additionally reinforced with bond beams for an impact loads from the parking garage of 6000lbs at a height of 1'-6" above the floor levels. In addition to being a barrier sections of the CMU wall also act as (4) 30'-0" masonry shear walls to aid in the lateral force resisting system.

Lateral System:

This building's lateral force resisting system is a combination of multiple system types which act together to laterally support the building. It contains (6) moment frames which run in the East-West or short direction of the building. They are arranged symmetrically with (2) moment frames at each end of the grid and another at one full bay in from each end. The structure also has 2 braced frames running in the short direction centrally located flanking the elevator core. These braced frames are comprised of wide flange columns, beams, and diagonal members with the diagonal resisting members ranging from W12x79 – W12x190. The final components of the system are (4) 30'-0" reinforced masonry shear walls located in the 8" CMU wall running in the North- South or long direction of the building.

Ryan Sarazen National Harbor Building M Technical Report -2 5 of 42

LOADS

Live Loads:

Area	Design Load	ASCE 7-05 Minimum
Lobbies	100 psf	100 psf
Offices	100 psf	50 psf
1 st Floor Corridors	100 psf	100 psf
Corridors above 1 st Floor	100 psf	80 psf
Future Retail Tenant	100 psf	100 psf

Roof Live Loads:

Item	Design Load	Code Reference
Minimum Roof Load	30 psf + snow drift	
Ground Snow Load (Pg)	25 psf	IBC 2003 1608.2
Snow Exposure Factor (Ce)	1.0 (Exposure D, Partially exposed)	IBC 2003 1608.3.1
Thermal Factor (Ct)	1.0	IBC 1608.3.2
Snow Importance Factor (Is)	1.0	IBC 1608.4
Flat Roof Snow Load (Pf)	17.5 psf + snow drift	IBC 1608.3
Minimum (Pf) used	20 psf + snow drift	

Dead Loads:

Item	Design Load
Floor	25 psf
Composite Roof	35 psf
Non-Composite Roof	25 psf
M/E/P	25 psf
Canopies	25 psf
8" CMU Wall	40 psf
Additional Loadings	As Noted in Calculations

Wall Loads:

Item/Location	Design Load (per foot along floor level)
Partition	150 plf
Glass Tower	320 plf
2 nd Floor Front Glass	230 plf
3 rd Floor Front Glass	150 plf
3 rd Floor Architectural Precast	300 plf
3 rd /4 th Floor Brick	650 plf
5 th Floor Front Glass	620 plf
5 th Floor Brick	730 plf
5 th Floor Architectural Precast	620 plf
Typical Glass Wall	280 plf
Typical Parapet	260 plf
Brick Parapet	260 plf

FLOOR SYSTEMS OVERVIEW

Introduction:

This report will analyze five separate floor systems for their effectiveness as viable floor options in National Harbor Building M. The original steel composite floor system will be rated against four proposed systems, two steel based and two concrete based, comparing them on a number of categories. Building M has a general bay layout of 2 bays by 9 bays with the 2 exterior bays having relatively short spans (11'-10") and the center bay having a relatively long span (40'-0"). The 6 remaining typical bays are relatively square spanning 30'-0" by 30'-5 $\frac{1}{2}$ ". In this report a 2 bay by 2 bay interior section of the typical bays was designed for each system. After the design was completed an analysis and comparison was done on a 1 bay by 2 bay section of each design and the results extrapolated for the entire building.

Steel Composite Floor (Existing Design):

The existing composite floor system was analyzed as shown on the project drawings in RAM Structural System. The computer software was used in an attempt to match the designed sizes of the members in the actual building. All noted assumptions of the floor system as described in the structural overview were used and the majority of the members matched the engineer's design. The members that did not match closely were off because of minimum and maximum depth limitations dictated by the architecture of the building. When these size restrictions were implicated into the model the members in question more closely matched those of the design drawings. Further detailed information used in the analysis of this system (i.e. member cambers, shear stud counts, etc.) can be found the Appendix A.

COMPOSITE WITH SIZE RESTRICTIONS (AS BUILT)

Steel Non-Composite Floor:

The Non-Composite Floor System was analyzed using RAM Structural System and incorporated many of the same parameters and assumptions as the building's original composite system. This was done in an attempt to isolate the changes caused only by the restrictions of composite action in the beams and girders. Some of the parameters which remained the same included the metal deck, the slab properties, and the dimensional layout of all members. Additionally, the model was run twice: once with size restrictions from maximum depth of the girders as dictated by the building's architecture, and once with no size restrictions. This restriction's affect can be seen in the main girder which was set to a maximum depth of 19 inches and changes the design from a W24x76 to a W18x86. For sake of accuracy of comparison in this report the output from the size restricted model will be used seeing that the analysis of this system (i.e. member cambers, deflections, etc.) can be found the Appendix B.

Longspan Steel Joist:

The Longspan Steel Joist System is comprised of non-composite steel beams running along the column lines and LH series long span joists spanning the 30'-5 ¹/₂" direction between them. They are set up on the same grid layout and support the same slab and deck combination as the Composite and Non-Composite Floor Systems. Additionally, the size restrictions previously discussed were placed on this system to make a direct comparison of member sizes more applicable. The spacing of the joist system was calculated using SJI standard specifications catalog and was dictated by its loading, span distance, live load deflection criteria and the aforementioned size restrictions. Once a minimum spacing was obtained RAM Structural System was used and a typical 18LH06 joist was selected for the transverse direction. Further detailed information used in the analysis of this system can be found the Appendix C.

Flat Plate Concrete Slab with Drop Panels:

The Flat Plate Concrete Slab with Drop Panel System is also laid out on a 30'x30' grid supported by 22 inch square columns which were assumed based on general column loads generated in Technical Report 1. The CRSI Handbook was used to get a general starting point for the slab thickness, drop panel thickness, and drop panel dimensions dictated by the spans and loads of the system. However, since the bay layout of National Harbor Building M does not comply with the handbook's assumption that the system contains at least 3 bays in each direction the actual reinforcing steel was not taken from the handbook's charts. The general numbers from CRSI were used to amass a slab model in PCA slab. In an attempt to decrease the weight of the 11" thick slab required a lightweight concrete to be used in the design. The PCA model was run and used to generate reinforcing bar sizes and layouts. Further detailed information on slab properties and reinforcing schedules for this system can be found in Appendix E.

FLAT PLATE WITH DROP PANELS

One-Way Concrete Beams and Slab:

The Concrete Beams and Slab System is laid out on a 30'x30' grid and is supported by 22 inch square columns which were sized from general column loads generated in Technical Report 1. The beams, which run in both directions, and their reinforcement were designed using CRSI handbook tables. The CRSI Handbook was then used to design the 6" thick one way slab which spans in the transverse direction 15'-0". The system is comprised of 18x26 interior and 20x26 exterior girder beams running transversely through the bays on the column lines and 16x24 beams running longitudinally through the bays on the column lines and at the midpoint of the spans. The beam running along the front face of the building was increased in size to an 18x24 in order to support an additional wall load of 650 plf. While an attempt to follow size restrictions used in the original design of the floor system was made some spans dictated these restriction be broken. Further detailed information on the system and its specific reinforcing can be found in appendix D.

AND SLAB

FLOOR SYSTEMS COMPARISON

Introduction:

Having described the five floor systems in the overview section, an analysis of each must now be performed. Included in this detailed analysis will be comparisons and contrasts between each respective system in an attempt to determine which is ultimately the most appropriate system for this application. This analytical survey will be conducted by judging each system in all of the following categories: cost, slab thickness, total structural depth, system weight, lateral system effects, deflection, fire rating, vibration, column grid changes, aesthetics, and construction issues. Following the analysis a comparison chart will rate each floor system in all given categories and determine the results.

COST:

Cost is arguably the most critical variable to be considered when evaluating and comparing each respective floor system. All things being equal the cheapest floor system which can adequately carry loads and perform to the projects standards will be chosen. Understanding the importance of the analysis of each system's cost, effort must be put forth to carefully consider and evaluate all factors affecting the total prices. For this report the base price for a typical two bay transverse section was estimated using R.S. Means Cost Data Handbook. For both concrete systems price per cubic yard quantities were used which priced each system as a whole including all components. For the steel systems a component by component take off was preformed pricing every member of the systems separately and as accurately as possible. Listed below are the component take off lists used to enter the R.S. Means Handbook.

Floor System	Components Used in R.S. Means
Steel Composite Floor	W- Shapes + Studs + 3" 20 gauge Steel Deck + 6" Slab
Steel Non-Composite	W- Shapes + 3" 20 gauge Steel Deck + 6" Slab
Floor	
Longspan Steel Joist	LH Joists + W-Shape Girders + 3" 20 gauge Steel Deck + 6" Slab
Concrete Flat Plate with	Elevated Slabs- Flat slab with drops, 30' span
Drop Panels	
One-Way Concrete	One Way Beam and Slab, 15' span
Beams and Slab	

It should be noted that the pricing for shear studs was done using the assumption that each stud is equivalent to 10lbs. of structural steel with the price of steel coming from the Wshape prices. Also worth noting is that an estimate of the concrete slab price used in the steel systems is based off of a 6" slab number while the actual slab is 6-1/4" over the 3" steel deck. The take off lists were used to generate a two bay cost for each system based off of a 2008 bare costs combination of material, labor, and equipment. It is realized that because every bay in the floor layout is not typical and each system would handle atypical circumstances differently, an extrapolation for the building's entire floor system price would not be totally accurate. However, I believe that this pricing approach is more than adequate to achieve numbers capable of an accurate comparison between the respective floor system prices. The following table outlines the price break down for each floor system and the overall cost of each.

Ryan Sarazen National Harbor Building M Technical Report -2 12 of 42

		0			1
Floor System	W-Shapes/Joists	Studs	Decking	Slab	Overall
Steel Composite	\$14,483	\$3,393	\$4,313	\$5,537	\$27,726
Floor					
Steel Non-	\$20,920		\$4,313	\$5,537	\$30,770
Composite Floor					
Longspan Steel	W-Shapes - \$12,125		\$4,313	\$5,537	\$31,444
Joist	LH - \$9,469				
Concrete Flat					\$29,718
Plate with Drop					
Panels					
One-Way					\$37,723
Concrete Beams					
and Slab					

The results of the cost evaluation show that the Composite Floor is the cheapest steel system while the Flat Plate with Drop Panels is the cheapest concrete system. Since the order from cheapest to most expensive is consistent with the order from lightest to heaviest for each respective building material (see weight summary below) it is safe to say the system cost is fairly proportional to the amount of material required.

Slab Thickness:

Cost Summary

The thickness of the slab is an important variable in that it has an effect on many other comparable issues. A thicker slab can drive up the weight, cost, and structural depth of a flooring system. Also, if the building's height is set at a predetermined maximum a thicker slab can noticeably decrease floor to floor height. Conversely a thicker slab can also prove to be a positive in the case of floor vibrations which can be very problematic in buildings with thin slabs.

The original design of the Composite Floor System called for a 3-1/4" LWC slab on top of 3" metal deck for a total of 6-1/4" slab depth. This slab was carried through to the Non-Composite and Longspan Steel Joist Systems for consistency in sizing members. While this carry over allowed for a more direct comparison between member sizes it limits comparability between these system's slab thickness. However, it is understood that if a proposed steel system is selected for redesign a check of slab thickness may result in the selection of a thinner slab for the respective system.

In the design of the concrete systems it was determined that staying with a similar bay size (30'x30') and designing a thicker slab was a more viable option than adding column rows thus decreasing bay size to approximately 20'x22'-4'' and maintaining a thin slab. This decision was based on the open layout style of the office occupancy of the building. It was concluded that greater spans allowing for a greater flexibility of office space was of more importance than possibly decreasing the floor to floor height and driving up the previously mentioned factors.

Floor System	Slab Thickness
Steel Composite Floor	6-1/4"
Steel Non-Composite Floor	6-1/4"
Longspan Steel Joist	6-1/4"
Concrete Flat Plate with Drop Panels	11"
One-Way Concrete Beams and Slab	6"

Total Structural Depth:

Total structural depth is an important variable worth comparing in that it directly affects the amount of usable space in the building. This variable becomes particularly more important in buildings with height restrictions because every additional inch of space taken up by the structure is one less inch of space accessible by the occupant. In National Harbor Building M while height is not a specifically controlling factor, maintaining a reasonable structural depth should still be a main priority. The total structural depth of a flooring system is the combination of its slab or horizontally spanning element and the members which support it. In the original design of the building some size restrictions which controlled the overall structural depth were set. The design of the proposed systems attempted to maintain the depth limitations and thus may not being as telling of a variable as member weight in this case. It is also worth noting that a direct comparison between steel systems and concrete systems' structural depth is not always applicable. The placement of mechanical and other equipment located in the ceilings of buildings may be forced to run below a concrete systems.

Since the three steel system described above all contain a 6-1/4" slab their total structural depth will differ as a result of their framing members. The one way concrete beam and slab system's total structural depth will be determined by the depth of beams only. This measurement does not include slab thickness because the top of the slab and the top of the beams are poured at the same elevation. In the Flat Panel System the total structural depth will be a combination of slab thickness and drop panel thickness because the drop panels extend below the slab around the columns.

Floor System	Maximum Depth	Depth of Main Span	
		Elements	
Steel Composite Floor	30-1/4" (6-1/4" slab + W24)	22-1/4" (6-1/4" slab + W16)	
Steel Non-Composite	30-1/4" (6-1/4" slab + W24)	24-1/4" (6-1/4" slab + W18)	
Floor			
Longspan Steel Joist	30-1/4" (6-1/4" slab + W24)	24-1/4" (6-1/4" slab + LH18)	
Concrete Flat Plate with	20" (11" slab + 9" D.P.)	11" (slab)	
Drop Panels			
One-Way Concrete Beams	26" (Girder Beams)	24" (Interior Beams)	
and Slab			

Total Structural Depth Summary:

SYSTEM WEIGHT:

The weight of a floor system can effect an overall building directly when considering seismic forces and foundation loads and indirectly through cost analysis. In the case of National Harbor Building M the two direct effects will have significant impacts on the design process. The lateral system of Building M is already controlled by seismic forces in the longitudinal direction. Because of this any increase in seismic weight, or dead load of the building, will drive up the controlling force in that direction. Additionally, the building's foundation system is comprised of driven prestressed precast concrete piles which carry up to 110 tons in axial force each. A calculated number of piles are driven at the base of each column to support the respective load of the column. A significant increase in building dead load could lead to greater loads at the column footings thus requiring more piles per footing. Both of these conditions play into the indirect effect floor system weight has on cost. While cost will be more thoroughly examined in another section it is apparent that it will increase. This is partly a result of weight per square foot of building but additionally because of enhancement to other building systems as a result of an increased load.

The weights of each respective floor system were calculated for a typical 2 bay transverse cut of building section which totals 1828 SF for the steel systems and 1800SF for the concrete systems. This section of Building M makes up about 1/8 of each floors total area. Considering there are four levels being framed by this system, discounting the ground level which is slab on grade and the roof framing, this section is representative of approximately 1/32 of the total floor framing area. For comparison purposes each system was also evaluated as a percentage of the building's originally designed weight. It is understood this approximation does not take into account special conditions like the longer spanning central bay or the cantilevered corner conditions which may affect member sizes and slab depths of each respective system differently.

The three steel floor systems were calculated to be within 6% of each others respective weights. The composite system as would be predicted averaged out to be lighter than the non-composite system and the open-web steel joist system. The joist system while comprised of much lighter members requires a significantly tighter spacing for load carrying capacities than the beams supporting the wide flange systems thus increasing its weight.

The two concrete systems predictably have a much higher unit weight than the steel systems mainly because of the amount of material required. The weight of the Flat Plate Drop Panel System was driven up as a result of the decision to maintain the 30' spans of the original building at the cost of increasing slab thickness to 11". An attempt to minimize this weight increase was made by choosing a lightweight concrete mixture, however this system still ended up being the heaviest floor system. Had the decision to compromise the openness of the office space layout been made the design would have included more columns framing smaller spans. This would have allowed for a much thinner slab and thus much less weight in the system. Similarly, the one-way concrete beam system would have seen a reduction in beam size and a slight reduction in slab thickness with a shorter span column layout.

Floor System	System Unit Weight (psf)	Percentage increase of base weight
Steel Composite Floor	51.9	base
Steel Non-Composite Floor	54.7	+5.3%
Longspan Steel Joist	56.1	+8.1%
Concrete Flat Plate with Drop	115	+118%
Panels		
One-Way Concrete Beams	127	+141%
and Slab		

Weight Summary:

LATERAL SYSTEM EFFECTS:

The lateral system of a building can be dictated based upon which resisting techniques work well with that building's floor system material. A building with a mainly steel constructed floor and framing system is likely to have moment and braced frames while a concrete constructed floor system would typically have shear walls as its lateral resisting element. National Harbor Building M as designed originally implements the use of both moment and braced frames which take the load transversely and masonry shear walls which take loads longitudinally.

The three steel systems would lend themselves well to maintaining the current lateral system design. Conversely some redesign of the lateral system would be required for the two concrete floor systems. The masonry wall which separates the office building from the parking garage and contains the four 30' shear walls would probably be redesigned as a concrete wall. These walls capacity would need to be checked for their ability to resist an increase in seismic lateral loads which already control in their direction. The increase in seismic forces could come as a result of increasing seismic weight of the building with the switch from steel to concrete. Additionally, shear walls running in the transverse direction would need to be looked into as a replacement for the steel moment and braced frames which previously resisted lateral forces in that direction.

DEFLECTION:

Code dictates that all members should deflect no more L/360 under live loads and L/240 under total loads. While all members and systems proposed in this report meet those criteria it is safe to say that the less deflection a system allows the better. With that being said a comparison between the deflections of each respective system would prove an important variable in their analysis.

Floor System	Max Deflection (Live Load)	Max Deflection (Total Load)
Steel Composite Floor	0.872"	1.405"
Steel Non-Composite Floor	1.009"	1.306"
Longspan Steel Joist	0.856"	1.485"
Concrete Flat Plate with Drop	0.098"	0.200"
Panels		
One-Way Concrete Beams	0.245"	0.509"
and Slab		

Deflection Summary:

The two concrete systems clearly evaluated much better than the steel systems in this category. As for the steel systems the Longspan Steel Joist System resulted in the poorest total deflections numbers. It is reasonable to assume this is a result of the lack of initial camber imposed on the joist members as opposed to the Composite and Non-Composite Systems' members that see approximately $\frac{1}{2}$ " – 1" of camber prior to loading.

FIRE RATING:

Fire rating is an important variable in the comparison process in that it could represent a hidden or unforeseen cost of a floor system. National Harbor Building M requires all floor construction including beams and joists receive a two hour fire protection rating. The Non-Composite Steel System and the base Composite System will achieve this rating through sprayon fire proofing to a code dictated thickness. While this may be a slight hindrance to the construction process it is a fairly typical procedure and its economical implications are not extremely significant. Both the One-Way Concrete Beam and Slab and the Flat Plate Drop Panel System will require no additional fire proofing if a minimum slab thickness is provided and all reinforcing cover guidelines are followed. This is a plus for each system in that no additional costs will occupancy the base price for the system. The Longspan Joist System however will present problems to achieve the desired rating. The configuration of the open-web joist members makes it extremely difficult to apply a spray on fire proofing. To combat this problem either the entire system would have to be closed off by a fire proof barrier or the individual webs would need to be enclosed and then coated with the spray fire proofing. Any way the fire proofing is applied to these members will require additional labor and materials producing a large hidden cost to the system. Fire proofing defiantly proves to be a huge negative factor when evaluating the effectiveness of the Lognspan Steel Joist System.

VIBRATION:

The office occupancy of National Harbor Building M dictates that vibration probably won't be as key of a factor as it would be if the building had a mixed use occupancy. Regardless of the amount of impact it will have on the final floor system decision, vibration and each system's ability to control it is still an important topic to evaluate. The relative vibrations transmitted through a system are approximately proportional to that system's relative stiffness and depth. Based on those criteria it is apparent the two concrete systems with their thick slabs and stiff frames will control vibrations relatively well as compared to the steel systems. The size restrictions limiting the depth of the members of the Composite and Non-Composite steel

Ryan Sarazen National Harbor Building M Technical Report -2 17 of 42 Systems could possibly make them susceptible to vibration issues. Further research on their ability to resist vibrations would need to be done if one of these systems were chosen for implementation.

COLUMN GRID/BUILDING CHANGES:

While designing proposed flooring systems for National Harbor Building M an attempt was made to maintain the building's original layout. Two main areas emphasized in this decision were in the column grid layout and the size restrictions of main framing members. Since some systems characteristics did not lend themselves to the original design parameters as well as others there were some instances where minor adjustments had to be made.

The decision to remain with the open floor layout of the column grid, only one line of interior columns running transversely, was made based on the function of the building's occupancy. Since the building was designed for future office tenants it was felt that an open layout increased space flexibility making it more appealing to prospective tenants. Additionally, the architecture of the space dictated that certain overall limits on structural depth be maintained along the column lines running longitudinally throughout the building.

Since the design of the original system was done in steel it was no surprise that the additional proposed steel systems had little trouble conforming to these restrictions. While some additional weight was added as a result of controlling the depth of the steel members it seemed a reasonable trade off to maintain the original integrity of the design. The concrete systems which typically would perform better in a shorter span application saw more significant increases in their system weight as a result of the restrictions. A minor adjustment in the column grid was made changing the bay size from $30^{\circ}-5 \frac{1}{2}$ x30° to 30° x30° to slightly simplify the design application. It was decided this adjustment could be made without affecting the integrity of the architecture laid out in the original design.

ASETHETICS:

A floor system's construction can affect a building's overall aesthetical qualities through its structural depth and overall appearance depending on the ceiling type. Since higher ceilings are desirable when possible a smaller overall structural depth would provide more possibilities for aesthetic freedom. In the situation where the structure is exposed above the system's physical aesthetics this must be taken into consideration.

National Harbor Building M's primary space is for office occupancy with roughly 3/4 of ceiling being designed as a drop tile ceiling and the other 1/4 as exposed structure in the original design. This layout would lend itself well to the proposed Non-Composite System seeing that it contains basically the same structural member types as the current design. The look of the two concrete systems may not coincide with architect's design of the area, in which case it may be necessary to extend the drop ceiling over the entire area. Additionally the layout of mechanical and other equipment contained in the ceiling cavity may need to be reworked in the concrete systems to maintain the current floor to ceiling height of the office space.

CONSTRUCTION ISSUES:

The ease and speed at which a floor system can be constructed is a huge factor to consider when selecting a system. The Composite and Non-Composite Systems are fairly straight forward systems which go up relatively easy and fast. This process will require some staging area but the speed at which it can be up will prevent large amounts of steel and other materials from accumulating on site. Both concrete systems will require formwork construction, pouring of the concrete, and some curing time before another level can be built. While neither are extremely tough systems to construct for qualified contractors the process will probably take longer then the steel systems. The Longspan Steel Joist System may pose time and construction issue when it comes to the application of its fire protection, which is discussed in more detail in the fire rating section of the report.

OVERALL COMPARSION BREAKDOWN

Item	Steel Composite	Steel Non- Composite	Longspan Steel Joist	Concrete Flat Plate with Drop Panels	One-Way Concrete Beams and Slab
Cost (per 2 bays)	\$27,726	\$30,770	\$31,444	\$29,718	\$37,723
Slab Width	6-1/4"	6-1/4"	6-1/4"	11"	6"
Total Structural Depth	30-1/4"	30-1/4"	30-1/4"	20"	26"
Weight	Base Weight	+5.3%	+6.4%	+118%	+141%
Lateral System Effects	None	None	None	Concrete Shear Walls each way	Concrete Shear Walls each way
Deflection	LL – 0.872" TL – 1.405"	LL – 1.009" TL – 1.306"	LL – 0.856" TL – 1.485"	LL – 0.098" TL – 0.200"	LL - 0.245" TL - 0.509"
Fire Rating	Spray-On	Spray-On	Expensive Special Detailing	No Additional	No Additional
Vibration	Average	Average	Good	Excellent	Excellent
Column Grid Changes	None	None	None	Change to 30'x30' bays	Change to 30'x30' bays
Aesthetics	Deep System	Deep System	Issues in exposed area	Shallow System	Mech. Eq. Penetration issues
Construction Issues	Simple Construction	Simple Construction	Difficult Fire Proofing	Time/ Labor Issues	Time/Labor Issues
Viable Floor System?	Yes	No	No	Yes	Yes

CONCLUSIONS

It is not hard to argue with the original decision to select the composite system as the flooring solution of choice for this project. The results of this analysis show no reason to choose either of the other steel systems as a replacement for the composite system. While all three systems rate fairly similar in most performance evaluations, with the exception of the Longspan Steel Joist fire-proofing issues, neither of the newly proposed systems outperform the composite system in any category. Additionally, the composite system is lighter and therefore a decent percentage cheaper then the Non-Composite or Joist Systems. With all things being equal or slightly leaning towards the composite system already, the roughly 10-12% price break the composite floor presents clearly makes it the most logical steel choice.

A comparison between the Flat Plate Drop Panel and the One-Way Beam and Slab Concrete Systems seems to favor the Flat Plate Drop Panel System. While both systems seem capable of performing adequately the Flat Plate system is considerably lighter and less expensive. The depth of the structures is a tricky criterion by which to judge and compare these two systems. While the Flat Plate System has a very thick slab there are no beams protruding down throughout the entire span as in the One-way Beam and Slab System. Considering all variables I feel the Flat Plate System would be a more viable concrete floor system for National Harbor Building M. Now that the most appropriate steel and concrete systems have been decided, a comparison between the two can be conducted to determine which is the overall best fit for this project. Since the price of both systems is on roughly the same magnitude a comparison of their performance and physical characterizes can be considered. The main drawback of the Flat Plate System is definitely its weight and thus its effect on the lateral system. A possible way to combat these issues would be to tighten the column grid and thus the spans allowing the system to be designed with a smaller slab thickness. The smaller slab thickness would open up more overhead space and help decrease some of the building weight which is increasing the longitudinally controlling seismic forces. Also a determination on how to work in a transverse lateral reinforcement system with the absence of the steel moment and braced frames must be addressed. Shear walls may be hard to implicate in the transverse direction with the occupancy of the building favoring open, flexible spaces. In comparison to the Steel Composite System which has few if any glaring weaknesses the Flat Plate System may not seem a viable replacement. However, if some of its issues are able to be reasonably and economically addressed it definitely does look like a viable flooring system for the project.

APPENDIX A (Composite System)

Member	Studs	Camber
W16x26	22	1"
W21x44	19	
W18x50	48	1"
W24x55	18	

COMPOSITE WITH SIZE RESTRICTIONS (AS BUILT)

System Weight (per two bay section)

Steel:	-(8) W16x26 @ 30'-5 ½" -(1) W21x44 @ 30'-0" -(1) W18x50 @ 30'0" -(1) W24x55 @ 30'-0"	$= 6,335 \text{ lbs} \\= 1,320 \text{ lbs} \\= 1,500 \text{ lbs} \\= 1,650 \text{ lbs} \\= 10,805 \text{ lbs}$
Slab:	(30' x 60'-11")x(46psf)	= 84,065 lbs

TOTAL = 94,870 lbs

RAM Steel v11.0 DataBase: typbays Building Code: IBC

10/19/07 20:15:54 Steel Code: AISC LRFD

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: typ

Compo	site / Unshored					
Bm #	Beam Size	Initial	PostLive	PostTotal	NetTotal	Camber
		in	in	in	in	in
1	W18X35	1.223	0.499	0.824	1.297	3/4
7	W12X19	1.946	0.872	0.959	1.405	1-1/2
19	W16X26	1.467	0.662	0.740	1.207	1
18	W16X26	1.467	0.662	0.740	1.207	1
2	W18X35	1.223	0.499	0.824	1.297	3/4
9	W16X26	1.467	0.662	0.740	1.207	1
13	W16X26	1.467	0.662	0.740	1.207	1
15	W16X26		0.662	0.740	1.207	1
11	W12X19	1.946	0.872	0.959	1.405	1-1/2
3	W18X55	1.331	0.585	0.671	1.003	1
8	W12X19	1.946	0.872	0.959	1.405	1-1/2
20	W16X26	1.467	0.662	0.740	1.207	1
17	W16X26	1.467	0.662	0.740	1.207	1
4	W18X55	1.331	0.585	0.671	1.003	1.
23	W16X26	1.467	0.662	0.740	1.207	1
16	W16X26	1.467	0.662	0.740	1.207	1
14	W16X26	1.467	0.662	0.740	1.207	1
12	W12X19	1.946	0.872	0.959	1.405	1-1/2
5	W18X35	1.223	0.612	0.760	1.233	3/4
6	W18X35	1.223	0.612	0.760	1.233	3/4

APPENDIX B (Non-Composite System)

System Weight (per two bay section)

Steel:	-(8) W18x40 @ 30'-5 ½" -(1) W24x62 @ 30'-0" -(1) W18x86 @ 30'0" -(1) W24x55 @ 30'-0"	$= 9,747 \text{ lbs} \\= 1,860 \text{ lbs} \\= 2,580 \text{ lbs} \\= 1,650 \text{ lbs} \\= 15,837 \text{ lbs}$
Slab:	(30' x 60'-11")x(46psf)	= 84,065 lbs

TOTAL = 99,902 lbs

*** Note: The differing beam shapes and their corresponding deflections should be ignored in the following deflection chart. They are the exterior beams / girders on the two bay model and do not see the load they would have the entire floor been modeled.

Beam Deflection Summary

RAM Steel v11.0 DataBase: typbays NC-SR Building Code: IBC

10/20/07 23:55:48 Steel Code: AISC LRFD

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: typ

Nonco	mposite					
Bm #	Beam Size	Dead	Live	NetTotal	Camber	
		in	in	in	in	
1	W24X62	0.739	0.490	0.729	1/2	
7	W16X31	0.797	1.009	1.306	1/2	
19	W18X40	0.846	0.936	1.282	1/2	
18	W18X40	0.846	0.936	1.282	1/2	
2	W24X62	0.739	0.490	0.729	1/2	
9	W18X40	0.846	0.936	1.282	1/2	
13	W18X40	0.846	0.936	1.282	1/2	
15	W18X40	0.846	0.936	1.282	1/2	1. 378 M. 6 1. 1. 2 "
11	W16X31	0.797	1.009	1.306	1/2	A LEPORAL
3 -	W18X86	0.917	0.773	1.189	1/2	
8	W16X31	0.797	1.009	1.306	1/2	
20	W18X40	0.846	0.936	1.282	1/2	
17	W18X40	0.846	0.936	1.282	1/2	
4	W18X86	0.917	0.773	1.189	1/2	
23	W18X40	0.846	0.936	1.282	1/2	
16	W18X40	0.846	0.936	1.282	1/2	
14	W18X40	0.846	0.936	1.282	1/2	
12	W16X31	0.797	1.009	1.306	1/2	
5	W24X55	0.613	0.562	1.176		
6	W24X55	0.613	0.562	1.176		Carlor and the

APPENDIX C (Longspan Steel Joist System)

System Weight (per two bay section)

Steel:	-(16) 18LH08 (19plf) @ 30'-5 ½"	= 9,259 lbs
	-(4) W16x26 @ 30'-5 ¹ /2"	= 3,168 lbs
	-(1) W24x65 @ 30'-0"	= 1,950 lbs
	-(1) W18x86 @ 30'0"	= 2,580 lbs
	-(1) W21x50 @ 30'-0"	= 1,500 lbs
		= 18,457 lbs
Slab:	(30' x 60'-11")x(46psf)	= 84,065 lbs

TOTAL = 102,522 lbs

Maximum Spacing Calculation

- d < 19" max
- 18LH08 (19 plf) @ 31' => 680/351
- Loads: SIDL = 25 psf, DL = 46 psf (slab SW), LL = 100psf, S = spacing
- Total Deflection: 680 = 71S + 19 + 100S, S = 3.87' max
- Live Load Deflection: 351 = 100S, S = 3.51' max <= controls
- 30'/9 spaces = 3.33' < 3.51', use 8 joists @ 3.33' o.c.

*** Note: The differing beam shapes and their corresponding deflections should be ignored in the following deflection chart. They are the exterior beams / girders on the two bay model and do not see the load they would have the entire floor been modeled.

STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES

Based on a Maximum Allowable Tensile Stress of 30 ksi Adopted by the Steel Joist Institute May 25, 1983; Revised to May 1, 2000 – Effective August 1, 2002

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **LH-Series** Steel Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables.

The RED figures in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of $\frac{1}{240}$ of the span. LIVE loads which will produce a deflection of $\frac{1}{240}$ of the span may be obtained by multiplying the RED figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is ½ inch per foot. If pitch exceeds this standard, the load table does not apply. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the RED SHADED area of the load table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed.

Where the joist span is in the BLUE SHADED area of the load table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed.

The approximate moment of inertia of the joist, in inchestis;

 $I_j = 26.767(W_{LL})(L^3)(10^3)$, where $W_{LL} = \text{RED}$ figure in the Load Table, and L = (clear span + .67) in feet.

When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas.

The top chords are considered as being stayed laterally by floor slab or roof deck.

The approximate joist weights per linear foot shown in these tables do not include accessories.

Joist Designation	Approx. Wt in Lbs. Per Linear Ft	Depth in inches	SAFE LOAD* in Lbs. Between				-			CLE/	AR SP	AN IN	FEET						
	(Joists only)		21-24	25	26	27	28	29	30	31	32	33	34	35	36				
18LH02	10	18	12000	468	442	418	391	367	345	324	306	289	273	259	245		1		Constraint
				313	284	259	234	212	193	175	160	147	135	124	114				
18LH03	11	18	13300	521	493	467	438	409	382	359	337	317	299	283	267	2			
				348	317	289	262	236	213	194	177	161	148	136	124				
18LH04	12	18	15500	604	571	535	500	469	440	413	388	365	344	325	308				
			NAME AND ADDRESS OF TAXABLE	403	367	329	296	266	242	219	200	182	167	153	141				
18LH05	15	18	17500	684	648	614	581	543	508	476	448	421	397	375	355			1	
		3		454	414	378	345	311	282	256	233	212	195	179	164		1000		1000110
18LH06	15	18	20700	809	749	696	648	605	566	531	499	470	443	418	396				
				526	469	419	377	340	307	280	254	232	212	195	180				
18LH07	17	18	21500	840	809	780	726	678	635	595	559	526	496	469	444	8			
	-	-		553	513	476	428	386	349	317	288	264	241	222	204	-	North An		
18LH08	19	18	22400	876	843	812	784	758	717	680	641	604	571	540	512	1	2	2	
Contraction of the local division of the loc				577	534	496	462	427	387	351	320	292	267	246	226	-			-
18LH09	21	18	24000	936	901	868	838	810	783	759	713	671	633	598	566		6		
And and a strend being a strend				616	571	527	491	458	418	380	346	316	289	266	245	07	20	-	40
			22-24	25	26	27	28	29	30	31	32	33	34	35	30	31	30	39	40
20LH02	10	20	11300	442	437	431	410	388	365	344	325	307	291	215	202	249	231	400	210
			10000	306	303	298	214	250	228	208	190	1/4	100	14/	130	120	260	255	243
20LH03	11	20	12000	469	463	458	452	434	414	395	312	352	104	160	299	143	100	100	1110
0011104	10		44700	33/	333	317	302	280	200	230	210	200	272	252	235	319	303	280	275
20LH04	12	20	14/00	0/4	100	200	328	490	40/	265	940	393	205	180	174	161	140	130	120
0011105	14	20	15900	420	400	000	50Z	520	EAA	512	494	459	1200	105	300	371	353	336	321
ZULHUS	14	20	10000	450	427	416	205	266	337	208	281	258	238	210	202	187	173	161	150
201 106	15	20	21100	409	701	763	723	670	635	506	560	527	497	469	444	421	399	379	361
201100	15	20	21100	022	561	501	120	427	396	351	320	202	267	246	226	209	192	178	165
201 407	17	20	22500	979	945	914	796	760	711	667	627	500	556	526	497	471	447	425	404
202007		20	22500	647	500	556	518	484	438	398	362	331	303	278	256	236	218	202	187
201 H08	10	20	23200	908	873	842	813	785	760	722	687	654	621	588	558	530	503	479	457
ZULHUO		20	20200	669	619	575	536	500	468	428	395	365	336	309	285	262	242	225	209
201 H09	21	20	25400	990	953	918	886	856	828	802	778	755	712	673	636	603	572	544	517
201109	21	20	20100	729	675	626	581	542	507	475	437	399	366	336	309	285	264	244	227
201 H10	23	20	27400	1068	1028	991	956	924	894	865	839	814	791	748	707	670	636	604	575
ZULINU	20	20	21400	786	724	673	626	585	545	510	479	448	411	377	346	320	296	274	254

Beam Deflection Summary

RAM Steel v11.0 DataBase: typbays joist-3 Building Code: IBC

10/23/07 11:52:51 Steel Code: AISC LRFD

 $(\gamma_{i_1,i_2}^{(i_1,\ldots,i_{l-1})}) = (i_1,\ldots,i_{l-1})$

STEEL JOIST DEFLECTION SUMMARY:

Floor Type: typ

Standard	I JOISTS			
Bm #	Beam Size	Dead	Live	Total
		in	in	in
30	18LH05	0.604	0.822	1.427
120	18LH08	0.629	0.856	1.485
121	18LH08	0.629	0.856	1.485
122	18LH08	0.629	0.856	1.485
123	18LH08	0.629	0.856	1.485
124	18LH08	0.629	0.856	1.485
125	18LH08	0.629	0.856	1.485
126	18LH08	0.629	0.856	1.485
127	18LH08	0.629	0.856	1.485
32	18LH08	0.629	0.856	1.485
104	18LH08	0.629	0.856	1.485
105	18LH08	0.629	0.856	1.485
106	18LH08	0.629	0.856	1.485
107	18LH08	0.629	0.856	1.485
108	18LH08	0.629	0.856	. 1.485
109	18LH08	0.629	0.856	1.485
110	18LH08	0.629	0.856	1.485
111	18LH08	0.629	0.856	1.485
34	24K7	0.515	0.701	1.217
31	18LH05	0.604	0.822	1.427
112	18LH08	0.629	0.856	1.485
113	18LH08	0.629	0.856	1.485
114	18LH08	0.629	0.856	1.485
115	18LH08	0.629	0.856	1.485
116	18LH08	0.629	0.856	1.485
117	18LH08	0.629	0.856	1.485
118	18LH08	0.629	0.856	1.485
119	18LH08	0.629	0.856	1.485
33	18LH08	0.629	0.856	1.485
96	18LH08	0.629	0.856	1.485
97	18LH08	0.629	0.856	1.485
98	18LH08	0.629	0.856	1.485
99	18LH08	0.629	0.856	1.485
100	18LH08	0.629	0.856	1.485
101	18LH08	0.629	0.856	1.485
102	18LH08	0.629	0.856	1.485
103	18LH08	0.629	0.856	1.485
35	24K7	0.515	0.701	1.217

APPENDIX D (Flat Plate with Drop Panel System)

System Weight (per two bay section)

Slab:	(30' x 60'-11")x(11"/12)x(115pcf)	= 189,750 lbs
Drop Panels:	(10'x10')x(2 eff. Panels)x(9"/12)x(115)	= 17,250 lbs

TOTAL = 207,000 lbs

Load Calculation used to enter CRSI

- SIDL = 25psf, LL = 100 psf => reduces to 75psf
- 1.4(25psf) + 1.7(75psf) = 162.5 psf
- Obtain basic parameters of 11" slab and 9" (10'x10') Drop Panels to enter into PCA Slab

		Concrete cu. ft	sq. ft	NELS	0.981 0.981 1.000 1.019 1.063	0.981 1.000 1.000 1.063	1.000 1.000 1.019 1.063	1.000 1.019 1.019 1.063	1.000 1.019 1.019 1.063	1.019 1.019 1.019 1.063	
E	('M	Total	Steel (psf)	ROP PA	253 258 351 4.23 4.91	2.64 3.91 5.28	2.63 3.30 4.04 5.75	2.69 3.46 5.35 6.19	2.93 3.70 5.81	3.07 5.30 6.08	
S ⁽²⁾	RS (E.	Strip	Bottom	VEEN D	11 #5 11 #5 11 #5 11 #6 11 #6	12#5 12#5 15#5 18#5 20#5	12#5 13#5 16#5 14#6 12#7	12.#5 15.#5 18.#5 12.#7 13.#7	13#5 16#5 20#5 13#7	14 #5 18 #5 12 #7 11 #8	
Panel	NG BA	Middle	Top	TH BET	11#5 13#5 15#5 10#7 11#7	12-#5 10-#6 12-#6 11-#7 10-#8	12-#5 11-#6 10-#7 12-#7 11-#8	13.#5 12.#6 15.#6 12.#8 12.#8	15#5 19#5 13#7 12#8	16#5 11#7 11#8 16#7	
INTE Drop	FORCI	Strip	Bottom	AB DEP	13-#5 16-#5 14-#6 17-#6 12-#8	14 #5 18 #5 12 #7 10 #9	11#6 20#5 10#8 14#8	17#5 22#5 15#7 11#9 13#9	19#5 13#7 22#6 12#9	11 #7 11 #8 11 #8 13 #9	
JARE	REIN	Column	Top	DTAL SL	17.#5 15.#6 23.#5 13.#7 15.#7	13#6 15#6 26#5 13#8 13#8	18#5 17#6 26#5 22#6 15#8	20#5 17#6 15#7 16#8 16#8	16#6 26#5 17#7 16#8	16#6 15#7 15#8 17#8	
SQI	(8)	Square	Size (in.)	in. = T(19 24 27 27	25 25 25 25 25	22 25 25 25 25 25	28 22 39 1 9	25 23 3 2	12 22 28 28	
	Factored	Superim-	(bsl)	h = 11	100 2000 500 500	100 2000 500 500	100 200 300 500	100 200 300 500	100 300 400	100 300 400	1.0
	s	int.	(H-k)		529.4 683.6 844.3 1002.8 1159.1	589.7 764.5 942.2 1121.1 1290.8	656.9 849.4 1046.4 1247.2 1423.4	726.5 942.8 1159.2 1370.1	800.8 1040.4 1276.2 1500.9	883.4 1144.4 1393.1 1626.1	
2	INAMO	Bot.	(ft-k)		393.2 507.8 627.2 744.9 861.0	438.0 567.9 699.9 832.8 958.9	488.0 631.0 777.3 926.5 1057.4	539.7 700.4 861.1 1017.8 1155.5	594.9 772.9 948.0 1115.0	656.2 850.1 1034.9 1207.9	
Panels	W	Edge	(1-) (ft-k)		196.6 253.9 313.6 372.5 430.5	219.0 283.9 350.0 416.4 479.4	244.0 315.5 388.7 463.2 528.7	269.8 350.2 430.5 508.9 577.8	297.4 386.4 474.0 557.5	328.1 425.1 517.4 604.0	
Drop		Total	(bst)	S	2.77 3.42 4.07 5.76	2.94 3.64 4.52 5.28 6.17	3.03 3.81 4.79 5.72 6.64	3.20 5.21 6.20 7.23	3.38 4.34 5.51 6.57	3.61 4.68 6.04 7.02	
/STEI With	(E. W.)	Strip	lot.	PANEL	11-#5 10-#6 12-#6 14-#6 10-#8	12#5 15#5 10#7 11#8 11#8	13#5 12#6 11#7 18#6 12#8	14#5 19#5 13#7 13#8 13#8	11#6 11#7 18#6 16#7	13#6 12#7 12#8 11#9	
AB SV L Beams	BARS	Middle	Bottom	N DROP	13-#5 16-#5 14-#6 10-#8 12-#8	10#6 10#7 12#7 11#8 13#8	11#6 20#5 10#8 10#9 14#8	12#6 12#6 12#8 11#9 13#9	19#5 13#7 16#7 12#9	11#7 11#8 11#8 13#9	
T SLA PANE No	RCING	(1) Ten	Int.	BETWEE	18-#5 23-#5 23-#5 18-#6 27-#5 13-#8	14#6 23#5 15#7 16#7 14#8	14 #6 18 #6 15 #7 14 #8 16 #8	16#6 18#6 17#7 15#8 15#8 14#9	17#6 15#7 18#7 17#8	17-#6 22-#6 16-#8 18-#8	
FLA	EINFOI	umn Strip	Bottom	DEPTH E	19-#5 10-#8 16-#7 12-#9 14-#9	11-#7 15-#7 14-#8 117-#8 16-#9	17#6 16#7 13#9 19#8 18#9	11 ± 8 14 ± 8 17 ± 9 20 ± 9	15#7 20#7 16#9 23#8	13#8 17#8 21#9 21#9	
UARE	æ	Col	Ext. +	L SLAB	13-#5 2 13-#5 4 13-#5 1 14-#5 1 16-#5 3	13#5 3 13#5 3 14#5 5 15#5 4 17#5 4	14-#5 1 14-#5 4 14-#5 3 17-#5 4 19-#5 5	14-#5 3 14-#5 2 16-#5 3 18-#5 6 15-#6 4	15-#5 5 15-#5 3 17-#5 6 20-#5 4	15-#5 4 15-#5 5 19-#5 5 22-#5 5	
SQ		Column	Υf	= TOTA	0.761 0.777 0.643 0.634 0.696	0.797 0.688 0.776 0.698 0.740	0.710 0.751 0.638 0.747 0.735	0.767 0.639 0.693 0.739 0.737	0.811 0.688 0.756 0.756 0.694	0.753 0.765 0.721 0.689	
	(3)	Square	(in.)	= 11 in.	12 16 20 22	21 21 23 23	12 16 21 26 26	12 16 24 29	12 16 20 27	12 23 30	
is o	a Dron	nel	(ft)	4	9.33 9.33 9.33 9.33 11.20	9.67 9.67 9.67 9.67 11.60	10.00 10.00 12.00 12.00	10.33 10.33 12.40 12.40	10.67 10.67 10.67 12.80	11.00 11.00 13.20	
0 Bar	Suuare	Pa	(in.)		7.00 7.00 00.11 00.11	7.00 9.00 9.00 11.00	9 00 9 00 11 00 11 00 11 00	900 11 00 11 00 11 00	9 00 11.00 11.00	11.00 11.00 11.00 11.00	
= 4,(ade 6(Factored Superim-	posed	(psf)		100 200 500 500	100 200 500 500	100 200 500 500	100 200 400 500	100 200 300 400	100 200 400	
fc Grä	SPAN	C-C.	(ft)		28 28 28 28 28	88888 88888	88888	333333	32 32 32 32	3333	

CONCRETE REINFORCING STEEL INSTITUTE

10-27

APPENDIX E (One-Way Concrete Beam and Slab System)

System Weight (per two bay section)

Slab:	(30' x 60')x(6"/12)x(150pcf)	= 135,000 lbs
Beams:	-(4)x(30')x(16"x18")x(1/144)x(150pcf) -(2)x(30')x(20"x20")x(1/144)x(150pcf) -(2)x(30')x(18"x20")x(1/144)x(150pcf) -(1)x(30')x(18"x18")x(1/144)x(150pcf)	= 36,000 lbs = 25,000 lbs = 22,500 lbs = 10,125 lbs = 93,625 lbs

TOTAL = 228,625 lbs

Load Calculations used in CRSI tables

Interior Beams:

- $DL = (6^{\circ}/12)x(150pcf) = 75psf$, SIDL = 25 psf, LL(reduced) = 96psf
- Estimate Beam Size = (18"x24.5")x(150pcf)x(1/144) = 459plf
- Load factors: 1.4(100psf x 15') + 1.7(96psf x 15') + 1.4(459plf) = 5.19klf
- Sized a 16x24 interior span beam

Exterior Beams carrying wall load:

- Typical brick wall load = $.650 \text{klf} \implies 5.19 \text{klf} + 1.4(.650 \text{klf}) = 6.1 \text{klf}$
- Sized a 18x24 interior span beam for exterior wall

Girder:

- Clear span = 28.33', depth limitation of 27"
- Concentrated load on Girder = 5.19klf x 30' = 156K
- Girder Self Weight = (18"x24.5")x(150pcf)x(1/144) = .459klf
- Concentrated Factored Moment = $(156K \times 28.33')/8 = 552$ ft-K
- Equivalent Uniform Girder Load = $w = (11xM)/\ln^2$, $w = (11x552) / (28.33^2) = 7.6klf$
- Total Factored Uniform Load = 7.6klf + .459klf = 8.06klf
- Sized a 18x26 interior span girder and a 20x26 end span girder

*** Note: The procedure for finding equivalent loadings for the beams and girders was taken directly from the CRSI handbook. End span conditions are for beams or girders perpendicularly framing into the end of an exterior bay. Interior spans encompass other cases, thus the reason an interior chart was used to size the exterior beam running parallel to the edge of the building.

Beam Deflection Calculations taken from CRSI charts

- Total Factored load = 5.2klf (see above), Factored Live Load = 1.7(96psf) = 2.5klf
- Deflection coefficient (C) from CRSI beam chart = 249 x 10^-9
- Deflection equation from CRSI handbook = $C \times (w/1.6) \times (ln)^{4}$
- TLdef = $(249 \times 10^{-9}) \times (5.2 \text{klf}/1.6) \times (28.167)^{4} = 0.509$ "
- LLdef = $(249 \times 10^{-9}) \times (2.5 \text{klf}/1.6) \times (28.167)^{4} = 0.245$ "

*** Note: The deflection calculations were carried out for a typical interior 16x24 beam spanning 30'.

í	DEFL	(C)	\times 10 ⁻⁹ in.	500	459	360	352	424	406	343	301		311	363	767	268	345	328	259	219	moment r section		s w/1.6.
	+¢Mn	-OMn	(6) ft-kip	199	299	428	428 428 504	251	302	364 436	471	590	296	368	602	568	298	371	576	612 696 776	design	ion (in.	taken a
			STEEL WGT Ib.	422	594	930	1119 1336	479	652	979	1217	1581	763	1046	1553	1315	562	100	1321	1632 1673 2164	A _n are	deflect	load" is
	1	30 ft	Al sq. in.		4 . 4	2	1.2		4 - 4	10 I	÷.	1.3	1.5	1.5	1.5	1.5	1 0	0.10	Q. 1	1.6	rdφh	elastic	n ft. service
i i i i i i i i i i i i i i i i i i i		(n =	ΦT _n ft- kips	8 66	2000	200	33.00 55	10	10	10	42	41	20	20	20	13	15	15	15	59 59	DMn at	dspan	t.), (_n i erage
		SPAN,	STIR. TIES (5)	1231 224E	1431 1431	1641 1641	1651 1651 235F	1231	1431	1641	205G 165I	3050	264E	2056	305D	1651 305D	1231	1431	1651	265E 185Ffl 365C	(6) +d stra	< q (2)	A KI
			LOAD (4) k/ft	2.4	3.2	4.8	5.2	2.6	3.7	4.8	5.8	0	R-7	4. I	4.C	6.7	3.3	4.5	6.8	8.5	12-4. At rups) of		NDED
			STEEL WGT Ib.	399	561	873	1063	452	616	876	1117	1481	649	986	1455	1249	531	729	1240	1607 1573 2037	See Fig. s (two stir		COMME
1		28 ft	Al sq. in.	1.1	1.0		1.2		4		1.3	5.1	1.5	1.5	1.5	1.5	1 1		0. 1	1.6	d ties. e 4 leg		OT RE
	.7L ⁽³⁾	ln =	φT _n ft-	8 80	500	5 00 g	34 8 34	10	104	10	42	42,	12	512	51	51	15	15	15	60 60	r close	G	ES. N
	4D + 1	SPAN,	STIR. TIES (5)	1231 21AE	1431	1541	215F	1231	1431	1541	195G 165I	UC87	1946	1956	285D	165I 285D	1231	1431	1551	285D 175Ffl 345C	ine is fo 24 in.,	age 12-1	I 3 INCH N 10 $\sqrt{F_c}$ WABLE
	U = 1.		(4) k/ft	2.8	3.7	5.5	6.0	3.0	4.2	5.6	6.6		0.0	4.1	7.0	7.7	3.8	5.2	7.8	9.8	. For b >	e, see pi	SS THAN ER THAI DS ALLC
	ACITY		STEEL WGT Ib.	376	523	885	981 1376	421	58/ 629	890	1204 1068	1382	609	926	1358	1182 1481	495	738	1173	1499 1486 1888	n stirrups or Spans	DT REQU	ig is leg s great s exceei
	CAP	26 ft	A G.	- 1	4 · C	. · ·	1. 1		4. 1 4	4	1.4	1.4	1.5	1.5	1.5	1.5	11		1	1.1	or ope	ARE N	ESS IS
	OTAL	$l_n =$	φT _n ft- kips	9	500	500	34 9 55	17	11	11	11	42	212	212	51	51	15	15	15	61 61 61	line is f	RUPS	R STR
	1.5 A	SPAN,	STIR. TIES (5)	1231 204F	1331 206F	1451	1451 315C	1131	1341	1451	265D 1451	1007	1846	1856	265D	165Fdl 265D	1131	1341	155Fcl	265U 175Ehl 315C	ign, first ps tabula	- STIRF	- MAXII - SHEA - TORS
			LOAD (4) Krit	3.2	4.3	6.3	7.0	3.5	4.9	6.5	7.7	00	0.0	0.0	7	8.9	4.4	6.0	9.1	11.3	eam des use stirru	acing tat	* ‡ ‡
ANS			STEEL WGT Ib.	348	543	823	913 913 1283	395	593	827	1116 1007	1282	682	846	1260	1101	463	694	1092	1495 1573 2156	or each b	ce and sp notation	
SP		24 ft	ir sq.	- 6		4 . 4	1.2		4	4	1.4	4.	1.5	1.5	1.5	1.5	- 1		2 ' !	1.1	(5) Fi	Other	
ND		$\ell_n =$	φT _n ft- kips	9	9 9 4	6	35 9 33	11	8 = €	11	41 43	43	25	52	52	52	15	15	15	15 61	ders,	ottom	ss of n/240 n/180
ш		SPAN,	STIR. TIES (5)	113I 184F	134I	1351	1351 295C	1131	1341	1351	245D 145Fdl	1490	1656	1656	245D	155Fel 295C	1131	1341	145Fdl	295C 295C 485A	. For git	op bars. Jot 1.4 x	in exce ction < { ction < {
			LOAD (4) Kft	3.8	5.0	7.4	8.2	4.1	5.8	7.6	9.0	A E	C. 4	t v	r -	10.5	5.2	7.1	10.6	13.3	ig. 12-1 (b - 2"	er of laye ers for tu city, dedu	effection 0 < deffe 0 < deffe ction > l_{i}
		TOP		3# 8	3# 9	3#11	4#11	3# 8	3#10	3#11	3#14	0 #0	0#10	0140	1 =	3#14	3# 9	3#11	3#14	4#14	tails", F inches	er of lay	$-l_n/36$ $-l_n/24$ -defle
	S ⁽¹⁾	Lay-	(2)				0				-01								;		ar Del	t line is numbe red loa	hus: * X
sd 0	BAR	MO	0.875 ln			1#11	1#11			1#11	9 #9	0 #1	1#10	1#11		11#7	1# 9	1#10	2#11	2#11	am dep	e is for d facto	tabulat inated t
0,000		BOTT	ℓ_n^{+} + 12 in.	2# 9	2#11	2#11	2#11	2#10	2#11	2#11	9 #9	0 #0	0#10	2#11		11#7	2# 9	2#10	2#11	3#11	scomme lated be	cond lin	pacifies re desig
9 =	Σ	2	2 <u>,</u> E			14				16				18	2				20	1	e tabu	rs, se rsupe	eight. tal ca '360 a

CONCRETE REINFORCING STEEL INSTITUTE

ò	= 30 ft	T _n AC STEEL	Ps in. Ib.	6 - 349 23 1.0 576	6 - 1/9 23 1.0 698	6 - 758 23 1.0 1100	23 1.0 1138	8 - 375 30 1.1 579	8 - 582 30 1.1 941	30 1.1 1064	30 1.1 1238	9 - 465	37 1.3 679 9 - 584	37 1.3 957 a - 919	37 1.2 1220	37 1.2 1609	11 - 482 45 1.4 740	11 - 667 AG 1.4 205	45 1.4 1492	11 - 1275 45 1.4 1645	M _n and	Ispan elastic deflet (6) $\times \int_{n}^{4}$, where w), $\int_{n}^{6} in ft$.	stage service toou a
	SPAN, (STIR. 	(5). ki	123H 264E	143H 264E	164H 444B	164H 444B	123H 234F	143H 235F	154H 235F	165H 235F	123H	234F 143H	235F	235F	165H 365C	123H	143H	165H	165H 305D	of (6) + th stren b ×	(7) Mid (w/1 (k/ft	
-		LOAD	(4) Kill	22	3.2	4.4	4.6	2.6	4.0	4.7	5.8	33	40		0.0	6.5	3.3	4.8	6.6	1.7	g. 12-4. / stirrups) (IENDED	
		STEEL	NGT Ib.	325	451 649	709	745 1073	353 536	548	724	959	438	628	885	1131	1510	449	683	- 1049	- 1192	s. See Fi	RECOMIN	
1	: 28 ft	AC	ъ.	1.0	1.0	1.0	1.0	' -	12	: :	3 ' 5	,	1.3	1.3	1.3	9 1.3			0+0	9 - 9	sed tie	NOT	
	1.0.=	φT.	ft- kips	6 24	6	6 24	24	3.00		200 g	398			1		OH CH	E C	D I 0	2 H 4	SHC 4 + 4	s for clc n., prov	ICHES	\fc BLE
4D+	SPAN	STIR.	(5)	113H 244E	143H 244E	154H 424B	154F 424E	1231	1431	1541	1551	123	214	215	215	345	8 113	5 144	6 155	2 15.	b > 24 e page	AAN 3 IN	HAN 10 LLOWA
		LOAD	(4) K/ft	2.5	3.7	5.1	5.2	3.0	4.6	5.4	6.6	2	1.0	ź (0		3.	2.	7	80	ups, seco ans". For ature, se	EQUIREI LESS TH	EATER 1 EEDS A
ACITY		STEEL	NGT Ib.	305	419	660	693 997	328	559	674	892 892	6/71	230	832	1267	993 1393	421	635	976	110011	pen stirn terior Spa	CING IS	s is gre
CAP	96.4	AD	i is ii	10		10	1.0	12	<u>4</u> ' ‡	3 ' 3	2';	=	1.3	1.3	13	1.3		2 2	2 1.4	001.4	is for o for "Ini stirrup	S ARE M SPA	STRES
OTAI	0	PT-	ft- kips	8	99	6 82	6 24	80 F	5 ⁰⁰ 7	5°°?	E @ 3	31	2 88 9	2 88	38	28	12	¥ 12	4 H	0 T C	st line ulated	KINU	EAR S RSION
<u>ñ</u>	NVUS	STIR	(5)	113H	133H	144H	144H 394B	113H	134H	144H	205F 145H	3150	204F	133H 205F	315C	3150	1131	1341	1850	2651	esign, fir rrups tab	A - ST - MA	HS
NS		LUAD	£5	2.9	4.3	5.9	6.1	3.5	5.3	6.3	7.7		4.3	9.C	7.8	8.6	4.4	6.4	8.8	6	n beam d s, use sti spacing	on: NV	• •
SPA		STEEL	WGT Ib.	286	387	610 800	921	306	525	, 624	846	1184	379 671	519 760	802	932	392	587	953	1052	For each free end	er notati	
	4 50	A4 11	z ż ż	• •	2 ' 9	2 ' 5	3 ' 1		N ' '	1.2	2 '	1	1.3	1.3		1.3		1.4	1.4	1.4	(5)	đ	*
M M		- 44	fi-	9	9.9	69 PC	24 e	8	8	τ δ	3 ³	31	39 10	39 10	10	8 ₽ 68 F	12	47 12	47	H 12	pirders,	s. x sterr	0 2655 0 (n/240 (n/180
NTE	14440	SPAIN,	TIES (5)	113H	123H	134H 134H	364B	113H	184F 134H	185F 134H	185F 145H	295C	113H 185F	124H 185F	135H	145Ech 295C	113H	165G 124H	245D 135H	245D 155Ed	2950 2950 2").	r top bar educt 1.4	on In exc flection < flection < /_/180
REC		IDAD	(F)	3.4	5.0	6.9	1:1	4.0	6.2	7.4	9.0		5.1	6.3	9.2	10.1	5.1	7.5	1 10.4	4 11.1	es (b	layers fo	g deflect 360 < de 240 < de eflection 3
		TOP		2# 9	2#11	2#14	4#10	3#8	3#10	3#11	3#14		3# 6	3#10	1 4#11	3#14	1 3# 9	3#11	1 3#14	1 4#1	1 Details" - 2 inch	mber of I load ca	$x = -\frac{1}{2}$
	S	Lay-	(2)	-			0	-							0		00	0	, <u>-</u>	Ξ	depth-	for nu	oulated ed thu
20 pc	BAF	MOTI	0.875	1				-	-	-	0 1#10		5	0	0 1#1	14	3#1	14	11 1#1	11 1#1	d beam d	d line is posed fa	ities tab lesignatu
0,00		BOI	+ " 10 in t	2#8	2# 9	2#11	2#11	2# 8	2#10	2#1	2#1(艿	3#1	2#1	2#1	#C	#C	UHC L	#	Recon	secon secon	capac 0 are d

172

						Not	
EFL	(C)	(7) in.	287 272 226 200	245 232 190 191	218 216 179 157	189 154 141	ment ction C x load 1.6.
+ Mm D	-ΦM _n	(6) × ft-kip	199 290 248 359 359 411 411	200 294 302 436 418 627 627	238 368 296 442 602 759 777	239 371 371 447 447 612 612 776	esign mo angular se (in.) = tabulated tken as w/
	,	STEEL WGT Ib.	467 679 581 957 825 1140 1134 1134	468 653 769 1038 1139 1517 1517 1590	539 887 666 1009 1105 1513 1513 1513	535 535 743 743 1058 1058 1058 103 1603 1489	M _n are d as for rection deflection here w = load" is ta
	30 ft	AC sq. in.	1.2 1.2 1.2 1.2 1.2	1.4 1.4 1.4 1.4 1.4	1.5 1.5 1.5 1.5	1.7 1.7 1.7 1.7 1.7	d — фl apacitie elastic (1,4, wt ft. service
	(_n =	φTn ft- kips	34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0	42 14 14 14 14 14 14 14 14 14 14 14 14 14	51 51 51 51 51 51 51 51 51 51 51 51 51 5	15 61 15 61 15 60 60 60 60	Mn ar ength c h. dspan 1.6) x t.), (_n ii erage
	SPAN,	STIR. TIES (5)	123 234F 133 133 144 155 155 365C	123 2046 144 155 305D 305D 305D	123 2056 133 2056 145 145 305D 305D	1131 185H 1331 185H 185H 185F 165F 165F 165F 185F 185F 185F 1857 1857 1857 1857 1857 1857 1857 1857	(6) $+\varphi$ strestrestrestrestrestrestrestrestrestre
		LOAD (4) k/ft	3.5 4.4 5.6 7.0	3.6 5.3 7.2 7.4	4.2 5.3 7.4 8.5	4.3 5.5 7.9 9.5	2-4. At ups) of IDED
		STEEL WGT Ib.	439 628 599 885 778 1055 1059 1510	437 758 717 976 1064 1132 1132 1132	502 835 681 949 1045 1413 1213 1566	504 807 746 992 1193 1575 1392 1885	s (two stirr cOMMEN
	28 ft	Al sq.	12.12.12.12.12.12.12.12.12.12.12.12.12.1	1.4 1.4 1.4 1.4	1.5 1.5 1.5 1.5	1.7 1.7 1.7 1.7 1.7	d ties. 9 4 legs DT RE
.7L ⁽³⁾	en =	φT _n ft- kips	34 9 34 9 34 9 34 9 34 9 34 9 34 9 34 9	43 1 43 1 43 1 43 1	52 32 32 32 32 52 32 32 32 32 52 32 32 32 32 52 32 32 32 32 52 32 32 32 52 32 32 52 32 32 52 32 32 52 32 52 52 32 52 52 52 52 52 52 52 52 52 52 52 52 52	15 61 15 61 15 61 15 61 61	r closed 3. ES. NO
4D + 1	SPAN,	STIR. TIES (5)	1231 214F 1341 1341 1441 1441 1441 1451 3455 3455	1131 1956 1341 1956 1451 285D 285D 285D	113 1956 134 1956 145 285D 285D 285D	113 175H 175H 175H 145 285D 285D 345Cel 345C	tine is following the second
U = 1.		LOAD k/ft k/ft	4.1 5.0 6.5 8.1	4.1 6.1 8.3 8.5	4.9 6.1 8.5 9.7	4.9 6.3 9.1 10.9	: For b > E, second JIRED SS THAN ER THAI DS ALLC
ACITY		STEEL WGT Ib.	408 557 832 789 990 998 998	409 711 666 1069 989 1317 1066 1380	470 783 632 889 971 1313 1142 1556	472 754 701 1051 1108 1463 1309 1739	or Spans or Spans nenclatur DT REQL IG IS LES S GREAT S GREAT
CAP/	26 ft	in sq.	1.2 1.2 1.2	1.4 1.4 1.4 1.4	1.6 1.5 1.5 1.5	1.7 1.7 1.7 1.7 1.7	or oper "Interi ARE No SPACIN ESS IS TRESS
OTAL	en = :	φT _n ft- kips	35 9 35 9 35 9 36 9 36 9 36 9	43 43 43 43 43	13 52 52 52 13 52 52 52 52 52	16 15 15 15 15 15 15 15 15 15 15 15 15 15	ine is f tred for or stin RUPS / MUM S MUM S R STR R STR
F	SPAN,	STIR. TIES (5)	1131 204F 1241 205F 1351 205F 205F 315C	113 1856 124 124 135 135 135 135 135 265D 265D	1131 1856 1241 1856 1351 265D 265D 315C	1131 165H 1241 225E 1351 265D 265D 315C 315C	gn, first l ps tabula oulated. F - STIRF - MAXII - SHEA - TORS
		LOAD (4) k/ft	4.7 5.8 7.5 9.3	4.8 7.1 9.6 9.9	5.6 7.0 9.8 11.3	5.7 7.3 10.6 12.6	eam desi use stirru acing tak NA - *** -
		STEEL WGT Ib.	381 671 522 760 729 1112 967 1294	378 645 685 988 942 1217 1000 1275	438 711 583 970 912 1212 1057 1057	435 701 647 986 1038 1038 1456 1385 2011	n each b e ends, t ce and sp notation:
	24 ft	Al sq.	1.3 - 1	1.4 1.4 1.4 1.4	1.6 1.6 1.6 1.6	1.7 1.7 1.7 1.7 1.7	(5) Fc fre siz Other
	l, = n	φT _n ft- kips	35 9 35 9 35 9 36 32 9 32 9	11 4 11 4 11 4 11 4	53 + 53 + 53 + 53 + 53 + 53 + 53 + 53 +	16 63 63 63 63 63 63 63 63	ders, ittom stem \$\$ of \$\$ of \$180
	SPAN,	STIR. TIES (5)	1131 185F 1241 185F 1241 1251 1251 295C 264C 295C	103I 165G 125I 125I 245D 145FdI 245D 145FeI 245D 245D	1131 165G 1141 245D 135Fdl 245D 145Ffl 295C	103 155H 114 215E 135Fdl 295C 265C 485A	For gir). Pars for bc op bars. Lot 1.4 x: Lot 1.4 x: lin exceeded in exceeded
		LOAD (4) kft	5.5 6.9 8.8 11.0	5.6 8.3 11.3 11.6	6.6 8.2 11.5 13.3	6.7 8.5 12.4 14.8	Fig. 12-1 (b – 2" er of laye yers for to icity, dedti city, dedti of c defle 0 < defle
	TOP		3# 9 3#10 4#10 3#14	3# 9 3#11 3#14 5#11	3#10 3#11 3#14 4#14	3#10 3#11 4#14 4#14	tails", I inches a numb er of la id capa using d using d
3(1)	Lay-	ers (2)					ar De oth 2 it line is numbe red loa ted cat hus: *
BARS	MOT	0.875 ln	1#10		1# 8 1# 9 1#11 2#10	1# 8 1#10 1#11 1#11	nended E beam dep lumm, firs line is for sed facto ss tabulal ignated ti
	BOT	ℓ _n + 12 in.	2# 9 2#10 2#10 2#14 2#14	2# 9 2#11 2#14 2#14 2#14	2# 8 2# 9 2#11 2#10	2# 8 2#10 2#11 2#14 2#14	ecomr ulated t ers" col econd li erimpo: apacitie
M		o .⊑	14	16	18	20	See "R use tabi hars, se or sup veight. Total ce
STI	4	= _		ac	87		(1) (2) (3) F (4)

CONCRETE REINFORCING STEEL INSTITUTE

SOLID ON $f_c' = 3,000$	E-WA psi	Y SLA	BS—E	IND S	PAN Grad	de 60 l	Bars			Т	op Ste	el for c ≈ 0.0	- <i>M_u</i>
Thickness (in.)	4	41/2	5	5½	6	6½	7	71/2	8	8½	9	91/2	1(
Top Bars Spacing (in.)	#4 12	#4 12	#⊿ 11	#4 8	#E 12	#5 11	#5 10	#5 10	#5 S	#6 12	#6 11	#6 10	#6 10
Bottom Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 8	#4 8	#5 12	#5 11	#5 11	#5 10	#5 9	#6 12	#6 11	#6
Top Bars Free End Spacing (in.)	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .200	.200 .218	.218 .240	.267 .300	.310 .300	.338 .310	.372 .338	.377 .338	.413 .372	.440 .413	.480 .440	.528	.528
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN	a da Antonio Antonio de Carlos de Jacobio de Carlos de			FACT	ORED L	ISABLE-	SUPER	IMPOSE	D LOAD) (psf)			
6′-0″ 6′-6″	700 586	906 761	967										
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	496 423 363 314 272 237	645 552 475 412 359 314	821 704 608 528 462 405	988 856 747 656 579	986 861 757 669	976 858 759	916						
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	207 158 138 120 105 91	276 191 167 146 127 111	357 248 218 192 169 149	513 364 323 287 256 228	593 481 429 383 343 308	674 591 528 473 426 383	814 722 647 582 524 473	890 790 708 636 574 518	957 859 774 700 634	987 890 806 731	952 865		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	79 68 58 49 42	97 84 73 62 53 45	131 115 101 88 76 66	204 182 162 145 129 115	277 249 224 202 182 163	346 312 282 256 231 209	428 388 352 320 291 264	469 426 386 351 320 291	575 523 477 435 397 363	664 605 552 505 462 423	787 719 657 602 552 507	937 857 785 721 662 610	999 914 837 769 707 651
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"			56 48 40	102 90 79 69 60 51	147 132 118 105 94 83	190 171 155 140 126 113	241 219 199 181 164 149	265 241 220 200 182 165	332 304 278 255 233 213	388 356 327 300 275 253	466 429 395 363 335 309	562 519 479 442 409 378	600 554 511 473 437 405
19'-0" 19'-6" 20'-0"				44	73 64 56	101 90 80	135 122 109	149 135 122	195 178 162	232 213 195	284 262 241	350 324 300	374 347 321
Note: See Fig. 7-	l for rein	forcing b	oar detail	S.									

CONCRETE REINFORCING STEEL INSTITUTE

APPENDIX F (COST CALCULATIONS)

Composite Floor

Item	Amount	R.S. Means	Total Cost:
		Quantity Price	(Labor + Equipment + Material)
Steel:			
W16x26	8x(30.458')	35.41/L.F.	\$8,628
W18x50	(30')	66.08/L.F.	\$1,982
W24x55	(30')	71.09/L.F.	\$2,133
W21x44	(30')	57.99/L.F.	\$1,740
			= \$14,483
Studs:			
261 studs	2,610 lbs	\$1.30/lb	= \$3,393
Decking:			
3" Deep Galvanized	1828 S.F.	\$2.36/S.F.	= \$4,313
20 gauge			
Concrete:			
6" slab	1828 S.F.	\$3.03/S.F.	= \$5,537
		TOTAL	= \$27,726

Non-Composite Floor

Item	Amount	R.S. Means	Total Cost:
		Quantity Price	(Labor + Equipment + Material)
Steel:			
W18x40	8x(30.458')	53.80/L.F.	\$13,109
W18x86	(30')	109.66/L.F.	\$3,290
W24x62	(30')	79.59/L.F.	\$2,388
W24x55	(30')	71.09/L.F.	\$2,133
			= \$20,920
Decking:			
3" Deep Galvanized	1828 S.F.	\$2.36/S.F.	= \$4,313
20 gauge			
Concrete:			
6" slab	1828 S.F.	\$3.03/S.F.	= \$5,537
		TOTAL	= \$30,770

Longspan Steel Joist

Item	Amount	R.S. Means	Total Cost:
		Quantity Price	(Labor + Equipment + Material)
Steel:			
18LH08	16x(30.458')	19.43/L.F.	\$9,469
W16x26	4x(30.458')	35.41/L.F.	\$4,314
W18x86	(30')	109.66/L.F.	\$3,290
W24x62	(30')	79.59/L.F.	\$2,388
W24x55	(30')	71.09/L.F.	\$2,133
			= \$21,594
Decking:			
3" Deep Galvanized	1828 S.F.	\$2.36/S.F.	= \$4,313
20 gauge			
Concrete:			
6" slab	1828 S.F.	\$3.03/S.F.	= \$5,537
		TOTAL	= \$31,444

Flat Plate with Drop Panels

Item	Amount	R.S. Means	Total Cost:
		Quantity Price	(Labor + Equipment + Material)
Slab:			
	61.11C.Y.	\$445.75/C.Y.	\$27,240
Drop Panels:			
	5.56 C.Y.	\$445.75/C.Y.	\$2,478
		TOTAL	= \$29,718

One-Way Beam and Slab

Item	Amount	R.S. Means	Total Cost:
		Quantity Price	(Labor + Equipment + Material)
Slab:			
	33.33C.Y.	\$685.50/C.Y.	\$22,848
Beams:			
	21.70 C.Y.	\$685.50/C.Y.	\$14,875
		TOTAL	= \$37,723

05 1	2 23.75 Structural Steel Members		r	Daily	Labor-	11		2008 B	are Costs		Toto
0720	x 26		F-2	CUTPL	n Hours	Unn	Materia	Labor	Equipment	Tota	incl Ogp
0740	x 3 3		1-2	550	1075	L.r.	31.50	3.91	2.61	38.02	44
0900	x 49			550	102		59.50	4.20	2.00	4/.11	54.5
1100	W 12 x 14			880	064		16.05	9.20	1 70	00.01	75.5
1300	x 22			880	064		26.50	2.00	1.70	21.39	25
1500	x 26			880	064		20.00	2.00	1.70	30.94	36
1520	x 35			810	040		42.50	2.00	1.70	35.94	41
1560	x 50			750	075		42.50	2.07	1.93	47.32	53.50
1580	x 58			750	075	2 1	70	0.10	2.09	05.72	74
1700	x 72			640	088		87	3.13	2.09	15.22	84.50
1740	x 87			640	088		105	2.00	2.40	93.11	105
1900	W 14 x 26			990	.000		21 50	0.00	2.40	111.11	125
2100	x 30		100	900	062	21.3	31.50	2.37	1.50	35.45	40.50
2300	x 34			810	040		41	2.00	1./4	40.84	46.50
2320	x 43			810	.007		41	2.07	1.93	45.82	52.50
2340	x 53			800	070		52	2.07	1.93	56.82	64
2360	x74	A DESCRIPTION OF THE	1955	740	.070	1852	04	2.93	1.96	68.89	77.50
2380	x 90			740	074		07.00	3.08	2.06	94.64	106
2500	x 120			740	.070		109	3.1/	2.12	114.29	128
700	W 16 x 26			1000	.070		145	3.20	2.18	150.44	168
900	x 31		10.000	000	.020		31.50	2.34	1.5/	35.41	40.50
100	x 40			900	.002		37.50	2.60	1./4	41.84	48
120	x 50	e constal agent		000	.070		48.50	2.93	1.96	53.39	60
140	x 67	***		7/0	.070		60.50	2.93	1.96	65.39	73.50
300	W 18 x 35	the second second second	r e a sta	/00	.0/4	a protection	10 50	3.08	2.06	86.14	96.50
500	x 40			900	.083		42.50	3.53	1.77	47.80	54.50
520	x 46			700	.000		48.50	3.53	1.//	53.80	61
700	x 50			700	.000		55.50	3.53	1.//	60.80	69
900	x 55		1999	012	.000		60.50	3.72	1.86	66.08	75
20	x 65			712	.000		00.50	3.72	1.86	/2.08	81.50
40	x 76			000	.007		/0.50	3.//	1.89	84.16	. 95
760	x 86			000	.007		92.	3.//	1.89	97.66	110
80	x 106		-	000	.007	-	104	3.//	1.89	109.66	123
00	W 21 x 44			1044	.009		128	3.77	1.89	133.66	150
00	x 50			1064	075		53	3.19	1.60	57.79	66
00	x 62			1004	073		60.50	3.19	1.60	65.29	74
00	x 68	Later and the state		1030	077		15	3.27	1.64	79.91	90
20	x 83	-	1	000	000		82.50	3.27	1.64	87.41	98
40	x 93		1	000	000		100	3.39	1.70	105.09	118
60	x 101		1	000	000		113	3.39	1.70	118.09	132
80	x 122	EU VSLOBI DE LES	1	000 .	000	1772	122	3.39	1.70	127.09	142
00	W 24 x 55		1	110	070		148	3.39	1.70	153.09	170
00	x 62		1	110 .	072		66.50	3.06	1.53	71.09	80
00	x 68		1	110	072		10	3.06	1.53	79.59	89.50
00	x 76	CENTRAL CONTRACTOR	1	110	172	See al	02.50	3.06	1.53	87.09	97.50
00	x 84		1	10 .	174		72 ,	3.06	1.53	96.59	108
0	x 94		1/	1. 000	74	The Assessed	102	3.14	1.57	106.71	119
0	x 104	Processory .	10	000 .0	1/4	-	114	3.14	1.57	118.71	132
0	x 117	RECTAL STREET	10). 000	1/0	-	126	3.23	1.62	130.85	145
0	x 146		1	JSU .(1/6		142	3.23	1.62	146.85	163
0	W 27 x 84		10). 00	1/6		1//	3.23	1.62	181.85	201
0	x 94		1	70 .0	17		102	2.85	1.43	106.28	119
0	x 114	Section of the	11	90 .0	6/		114	2.85	1.43	118.28	132
	A 114		11	50 .0	/0		138	2.95	1.48	142.43	159

05 31 Steel Decking

05 31 13 - Steel Floor Decking

05 3	1 13.50 Floor Decking	1000000	Constantin	100000	The second		and the second second	Contra tel de la	THE REAL PROPERTY AND ADDRESS	Contractor -
0010	FLOOR DECKING R053100-10	136								1
3200	Open decking, 3" deep, wide rib, 22 gauge, galvanized, under 50 squares	E-4	3600	.009	S.F.	2.21	.39	.04	2.64	3.18
3250	50-500 squares		3800	.008		1.77	.37	.03	2.17	2.65
3260	over 500 squares		4000	.008		1.59	.35	.03	1.97	2.42
3300	20 gauge, under 50 squares		3400	.009		2.58	.41	.04	3.03	3.61
3350	50-500 squares		3600	.009		2.06	.39	.04	2.49	3.01
3360	over 500 squares		3800	.008		1.85	.37	.03	2.25	2.74
3400	18 gauge, under 50 squares		3200	.010		3.32	.44	.04	3.80	4.48
3450	50-500 squares		3400	.009		2.66	.41	.04	3.11	3.70
3460	over 500 squares		3600	.009		2.39	.39	.04	2.82	3.37
3500	16 gauge, under 50 squares		3000	.011		4.39	.46	.04	4.89	5.70
3550	50-500 squares		3200	.010		3.51	.44	.04	3.99	4.69
3560	over 500 squares		3400	.009		3.16	.41	.04	3.61	4.26
3700	4-1/2" deep, long span roof, over 50 squares, 20 gauge		2700	.012		4.13	.52	.05	4.70	5.50
3800	18 gauge		2460	.013		5.30	.57	ž .05	5.92	6.95
3900	16 gauge		2350	.014		3.98	.59	.06	4.63	5.50
4100	6" deep, long span, 18 gauge		2000	.016		7.60	.70	.07	8.37	9.70
4200	16 gauge		1930	.017	and the second	5.70	.72	.07	6.49	7.65
4300	14 gauge		1860	.017		7.30	.75	.07	8.12	9,50
4500	7-1/2" deep, long span, 18 gauge		1690	.019		8.35	.82	.08	9.25	10.80
4600	16 gauge		1590	.020		6.25	.88	.08	7.21	8.50
4700	14 gauge	-	1490	.021	*	8.05	.93	.09	9.07	10.65
4800	For painted instead of galvanized, deduct					2%				
5000	For acoustical perforated, with fiberglass, add				S.F.	1.09			1.09	1.20
5200	Non-cellular composite deck, galv., 2" deep, 22 gauge	E-4	3860	.008		1.53	.36	.03	1.92	2.37
5300	20 gouge		3600	.009		1.69	'.39	.04	2.12	2.60
5400	18 gauge		3380	.009		2.15	.41	.04	2.60	3.15
5500	16 gauge		3200	.010		2.69	.44	.04	3.17	3.79
5700	3" deep, galv., 22 gauge		3200	.010		1.67	.44	.04	2.15	2.66
5800	20 gauge		3000	.011		1.86	.46	.04	2.36	2.93
5900	18 gauge CN		2850	.011		2.29	.49	.05	2.83	3.45
6000	16 gauge	₩.	2700	.012		3.06	.52	.05	3.63	4.35

122

05 21 Steel Joist Framing

				2.4	100	×38	1.10	18. 1	1000		200	89 P.		2027	1 11	1	80 X		0.000	Serves,	1.0		Sec. 1	ALC: NO	-	and the second	1000
	1	- 41	28	180	4 87			10		1.7		1.0	F 1	1 10	26	17.		1.6	6 1	1-4	123		211	111	sle	N 2322	
9	par.	2.0	é 44	1000		<u>د اللہ</u>	See.	10	- E.		2 6 -	12		1. 100	2.1	2.0		100	1	12.4	•	B . B .	- 11			Sec. 1	and the

			Daily	Labor-			2008 Bare Costs			lotai
05 05 44	50 Longspan Joists	Crew	Outpu	Hours	Unit	Materia	Labor	Equipment	Tota	incl O&P
2040		E-7	13	6.154	Ton	1,675	261	141	2,077	2,450
2040	Average		11	7 273		1.975	310	166	2,451	2, 90 0
2080	MOXIMUM 1916 1916 45		1400	057	12	10.05	2.42	1.31	13.78	16.7
2200	16LHU4, 12 LU/L-		1400	.057	5.00	15.90	2.42	1.31	19.63	23
2220			1400	057	Conception of the local division of the loca	10.05	2.42	1.31	13.78	16.7
2240			1400	.057		15.90	2.42	1.31	19.63	23
2260			1400	057		10.85	2.42	1.31	14.58	17.6
2280			1400	057		19.25	2.42	1.31	22.98	26.5
2300			1800	044		13.40	1.88	1.02	16.30	19.1
2320	28LHU6, 16 LD/LF		1800	044		21	1.88	1.02	23.90	27.
2340	28LH11, 25 LD/LF		1800	044		14 20	1.88	1.02	17.10	20
2360	32LH08, 17 Lb/LF		1000	.044		25	1.88	1.02	27.90	32

Ryan Sarazen National Harbor Building M Technical Report -2 41 of 42

02.2	0.52 AC Congress in Dise	Daily Labor-					2008 Bare Corr				
1240	Maximum rainfasting		Crew (utput H	ours Ur	nit Materia	Labor	Equipmen	Toto	1.	
1300	20" diameter minimum ciril	. (-14A 1	3.77 14	.524 C.	Y. 695	555	55	1.305	1	
1320	20 dutileter, minimum reinforcing		- 4	1.04 4.	873	265	187	18.35	470.3	5	
1340			2	4.05 8.	316	445	320	31.50	796.5) 1	
1400	24" diameter minimum reinierene		1	7.01 11.	758	695	450	44.50	1,189.50)]	
1420	Average reinforcing		5	1.85 . 3.8	857	251	148	14.55	413.55	11052	
1440	Maximum reinforcing		2	7.06 7.3	391	445	284	28	757		
1500	36" diameter, minimum reinfersion		1	8.29 10.	935	685	420	41	1,146	1	
1520	Average reinforcing		7	5.04 2.6	65	254	102	10.05	366.05		
1540	Maximum reinforcing		37	.49 5.3	35	425	205	20	650	1	
1900	Flevated slabs flat slab with drops 121 1 C		22	.84 8.7	57	665	335	33	1,033	1	
1950	30' span	[C-1	4B 38	.45 5.4	10	263	207	19.60	489.60	1	
2100	Flat plate 125 pcf Sup Load 15/ mar		50	.99 4.0	79	275	156	14.75	445.75	1	
2150	25' snan		30	.24 6.8	78	242	264	25	531	- ANA	
300	Waffle coast 30" domos 125 pet Sup Land 200		49	.60 4.19	94	249	161	15.20	425.20	5	
350	30' span		37.	07 5.61	1	375	215	20.50	610.50	7	
500	One way injets 30" none 12E set Cup Land 154	washermore and	44.	07 4.72	20	335	181	17.10	533.10	6	
550	25' snan		27.	38 7.59	7	450	291	27.50	768.50	9	
700	One way begin & clab 125 pcf Cup Load 164		31.	15 6.67	7	410	256	24	690	8	
750	25' soon		20.	59 10.10	02	264	385	36.50	685.50	9	
200	Two way begin & slob 125 pcf Sup Logd 157 pcg		28.	36 7.33	4	246	281	26.50	553.50	7	
50	25' snon		24.0	04 8.65	2	253	330	31.50	614.50	8	
00	Elevated slabs including finish not	*	35.8	37 5.79	9 🚽	216	222	21	459	60	
10	including forms or rainforcing				1						
50	Regular concrete 4" slot	interest of engage	107 W378.52								
00	6" slab	C-8	261	3 .021	S.F.	1.36	.73	.28	2.37	1	
50	2-1/2" thick floor fill		258	5 .022		2.02	.73	.28	3.03		
00	Lightweight 110# per C E 2.1 /2" thick there fill		268	5 .021		.87	.71	.27	1.85		
00	Cellular concrete 1-5/8" fill under 5000 c.r.		258	.022		1.19	.73	.28	2.20		
50	Over 10 000 S F		2000	.028		.79	.95	.36	2.10	- -	
00	Add per floor for 3 to 6 staries high		2200	.025		.76	.86	.33	1.95		
20	For 7 to 20 stories high		3180	.002			.06	.02	.08		
0	Environment and 3' x 3' x 6" thick	THUR	21200	.003	*		.09	.03	.12		
0	4' x 4' x 6" thick	C-14H	45	1.067	Eo.	45.50	40.50	55	86.55	113	
0	5' x 5' x 8" thick		30	1.600		67	60.50	.83	128.33	168	
10			18	2 667		114	101	1.00			