October 5 2009

CARDEROCK SPRINGS ELEMENTARY SCHOOL

FACULTY ADVISER: DR. CHRIS MAGENT JOSEPH HIRSCH CONSTRUCTION MANAGEMENT TECHNICAL REPORT 1

Table of Contents

A. Executive Summary	1
B. Project Schedule Summary	2
C. Building Systems Summary	.4
D. Project Cost Evaluation	.8
E. Site Plan of Existing Conditions1	.3
F. Local Conditions	14
G. Client Information	16
H. Project Delivery System1	18
I. Staffing Plan2	20
J. Appendix 1 - Summary Schedule2	22
K. Appendix 2 – Estimate References2	<u>2</u> 4
L. Appendix 3 – Site Plan	30
M. Appendix 4 – MCPS Capital Improvement Plan	32

A. EXECUTIVE SUMMARY

The previously existing Carderock Springs Elementary School was built in 1966 and badly in need of modernization to meet the advancing educational needs of today's youth. This technical assignment will discuss various construction management topics including schedule, building systems, project costs, existing conditions, as well as project delivery and staffing.

The new 80,121 square feet Carderock Springs Elementary School is being built on the site of the previous school which has since been demolished. It will feature a new gymnasium, state of the art media center, high technology classrooms, as well as outdoor play spaces with basketball courts and ball fields. The project will cost approximately \$21 million and is scheduled to be turned over to the owner, Montgomery County Publics Schools, July 7, 2010. It will open next fall for the beginning of the next academic school year.

The new elementary school is striving to achieve a LEED Silver rating from the U.S. Green Building Council under LEED for Schools guidelines. One of the unique sustainable features of this project is the closed-loop water Geothermal HVAC system which includes 120 wells drilled to a depth of 520 feet. The system will assist in providing efficient heating and cooling as well as significant electricity cost savings to the district. Other notable credits being attempted are construction waste management, regional material extraction, and high indoor environmental quality. Montgomery County Public Schools is one of the largest owners of LEED accredited buildings in the state of Maryland.

The project is contracted under a Guaranteed Maximum Price format to HESS Construction + Engineering Services. It is being delivered utilizing a CM-at-Risk delivery method. HESS construction has acquired a team of 36 subcontractors both from private and public bid. The architect of record is BeeryRio Architect+Interiors. They have consulted Strickler Associates for MEP systems and ADTEK Engineers for civil and structural design.

B. PROJECT SCHEDULE SUMMARY

Foundation Sequence:

The building is divided into two distinct sections, Area A and Area B. The primary scheduling and sequencing are based on Area A activities beginning before Area B. The foundation system consists of continuous strip footings along the exterior of the building to support walls and spread footings placed under all of the interior and exterior columns. Along with the footings, there are a couple of key retaining walls that were placed which required additional labor to form-up and support the walls during curing. The retaining walls were placed first since some of the foundations met up with the walls and required the wall to hold back soil for a logical construction sequence.

Structural Sequence:

The structural steel was delivered for Area A as foundations continued in Area B. Although the site seems relatively large, the amount of concurrent activities taking place simultaneously restricted lay down area for steel and other materials. This required some phasing of steel packages by the steel contractor. The erectors started with columns and proceeded throughout the whole Area A. Some columns spanned 3 floors which allowed for greater efficiency and allowed the steel erector to pick multiple beams at once. Once beams were erected, cross bracing was placed to support the structure from lateral forces. Once moment welds were completed, the bracing would be taken down. Before another level was started, decking would be dropped down and they could continue climbing vertically while placing deck. Once the deck was placed and welded in place, shear studs would be placed for the composite concrete decks. Following the placement of the studs concrete could then be poured after contractors roughed in penetrations through the deck. This sequence was repeated as the steel went around the building to Area B.

Finish Sequence:

The interior wall system of this building consists primarily of 6" CMU walls. Therefore once the enough steel was laid out in front of the mason, their production would be critical to keep the schedule moving. While placing interior walls, MEP contractors coordinated penetrations and interior wall work to keep them from having to open up walls to make installations. Once the walls are in place and the building is enclosed final finishes can begin. First drywall will be placed followed by painting. After paint, ceiling grids can be hung allowing lighting fixtures to be placed and MEP trades to begin trim-out. Once this is complete tiles can be dropped in place. The next activities will include placing cabinets, fixtures, and additional equipment as necessary. The last thing that will happen is the punchlist and turnover of the building to the owner for occupancy. During the latter phases of construction and occupancy, building commissioning will take place to ensure the functionality of all MEP systems.

(See page 22, Appendix 1 for summary schedule)

C. BUILDING SYSTEMS SUMMARY

YES	NO	WORK SCOPE
х		Demolition
v		Structural Steel
X		Frame
v		Cast in Place
X		Concrete
	х	Precast Concrete
х		Mechanical System
х		Electrical System
х		Masonry
х		Curtain Wall
	~	Support of
	×	Excavation

Table 1 - Building Systems Summary

Demolition:

To make way for the new building, the old elementary school was demolished. Asbestos was abated first to make the site safe for selective demolition. Next, the "guts" were taken out and salvaged if feasible. Items such as steel ducts and copper wires can be recycled by the demolition contractor. Following the demolition of the inside components, the building structure can be demolished. Care is taken during this stage since steel and concrete can be recycled. Demolition is also organized destruction since operators of the heavy equipment must keep some type of structural integrity while operating in close quarters to large structural elements. Next, foundations will be demolished and crushed using impact hammers. The entire demolition of the existing structures lasted for just under three months

Figure 1 - Existing School

Figure 2 - Demolition of Existing Structure

Structural Steel Frame:

The frame of this building is structural steel. A combination of moment connections and free standing masonry structures (stairways & elevator shaft) provide the lateral resistance to loads. A Manitowoc 8500 crawler crane was used on this project. It has a capacity of 85 tons maximum load and a maximum swing radius of 200 feet. Columns in this building span all three floors. This saves time and money both in manufacturing and also erecting since there are less picks to make. The elevated slabs in this building are composite and are nominally 5 ½" thick. Long spans joists are used in the gymnasium and multipurpose rooms with spans reaching 72' and 78' respectively.

Figure 3 - Steel Frame

Cast in Place Concrete:

Cast in place concrete was used for all concrete applications on this project. The retaining walls, foundations, slabs on grade, and slabs on deck were all cast in place. The concrete specified on this job was normal weight 3500 PSI compressive strength. Formwork was reusable plywood forms. On the slabs, steel pour stops were utilized. The concrete plant used for this project was located about 45 minutes away. However, due to the high volume of traffic in the Washington, D.C. area it took as long as 90 minutes for concrete to reach the project site. Any truck that did not begin its pour before the 90 minute limit was sent back to the plant. This situation was encountered multiple times over the course of the concrete work.

Figure 4 - Pumping Concrete to Elevated Slab

Concrete pump trucks were utilized for many applications on this project including elevated slabs and areas that had restricted access to direct chute due to concurrent construction activities.

Mechanical System:

A closed loop water Geothermal system was utilized on this project to assist with the LEED project goals and overall sustainability. There are 120 wells drilled to a depth of 540' into the earth. These wells are then in a series loop with the 49 water source heat pumps located throughout the building. In addition to geothermal there are six rooftop energy recovery units (ERU) that provide additional heating and cooling capacity as well as provide the necessary ventilation requirements. Larger rooms such as the gymnasium, media center and multipurpose room receive its HVAC needs solely from its own respective ERU.

Figure 5 - Drilling Rigs in Geothermal Field

Electrical System:

The overall electrical service to the building is 265/460V, 3 phase, 4 wire rated at a total of 1600A. Secondary service is 120/208V which powers primarily the lighting, computer, and small equipment loads. The building contains 21 panelboards and 7 transformers to step down the voltage to the appropriate level for the intended application. A 100 kW generator will provide backup power to the lighting and life support systems throughout the building.

Masonry:

This building consists of an 8" CMU back-up wall with a 4" brick veneer on the exterior walls. Structural walls in the elevator shaft and stair towers are grouted and have reinforcing Z bars in corners to tie the structure together. Nearly all interior walls and partitions are 6" CMU walls. This was chosen to help with sound transmission goals. Since there is a lot of masonry work, detailed management and quality control of this contractor is critical for success of the project. During the enclosure phases, the masonry will drive the schedule on the critical path.

Figure 6 - Masonry Veneer and Staging Area

Curtainwall:

Curtainwall is utilized in key locations to achieve daylighting and outdoor views. The front entrance of the school is curtainwall to add architectural aesthetics. At the elbow of the building the curtainwall spans 2.5 stories. This will provide the Media Center with expansive views and great daylighting. The curtainwall system being used is specifically engineered for low sound transmission since the Capital Beltway is located very close to the school. The architect has taken great care to ensure that noisy traffic will not be an issue inside of the building and affect the education of the children.

D. PROJECT COST EVALUATION

 Table 2 - Building Construction Cost and Building SF Cost, Source: CSES Bid Book

Building Construction C	cost and Square Foc	ot Cost
Building Systems	Cost	Cost/SF
General Conditions	\$2,484,450	\$20.79
Concrete	\$1,044,350	\$13.03
Masonry	\$1,974,625	\$24.65
Structural	\$1,952,070	\$24.36
Moisture Protection	\$669,000	\$8.35
Carpentry	\$310,600	\$3.88
Openings	\$1,758,436	\$21.95
Finishes	\$871,828	\$10.88
Specialties	\$221,025	\$2.76
Equipment	\$236.390	\$2.95
Furnishings	\$101.000	\$1.26
Elevator	\$95,000	\$1.19
Mechanical	\$3 894 487	\$48.61
Electrical	\$1 303 550	\$16.01
Total	\$16,916,811	\$211.14

Table 3 - Total Proje	ct Cost and	Project SF	Cost, CSES	Bid Book
-----------------------	-------------	-------------------	------------	-----------------

Total Project Cost a	Total Project Cost and Square Foot Cost											
Building Systems	Cost	Cost/SF										
General Conditions	\$1,665,420	\$20.79										
Site Work	\$3,412,850	\$42.60										
Concrete	\$1,044,350	\$13.03										
Masonry	\$1,974,625	\$24.65										
Structural	\$1,952,070	\$24.36										
Moisture Protection	\$669,000	\$8.35										
Carpentry	\$310,600	\$3.88										
Openings	\$1,758,436	\$21.95										
Finishes	\$871,828	\$10.88										
Specialties	\$221,025	\$2.76										
Equipment	\$236,390	\$2.95										
Furnishings	\$101,000	\$1.26										
Elevator	\$95,000	\$1.19										
Mechanical	\$3,894,487	\$48.61										
Electrical	\$1,303,550	\$16.27										
Allowances	\$975,036	\$12.17										
Total	\$21,304,667	\$265.91										

Table 4 - RS Means SF Cost Estimate

RS Means Source Year	2009	Mo	del Number	M.560	
Pages_	198-199	Exterio	r Wall Type _	Face brick w/ CM	U Back-up
Area	80,121		Frame	Steel	
The area falls between		abovo	and	6500	0.55
		above		6500	0.5F
		Base	Cost per SF	\$163	8.53
		Perimeter /	- Adjustment	\$36	.67
	St	ory Height	Adjustment	\$1.	30
		*Adjuste	d Base Cost	\$201	50
Base Building Cost	\$201.50	. х	80,121	= -	\$16,144,382
	(No basem	ent in build	ing)		
RS means A	Additions:				
Clock System	(50 Room)		Cost:	\$39,100	
, Flagpole (, Alum. 40')		Cost:	\$3,475	
Kitchen Equipmer	nt (Broiler)		Cost:	\$4,025	
Kitchen Equipment (Di	shwasher)		Cost:	\$4,950	
Kitchen Equipment (Food	d Warmer)		Cost:	\$735	
Kitchen Equipmen	t (Freezer)		Cost:	\$3,725	
Kitchen Equipme	nt (Range)		Cost:	\$2,700	
Sound System, Speaker, C	Ceiling (50)		Cost:	\$9,550	
	Т	otal Cost w	/ additions:	\$16,212,642	
		Locatio	on Modifier:	.90	
	Tot	al SF Cost f	or Building:	\$14,591,377.35	

Table 5 - D4 Cost Estimate

	D4 Cos	st Estimate					
Division	Division Name	Percent	SF Cost (\$/SF)	Amount			
01	General Conditions	9.58%	21.18	\$1,758,114			
03	Concrete	7.06%	15.62	\$1,296,460			
04	Masonry	11.14%	24.65	\$2,045,950			
05	Metals	10.02%	22.17	\$1,840,110			
06	Wood & Plastics	4.61%	10.21	\$847,023			
07	Thermal & Moisture Protection	3.75%	8.29	\$688,196			
08	Doors & Windows	6.48%	14.34	\$1,190,207			
09	Finishes	12.75%	28.19	\$2,340,027			
10	Specialties	0.97%	2.14	\$177,394			
11	Equipment	1.77%	3.92	\$325,432			
12	Furnishings	0.98%	2.17	\$179,750			
14	Conveying Systems	0.35%	0.77	\$63,714			
15	Mechanical	21.21%	46.91	\$3,893,912			
16	Electrical	9.33%	20.63	\$1,712,454			
	TOTALS	100.00%	221.19	\$18,358,743			

Table 6 - Major Building Systems Cost, Source: CSES Bid Book

Major Building Systems										
Building										
Systems	Cost	Cost/SF								
Concrete	\$1,044,350	\$13.03								
Masonry	\$1,974,625	\$24.65								
Structural	\$1,952,070	\$24.36								
Mechanical	\$3,894,487	\$48.61								
Electrical	\$1,303,550	\$16.27								
Total	\$10,169,082	\$126.92								

Cost Discussion:

Estimate Comparisons (Excluding Sitework)											
Estimate Method	Cost	Cost/SF									
Actual Cost	\$16,916,811	\$211.14									
RS Means	\$14,591,377	\$201.50									
D4 Cost	\$18,358,743	\$221.19									
Total Average Cost	\$16,622,310	\$211.28									
Average (Means &											
D4)	\$16,475,060	\$211.35									

Table 7 - Estimate Comparisons

The above table demonstrates how different media can be used to more accurately estimate the cost of a building. Since RS Means and D4 are not detailed methods, these quick estimates are ways to convey project costs to a potential owner to give them a good outlook of the money that they will have to spend to construct a building.

One of the key areas that brought error to the RS Means estimate was that the model building did not accurately reflect Carderock Springs Elementary. The model building is based on a 1 story 45,000 square foot building while Carderock is a 3 story 80,121 square foot building. Therefore the estimate did not accurately reflect the project.

D4 Cost database has similar scope projects which gave a more accurate estimate than Means. This was expected since it was a better reflection of Carderock Elementary. The interesting correlation between the estimates is taking the average and finding a very similar number to the actual costs. This helps to prove that a variety of estimates and methods should be used to obtain an accurate approximation as to what the actual costs of a building will be on bid day.

(See page 24, Appendix 2 for references used for estimates)

E. SITE PLAN OF EXISTING CONDITIONS AND CONSTRUCTION SITE UTILIZATION

The site utilization is extremely important during the early phases of construction. During the early phases beginning in December 2008 excavation began to prepare the building pad. In March of 2009, both foundations and drilling in the geothermal well field began. All of these

Figure 8 - Satellite Image, Google Maps: This photo shows the site prior to demolition of the existing school to make way for the new facility. It is tucked away in a residential neighborhood and also borders the Capital Beltway (I-495) through a line of trees.

activities require heavy equipment which needs ample room to operate. The high amounts of equipment on site required the temporary access roads to be maintained regularly to ensure easy movement of construction equipment including dump trucks, excavators, backhoes, and telescoping forklifts. This plan represents the early phases and later plans will reflect decongestion as activities are completed and more of the site is available for storage and parking.

(See page 30, Appendix 3 for site plan)

F. LOCAL CONDITIONS

Location:

Bethesda is located in Montgomery County, Maryland along the Capital Beltway Loop (I-495). It is located approximately 30 minutes northwest from Washington, D.C. and about an hour southwest of Baltimore, Maryland. Carderock Springs Elementary School is also located minutes away from the famed Congressional Country Club. This past summer Tiger Woods hosted the AT&T National Golf Tournament which brought in tens of thousands of visitors to the area, introducing traffic congestion problems for construction vehicles. Many of the surrounding roads are residential and restricted to large vehicles. Delivery routes and deliveries must be planned accordingly to maintain community relations.

Soils and Subsurface Conditions:

The existing soil and subsurface conditions on this site were good. Conclusions reached in the geotechnical report showed that areas bored generally had firm silt and sand. There was no groundwater present that would complicate construction. The geotechnical engineer concluded that the use of spread footings with a soil bearing pressure of 3,000 PSF would be sufficient

Figure 10 - Site Excavation

on the existing undisturbed soil or compacted fill. Other findings stated that

the material found on site would be suitable for reuse as backfill if compacted correctly. The ability to reuse spoils had significant cost savings to the owner.

Construction Services and Workforce:

The availability of construction services is virtually unlimited due to the schools geographic location to Washington, D.C. Trash dumpsters in the area will generally be about \$400 per pull for unsorted trash. Recycling and salvage is also readily available. This job is intended to receive a LEED silver rating which requires detailed management over the recycling program.

Parking in this area is extremely constricted. In order to save space on the site carpooling was emphasized to reduce cars on the site. Since the school was located in a residential area, parking on the street was not an option.

The construction workforce in this area is extremely diverse. Many of the workers were of a Latina decent from Central American countries. This introduced challenges due to the language barrier. Although all of the foremen were English speaking, the inability to communicate verbally to all site personnel introduced problems at times.

G. CLIENT INFORMATION

Montgomery County Public Schools (MCPS) is the owner of the new Carderock Springs Elementary School. They service the entire county and operate the 16th largest school district in the Unites States of America. The 2009-10 projected student enrollment for the district is 142,000. The district operates 200 schools amongst its other facilities.

The mission statement of MCPS reads "To provide a high-quality, world-class education that ensures success for every student through excellence in teaching and learning." One way they are meeting this goal is through the Capital Improvements Program which concentrates on modernizing or constructing new facilities for the students of the district. On an approved modernization schedule they have projects planned looking as far ahead as 2018. For the fiscal years 2009-14 there is \$1.271 billion allocated for the Capital Improvements Program.

The size of this school district requires very large scale project considerations and planning. Due to the high number of schools currently in planning or under construction, meeting budgets is extremely critical. HESS Construction + Engineering Services was hired as the Construction Manager early in preconstruction phases to offer value engineering suggestions to help meet these goals.

Since MCPS is an experienced owner, they expect top quality work to be completed on their sites. The MCPS Department of Construction is very active in quality control. Since many schools are being built simultaneously or have been recently completed, they have a very clear understanding of what they want on each project. It is not uncommon to receive owner change orders on components that have not lived up to performance on another school they have built.

Another aspect of the Capital Improvements Plan is the commitment to sustainable design. They have two values they expect out of each sustainable project. First, to have a student friendly facility that adds to the district's mission of high quality education. And second, they are interested in the long term cost savings sustainable design can achieve. Many of their new schools feature geothermal HVAC systems and intelligent building monitoring systems. Every one of their new projects is also commissioned to ensure functionality of the engineered systems.

Overall, Montgomery County Public Schools expects great customer service and value on each of their projects. They have established relationships with many contractors, including HESS, which is very evident in the responsiveness they expect from each individual project team. It is important to maintain these relationships for both parties since the district will be building many schools in the future with construction planned through 2018.

H. PROJECT DELIVERY SYSTEM

Figure 11 - Project Organizational Chart

Project Organizatiol Discussion:

Montgomery County Public Schools (MCPS) hired HESS Construction + Engineering Services to provide preconstruction services and to be the construction manager for this project. HESS is assuming all construction risk in a Guaranteed Maximum Price (GMP) contract held with the school district. The GMP for this project is approximately \$21 million. Since this project is public, certain scopes of the project were required to be public bid by law. All bid scopes were formulated by HESS with approval by MCPS. The scopes that were public bid included sitework, concrete, steel, roofing, drywall, fire suppression, geothermal, mechanical/plumbing, and electrical. Each contractor in the public bid had to be pre-qualified by MCPS to participate. The rest of the scopes were privately bid directly to HESS. Once all bids were received, both public and private, HESS finalized the GMP which was reviewed and ultimately approved by the school district. Every contractor must be bonded and insured and produce all necessary documentation.

Each contract from the bid process is held by HESS. In total there are 36 subcontracts including the 9 subcontracts that were publicly bid. This number seems high, but the reason a General Contractor or Construction manager is hired is to gather skilled labor for high quality craftsmanship that the owner expects. Each bid scope is carefully developed based on the availability of expert construction services in the geographic area. HESS has also developed many relationships with their subcontractors allowing both parties to be competitive and successful in their ventures. These relationships provide increased value to the owner.

Unique relationships that exist on this project are that of the commissioning agent and building controls engineer. The school district holds the contracts with these agents although their work directly impacts construction on site. Collaboration and open communication has been critical in managing these relationships since each party associated has separate financial interests. These two independent contractors must work closely with MEP engineers to achieve the desired controls and automation of the mechanical and electrical systems of the building. The commissioning agent then must carefully review the engineering of these systems to ensure the design intent is met.

All construction projects require high levels of organization and efficient communication. Carderock Springs Elementary School is a very good example of this. Overall this project has over 50 parties with financial stake in the school. Each day the CM, HESS Construction + Engineering Services, must ensure that all parties are receiving the information they need or are connecting parties together to ensure success of the project.

I. STAFFING PLAN

Figure 12 - Project Hierarchy

Project Staffing:

HESS Construction + Engineering Services was hired as the Construction Manager for this project and is assuming all construction risk for the project. They assisted with preconstruction services and will see the

project through closeout and commissioning. During the construction phase, the project is staffed by operations on site.

The site team consists of the Project Manager, Superintendent, Field Engineer, and Project Administrator. As is typical in the industry the Project Manager is responsible the financials, approvals of documents, communication, and reporting. The Superintendent supervises field activity, updates the schedule, and is generally responsible for the means and methods of constructing the project. A Field Engineer will support the activities of the Project Manager and Superintendent. In this entry position, there is a focus on learning the responsibilities and participate in all the activities of a project. Lastly, the project administrator takes is responsible to document and organize the flow of information of the project. This position is in support of the Project Manager. All site personnel are responsible for safety but the Superintendent runs the daily program due to his presence in the field. A Safety Manager also performs weekly audits with Superintendent.

The Project Executive and General Superintendent act as supervisors to the Project Manager and Superintendent. They generally support the activities of the site as required. They are responsible for a group of projects and generally are not involved on a daily basis.

Departments in the office such as Accounting, Marketing, and Estimating assist activities on site. They are utilized as needed. The top Executives at HESS are highly visible. It would not be uncommon to see each member visit the project in the same week to check progress. They generally focus on procurement of new work.

J. APPENDIX 1

The next page contains the project summary schedule.

SCHEDULE SUMMARY												JO	SEPH	HIRSCH															
Activity Name	Original	Start	Finish	AM	JJ	À	S O	N	D	JF	= N	MAM	JJJ	A S	0	Ν	D	JF	M	А	M	I J	A	S	0	N D	J	F	M
	Duration							ШЦ										ШШ		ШЦ		ШШ	ШШ	ШЦ		ШШ		ШЦ	II
Carderock Springs Elen	832	01-May-07	07-Jul-10								-				-														_
HIRE ARCHITECT	0	01-May-07		🔶 ні	RE ÁRCI	HITEC	т				-																		
SCHEMATIC DESIGN	134	14-May-07	15-Nov-07				ı	<u> </u>	SCHE	MATI	CDE	ESIGN																	
DESIGN DEVELOPMENT	81	01-Nov-07	21-Feb-08								D	E\$IGN DEVE	ELOPM	ENT	-														
CONSTRUCTION DOCS	114	22-Feb-08	30-Jul-08				-				Ļ		i i i i i i i i i i i i i i i i i i i	CONS	TRUC	стіфі	v do	cs											
BID DAY	0	07-Oct-08													♦ В	ID D/	Υ												
PROCUREMENT	203	08-Oct-08	17-Jul-09																i i			į.	PRO	CUR	EMĖN	т		i i	
DEMOLITION	80	08-Oct-08	27-Jan-09				-				-							🗖 D	ĖМОЦ	ιτιφ	N								
EXCAVATION/UTILITIES	187	20-Nov-08	07-Aug-09												-				; ;				🛑 E	×CA	/ATIC	N/UT	ILITIE!	S	
SUBSTRUCTURE A	69	09-Mar-09	11-Jun-09							i.	÷										÷	\$UB	STRU	iстų́	REA		1	1	
GEOTHERMAL WELLS	129	26-Mar-09	22-Sep-09																						GEO	HER	MAL V	NEL	_S
SUBSTRUCTURE B	85	10-Apr-09	06-Aug-09												1						_		🗖 SI	JBS	FRU C	TURE	в		
SUPERSTRUCTURE A	30	12-Jun-09	23-Jul-09																			1	SUF	PERS	στρύσ	TURI	ΕA		
SUPERSTRUCTURE B	41	17-Jul-09	11-Sep-09												-								<u> </u>	_ \$	UPĖF	STRU	JCTUF	RE B	;
DECKING & SOD A	31	17-Jul-09	28-Aug-09								į													DE	CKINC	5 & S(DD A	i i	
DECKING & SOD B	34	20-Aug-09	06-Oct-09																						DE	CKINC	3 & SC	DD B	•
ENCLOSURE	144	25-Aug-09	12-Mar-10												-									_	-	-	<u> </u>	<u> </u>	
ROUGH INS A	115	08-Sep-09	15-Feb-10							i i	i													F			<u> </u>	i 1	RC
ROUGH INS B	109	23-Oct-09*	24-Mar-10																						i 📫		<u> </u>	—	
FINISHES A	127	11-Nov-09*	06-May-10																								<u> </u>		
FINISHES B	85	27-Jan-10*	25-May-10		1		1			1				1				-									ļ		
WATERTIGHT	0		12-Mar-10				-								-													-	٠
FINAL PAVE/LANDSCAPE	38	01-Apr-10*	24-May-10							Ì					-														
FINAL INSPECTIONS/START-UP	21	04-May-10*	01-Jun-10																										
PUNCHLIST A	22	07-May-10*	07-Jun-10																										
PUNCHLIST B	22	24-May-10*	22-Jun-10																										
GAS OFF PERIOD	11	23-Jun-10*	07-Jul-10								-				-														
TURNOVER BUILDING	0		07-Jul-10				 			 					:					1									

Actual Work	Critical Remaining Work V Summary	CARDEROCK SPRINGS ELEMENTARY	
Remaining Work 🔶	♦ Milestone	SCHOOL	

										OCT	ГОВІ	ER 5	, 200	9
A	M	J	J	A	S	0	N	D	J	F	М	A	М	J
ļ	ļIII													
1	1	1	• 0	r-Jui	-10,	Carc	leioc	кэр	nings		men	lary	SCIIC	
		1 1 1				1 1 1								
		1				 								
						, , ,								
		 				1 1 1								
						1 1 1 1								
		1												
	1					 								
		, , ,				 								
	1	1												
						1 1 1								
						, 								
ĖNCI	LOSI	URE												
Ų́GH	INS	A				1 1 1								
I RO	UGF	IINS	В			 								
	F		HES	A										
wat	FRT	igh1	-	-3 D		1 1 1								
		FIN	AL F	AVE	E/LAN	NDS	CAP	E						
		FII	NAL	INSF	EC	TION	s/s	TAR	T-UP					
		P	UNC	HLI	ST A	, 								
				NCH		B								
			∎ G ● T				םטו ח ווו	ING						
	<u>.</u>													
								©Р	rima	vera	Sys	tems	, Inc	

K. APPENDIX 2

The next pages contain references used to estimate project cost.

CSES - Jul 2010 - MD - Rockville									
	Prepared By:	Joe Hirsch Construction Mana	agement	Prepared For:					
		University Park, PA	A 1680		,				
		Fax:			Fax:				
	Building Sq. Size:	83000		Site Sq. Size:	1829520				
	Bid Date:	10/7/2008		Building use:	Educational				
	No. of floors:	3		Foundation:	CON				
	No. of buildings:	1		Exterior Walls:	CMU				
	Project Height:	4Z 15 A		Poof Typo:					
	1st Floor Size:	83000		Floor Type:	CON				
	13(1100) 3(26.	03000		Project Type:	NEW				
Division			Percent		Sq. Cost	Amount			
01	General Condition	ns	9.58		21.18	1,758,114			
	Irrigation		0.70		1.54	128,122			
	Curb & Gutte	r	0.40		0.89	74,020			
	Fence & Gate	es	0.23		0.51	42,147			
	Landscaping		0.29		0.63	52,488			
	Asphalt Pavir	ng	1.76		3.90	323,950			
	Earthwork		4.52		10.00	829,865			
	Utilities		1.68		3.71	307,521			
03	Concrete		7.06		15.62	1,296,460			
	Concrete		7.06		15.62	1,296,460			
04	Masonry		11.14		24.65	2,045,950			
	Masonry		11.14		24.65	2,045,950			
05	Metals		10.02		22.17	1,840,110			
	Steel Supply		5.44		12.03	998,490			
	Steel Erection	ו	4.58		10.14	841,620			
06	Wood & Plastics		4.61		10.21	847,023			
	Carpentry		3.85		8.53	707,637			
	Architectural	Woodwork	0.76		1.68	139,386			
07	Thermal & Moistu	re Protection	3.75		8.29	688,196			
	Joint Sealers		0.13		0.28	23,515			
	Roofing & Fla	ishing	3.62		8.01	664,681			
08	Doors & Windows	S	6.48		14.34	1,190,207			
	Coiling & Ove	erhead Doors	0.09		0.20	16,236			
	Doors Frame	s Hardware	1.25		2.76	229,271			
	Aluminum Wi	ndows	3.58		7.91	656,690			
	Aluminum En	trances	1.57		3.47	288,010			
09	Finishes		12.75		28.19	2,340,027			
	Acoustical Tre	eatment	1.04		2.31	191,373			
	Tile & Stone		2.07		4.58	380,122			
	Painting		0.73		1.61	133,507			
	Wood Floorin	g	0.29		0.64	52,953			
	Drywall Plaste Carpet Resine	er ous Floorina	7.53 1.09		16.65 2.41	1,382,316			
		5							
10	Specialties		0.97		2.14	177,394			
	Lockers	·	0.42		0.94	//,/24			
	Folding Partit Display Board	ions ds	0.26		0.57	47,562 52,107			
44	Eaulinment		4		2.02				
11			1.//		3.92 0.36	325,432			
	Food Service		1.61		3.56	29,092 295,541			
40	Funiching		0.00		2.47	470 750			
12	Furnisnings		0.98		2.1 / 2.17	1/9,/50			
	Casework		0.90		2.17	1/9,/50			

14	Conveying Systems	0.35	0.77	63,714
	Elevators	0.35	0.77	63,714
15	Mechanical	21.21	46.91	3,893,912
	Plumbing HVAC	9.18	20.30	1,684,740
	Fire Protection	0.89	1.98	164,138
	Ventilation/Controls	11.14	24.64	2,045,034
16	Electrical Electrical	9.33 9.33	20.63 20.63	1,712,454 1,712,454
Total Building Costs		100.00	221.19	18,358,742

Page 2

Costs per square foot of floor area

	St. Aue	2300				4000	5000			-
Exterior Mai l	L.F. Rerimder	1900	1050	1200	1350	1510	1650	1890	1970	2180
Face Brick with Concrete	Steel Frame	171.80	170.15	168.90	168.05	167.60	166.80	166.35	166.35	165.65
Block Back-up	Bearing Walls	163.25	161.60	160.40	159.55	159.10	158.30	157.85	157.85	157.15
Stucco on	Steel Frame	164.50	163.00	161.95	161.25	160.80	160.10	159.75	159.70	159.10
Concrete Block	Bearing Walls	155.95	154.50	153.45	152.70	152.25	151.60	151.25	151.25	150.65
	Steel Frame	164 4 ²	162.95	161.85	161.10	160.65	150.90	150.55	159.55	158.95
Concrete Bloc	bearing Wali	160 40	158.90	157.80	157.05	156.6(155.95	155.55	155.55	154.90
Perimete: Adj., Add of Deduct	He 100 LF.	4.30	3.55	3.05	2.70	2.40	2.20	1.95	1.80	1.65
Story Hgt. Adj., Add or Deduct	Per 1 Ft.	1.55	1.50	1.50	1.45	i.45	1.45	1,45	1.50	1.45
	For Be	sement add \$	24 20 per sc	ware foot of h	asement area					

The above costs were calculated using the basic specifications shown on the facing page. These costs should be adjusted where necessary for design alternatives and owner's requirements. Reported completed project costs, for this type of structure, range from \$78.90 to \$200.65 per S.F.

Common additives

Description	Unit	\$ Cost	Description	Unit	\$ Cost
Bleachers, Telescoping, manual			Kitchen Equipment, cont.		
To 15 tier	Seat	115-160	Dishwasher, 10-12 racks per hr.	Each	4950
16-20 tier	Seat	235 - 288	Food warmer, counter, 1.2 KW	Each	735
21-30 tier	Seat	249 - 300	Freezer, 44 C.F., reach-in	Each	3725
For power operation, add	Seat	45.50-71.50	lce cube maker, 50 lb. per day	Each	1750
Carrels Hardwood	Each	660 - 990	Range with 1 oven	Each	2700
Clock System			Lockers, Steel, single tier, 60" to 72"	Opening	191 - 310
20 room	Each	16,000	2 tier, 60" to 72" total	Opening	107 - 141
50 room	Each	39,100	5 tier, box lockers	Opening	65 - 83.50
Emergency Lighting, 25 watt, battery operated			Locker bench, lam. maple top only	L.F.	21
Lead battery	Each	282	Pedestals, steel pipe	Each	63.50
Nickel cadmium	Each	805	Seating		
Flagpoles, Complete			Auditorium chair, all veneer	Each	238
Aluminum, 20' high	Each	1650	Veneer back, padded seat	Each	288
40′ high	Each	3475	Upholstered, spring seat	Each	277
Fiberglass, 23' high	Each	1775	Classroom, movable chair & desk		65 - 120
39'-5" high	Each	3325	Lecture hall, pedestal type	Each	227 - 680
Kitchen Equipment			Sound System		
Broiler	Each	4025	Amplifier, 250 watts	Each	2350
Cooler, 6 ft. long, reach-in	Each	4925	Speaker, ceiling or wall		191
-			Trumpet	Each	365

Model costs calculated for a 1 story building with 15' story height and 45,000 square feet of floor area

School, Elementary

of fle	oor area		Gint	- Unit: Cost	Cost = PerSIE	
	UBSTRUCTURE					
1010	Standard Foundations	Poured concrete; strip and spread footings	S.F. Ground	5.03	5.03	
1020	Special Foundations	N/A	S E Slab	-	474	10.10/
2010	Basement Excavation	Site preparation for slab and trench for foundation wall and footing	S.F. Ground	.17	.17	12.1%
2020	Basement Walls	4' foundation wall	L.F. Wall	78	4.45	
	HELL CALLER OF					
	B10 Superstructure		References			
1010	Floor Construction	N/A Metal deck on open web steel ioists	S.F. Roof	5,19	5.19	4.4 %
	B20: Exterior Enclosure					
2010	Exterior Walls	Face brick with concrete block backup 70% of wall	S.F. Wall	30.85	10.87	
2020	Exterior Windows	Steel outward projecting 25% of wall	Each Each	696 3215	4.57	13.5%
2030	Rat Boofing					
3010	Roof Coverings	Single-ply membrane with flashing; polyisocyanurate insulation	S.F. Roof	7.78	7.78	6.5%
3020	Roof Openings					0.070
	NEMONS				2	1.00
1010	Partitions	Concrete block 20 S.F. Floor/L.F. Partition	S.F. Partition	8.76	4.38	
1020	Interior Doors Fittings	Single leaf kalamein fire doors 700 S.F. Floor/Door Toilet partitions	Each S.E. Floor	8/5	1.25	
2010	Stair Construction	N/A	-	-		21.0%
3010	Wall Finishes	75% paint, 15% glazed coating, 10% ceramic tile	S.F. Surface	4.08	4.08	
3020	Ceiling Finishes	O3% vinyi composition tile, 23% carpet, 10% terrazzo Mineral fiber tile on concealed zee bars	S.F. Floor S.F. Ceiling	6.38	6.38	
Da s	ERVICES				<u>ا</u>	
	D10 Conveying					
1010	Elevators & Lifts	N/A		-	-	0.05
1020	Escalators & Moving Walks	N/A	-	-	-	0.0 3
2010	D20 Plumbing	Vitebon, bothroom and service fixtures, supply and arginage	Fach	304	10.03	;
2010	Domestic Water Distribution	Gas fired water heater	3.F. Floor	48	-8	0 ,3%,
2040	Rain Water Drainage	Root drains	3.F. Roof	1	1	
3010	D30 HVAC	Oil fired bot water, wall fin radiation	S.F. Floor	9.73	3.73	
3020	Heat Generating Systems	N/A	-	-	-	
3030	Cooling Generating Systems	N/A	-		-	17.9%
3050 3090	Ierminal & Package Units Other HVAC Sys. & Equipment	Split systems with air cooled condensing units N/A	S.t. Hoor	12.60	12.60	
	D40 Fire Protection					
4010	Sprinklers	Sprinklers, light hazard	S.F. Floor	2.33	2.33	2.2%
4020	Standpipes	Standpipe	S.F. Floor	.30	.30	- Mary Martin
5010	Electrical Service/Distribution	800 ampere service, panel board and feeders	S.F. Floor	1.41	1.41	
5020	Lighting & Branch Wiring	High efficiency, fluorescent fixtures, receptacles, switches, A.C. and misc. power	S.F. Floor	9.91	9.91	12.4%
5030	Communications & Security	Addressable alarm systems, internet wiring, communications systems and emergency lighting	S.F. Floor	3.37	3.37	12.470
			<u></u>	.00	.00	
1010						a fer hinner A fer hinner
1010	Commercial Equipment	N/A Chalkboards	S E Floor		13	
1030	Vehicular Equipment	N/A		-	-	0.1 %
1090	Other Equipment	N/A		_		
			A. A.	e ^{ver} verk	and grades	. And the second
1020	Integrated Construction	N/A	-	-	_	00%
1040	Special Facilities		-	-	<u> </u>	12.000.00000000000000000000000000000000
G . I						
			Sub	o-Total	118.93	1 00%
	CONTRACTOR FEES (General 1	Requirements: 10%, Overhead: 5%, Profit: 10%)		25%	29.76	
	ARCHITECT FEES	• • •		7%	10.41	

Location Factors

A STATE

STATE/ZIP	CITY	Residential	Commercial		STATE/ZIP	CITY	Residential	Commercial
STATES & POSS.					KENTUCKY (CONT	TD)	Ôr.	
969 IDAHO 832 833 834	Guam Pocatello Twin Falls Idaho Falls	.97 .86 .72 .74	1.07 .90 .82 .83		406 407-409 410 411-412 413-414 415-416	Frankfort Corbin Covington Ashland Campton Pikeville	.85 .75 .97 .91 .76 .83	.89 .81 .96 .94 .82 .89
835 836-837 838	Lewiston Boise Coeur d'Alene	.96 .86 .93	.97 .90 .95		417-418 420 421-422 423 424 425	Hazard Paducah Bowling Green Owensboro Henderson	.72 .89 .89 .86 .90	.78 .89 .90 .89 .89
600-603 604 605 606-608	North Suburban Joliet South Suburban Chicago	1.11 1.14 1.11 1.20	1.09 1.10 1.09 1.15		425-426 427 LOUISIANA 700-701	Elizabethtown	.70 .87	.02 .87 80
610-611 612 613 614 615-616 617 618-619 620-622	Rockford Rockford La Salle Galesburg Peoria Bloomington Champaign East St. Louis	1.06 .97 1.05 .99 1.03 1.01 1.03 1.01	1.05 .97 1.00 .97 1.01 1.01 1.00 1.01 .99 .95		703 704 705 706 707-708 710-711 712 713-714	Harmond Lafayette Lake Charles Baton Rouge Shreveport Monroe Atexandria	.82 .77 .80 .82 .82 .84 .78 .73 .73	.85 .81 .83 .84 .86 .81 .80 .80
625 625 625627 628 629	Effingham Decatur Springfield Centralia Carbondale	.98 1.01 1.01 .99 .95	.95 .99 1.00 .96 .93	.	MAINE 039 040-041 042 043 044	Kittery Portland Lewiston Augusta Bangor	.86 .88 .87 .88 .86	.85 .88 .87 .87 .87
INDIANA 460 461-462 463-464 465-466 467-468 465	Anderson Indianapolis Gary South Bend Fort Wayne	.90 .93 1.01 .90 .89	.90 .93 .99 .90 .88		045 046 047 048 049 MARYI AND	Bath Machias Houlton Rockland Waterville	.86 .87 .88 .87 .86	.86 .85 .86 .85 .86
405 470 471 472 473 474 475 476 476 477 478 479	New Albany Columbus Muncie Bloomingtor Washingtor Evansville Terre Haute Lafayette	.85 .85 .90 .91 .92 .89 .90 .90 .91	.85 .85 .85 .86 .89 .89 .88 .91 .92 .89		206 207-208 209 210-212 214 215 216 217 218 219	Waldorf College Pari Silver Spring Baltimore Annapolis Cumberlanc Easton Hagerstown Salisbury Elkton	.85 .86 .90 .84 .86 .67 .86 .73 .73 .79	.88 .90 .93 .91 .88 .73 .89 .77 .89
IOWA 500-503,509 504 505 506-507 508 510-511 512 513 514 515 516 520 521 522-524 525	Des Moines Mason City Fort Dodge Waterloo Creston Sioux City Sibley Spencer Carroll Council Bluffs Shenandoah Dubuque Decorah Cedar Rapids Otturnwa	.89 .76 .75 .78 .79 .84 .72 .73 .73 .81 .73 .84 .74 .92 .82	.89 .81 .80 .81 .82 .86 .76 .77 .77 .89 .77 .89 .77 .91 .85		MASSACHUSETTS 010-011 012 013 014 015-016 017 018 019 020-022, 024 023 025 026 027	Springfield Pittsfield Greenfield Fitchburg Worcester Framingham Lowell Lawrence Boston Brockton Buzzards Bay Hyannis New Bedford	1.04 1.02 1.00 1.11 1.12 1.13 1.13 1.13 1.20 1.12 1.10 1.10 1.12	1.01 .99 .98 1.04 1.07 1.07 1.10 1.09 1.15 1.08 1.04 1.06 1.07
526 527-528 KANSAS 660-662	Burlington Davenport Kansas City	.85 .95 98	.85 .95 .96		MICHIGAN 480,483 481 482 484-485	Royal Oak Ann Arbor Detroit Flint	1.00 1.01 1.06 .97	.97 .98 1.03 .97
664-666 667 668 669 670-672 673 674 675 676 676 677 678 679	Topeka Fort Scott Emporia Belleville Wichita Independence Salina Hutchinson Hays Colby Dodge City Liberal	.79 .87 .74 .78 .79 .84 .77 .78 .81 .82 .81 .79	.265 .86 .81 .83 .84 .83 .84 .83 .80 .83 .80 .83 .83 .83		486 487 488-489 490 491 492 493,495 494 496 497 498-499	Saginaw Bay City Lansing Battle Creek Kalamazoo Jackson Grand Rapids Muskegon Traverse City Gaylord Iron Mountain	.91 .92 .96 .92 .91 .92 .91 .92 .80 .87 .78 .81 .87	.92 .92 .96 .92 .91 .92 .83 .83 .84 .84 .90
KENTUCKY 400-402 403-405	Louisville Lexington	.91 .88	.92 .88		MINNESOTA 550-551 553-555 556-558	Saint Paul Minneapolis Duluth	1.11 1.15 1.07	1.07 1.10 1.02

.

L. APPENDIX 3

The next page contains the project site plan.

M. APPENDIX 4

The next pages contain the Capital Improvements Program of Montgomery County Public Schools.

Modernization Schedule for Assessed Schools

Schools	Year	Year	FACT	Approved
Elementary	Built	Renovated	30016	Schedule
Cashell	1969		1292	8/2009
Crosthayon	1962		1272	8/2009
Cardorock Springs	1902		1216	8/2010
	1900		1210	8/2010
Earmland	1900		1317	8/2009
	1905		1417	0/2011
Seven Locks	1964		1344	1/2012
Cannon Road	1967	4.0-0	1357	1/2012
Garrett Park	1948	1973	1388	1/2012
Glenallan	1966		1418	8/2013
Beverly Farms	1965		1427	8/2013
Weller Road	1953	1975	1461	8/2013
Bel Pre	1968		1476	8/2014
Candlewood	1968		1489	1/2015
Rock Creek Forest	1950	1971	1492	1/2015
Wayside	1969		1502	8/2016
Brown Station	1969		1516	8/2016
Wheaton Woods	1952	1976	1525	8/2016
Potomac	1949	1976	1550	1/2018
Luxmanor	1966		1578	1/2018
Maryvale	1969		1578	1/2018
Sandburg	1962		****	TBD
Middle				
Francis Scott Key	1967		1389	8/2009
Cabin John	1968		1422	8/2011
Herbert Hoover	1966		1427	8/2013
William H. Farquhar	1968		1434	8/2015
Tilden @ Woodward	1966		1455	8/2017
Eastern	1951	1976	1472	TBD
E. Brooke Lee	1966		1479	IBD
Fign Walter Johnson	1056	1077	1405	8/2000
Paint Branch	1950	1977	1403	8/2009
Gaithersburg	1951	1978	1214	8/2014
Wheaton	1954	1983	1220	8/2014
Seneca Valley	1974	1705	1254	8/2017
Thomas S. Wootton	1970		1301	TBD
Poolesville	1953	1978	1362	TBD
Col. Zadok Magruder	1970		1471	TBD
Damascus	1950	1978	1496	TBD

Note: Schools were assessed for modernization in 1992, 1996, and 1999. There is some overlap in scores due to the four year gap in dates of the assessments. Schools on the 1992 list would have been four years older and may have had lower scores if the school from both lists were assessed at the same time. No funds have been allocated to complete the assessments of the remaining elementary and middle schools.

TBD Projects that do not have planning and/or construction expenditures in the County Council Adopted FY 2010 Capital Budget and Amended FY 2009–2014 CIP have completion dates to be determined (TBD). This TBD status will be revised in a future CIP.