40 Gold Street Residential Building

New York, New York

TECHNICAL REPORT 3

Jesse Cooper – Structural Option Thesis Consultant: Dr. Boothby Date of Submission: December 1st, 2009

Jesse Cooper – Senior Thesis Page1

Table of Contents

I.	Executive Summary
II.	Introduction4
III.	Structural System Overview
IV.	Codes, Design Standards and References14
V.	Design Loads
VI.	Calculated Wind Loads
VII.	Calculated Seismic Loads
VIII.	Load Cases and Combinations
IX.	Preliminary Lateral System Analysis
X.	Lateral Load Path Schematic
XI.	3D Analysis
XII.	Wind Drift Check
XIII.	Seismic Drift Check
XIV.	Design Confirmation
XV.	Overturning Moments
XVI.	Hand Calculations – Portal Method
XVII.	Strength Checks
XVIII.	Conclusion
XIX.	Appendix A – Wind Calculations
XX.	Appendix B – Seismic Calculations72
XXI.	Appendix C – Preliminary Analysis Calculations

Executive Summary

40 Gold Street is a slender 14 story residential building located in Manhattan, New York. The lateral system is comprised of 5 braced frames and 4 moment frames. In the third technical report, a detailed analysis of the lateral system was performed to confirm the design according to various criteria including strength, drift, story drift, and overturning moments.

With the aid of two preliminary analysis methods and a 3D ETABS model, the center of rigidity and relative stiffness values were first determined. According to the results, torsion effects are minimal and the center of rigidity is nearly equivalent to the center of mass.

In order to properly confirm the existing lateral design, several loading combinations were defined and applied to the ETABS model. Considering the 7 basic load combinations of ASCE7-05 section 3.2.3 and the 4 wind cases defined in ASCE7-05 figure 6.9, 38 different load combinations were applied to the model. By comparing story shear and story drift output, the controlling loading conditions in both the X and Y direction were determined to be Wind case 1 in conjunction with either <u>ASCE7-05 equation 4</u>: 1.2D + 1.6W + L + .5Lr or <u>ASCE7-05 equation 6</u>: .9D + 1.6W.

Using unfactored wind loads calculated in technical report 1, drift and story drifts under the 4 ASCE7-05 wind cases were checked for serviceability issues. Based on the ETABS output, wind case one controls, and the corresponding drift and story drifts did not exceed the allowable drift: $\Delta_{WIND} = H / 400$. 3D output data for ASCE 7-05 Load Combinations 5: **1.2D** + **1.0E** + **1.0L** and load combination 7: **.9D** + **1.0E** were examined to verify seismic induced story drifts do not exceed the allowable drift: $\Delta_{SEISMIC} = .015$ hsx. As expected, the design satisfies the stability requirement associated with seismic loading.

Based on inspection, it was determined the braced frames possess the largest overturn potential. After comparing uplift forces with the counteracting dead loads, it was determined that 8 different locations require pile caps with uplift resistance. With a low total building weight of just 4,681 kips, overturning due to lateral loads was expected to be an issue.

The last stage of design confirmation required strength checks of critical cross braces and lateral columns. Based on inspection of 3D output, braced frame BR-3 resists the largest story shears under the controlling loading condition. As a result, member checks of braced frame BR-3 were assumed to represent an overall design check of the lateral system.

In conclusion, the existing lateral system design is adequate meeting all standard criteria and requirements. With a spread out lateral system, torsion effects are minimal. Wind loads generate the largest story shears and story drifts. The largest area of concern pertains to the overturning moment; however, appropriately designed pile caps (as shown in report) provide an easy solution to uplift issues.

Introduction

40 Gold Street is an impressive building that offers retail and residential space in lower Manhattan, which is one of the fastest growing residential sections of New York City. The construction of 40 Gold Street began in March 2009 and will conclude in January 2010. The building replaces an old two story brick building and is nestled tightly between two existing structures, a narrow alley (Eden's Alley), and Gold Street. The constricted area presented special restrictions and challenges that greatly affected the final design and construction process.

Standing 175' above grade, the 40 Gold Street Building is a 14 story structure comprised of 5,900 square feet of retail space and 62,000 Square feet of residential space. The lowest two floors are primarily dedicated to retail space and serve as a podium for the slender 14 story residential tower. The lowest floor, referred to as the cellar, is below grade and functions as extra retail space as well as space for mechanical and electrical equipment. Retail spaces are appropriately located at the ground level and are highlighted with traditional floor to ceiling storefront windows to attract customers from the nearby streets and sidewalks. The storefront glazing is accompanied by a pre fabricated assembly of dark stone cladding and a large bronze plaque that boldly recognizes the building as 40 Gold Street. In addition to retail space, there is a residential lobby and mailroom.

The residential tower is comprised of 12 residential floors. Identical in layout, floors 2-9 are comprised of 2 studio apartments and 3 2 bedroom apartments that all encompass the vertical circulation node located at the core of the tower. Two elevators and a stairwell serve as the building's vertical circulation. Floors 10-13 are identical as well, but have 4 2-bedroom apartments and no studio apartments. At the top of the building, a level referred to as the penthouse provides the building's residents with two spacious recreational terraces sheltered by a gold painted metal trellis, a large recreational room enclosed by a window wall system, a kitchenette, a laundry room, and bathrooms.

Introduction Continued

The trapezoidal shape of the building closely reflects the shape of the site, which is to be expected when working with such a constricted space. The interior spaces are laid out in a rectangular manner, and the exterior shell is also rectangular. The residential tower boasts a sleek modern appearance with metal exterior cladding and gold toned trespa paneling.

Overall, the final design solution created by Architects Meltzer/Mandl and Structural Engineers Severud Associates makes the most of a small site, and is certainly playing a major role in the successful rebuilding of Lower Manhattan.

Structural System Overview

Foundations

The site excavation and foundation work required a great deal of design work and creative planning compared to the average building project. As mentioned in the introduction, the site is very constricted with two existing structures against the property line, and two streets (Eden's Alley and Gold Street) are in close proximity. During excavation and foundation work, the adjacent streets required bracing and shoring for temporary and long term support. In addition, a major foundation design goal was to circumvent the need to underpin the adjacent existing structures. As a result, the depth of the various foundation components varies based on location relative to the surrounding structures and existing foundation systems.

The foundation employs a system of 101 strategically positioned micro piles. There are (88) 75 Ton compression capacity piles that are 35' long and (13) 35 Ton compression capacity piles that are 25' long. Various pile caps are used to distribute building loads to the piles: they generally range from 36"-39" in depth.

The cellar floor system is an 8" slab on grade with #5 bars @ 12" O.C. top/bottom running both directions. Resting on 6" of crushed stone, the slab on grade is attached to the pile caps via an assortment of connections. As seen in figure S-1, the typical pile cap is anchored to the column base plates by 6-#8 bars, and the pile caps are directly anchored to the floor slab by #5 @ 18" on each side of the column (minimum of 4 - #5 required per side). The pile caps subjected to uplift require tension pile anchorage as seen by figure S-2.

Floor System

The floor system employed in the 40 Gold Street building design is primarily slab on composite metal decking. Aside from the cellar floor system, the floor system is a $2^{\circ} - 18$ gage metal decks with $2^{1}/2^{\circ}$ light weight concrete topping as shown below in figure S-3. This one-way floor system operates to transfer gravity loads down to the supporting beams, girders, and columns.

The floor slab is reinforced with #4 @12" bars, and $6x6 / W3 \times W3$ welded wire fabric is used with a ³/₄" clearance from top of slab. All concrete used has 4000 psi design strength. In several cases throughout the building, masonry partitions rest directly on the floor system. The areas where the partitions run parallel to the deck span, 2 - #6 bars are required to run on each side of the wall the full length of the wall to the first support beyond each end of the wall. Also, for the situation where the masonry partitions run perpendicular to the deck span, # 4 reinforcement bars run the full extent of the wall in each flute of the metal deck floor system.

The concrete is attached to the metal decking by equally spaced shear connectors. The shear studs extend a minimum of $1 \frac{1}{2}$ " above the top of the metal decking. For the most part, the floor system throughout the building requires $\frac{3}{4}$ " headed shear connectors (*a*) 1' 0" or less.

The cellar floor consists of a two-way 8" slab on grade with #5 (a) 12" on center, top and bottom each way. The cellar slab rests on a 6" layer of crushed stone. More importantly, the cellar floor which is sub grade required a change in elevation as a consequence of closely surrounding structures and foundations. At the exterior sections of the cellar floor, the slab is raised up relative to the adjacent existing foundation. A slab depression of approximately 8'0" exists, allowing the center part of the cellar floor to rest much lower below grade.

Floor Framing

The floor system is supported by a uniform grid like layout of W-shape beams and girders. As seen below in figure S-4, there are only a few irregularities, in which beams span diagonally across the plan. These beams are designed with moment connections, and serve as a part of lateral resisting moment frames. Figure S-4 represents the floor framing at level 2, and this same general layout is repeated throughout the rest of the building. Although the bay sizes vary, the average bay size is approximately 15' 8" x 14' 0".

Gravity System

The gravity loads are resisted by a steel frame system. Figures **F-2** and **F-3** provide a close up look at the unfinished steel frame structure. The majority of the vertical structural elements are Wshapes aside from a few HSS4/4/3/8. The column sizes are nearly constant from level to level, but a slight reduction in size is observed near the top of the structure. The column splices are all located at 2' -6" above each finished floor. Almost all columns rise two floors. The steel frame not only resists the gravity loads transferred from the floor system, but also supports the entire exterior envelope. The beams and girders are all W-shapes and are all treated with spray on fireproofing. The beams and girders range from W10's to W14's; however, at the second level several beams project 2 feet outward and behave as cantilevers to support the 13 stories above. Each cantilever is highlighted in figure S-5. These members are as large as W24x279's.

Sustainability

Although the overall design wasn't driven by sustainability, the 40 Gold Street building includes several green features throughout the design. The apartments are equipped with energy star appliances. In addition, the windows are assembled with low-emissive glass. The roofing materials are designed to prevent or minimize the heat island effect, and the building envelope is highly proficient for thermal and moisture protection. The exterior façade also has an 8" metal fin projecting out from above each of residential windows, which serves as a shade device.

Building Envelope

Floors 2-14 are enclosed by a basic non-bearing exterior metal panel wall assembly. The general composition of the wall shown in figure **S-6** is 2" metal cladding (exterior), air and moisture barrier, 5/8" exterior dens-glass sheathing, 6" metal studs, 6" batting insulation, and 5/8" gypsum board (interior).

The sub grade spaces, also referred to as the cellar, are enclosed by a cast-in-place concrete wall. A detail of the enclosure can be seen in Figure S-7. Retail areas on the street level are enclosed by a large aluminum and glass storefront anchored to a basic CMU wall assembly which consists of 2" stone panel (exterior), waterproofing membrane, 6" CMU, 1" rigid insulation, 5/8" gypsum on $1\frac{1}{2}$ " furring channel (interior). The storefronts are also equipped with a roll-down gate for security purposes.

Roof System

40 Gold Street features an ordinary flat roof, whose framing is comprised primarily of W12x22 and W12x30 beams supporting the typical $2^{"}-18$ gage metal decks with $2\frac{1}{2}$ " light weight concrete topping. Mechanical equipment is located on the roof and C channels are used for additional support. The roof terraces feature a slight different assembly. The terraces feature the Inverted Roof Membrane Assembly (IRMA) that works in conjunction with $2^{"}x2^{"}$ Concrete Pavers on pedestals. The insulation layer is an extruded polystyrene layer placed over the roofing membrane.

Lateral System

The lateral system of 40 Gold Street consists of 5 braced frames and 4 moment frames. Figure S-10 shows the moment frames, which span east to west across the building, in red. The braced frames are shown in green. The moment frames are skewed since several of the building's footings are offset to avoid disturbing the adjacent structural foundations. The moment frame along column line A.9 is skewed due to architectural constraints. Figure S-8 illustrates the typical connections and structural members that form the braced frames, and figure S-9 provides an elevation view of the braced frames are HSS shapes. The lateral system is laid out symmetrically. In addition, the building's shape and weight distribution is symmetrical. As a result, assuming the rigidity of each lateral resisting frame is not too variable; the center of rigidity is located near the center of mass. In consequence, the potential for torsion effect due to seismic load is lessened.

LATERAL SYSTEM LAYOUT

Codes, Design Standards:

• Original Design:

Building Code New York City Building Code

Lateral Loads Seismic: New York City Building Code

Wind: American Society of Civil Engineers (ASCE), ASCE7-02

Design Load and Standards New York City Building Codes

• Thesis Design:

American Society of Civil Engineers (ASCE), ASCE7-05

Building Code

International Building Code (IBC) 2006

Lateral Loads

American Society of Civil Engineers (ASCE), ASCE7-05 International Building Code (IBC) 2006

Design Code References

Steel Construction Manual 13th edition, American Institute of Steel Construction ACI 318-05, Building Code Requirements for Structural Concrete, American Concrete Institute

Required Loads

Building Dead Loads were provided by the Structural Engineering Firm Severud Associates.

DEAD LOADS					
Floor Level	Building Component (Location)	Design Dead Load			
	Slab	34 psf			
Ground Floor	Steel	4 psf			
	Ceiling / Mechanical Equip.	8 psf			
	Partitions	12 psf			
	Miscellaneous Dead Load (Lobby)	38 psf			
	Miscellaneous Dead Load (Retail)	20 psf			
	Slab	34 psf			
	Steel	4 psf			
2nd Floor	Ceiling / Mechanical Equip.	3 psf			
	Partitions (residential areas)	12 psf			
	Miscellaneous Dead Load (Roof Terrace)	30 psf			
	Slab	34 psf			
2rd Oth Eleor	Steel	4 psf			
310 - 301 11001	Ceiling / Mechanical Equip.	3 psf			
	Partitions (residential)	12 psf			
	Slab	34 psf			
10th - 13th Floor	Steel	4 psf			
10(11-15(111100)	Ceiling / Mechanical Equipment	3 psf			
	Partitions (residential)	12 psf			
	Slab	34 psf			
	Steel	4 psf			
	Ceiling / Mechanical Equip. (terrace)	3 psf			
Penthouse	Ceiling / Mechanical Equip. (Mechanical Area)	8 psf			
	Ceiling / Mechanical Equip. (Recreational Area)	8 psf			
	Miscellaneous Dead Load (Roof Terrace)	30 psf			
	Miscellaneous Dead Load (Mechanical Area)	15 psf			
	Slab	25 psf			
Poof	Steel	4 psf			
NUUI	Ceiling/Mechanical Equip.	8 psf			
	Miscellaneous Dead Load (Roof Terrace)	10 psf			
	Slab	34 psf			
Bulkhood	Steel	4 psf			
Buikneau	Ceiling/Mechanical Equip.	8 psf			
	Miscellaneous Dead Load (Roof)	25 psf			

Building live loads were determined by consulting ASCE 7. The actual design loads used by Severud Associates were verified.

Area	Actual Design Load	Thesis Design Load (ASCE 7-05)	Code/Table
Residential	40 psf	40 psf	
Retail	100 psf	100 psf	A COE7 05 T-1-1-
Corridors 100 psf		100 psf	ASCE/-05 Table 4-1
Roof	60 psf	60 psf	
Terraces/Pedestrian	100 psf	100 psf	

т - 2

WIND LOAD CALCULTATIONS

The actual wind loads calculated for the 40 Gold Street Design were done according to ASCE7-02. For the thesis calculations, wind load pressures were obtained by following Method 2 for the main wind-force resisting system for enclosed buildings and referencing the IBC 2006 1609.1.1 and Chapter 6 of ASCE/SEI 7-05 (ASCE7). The results of these wind calculations are illustrated in the following figures. Calculations can be viewed in their entirety in Appendix A. Figure **F-4** and **F-5** show the calculated story forces in the X and Y direction respectively.

East / West Wind Diagram (X Direction):

F- 4

East / West Wind Diagram (X Direction):

SEISMIC INTRO

The following table **T-3** and corresponding calculations found in Appendix B, were obtained in accordance with IBC 2006 Section 1613.1 and by Referencing Chapters 12 and 13 of ASCE7-05. The 40 Gold street building is a slender steel framed structure located in Manhattan, New York. To quickly summarize the following tables, it is important to note the site class was recorded as D, the Seismic Design Category (SDC) was determined to be E, and the overall building weight was only 4,681,330 lbs (4,681.33 kips).

Based on the IBC Chapter 6 seismic flowcharts, it was determined that the Modal response spectrum Analysis should be conducted to determine seismic loads. However, for the purposes of this Thesis project, performing the analysis is not practical. Analytical procedures were therefore conducted according to the Equivalent Lateral Force Procedure. Refer to Appendix B for all calculations and tables pertaining to the seismic load determination. Figure **F**-6 on the following page displays the seismic story forces.

Flooritour	Height (feet)	Total Weight (kips)	Exponent Related To Structure	Weight*Height ^k	14/11*hule / (514/11*hule)	Base Shear (kips)	Lateral Seismic Force	Story Shear
FIOUL Level	hx	Wx	к	Wx*hx ^k		v	Fx (kips)	Vx (kips)
Ground / 1st	0	547.094	2	0	0	46.81	0	46.8133
2nd Floor	21.667	357.782	2	167963.9402	0.004158738	46.81	0.19468427	46.8133
3rd Floor	32.4167	309.122	2	324838.5164	0.008042907	46.81	0.376515038	46.61861573
4th Floor	43.1667	303.911	2	566296.8132	0.014021345	46.81	0.656385421	46.24210069
5th Floor	53.9167	303.911	2	883472.4799	0.021874522	46.81	1.024018574	45.58571527
6th Floor	64.667	301.493	2	1260789.725	0.031216788	46.81	1.461360853	44.5616967
7th Floor	75.4167	301.493	2	1714795.296	0.042457834	46.81	1.987591322	43.10033584
8th Floor	86.167	299.5	2	2223713.191	0.055058493	46.81	2.577469772	41.11274452
9th Floor	96.9167	299.5	2	2813157.598	0.069652966	46.81	3.260685192	38.53527475
10th Floor	107.667	296.74	2	3439864.35	0.085170043	46.81	3.98709079	35.27458956
11th Floor	118.4167	296.74	2	4161041.053	0.103026169	46.81	4.82299497	31.28749877
12th Floor	129.167	295.67	2	4932991.954	0.12213945	46.81	5.717750697	26.4645038
13th Floor	139.9167	295.67	2	5788237.845	0.14331509	46.81	6.709052291	20.7467531
Penthouse	150.667	268.21	2	6088513.145	0.150749819	46.81	7.057096505	14.03770081
Roof	162.667	146.8065	2	3884581.158	0.096181102	46.81	4.502554804	6.980604304
Bulkhead Roof	170.667	73.4	2	2137938.307	0.052934732	46.81	2.4780495	2.4780495
				$\Sigma W x^{*} h x^{k} = 40.388.195.37$				

т-3

Jesse T. Cooper – Structural Option Thesis Consultant – Dr. Boothby

Seismic Diagram

LOAD CASES AND COMBINATIONS

In this report, strength, drift, story drift, and overturning moment checks were performed by analyzing the structure under the following ASCE7-05 (section 2.3.2) load combinations:

- 1. 1.4 (D + F)
- 2. $1.2 (D + F + T) + 1.6(L+H) + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } .8W)$
- 4. $1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. $1.2D \ 1.0E + L + 0.2S$
- 6. .9D + 1.6W + 1.6H
- 7. .9D + 1.0E + 1.6H

Design wind pressures were applied according to the following 4 ASCE7-05 (figure 6.9) wind loading cases:

 $e_x = \pm 0.15Bx$ $e_y = \pm 0$

PRELIMINARY LATERAL SYSTEM ANALYSIS

GOAL: Two approximate lateral force analysis methods were performed in order to acquire a better understanding of the lateral system in 40 Gold Street. Included in the preliminary results are approximated relative stiffness values, predicted lateral force distributions, and estimated locations for the center of rigidity (C.O.R.) and center of mass (C.O.M.). The primary purpose of these approximations is to serve as "expected" target values for comparison and verification of the 3D ETABS model output. Additionally, although the preliminary results are not exact, the values provide assistance when troubleshooting and interpreting the 3D model. Finally, the preliminary analysis results provide useful insight when determining the relevance of each load combination and case.

METHOD ONE: (See Appendix C for All supporting calculations)

Governed by the inverse relationship between displacement (Δ) and stiffness (k), method one calculates relative stiffness values with the aid of a 2D modeling procedure. First, separate SAP2000 2D models were created for each moment frame and braced frame. As shown in figure **F-11** below, a 1 kip lateral load was assigned to the top left joint of each frame. The horizontal translational displacement (U₁) of the top right joint was obtained for each frame under the 1 kip loading. Stiffness values for each frame were determined using the inverse of displacement: **K** = **P** / Δ_P where K is in kips/inch.

For this procedure, the lateral system was modeled with a simplified geometry. As shown in figure **F-12**, the irregular geometries of the moment frames are not considered. Since the lateral elements only participate in resisting loads acting along a single axis parallel to its layout, modeling the moment frames as shown below greatly reduces the complexity of the calculations. Unfortunately, this introduces a source of error to the moment frame stiffness values, since each moment frame is now modeled entirely parallel to the Y direction. As discussed with Penn State Architectural Engineering faculty, this simplification is acceptable for approximate calculations and the error is expected to be minimal since moment frames are typically 10 times more flexible than brace frames of similar geometry.

As illustrated in figure **F-12**, the distance of each lateral element with respect to the specified origin (lower left corner) was determined. With these distances and the relative stiffness values, the center of rigidity was determined.

Since the building mass is evenly distributed, the center of mass was assumed equivalent to the geometric center. The X and Y eccentricities were then determined based on the relative distances between the center of rigidity and center of mass. Approximate lateral load distribution was determined by accounting for both the direct shear forces and torsion effects.

- Direct Shear Force Equation:
 - $F_{ix \text{ direct}} = (k_{ix} * P) / (\sum K_{ix}) \text{ and } F_{iy \text{ direct}} = (k_{iy} * P) / (\sum K_{iy})$ $F_{i \text{ torsion}} = (k_{i*}d_i * P_x * e_y) / (\sum k_i d_i^2)$
- Total Forces:

Torsion Forces:

 $F_i = F_{idirect} \pm F_{itorsion}$

Additional Comments Regarding Computer Modeling: The material and structural shapes were all properly defined and assigned. As instructed, the braces were modeled as pinned by releasing the moments in the 2-2 and 3-3 directions. Also, base supports were assigned restraints for all 6 degrees of freedom, and the beams and columns are all modeled in the correct orientation.

Summary of Method One Calculations:

		Ν								
APPROXIMATE FRAME STIFFNESS AND CENTER OF RIGIDTY CALCULATION									CENTER OF RIGIDITY COORDINATES	
Story	Load Direction	Frame	Load, P (kips)	Displacement, Δ (inches)	Stiffness, Kiy (kips / in)	Stiffness Factor	Xi (in)	KiyXi (kips)	х	
		BR-1	1	0.3177	3.1476	0.134	0	0		
		BR-2	1	0.2807	3.5625	0.1518	929	3309.5625		
	Y	MF-1	1	0.304	3.289	0.1401	140	460.46		
1		MF-2	1	0.3269	3.059	0.1303	345	1055.355	X = ΣKiyXi / ΣKiy = 495.73 " = 41.31'	
		MF-3	1	0.1985	5.037	0.2146	557	2805.609		
		MF-4	1	0.1861	5.373	0.2289	745	4002.885		
					∑Kiy = 23.4681			∑KiyXi = 11,633.8715		
Story	Load Direction	Frame	Load, P (kips)	Displacement, ∆ (inches)	Stiffness, Kix (kips/in)		Yi (in)	KixYi (kips)	Y	
		BR-3	1	0.1674	5.9737	0.3507	453	2706.0861		
1	Х	BR-4	1	0.1879	5.3219	0.312	278	1479.4882	V - 5KivVi / 5Kiv - 202 08" - 25 22	
1		BR-5	1	0.1742	5.74	0.3369	173	993.02	1 - 2NIX11 / 2NIX = 303.98 = 25.33	
					∑Kiy = 17.0356			∑KiyXi = 5178.5943		

т-4

Center of Mass (x,y) : (38'-8", 26'-0")

Center of Rigidity (x,y): (41'-4", 25'-3")

Eccentricity (x,y): (2'-8",0'-7")

METHOD ONE - CALCULATION SUMMARY								
DIRECT SHEAR FORCES								
Story	Direction	Frame	Kix	Load	Fix = Kix * Px / ∑Kix			
1	Х	BR-3	5.9737	Px	.3506Px			
		BR-4	5.3219	Px	.3124Px			
		BR-5	5.74	Px	.3370Px			
			∑Kix = 17.0356					
Story	Direction	Frame	Кіу	Load	Fiy = Kiy*Py / Kiy			
		BR-1	3.1476	Ру	.134Py			
		BR-2	3.5625	Ру	.1517Py			
1	v	MF-1	3.289	Ру	.14Py			
T	T	MF-2	3.059	Ру	.1302Py			
		MF-3	5.037	Ру	.2144Py			
		MF-4	5.373	Ру	.2287Py			
			∑Kiy =23.5681					

METHOD ONE - CALCULATION SUMMARY														
TORSIONAL FORCES														
Story	Direction	Frame	Kix (kips / in)	di (ft)	Load	ey (ft)	J = ∑kidi ² (kips/in) ft ²	fit = kidiPxey / J (kips)						
		BR-3	5.9737	12.41667				.00248Px						
1	Х	BR-4	5.3219	2.0833	Рх	0.58333	17,444.31	.000371Px						
		BR-5	5.74	10.8333				.002079Px						
Story	Direction	Frame	Kiy (kips / in)	di (ft)	Load	ex (ft)	J = ∑kidi2 (kips/in) ft2	fit = kidiPyex / J (kips)						
	-	BR-1	3.1476	41.333	Py 2.66667	Py 2.66667	Ру 2.66667	Ру 2.66667						.0198Py
		BR-2	3.5625	36.0833										
1	v	MF-1	3.289	29.6667					Py 2.66667	Py 2.66667		17 /// 21	.0149Py	
T	T	MF-2	3.059	12.5833							3 29	Py 2.00007	Py 2.00007	Py 2.00007
		MF-3	5.037	5.08333										
		MF-4	5.373	20.75				.017Py						
T- 6														

In order to properly calculate the total force distributed to each frame, both direct and torsion forces must be combined. However, as the following diagrams F-13 through F-15 demonstrate, torsion forces do not always act in the same direction as the direct forces. With the loads Px and Py applied at the center of mass, the structure pivots around the center of rigidity. Torsion forces are labeled + or – signifying how the torsion forces contribute to the total force in each frame.

Method One Results - Total Forces:

Based on the above diagrams and calculated direct and torsion forces, total forces were calculated and shown below in table T-7. Please see Appendix C for all supporting calculations.

Method One - Total Force Calculation						
		First	Story			
Direction	Frame	Direct Force		Torsional Force		Total Force
	BR-3	.3506Px	+	.00248Px	II	.3531Px
х	BR-4	.3124Px	-	.000371Px	=	.312Px
	BR-5	.3370Px	-	.002079Px	=	.3349Px
	BR-1	.134Py	+	.0198Py	=	.1538Py
	BR-2	.1517Py	-	.0197Py	=	.132Py
V	MF-1	.140Py	+	.0149Py	=	.1549Py
r	MF-2	.1302Py	+	.0149Py	II	.1451Py
	MF-3	.214Py	-	0.00391Py	=	.2105Py
	MF-4	.229Py	-	.017Py	=	.2117Py
		Г		1		

METHOD TWO:

A second, more exhaustive analysis was completed to provide a better approximation of relative stiffness values and the center of rigidity location. Using ETABS, a 3D model of the lateral system was produced which is shown in plan view in figure **F-16** below. In order to generate accurate results, the 3D model was created to be a near exact representation of the actual lateral system. Unlike method one, no simplifications to the moment frame geometries were made. However, the perimeter brace frames (BR-1 and BR-2) were modeled slightly rotated from their actual orientation in order to align with the Y axis.

PLAN VIEW OF 3D ETABS MODEL

Shown in tables **T-8** through **T-33**, relative stiffness values were determined by analyzing 3D model output pertaining to lateral force distribution. First, 1000 kip loads were applied to the roof level center of mass, in both the X and Y direction. For each story, section cuts were used to determine the forces distributed to each lateral frame. By using rigid diaphragm modeling, the distributions of lateral forces are directly proportional to the relative stiffness of the resisting lateral elements. Knowing the relative stiffness values, the first story center of rigidity (see table **T-34**) was approximated by determining each lateral frame's distance from the specified origin and then applying the equations:

$$\overline{\mathbf{X}} = \underbrace{\sum \mathbf{K}_{iy} * \mathbf{X}_{i}}_{\sum \mathbf{K}_{iy}} \qquad \overline{\mathbf{Y}} = \underbrace{\sum \mathbf{K}_{ix} * \mathbf{Y}_{i}}_{\sum \mathbf{K}_{ix}}$$

Method Two - Relative Stiffness Values (X Direction):

STORY 1: 100	0 Kip X Direction Lo	ading	
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)	
BR-3	-452.8475	45.28%	
BR-4	-195.9516	19.95%	
BR-5	-318.5722	31.86%	
Column 1-E	-1.0534	-	
Column 1-D.4	-0.7113	-	
Column 1-C.3	-0.8635	-	
Column 1-B.1	-0.5435	-	
Column 3-F.9	-3.6871	-	
Column 4-F	-1.7063	-	
Column 4-D.4	-1.4096	-	
Column 4-A.2	-3.9948	-	
Column 5-F.9	-3.7377	-	
Column 5-A.2	-1.5105	-	
Column 6-F	-1.5972	-	
Column 6-A.2	-4.0523	-	
Column 6.3-D.4	-1.749	-	
Column 8-F.9	-1.621	-	
Column 8-D.4	-1.6208	-	
Column 8-C	-0.9674	-	
Column 8-B	-1.5461	-	
Total Column Shear	-32.3715	3.24%	
Total Story Shear	-999.7428 ≈ 1000		

T- 9

T-11

STORY 2: 1000 Kip X Direction Loading					
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)			
BR-3	-423.7597	42.38%			
BR-4	-270.5714	27.06%			
BR-5	-291.4904	29.15%			
Total Column Shear	-14.1689	14.17%			
Total Story Shear	-999.9904 ≈ -1000				

STORY 4: 1000 Kip X Direction Loading					
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)			
BR-3	-330.4552	33.05%			
BR-4	-333.7631	33.38%			
BR-5	-324.1224	32.41%			
Total Column Shear	-11.654	1.17%			
Total Story Shear	-999.9947 ≈ -1000				

STORY 3: 1000 Kip X Direction Loading						
INTERNI ELEMENT	Total Horizontal Force	Percent Fraction of Total Story				
	per Frame (kips)	Shear (%)				
BR-3	-460.2514	46.03%				
BR-4	-256.7392	25.67%				
BR-5	-280.2593	28.03%				
Total Column Shear	-2.6833	0.27%				
Total Story Shear	999.933 ≈ -1000					

STORY 5: 1000 Kip X Direction Loading			
	Total Horizontal Percent Fraction		
LATERAL ELEMENT	Force per Frame	of Total Story	
BR-3	-333.3764	33.38%	
BR-4	-347.4635	34.75%	
BR-5	-308.9626	30.89%	
Total Column Shear	-10.0965	1.01%	
Total Story Shear	-999.899 ≈ -1000		

T-12

T-10

STORY 6: 1000 Kip X Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-322.7331	32.27%	
BR-4	-360.1843	36.02%	
BR-5	-311.7727	31.18%	
Total Column Shear	5.2993	0.53%	
Total Story Shear	-999.989 ≈ -1000		
	T-13		

STORY 7: 1000 Kip X Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-370.2479	37.02%	
BR-4	-245.5232	24.60%	
BR-5	-368.1966	36.82%	
Total Column Shear	-16.0321	1.60%	
Total Story Shear	-999.9998 ≈ -1000		
	T-14		

STORY 8: 1000 Kip X Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-357.1115	35.71%	
BR-4	-243.0985	24.31%	
BR-5	-388.8792	38.89%	
Total Column Shear	10.879	1.09%	
Total Story Shear	-999.9682 ≈ - 1000		
	T-15		

STORY 9: 1000 Kip X Direction Loading			
	Total Horizontal Force Percent Fraction of Total Story		
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-417.1654	41.72%	
BR-4	-221.9606	22.20%	
BR-5	-343.2399	34.32%	
Total Column Shear	17.6023	1.76%	
Total Story Shear -999.9682 ≈ -1000			

T-16

STORY 10: 1000 Kip X Direction Loading			
	Total Horizontal Force Percent Fraction of Total Sto		
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-411.0836	41.12%	
BR-4	-210.8523	21.09%	
BR-5	-362.0056	36.20%	
Total Column Shear	16.0579	1.61%	
Total Story Shear -999.9994 ≈ -1000			

T-17

STORY 11: 1000 Kip X Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-401.626	40.16%	
BR-4	-206.8532	20.69%	
BR-5	-369.8931	36.99%	
Total Column Shear	21.5988	2.26%	
Total Story Shear	-999.9711 ≈ -1000		

T-18

STORY 12: 1000 Kip X Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-404.2599	40.43%	
BR-4	-207.811	20.78%	
BR-5	-370.6444	37.06%	
Total Column Shear	17.2549	1.73%	
Total Story Shear	-999.9702 ≈ -1000		

T-19

STORY 13: 1000 Kip X Direction Loading			
	Total Horizontal Force Percent Fraction of Total Story		
LATERAL ELEMENT	per Frame (kips)	Shear (%)	
BR-3	-389.6974	38.97%	
BR-4	-211.3553	21.14%	
BR-5	-374.4777	37.45%	
Total Column Shear	24.4664	2.45%	
Total Story Shear	-999.9968 ≈ -1000		

T-20

Method Two: Relative Stiffness Values (Y Direction):

STORY 1: 1000 Kip Y Direction Loading			
	Total Horizontal	Percent Fraction	
LATERAL ELEMENT	Force per Frame	of Total Story	
	(kips)	Shear (%)	
BR-1	-394.3177	39.43%	
BR-2	-375.9383	37.60%	
MF-1			
Column 8-F	-11.6801		
Column 6-F	-15.6254		
Column 4-F	-13.8805		
Column 1-E	-7.865		
Total Sum	-49.051	4.91%	
MF-2			
Column 8-D.4	-12.0052		
Column 6.3-D.4	-16.4687		
Column 4-D.4	-13.3399		
Column 1-D	-7.1679		
Total Sum	-48.9817	4.90%	
MF-3			
Column 8-C	-9.3883		
Column 6-C	-16.0873		
Column 4-C.3	-15.4552		
Column 3 C.3	-17.0782		
Column 1-C.3	-9.3978		
Total Sum	-67.4068	6.74%	
MF-4			
Column 8-B	-11.6991		
Column 6-A.9	-16.235		
Column 5-A.9	-12.5676		
Column 3-B.1	-13.9377		
Column 1-B.1	-7.1374		
Total Sum	-61.5768	6.16%	
Other Lateral Column (3-B.1	2.3308		
Total Story Shear	-999.6031 ≈ -1000		
	T-21		

STORY 2: 1000 Kip Y Direction Loading			
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)	
BR-1	-357.2846	35.73%	
BR-2	-329.9131	32.91%	
MF-1	-60.1366	6.14%	
MF-2	-61.8115	6.18%	
MF-3	-96.667	9.67%	
MF-4	-93.6168	9.36%	
Total Story Shear	-999.4296 ≈ -1000		

T-22

STORY 3: 1000 Kip Y Direction Loading			
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)		Percent Fraction of Total Story Shear (%)
BR-1	-32	3.7154	32.37%
BR-2	-28	7.4911	28.75%
MF-1	-72.8961		7.29%
MF-2	-77.7233		7.77%
MF-3	-122.0524		12.21%
MF-4	-115.4226		11.54%
Total Story Shear	-999.3009 ≈ -1000		
		T-23	

Jesse Cooper - Senior Thesis Page 31

Jesse T. Cooper – Structural Option Thesis Consultant – Dr. Boothby

STORY 4: 1000 Kip Y Direction Loading			
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)	
BR-1	-303.0885	30.31%	
BR-2	-267.7516	26.78%	
MF-1	-83.7577	8.38%	
MF-2	-89.3822	8.94%	
MF-3	-126.5951	12.66%	
MF-4	-128.763	12.88%	
Total Story Shear	-999.3381 ≈ -1000		

T-24

STORY 6: 1000 Kip Y Direction Loading			
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)	
BR-1	-225.4545	22.55%	
BR-2	-183.4697	18.35%	
MF-1	-115.406	11.54%	
MF-2	-120.09	12.01%	
MF-3	-176.4774	17.65%	
MF-4	-178.1965	17.82%	
Total Story Shear	-999.0941 ≈ -1000		

T-26

STORY 8: 1000 Kip Y Direction Loading				
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)		
BR-1	-155.4693	15.55%		
BR-2	-128.6807	12.68%		
MF-1	-145.2901	14.53%		
MF-2	-155.927	15.59%		
MF-3	-208.0247	20.80%		
MF-4	-205.5248	20.55%		
Total Story Shear	-998.9166 ≈ -1000			

T-28

STORY 10: 1000 Kip Y Direction Loading				
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)		
BR-1	-180.6402	18.06%		
BR-2	-123.7505	12.38%		
MF-1	-130.162	13.02%		
MF-2	-119.5793	11.60%		
MF-3	-221.5623	22.16%		
MF-4	-223.071	22.31%		
Total Story Shear	-998.7653 ≈ -1000			

T-30	

STORY 5: 1000 Kip Y Direction Loading				
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)			Percent Fraction of Total Story Shear (%)
BR-1		-252.7339		25.27%
BR-2	-212.0862			21.21%
MF-1	-103.9855			10.40%
MF-2	-112.2172			11.22%
MF-3	-158.7852			15.88%
MF-4		-159.3664		15.94%
Total Story Shear	-999.1744 ≈ -1000		00	
		T-25		

STORY 7: 1000 Kip Y Direction Loading			
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)	
BR-1	-180.4632	18.05%	
BR-2	-140.6739	14.07%	
MF-1	-133.2412	13.32%	
MF-2	-137.8584	13.79%	
MF-3	-203.5901	20.36%	
MF-4	-203.2989	20.33%	
Total Story Shear	-999.1257 ≈ -1000		

T-27

STORY 9: 1000 Kip Y Direction Loading				
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Story Shear (%)		
BR-1	-168.7346	16.87%		
BR-2	-118.3451	11.83%		
MF-1	-144.973	14.50%		
MF-2	-111.2871	11.23%		
MF-3	-224.7073	22.47%		
MF-4	-224.7048	22.47%		
Total Story Shear	-992.7519 ≈ -1000			

T-29

STORY 11: 1000 Kip Y Direction Loading				
LATERAL ELEMENT	Total Horizontal Force per Frame (kips)	Percent Fraction of Total Stor Shear (%)		
BR-1	-165.4824	16.55%		
BR-2	-106.6289	10.66%		
MF-1	-136.8503	13.69%		
MF-2	-124.069	12.41%		
MF-3	-232.3705	23.24%		
MF-4	-233.3079	23.33%		
Total Story Shear	-998.709 ≈ -1000			

T-31

Jesse T. Cooper – Structural Option Thesis Consultant – Dr. Boothby

STORY 12: 1000 Kip Y Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEIVIENT	per Frame (kips)	Shear (%)	
BR-1	-161.9929	16.20%	
BR-2	-114.7709	11.48%	
MF-1	-146.4793	14.65%	
MF-2	-120.4197	12.04%	
MF-3	-230.6843	23.07%	
MF-4	-223.9039	22.39%	
Total Story Shear	-998.251 ≈ -1000		

T-32

STORY 13: 1000 Kip Y Direction Loading			
	Total Horizontal Force	Percent Fraction of Total Story	
LATERAL ELEIVIENT	per Frame (kips)	Shear (%)	
BR-1	-129.77284	12.98%	
BR-2	-62.3307	6.23%	
MF-1	-128.3839	12.84%	
MF-2	-171.0502	17.11%	
MF-3	-248.5248	24.85%	
MF-4	-258.4535	25.85%	
Total Story Shear	-998.516 ≈ -1000		

T-33

			CENTER OF RIGIDITY CALCULATION FOR STORY 1					
		METHOD 2						
Direction	Frame	Frame Load Applied Kips)	Total Horizontal Force per Frame (kips)	Percentage of Total Story Shear (%) K	Distance (Di) From Origin (ft.)	Center of Rigidity		
	BR-3		-452.847	45.28%	37.75			
Х	BR-4	1000	-195.9516	19.60%	23.16667	Y = ∑kDi = 26.55'		
	BR-5		-318.5722	31.86%	15.4166667			
	BR-1		-394.3177	39.43%	0			
	BR-2	1000	-375.9383	37.59%	77.4166667			
v	MF-1		-49.051	4.91%	11.666667	V - 5kDi - 29 04'		
T	MF-2	1000	-48.981	4.90%	28.75	A - 2KDI - 50.04		
	MF-3		-67.4068	6.74%	46.416667			
	MF-4		-61.5768	6.16%	62.0833333			

T-34

PRELIMINARY ANALYSIS - RESPONSE AND CONCLUSIONS:

Method one involved an efficient but highly approximated set of calculations. Lateral system geometry was simplified and the center of mass was assumed equivalent to the buildings geometric center. According to results, the moment frames and brace frames have similar stiffness values which were unexpected. Typically, braced frames are 10 times stiffer than moment frames of similar geometry. As is evident in figure **F-16**, the moment frames are approximately 3 to 4 times wider than the brace frames. As a result of a wide stance and the simplification of moment frame geometry to linear layouts along the Y axis, the stiffness values are magnified.

In method two, the lateral system was modeled exactly according to the as built drawings. Relative stiffness values appear accurate and adhere to the generalization that braced frames are approximately 10 times stiffer than moment frames of similar geometry. As shown in table **T-21**, when applying a 1000 kip load at the roof level, the 1st story brace frames BR-1 and BR-2 account for 39.43% and 37.6% of the load respectively. As expected, the moment frames only accounted for 5 - 6% of the load each. This force distribution is directly proportional to relative stiffness values and confirms that the brace frames are the dominant lateral system elements. Accuracy of method two results can be confirmed with several basic observations. First, tables **T-22** through **T-23** reveal that stiffness values for moment frames 3 and 4 exceed the stiffness values for moment frames 1 and 2. Not only are MF-3 and MF-4 more linear, but they are composed of 4 bays as opposed to 3 bays. With more structure, MF-3 and MF-4 have greater cross sectional area and larger moments of inertia, two characteristics that increase stiffness values.

At this stage, all observations and preliminary analysis results suggest torsion effects play a minimal role in controlling the design. Both preliminary methods yielded a center of mass and center of rigidity at nearly equivalent locations. Therefore, the eccentricity (moment arm) is small resulting in low torsion effects. Also, the rectangular shape and evenly spaced out lateral system (not concentrated at core) should significantly reduce torsion forces. Mathematically, torsion appears minimal when examining tables **T-8** through **T-33** of method 2 in which the total forces in each lateral frame amount to the corresponding story shear of 1000 kips. In addition, method 1 average torsion forces were reported as .0025Px in the X direction and .015Py in the Y direction. However, in order to thoroughly understand the lateral system, wind cases with torsion effects (2 and 4) are included in the final analysis.

Considering the 7 ASCE7-05 load combinations and 4 wind cases, the following 38 loading conditions were considered in the report:

1 3.	Load Combination 2.4.6: Wind Case 1. V. Direction
1-3.	Load Combination 5,4,0. White Case 1, A Direction
4-6:	Load Combination 3,4,6: Wind Case 1, Y Direction
7-9:	Load Combination 3,4,6: Wind Case 2, X Direction, +e _y
10-12:	Load Combination 3,4,6: Wind Case 2, X Direction, -e _y
13-15:	<u>Load Combination 3,4,6</u> : Wind Case 2, Y Direction $+ e_y$
16-18:	<u>Load Combination 3,4,6</u> : Wind Case 2, Y Direction $-e_y$
19-21:	Load combination 3,4,6: Wind Case 3
22-24:	<u>Load Combination 3,4,6</u> : Wind Case 4, $+e_x$ and $+e_y$
25-27:	<u>Load Combination 3,4,6</u> : Wind Case 4, $+e_x$ and $-e_y$
29-31:	<u>Load Combination 3,4,6</u> : Wind Case 4, $-e_x$ and $-e_y$
32-34:	<u>Load Combination 3,4,6</u> : Wind Case 4, $-e_x$ and $+e_y$
35:	Load Combination 5
36:	Load Combination 7

LATERAL LOAD PATH SHCEMATIC

<u>Step One</u>: Horizontal wind pressures act perpendicularly to the building envelope.

<u>Step Two</u>: Wind pressures are distributed based on tributary areas, from the building envelope to the connected horizontal stiff elements.

<u>Step Three</u>: In the case of 40 Gold Street, the floor structures are connected to the building envelope and collect the lateral load. Behaving as a rigid diaphragm, the floor structures transfer lateral loads to vertical bearing elements based on relative stiffness. 40 Gold street is designed with a lateral system comprised of 5 braced frames and 4 Moment frames. The frames only participate in resisting loads that act parallel to their axis of orientation. In the adjacent diagrams **F-17** and **F-18**, the red frames, are braced frames and resist the greatest percentage of lateral loads due to their high rigidity relative to the moment frames (yellow).

<u>Step Four</u>: Once loads reach the frames, they are transferred down to the supporting foundation. Constructed with rigidly connected joints that resist rotation, moment frames collect lateral forces and transfer them down a vertical plane down to the foundation. The braced frames have cross bracing providing a diagonal path to transfer loads down the frame and ultimately to the supporting foundation.

3D ETABS Model Analysis – Output Data

In the final stage of analysis, 3D model output for the 38 previously listed loading conditions were carefully examined. As shown in table **T-35**, ETABS computed the center of rigidity and center of mass for each story. Methods one and two yielded similar values verifying the output data.

During the modeling process, careful attention was given to the diaphragm modeling. Uniform dead loads calculated in technical report 1 (see appendix B) due to the weight of beams, slab, deck, and superimposed loads dead loads were applied to each diaphragm. In doing so, overturning moment and column strength checks could be easily completed with the aid of the 3D model.

A mass was assigned to each diaphragm. The unit conversion required mass = PSF / $(12^3 * 32.2* 1000)$. After running analysis, the first mode period of vibration in the X, Y, and Z directions were recorded. (P-delta effects were not considered). Although the actual periods of vibration are unknown, the values below are reasonable suggesting there are no major modeling errors.

	3D ETABS MODEL OUTPUT								
		CENTER OF	[:] MASS (in)	CENTER OF RIGIDITY (in)		Eccentricity (in)			
	STORY	х	Y	х	Y	ex	ey		
	2	457.499	333.021	454.581	309.942	2.918	23.079		
	3	457.499	333.021	457.439	307.33	0.06	25.691		
	4	457.499	333.021	457.44	307.372	0.059	25.649		
	5	457.499	333.021	456.769	305.275	0.73	27.746		
T-35	6	457.499	333.021	456.619	304.506	0.88	28.515		
	7	457.499	333.021	456.902	304.401	0.597	28.62		
	8	457.499	333.021	457.817	304.996	-0.318	28.025		
	9	457.499	333.021	459.697	305.3	-2.198	27.721		
	10	457.499	333.021	462.38	306.265	-4.881	26.756		
	11	457.499	333.021	465.181	306.802	-7.682	26.219		
	12	457.499	333.021	467.728	307.066	-10.229	25.955		
	13	457.499	333.021	469.65	307.174	-12.151	25.847		
	Penthouse	457.499	333.021	471.279	307.334	-13.78	25.687		
	Roof	445.973	292.035	471.073	309.181	-25.1	-17.146		
Wind Drifts - Serviceability Check:

Confirmation of the lateral system requires serviceability checks. Using unfactored wind loads shown in figures **F-4** and **F-5**, story drifts and total building drifts were recorded and examined for each of the four ASCE7-05 wind cases. Wind case 1 controlled in both the X and Y directions. Tables **T-36** and **T-37**, show controlling story drift and total drift values which were compared to the allowable drift: $\Delta_{WIND} = H / 400$.

			Actual Wind Drift (U	Infactored Loads): N-S Direction									
	CONTROLLING WIND CASE: ASCE7-05 Wind Case 1 - X Direction												
Story	Story Height (in.)	Story Drift (in.)	Allowable Story Drift ∆wind = H / 400 (in.)	Serviceability Check Actual < Allowable	Total Drift (in.)	Allowable Total Drift ∆wind = H/400 (in.)	Serviceability Check Actual < Allowable						
Roof	1945	0.002762	0.36	ОК	0.03306	4.8625	ОК						
Penthouse	1801	0.002874	0.3225	ОК	0.030298	4.5015	ОК						
13	1672	0.002927	0.3225	ОК	0.027424	4.18	ОК						
12	1543	0.002958	0.3225	ОК	0.024497	3.8575	ОК						
11	1414	0.002959	0.3225	ОК	0.021539	3.535	ОК						
10	1285	0.002923	0.3225	ОК	0.01858	3.2125	ОК						
9	1156	0.002877	0.3225	ОК	0.015657	2.89	ОК						
8	1027	0.002745	0.3225	ОК	0.01278	2.5675	ОК						
7	898	0.002489	0.3225	ОК	0.010035	2.245	OK						
6	769	0.00225	0.3225	ОК	0.007546	1.9225	ОК						
5	640	0.001949	0.3225	ОК	0.005296	1.6	ОК						
4	511	0.001541	0.3225	ОК	0.003347	1.2775	OK						
3	382	0.0012	0.3225	ОК	0.001806	0.955	ОК						
2	253	0.000606	0.6325	ОК	0.000606	0.6325	ОК						

T-36

	Actual Wind Drift (Unfactored Loads): E-W Direction												
	CONROLLING WIND CASE: ASCE7-05 Wind Case 4. and eccentricity combination: + ex and - ev												
	CONTROLLING WIND CASE. ASCEP-05 Wind Case 4, and ellentricity combination: + ex and - ey												
	Story Height Story Drift Allowable Story Drift Δwind = H Serviceability Check Total Drift Allowable Total Drift												
Story	(in.)	(in.)	/ 400 (in.)	Actual < Allowable	(in.)	Δ wind = H/400	Actual < Allowable						
	(,	(,	,,		(,	(in.)							
Roof	1945	0.001967	0.36	ОК	0.024354	4.8625	ОК						
Penthouse	1801	0.001902	0.3225	ОК	0.022387	4.5015	ОК						
13	1672	0.001989	0.3225	ОК	0.020485	4.18	ОК						
12	1543	0.002067	0.3225	ОК	0.018496	3.8575	ОК						
11	1414	0.002134	0.3225	ОК	0.016429	3.535	ОК						
10	1285	0.002156	0.3225	ОК	0.014295	3.2125	ОК						
9	1156	0.002153	0.3225	ОК	0.012139	2.89	ОК						
8	1027	0.001998	0.3225	ОК	0.009986	2.5675	ОК						
7	898	0.001877	0.3225	ОК	0.007988	2.245	ОК						
6	769	0.001706	0.3225	ОК	0.006111	1.9225	ОК						
5	640	0.001505	0.3225	ОК	0.004405	1.6	ОК						
4	511	0.001256	0.3225	ОК	0.0029	1.2775	ОК						
3	382	0.00104	0.3225	ОК	0.001644	0.955	ОК						
2	253	0.000604	0.6325	ОК	0.000606	0.6325	ОК						

T-37

Seismic Story Drift- Stability Check:

3D output data for ASCE 7-05 Load Combinations 6 (1.2D + 1.0E + 1.0L) and 7 (.9D + 1.0E) were examined to verify seismic induced story drifts do not exceed the allowable .015hsx. Table **T-38**, displays the actual and allowable drift values proving the lateral system is properly designed. Therefore, it is fair to assume the 40 Gold Street structure will not sustain any permanent damage due to small or moderate seismic activity. More importantly, in the event of severe seismic activity, structural failure will be avoided; however, the seismic induced stresses will exceed the yield strength of various structural members resulting in inelastic deformation (permanent damage). Since the building has a low overall building weight and is located in New York City, an area of little seismic activity, seismic story drifts did not come close to exceeding the allowable drift. Please see Appendix B for seismic load calculations.

<u>Governing Equation</u>: $\Delta_{\text{SEISMIC}} = .015 \text{H}_{\text{SX}}$

Structure	Occ	Occupancy Category					
	I or II	III	IV				
Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts.	0.025 <i>h</i> _{sx} ^c	0.020h _{sx}	0.015h _{sx}				
Masonry cantilever shear wall structures d	$0.010h_{sx}$	$0.010h_{sx}$	$0.010h_{sx}$				
Other masonry shear wall structures	$0.007h_{sx}$	$0.007h_{sx}$	$0.007h_{sx}$				
All other structures	$0.020h_{sx}$	$0.015h_{sx}$	$0.010h_{sx}$				

TABLE 12.12-1 ALLOWABLE STORY DRIFT, $\Delta_a^{a,b}$

Actual and Allowable Seismic Story Drift:

[Soirmir (tory Drifts (inchas	1					
	1		Seismic s	story Drifts (inches						
	Story Height (in)		X Direction			Y Direction				
Story		Actual	Allowable = .015H _{sx}	Check actual < allowable	Actual	Allowable = .015H _{sx}	Check actual < allowable			
Roof	1945	0.00067	2.16	ОК	0.000639	2.16	ОК			
Penthouse	1801	0.000724	1.935	ОК	0.000579	1.935	ОК			
13	1672	0.000742	1.935	ОК	0.000632	1.935	ОК			
12	1543	0.000763	1.935	ОК	0.000692	1.935	ОК			
11	1414	0.000777	1.935	ОК	0.000755	1.935	ОК			
10	1285	0.000776	1.935	ОК	0.000796	1.935	ОК			
9	1156	0.000769	1.935	ОК	0.00082	1.935	ОК			
8	1027	0.00073	1.935	ОК	0.000774	1.935	ОК			
7	898	0.000657	1.935	ОК	0.000737	1.935	ОК			
6	769	0.000587	1.935	ОК	0.00734	1.935	ОК			
5	640	0.0005	1.935	ОК	0.000581	1.935	ОК			
4	511	0.000389	1.935	ОК	0.000475	1.935	ОК			
3	382	0.000295	1.935	ОК	0.00038	1.935	OK			
2	253	0.000141	3.795	ОК	0.00021	3.795	OK			

T-38

Design Confirmation – Spot Checks

To properly confirm the existing lateral design, critical structural members were analyzed for strength requirements. Major areas of concern included both column shear checks and isolated uplift forces due to overturning moments on each lateral frame.

Before any design checks can be completed, the controlling loading conditions had to be determined. Considering all 38 loading conditions, story shear and drift output data was compared. In each direction, the largest story shears and story drifts resulted from the same two loading conditions. Wind case 1 with both ASCE7-05 load combination 4: 1.2D + 1.6W + L and load combination 6: .9D + 1.6W. Both load combinations include a 1.6 wind scale factor resulting in a large lateral load and story shears. Table T-39 shows the total story shear for the controlling load conditions.

	Total Story She	ar
	Controlling Load Combinati	ons: 12 and 23
Story	Vx (kips)	Vy (kips)
13	-32.62	-16.34
12	-63.46	-36.14
11	-93.68	-56.16
10	-123.25	-75.7
9	-152.14	-94.74
8	-180.34	-113.28
7	-207.78	-131.26
6	-234.35	-148.62
5	-259.94	-165.25
4	-284.45	-181.09
3	-307.04	-195.54
2	-328.26	-208.96
1	-359.86	-228.91
	T-39	7
	1-57	

With the aid of the section cut technique, story shears in each lateral frame were determined for the controlling loading conditions. Before proceeding, the story shears of each frame were totaled (see green columns of table T-40) and compared to the total story shear values above. The values are nearly equivalent suggesting once again that torsion is minimal and output data is sensible. Story shears were converted to story forces and heights. As shown in table T-42, uplift forces were determined by dividing the overturning moment by the base dimension. At this point, wind case 1 with load combination 6 is most important for the overturning because it includes the .9 dead load scale factor. In order to determine if uplift forces have impact on the foundation, the uplift force values had to be compared to the corresponding magnitude of the accumulated dead load at the same corresponding base column (see figure F-20).

Story Shear For Each Lateral Frame:

				Story	Shear Per L	ateral Fran	ne					
	X Direc	tion			Y Direction							
story	BR-3	BR-4	BR-5	Total Vx (some shear unaccounted for: other columns)	BR-1	BR-2	MF-1	MF-2	MF-3	MF-4	Total Vy (some shear unaccounted for: other columns)	
13	-16.0881	-0.1095	-15.37	-31.5676	15.0654	17.4169	-7.8632	-10.6261	-15.0028	-15.2417	-16.2515	
12	-29.097	-8.0166	-24.5386	-61.6522	5.2617	7.0195	-9.7417	-8.1391	-15.478	-14.9769	-36.0545	
11	-41.2991	-16.1409	-34.5191	-91.9591	-2.4222	0.7449	-10.2153	-9.2877	-17.3773	-17.506	-46.7759	
10	-53.942	-24.1668	-43.2944	-121.4032	-10.6433	-6.7109	-10.6946	-9.9977	-18.5721	-18.974	-75.5926	
9	-67.5185	-32.1547	-50.5988	-150.272	-16.0246	-11.8664	-13.3094	-10.2461	-21.648	-21.5366	-94.6311	
8	-67.0383	-41.9963	-69.4974	-178.532	-20.3288	-17.9158	-14.8486	-15.9775	-21.8996	-22.1951	-113.1654	
7	-78.4174	-48.7961	-77.4	-204.6135	-29.169	-24.9884	-14.6335	-15.3484	-23.1963	-23.8283	-131.1639	
6	-74.3586	-82.0364	-76.9499	-233.3449	-39.388	-34.7354	-14.0926	-14.7987	-22.3013	-23.1848	-125.316	
5	-82.0916	-90.5018	-85.2436	-257.837	-48.1333	-43.3221	-13.8918	-15.1206	-21.9622	-22.7039	-165.1339	
4	-86.2344	-99.5055	-95.8794	-281.6193	-60.4674	-56.0745	-12.2027	-13.1669	-19.0558	-20.0205	-180.9878	
3	-127.3893	-88.7406	-90.0917	-306.2216	-68.4241	-63.4477	-11.5803	-12.477	-19.9553	-19.5363	-195.4207	
2	-125.9348	-101.333	-98.5057	-325.7736	-79.4139	-75.8152	-9.9098	-10.3447	-16.711	-16.6706	-208.8652	
1	-152.4079	-78.4999	-118.489	-349.3963	-91.5772	-89.4733	-9.9834	-10.0712	-14.0141	-13.7097	-228.8289	

T-40

Story Forces For Each Lateral Frame:

				Story F	orces Per	Frame					
	2	X Direction	1	Y Direction							
story	BR-3	BR-4	BR-5	BR-1	BR-2	MF-1	MF-2	MF-3	MF-4		
Р	16.0881	0.1095	15.37	-15.0654	-17.4169	7.8632	10.6261	15.0028	15.2417		
13	13.0089	7.9071	9.1686	9.8037	10.3974	1.8785	-2.487	0.4752	-0.2648		
12	12.2021	8.1243	9.9805	7.6839	6.2746	0.4736	1.1486	1.8993	2.5291		
11	12.6429	8.0259	8.7753	8.2211	7.4558	0.4793	0.71	1.1948	1.468		
10	13.5765	7.9879	7.3044	5.3813	5.1555	2.6148	0.2484	3.0759	2.5626		
9	-0.4802	9.8416	18.8986	4.3042	6.0494	1.5392	5.7314	0.2516	0.6585		
8	11.3791	6.7998	7.9026	8.8402	7.0726	-0.2151	-0.6291	1.2967	1.6332		
7	-4.0588	33.2403	-0.4501	10.219	9.747	-0.5409	-0.5497	-0.895	-0.6435		
6	7.733	8.4654	8.2937	8.7453	8.5867	-0.2008	0.3219	-0.3391	-0.4809		
5	4.1428	9.0037	10.6358	12.3341	12.7524	-1.6891	-1.9537	-2.9064	-2.6834		
4	41.1549	-10.7649	-5.7877	7.9567	7.3732	-0.6224	-0.6899	0.8995	-0.4842		
3	-1.4545	12.5925	8.414	10.9898	12.3675	-1.6705	-2.1323	-3.2443	-2.8657		
2	26.4731	-22.8332	19.9828	12.1633	13.6581	0.0736	-0.2735	-2.6969	-2.9609		

Overturning Moment:

As expected, significant uplift forces were only associated with the braced frames. Due to the large story forces and short base dimensions, the braced frames have a greater tendency to overturn than the moment frames. The diagram below is a visual representation of the process and calculations required to check for overturning moment in a braced frame. All the frames have uplift forces present in the columns; however, the accumulated dead force load counteracts the uplift force. In order to determine if the foundation needs to be designed for uplift, the magnitudes of the dead load and uplift force for each area of interest were compared (see table T-42).

F-20

Overturning Moment Results:

The entire calculation process is summarized in the table below. Several areas require uplift resistance. These locations are highlighted in figure **S-11**. The existing foundation system includes several pile caps designed for uplift forces. The typical detail of the pile cap is shown in figure **S-12**.

			Overtu	rning Mom	ents (ft-ki	ps)					
	Story Height		X Directior	1			Y Dire	ection			
story	(ft.)	BR-3	BR-4	BR-5	BR-1	BR-2	MF-1	MF-2	MF-3	MF-4	
Р	150.083	2414.55	16.43409	2306.776	-2261.06	-2613.98	1180.133	1594.797	2251.665	2287.52	
13	139.333	1812.569	1101.72	1277.489	1365.979	1448.701	261.737	-346.521	66.21104	-36.8954	
12	128.583	1568.983	1044.647	1283.323	988.0189	806.8069	60.89691	147.6904	244.2177	325.1993	
11	117.833	1489.751	945.7159	1034.02	968.7169	878.5393	56.47736	83.66143	140.7869	172.9788	
10	107.083	1453.812	855.3683	782.1771	576.2457	552.0664	280.0006	26.59942	329.3766	274.4109	
9 96.333		-46.2591	948.0709	1820.559	414.6365	582.7569	148.2758	552.123	24.23738	63.43528	
8	85.583	973.8575	581.9473	676.3282	756.5708	605.2943	-18.4089	-53.8403	110.9755	139.7742	
7	74.833	-303.732	2487.471	-33.6823	764.7184	729.3973	-40.4772	-41.1357	-66.9755	-48.155	
6	64.083	495.5538	542.4882	531.4852	560.4251	550.2615	-12.8679	20.62832	-21.7305	-30.8175	
5	53.333	220.948	480.1943	567.2391	657.8146	680.1237	-90.0848	-104.197	-155.007	-143.114	
4	42.583	1752.499	-458.402	-246.458	338.8202	313.973	-26.5037	-29.378	38.30341	-20.6187	
3	31.833	-46.3011	400.8571	267.8429	349.8383	393.6946	-53.177	-67.8775	-103.276	-91.2238	
2	21.0833	558.1403	-481.399	421.3034	256.4425	287.9578	1.551731	-5.76628	-56.8596	-62.4255	
Total Ov	erturning Moment per frame	12344.37	8465.113	10688.4	5737.166	5215.592	1747.553	1776.784	2801.925	2830.069	
Bas	se Dimension: B	18'10"	16'-3"	16'-3"	15'-6"	15'-11"	52'-2"	54'-8"	53'-0"	53'-8"	
Uplift Foi F _{up} i	rce in Exterior Column: _{lift} = M _{overturn} / B	655.96	520.93	657.72	370.14	327.68	3.346	32.5	52.85	52.73	
Accumulated Dead Load		282.252	275.66	275.66	213.4	202.6	Moment	Frames:		No	
Dead Load Factor		0.9	0.9	0.9	0.9	0.9	uplift ex	uplift expected. Low story forces and			
Factored Dead Load		254.03	248.094	248.094	192.1	182.34	large base dimension resulted in a ve low uplift force. Dead load will exce				
Net F	orce At Base Column	401.93	272.836	409.626	178.04	145.34		the upli	ft force.		

T-42

Uplift Forces:

As confirmed by the above calculations, the existing foundation of 40 Gold Street consists of several pile caps (shown in figure below) that are designed for uplift resistance. Pictured in figure, a solution to the uplift issue are pile caps with tension anchored piles. #4 Ties are also used at 6" on center. The tension piles resist uplift forces by transferring the load to the surrounding ground by way of friction. The micro piles are small circular HSS section shapes injected with grout. As shown in the detail below, steel reinforcement is used to resist the tension loads induced by uplift. To further demonstrate the impact of uplift on foundation design, the pile cap design that does not resist uplift is shown below.

Verification of Output Data – Hand Calculations (Portal Method)

Before proceeding, the portal method and an approximate method for determining story drifts was completed. Moment frame MF-1 was chosen for the analysis. The goal of these calculations was to provide another set of data to verify the ETABS output. Using ETABS and the section cut technique, story shears were determined for MF-1 under the controlling loading condition. For the following calculations, several assumptions were made:

- 1.) Inflection points at mid-height of columns and mid-span of beams
- 2.) External columns carry $\frac{1}{2}$ the shear of internal columns
- 3.) Axial Deformations are neglected

The diagram F-21 below represents Moment Frame MF-1 with column and beam sizes shown.

			PORTAL METHOD	1
USING THE STORY	SHEARS FROM	ETABS	a rest reg	
STORY SHEARS				
7 ^K		74	5. 72 5. 74 -PEN	THOUSE
10 K	- 10/6	= 1%		-(3)
12 K	5 12/6	······································	512/3 512/6	(12)
13 ^K	13/6	B/3	5 13/2 5 13/6	(1)
15. 5 ^K	15.5/6	= 15.5/3	15.5/3 = 15.5/6	- (10)
17 K	17/6	= 3	= 17/3 = 17/6	(9)
18.3 K	18.3/6	= 18.3/3	= 18.3% = 18.3%	(8)
19.5 K	19.5/6	19.5/3	= 19.5% = 19.5%	>
ZOK	20/6	20/3	5 20/3 5 20/6	6
21 K	5, 21/6	= ²¹ / ₃	= 21/3 = 21/6	- 5
23 ^K	= 23/6	= 23/3	23/3 = ²³ /6	(4)
25 ^k	= 25/6	= 25/3	= 25% = 25%	3
27.5 ^K	27.5/6	= 27.5/3	5 27.5/ 5 27.5/6	(2)
	mann	miles	man min	

Step Two: Important Dimensions were determined for calculation of moments.

Step Three: Column and beam moments were calculated for the entire moment frame M-1.

Step Four Continued:

<u>Results</u>: Hand calculations yielded larger drift values than observed in the 3D ETABS output; however, the drift values calculated here do not exceed the allowable total drift or story drift. Several approximations and assumptions listed above were made during the calculations that could explain the difference in results.

Spot Check – Braces

The following calculations are design spot checks for the cross braces in braced frame 3. As shown in table T-41, the largest story shears are found in braced frame 3. Therefore, by confirming the design of these critical members shown in figure F-22, it is fair to assume all other braces are appropriately designed.

Similar to truss members, the cross braces are required to carry tension under some conditions and compression under others. Often times in practice, it is more economical to provide extra tension members and to assume the members will buckle under compression instead of carrying load. Such an assumption allows braces to be designed as tension-only members resulting in braces with smaller cross sectional areas.

Since the compression strength is often much less than the tension strength, and because assumptions made during the actual design are not known, design checks will be completed for the compressive forces resulting from the controlling loading condition: Wind Case 1 combined with Load Combination 4 (1.2D + 1.6W + L + .5Lr).

40 Gold Street – New York, New York Technical Report # 3

Spot Check - Brace 1:

Spot Check - Brace 2:

40 Gold Street – New York, New York Technical Report # 3

Spot Check - Brace 3:

$$\frac{3}{3}$$

$$\frac{SPOT CHECK - BRACE 3}{127.41^{K}}$$

$$\frac{HSS 8X6 \times 3^{3}/8}{A_{3} = 8.47}$$

$$\frac{STEP ONE: PIN/PIN K=1.0}{L = 21.685^{11}}$$

$$\frac{A_{3} = 8.47}{\Gamma_{X} = 2.47}$$

$$\frac{STEP THREE: TABLE 1-11}{\Gamma_{X} = 2.47}$$

$$\frac{STEP FOOR: \frac{K}{T} \times 12 = \frac{10(21.685)}{127.41^{K}} \times 12 = 87.616$$

$$\frac{STEP FIVE: 471\sqrt{E/F_{Y}} = 113 > 87.616$$

$$\frac{STEP SEVEN:}{(KL_{f} \times 12)^{L}} = \frac{\pi^{2}(29,000)}{87.616^{2}} = 37.28$$

$$\frac{STEP SEVEN:}{STEP SEVEN:} F_{L_{Z}} = (.658^{-5}/3228) = 50 = 28.5$$

$$\frac{STEP EIGHT:}{0KAY} = 127.41^{K}}$$

Spot Check – Brace 4:

Spot Check - Column:

A strength check for a first story lateral column in brace frame 3 was performed. The design check involves analyzing the column under flexural and compressive loads due to the controlling load condition: 1.2D + 1.6W + L + .5Lr.

Critical Column Creck D: (53 PSF) × (15' × 20') × (14 FLOORS) = 222,600 lbs -> 222.6 Kips + 8000 lbs for column weight -> D = 230.6 Kips [L:] (40 PSF) × (15 ×20 ×14) = 168 KIPS Lr: 12 Kips Pu= 1.20 + L + LR = 1.2(230.6) + 168 +12 PU= 456.72 Kips Mu: 75 1-16 due to 1.6 w lateral lead NI4 × 13 2 21' MU AISC MANUAL TABLE 6-1 KL = 21(14/14) = 21(1.67) = 35.07 $P_{x 10^3} = 1.51$ $P_{x 10^3} = 1.27$ $P_{y}(1.51 \times 10^3) + M_{y}(1.27 \times 10^3) =$ 456.72 (1.51 ×103) + 75 (127 ×10-3) = = .785 < 1.0 OKAY V

Conclusions:

In the third technical report of the 40 Gold Street building, an in depth analysis of the lateral system was completed to verify that the design meets all code requirements. Confirmation of design required careful examination of critical lateral members to verify all strength, drift, story drift, and overturning requirements are satisfied. To accurately confirm the design, a 3D model of the existing lateral system was created using ETABS. However, instead of exclusively relying on the 3D model, the analysis process began with two methods of preliminary analysis.

Method one incorporated the use of 2D computer modeling to determine relative stiffness values of each frame based on displacement from a 1 kip load. Preliminary analysis method one involved significant simplification of the moment frame geometries. Consequently, the results are not accurate but provide valuable insight regarding the behavior of the lateral system. According to the preliminary data, the center of rigidity and center of mass are nearly equivalent, and torsion effects are minimal.

With only a few approximations and simplifications, the second method of preliminary analysis yielded realistic relative stiffness values. Based on distribution of lateral forces in the 3D model, the braced frames are the dominant lateral force resisting elements and are approximately 7 to 8 times stiffer than the moment frames. Braced frames are traditionally about 10 times stiffer than moment frames of similar geometry. However, the moment frames are much wider than the braced frames providing additional rigidity. Method two also estimated the center of rigidity to be located close to the center of mass.

In order to properly confirm the existing lateral design, several loading combinations were defined and applied to the ETABS model. Considering the 7 basic load combinations of ASCE7-05 section 3.2.3 and the 4 wind cases defined in ASCE7-05 figure 6.9, 38 different load combinations were applied to the model. By comparing story shear and story drift output, the controlling loading conditions in both the X and Y direction was determined to be Wind case 1 in conjunction with either <u>ASCE7-05 equation 4</u>: 1.2D + 1.6W+ L + .5Lr or <u>ASCE7-05 equation 6</u>: .9D + 1.6W.

Using unfactored wind loads calculated in technical report 1, drift and story drifts under the 4 ASCE7-05 wind cases were checked for serviceability issues. Based on the ETABS output, wind case one controls, and the corresponding drift and story drifts did not exceed the allowable drift: $\Delta_{WIND} = H / 400$. 3D output data for ASCE 7-05 Load Combinations 5: **1.2D** + **1.0E** + **1.0L** and load combination 7: **.9D** + **1.0E** were examined to verify seismic induced story drifts do not exceed the allowable drift: $\Delta_{SEISMIC} = .015$ hsx. As expected, the design satisfies the stability requirement associated with seismic loading.

A second method of drift analysis was employed to provide another source of design confirmation. Using the portal method and an approximate displacement method, moment frame MF-1 was analyzed to determine story drifts induced by the controlling loading condition mentioned above. Although hand calculations yielded values slightly larger than observed in the 3D output, the approximated story drifts do not exceed the allowable limit.

Based on inspection, it was determined the braced frames possess the largest overturn potential. Not only do the braced frames resist the largest story forces, but their small base dimensions magnify the uplift forces resulting from the overturn moments. Therefore, each braced frame was analyzed under the controlling loading condition. After comparing uplift forces with the counteracting dead loads, it was determined that 8 different locations require pile caps with uplift resistance. The existing foundation agrees With a low total building weight of just 4,681 kips, overturning due to lateral loads was expected to have impact on the foundation.

The final stage of design confirmation required strength checks of critical cross braces and lateral columns. Based on inspection, braced frame BR-3 resists the largest story shears under the controlling loading condition. As a result, member checks of braced frame BR-3 were assumed to represent an overall design check of the lateral system.

Based on the results of this report, it can be concluded that the existing lateral system design is adequate meeting all standard criteria and requirements. With a spread out lateral system, torsion effects are minimal. Wind loads generate the largest story shears and story drifts. The largest area of concern pertains to the overturning moment; however, appropriately designed pile caps (as shown in report) provide an easy solution to uplift issues.

APPENDIX A – WIND LOAD CALCULTATIONS

The actual wind loads calculated for the 40 Gold Street Design were done according to ASCE7-02. For the Thesis calculations, wind load pressures were obtained by following Method 2 for the main wind-force resisting system for enclosed buildings and referencing the IBC 2006 1609.1.1 and Chapter 6 of ASCE/SEI 7-05 (ASCE7). The results of these wind calculations are illustrated in the following figures and tables.

Summary of W	ind Calculati	ons: Variables and C	lassifications	(EAST/WEST DIREC	CTION)
Basic Wind Speed (V)	110 mph	damping ratio (b)	1.5	Qp	29.47
Wind Directionality Factor (Kd)	0.85	natural frequency (n)	0.363	GCpn (windward)	1.5
Importance Factor (I)	1	Z	102.4	GCpn(Leeward)	-1
Exposure Category	В	Iz	0.4968	Pp(windward)	44.207
Topographic Factor (Kzt)	1	Lz	466.74	Pp(leeward)	-29.47
Alpha	7	Q	0.838	Cp (windward)	0.8
Zg	1200	Vz	96.357	Cp(leeward)	-0.5
а	0.50	N1	1.7583	Cp(side walls)	-0.7
b	0.84	Rn	0.0962	Gcpi	0.18 / -0.18
с	0.3	Rb	0.4837	Mean Roof Height	170' 8"
1	320	RI	0.2575	Enclosure Type	Fully Enclosed
е	0.3333	R	0.09226	Rigidity	Flexible
Zmin	30	Gr	3.788	Parapet	4' high parapet
alpha	0.25	Gf	0.8845	Topography	No Hill / No Escarpment

T-43

T-44

Summary of Wine	d Calculation	s: Variables and Clas	ssifications (NORTH/SOUTH DIR	ECTION)
Basic Wind Speed (V)	110 mph	damping ratio (b)	1.5	Qp	0
Wind Directionality Factor (Kd)	0.85	natural frequency (n)	0.363	GCpn (windward)	1.5
Importance Factor (I)	1	Z	102.4	GCpn(Leeward)	-1
Exposure Category	В	Iz	0.4968	Pp(windward)	0
Topographic Factor (Kzt)	1	Lz	466.74	Pp(leeward)	0
Alpha	7	Q	0.8449	Cp (windward)	0.8
Zg	1200	Vz	96.357	Cp(leeward)	-0.42
а	0.50	N1	1.7583	Cp(side walls)	-0.7
b	0.84	Rn	0.0962	Gcpi	0.18 / -0.18
с	0.3	Rb	0.2605	Mean Roof Height	170' 8"
1	320	RI	0.1961	Enclosure Type	Fully Enclosed
e	0.3333	R	0.07179	Rigidity	Flexible
Zmin	30	Gr	3.788	Parapet	No Parapet
alpha	0.25	Gf	0.8877	Topography	No Hill / No Escarpment

***Note:** The highlighted cells represent values in the North/South Wind Pressure Calculations that differ from the East/West Wind Pressure Calculations. These differences were due to the changes in building dimensions.

Wind Design Load Tables

(WIND PRESSURES)

	Calculated Wind Pressures for the EAST / WEST Direction												
			B = 78' 2-	1/2"		L = 5	6' 9-1/2"						
Story	Story Height	Height	kz	k _{zt}	k _d	v	I	q _{z (psf)}	G _f	C _{pw}	C _{pL}	Pz (windward)	P _{z (Leeward)}
2	21' 8"	21'8"	0.7	1.00	0.85	110	1.00	18.43	0.8845	0.8	-0.5	7.587	-7.9476
3	10' 9"	32'5"	0.7145	1.00	0.85	110	1.00	18.81	0.8845	0.8	-0.5	7.857	-7.9476
4	10' 9"	43'2"	0.7158	1.00	0.85	110	1.00	18.85	0.8845	0.8	-0.5	7.881	-7.9476
5	10' 9"	53'11"	0.8256	1.00	0.85	110	1.00	21.74	0.8845	0.8	-0.5	9.927	-7.9476
6	10' 9"	64'8"	0.8687	1.00	0.85	110	1.00	22.87	0.8845	0.8	-0.5	10.730	-7.9476
7	10' 9"	75'5"	0.9117	1.00	0.85	110	1.00	24.00	0.8845	0.8	-0.5	11.531	-7.9476
8	10' 9"	86'2"	0.9485	1.00	0.85	110	1.00	24.97	0.8845	0.8	-0.5	12.216	-7.9476
9	10' 9"	96'11"	0.98075	1.00	0.85	110	1.00	25.82	0.8845	0.8	-0.5	12.817	-7.9476
10	10' 9"	107'8"	1.009	1.00	0.85	110	1.00	26.57	0.8845	0.8	-0.5	13.344	-7.9476
11	10' 9"	118'5"	1.036	1.00	0.85	110	1.00	27.28	0.8845	0.8	-0.5	13.847	-7.9476
12	10' 9"	129'2"	1.063	1.00	0.85	110	1.00	27.99	0.8845	0.8	-0.5	14.350	-7.9476
13	10' 9"	139'11"	1.089	1.00	0.85	110	1.00	28.67	0.8845	0.8	-0.5	14.834	-7.9476
Penthouse	10' 9"	150'8"	1.111	1.00	0.85	110	1.00	29.25	0.8845	0.8	-0.5	15.244	-7.9476
Roof	12' 0"	162'8"	1.135	1.00	0.85	110	1.00	29.88	0.8845	0.8	-0.5	15.691	-7.9476
Bulkhead Roof	8' 0"	170'8"	1.151	1.00	0.85	110	1.00	30.31	0.8845	0.8	-0.5	15.989	-7.9476

T-45

Calculated Wind Pressures for the North / South Direction													
B = 56' 9-1/2" L = 78' 9-1/2"													
Story	Story Height	Height	kz	k _{zt}	k _d	v	I.	q _{z (psf)}	G _f	C _{pw}	C _{pL}	Pz (windward)	Pz (Leeward)
2	21' 8"	21'8"	0.7	1.00	0.85	110	1.00	18.43	0.8877	0.8	-0.42	7.634	-5.84391
3	10' 9"	32'5"	0.7145	1.00	0.85	110	1.00	18.81	0.8877	0.8	-0.42	7.905	-5.84391
4	10' 9"	43'2"	0.7158	1.00	0.85	110	1.00	18.85	0.8877	0.8	-0.42	7.929	-5.84391
5	10' 9"	53'11"	0.8256	1.00	0.85	110	1.00	21.74	0.8877	0.8	-0.42	9.982	-5.84391
6	10' 9"	64'8"	0.8687	1.00	0.85	110	1.00	22.87	0.8877	0.8	-0.42	10.788	-5.84391
7	10' 9"	75'5"	0.9117	1.00	0.85	110	1.00	24.00	0.8877	0.8	-0.42	11.592	-5.84391
8	10' 9"	86'2"	0.9485	1.00	0.85	110	1.00	24.97	0.8877	0.8	-0.42	12.280	-5.84391
9	10' 9"	96'11"	0.98075	1.00	0.85	110	1.00	25.82	0.8877	0.8	-0.42	12.883	-5.84391
10	10' 9"	107'8"	1.009	1.00	0.85	110	1.00	26.57	0.8877	0.8	-0.42	13.412	-5.84391
11	10' 9"	118'5"	1.036	1.00	0.85	110	1.00	27.28	0.8877	0.8	-0.42	13.916	-5.84391
12	10' 9"	129'2"	1.063	1.00	0.85	110	1.00	27.99	0.8877	0.8	-0.42	14.421	-5.84391
13	10' 9"	139'11"	1.089	1.00	0.85	110	1.00	28.67	0.8877	0.8	-0.42	14.907	-5.84391
Penthouse	10' 9"	150'8"	1.111	1.00	0.85	110	1.00	29.25	0.8877	0.8	-0.42	15.319	-5.84391
Roof	12' 0"	162'8"	1.135	1.00	0.85	110	1.00	29.88	0.8877	0.8	-0.42	15.768	-5.84391
Bulkhead Roof	8' 0"	170'8"	1.151	1.00	0.85	110	1.00	30.31	0.8877	0.8	-0.42	16.067	-5.84391
					г		1						

T-46

Table T-45 Is Illustrated in Diagram F-23

Table T-46 Is Illustrated in Diagram F-24

WIND CALCULATIONS: STORY SHEARS AND OVERTURNING MOMENT

WIND FORCES, STORY SHEARS, OVERTURNING MOMENT										
EAST/WEST DIRECTION										
story	story height	height from ground	Tributary Area Below	Tributary Area Above	Pz below	Pz Above	Fx	Vx	Moment Contribution Fx*(height)	Overturing Moment (Kip*ft)
	ft	ft	SF	SF	PSF	PSF	kips	kips		
2	21.667	21.667	845	419	7.587	7.857	9.703	139.328	210.2370244	
3	10.75	32.417	419	419	7.857	7.881	6.594	129.625	213.7648946	
4	10.75	43.167	419	419	7.881	9.927	7.462	123.031	322.0928152	
5	10.75	53.917	419	419	9.927	10.73	8.655	123.031	466.6668935	
6	10.75	64.667	419	419	10.73	11.531	9.327	106.914	603.1723245	
7	10.75	75.417	419	419	11.531	12.216	9.950	97.587	750.3986221	
8	10.75	86.167	419	419	12.216	12.817	10.489	87.637	903.7907561	
9	10.75	96.917	419	419	12.817	13.344	10.961	77.148	1062.351722	
10	10.75	107.667	419	419	13.344	13.847	11.393	66.186	1226.653253	
11	10.75	118.417	419	419	13.847	14.35	11.815	54.793	1399.042738	
12	10.75	129.167	419	419	14.35	14.834	12.228	42.979	1579.466476	
13	10.75	139.917	419	419	14.834	15.244	12.603	30.751	1763.329457	
Penthouse	10.75	150.667	419	468	15.244	15.691	13.731	18.148	2068.751926	
Roof	12	162.667	200	40	15.691	15.989	3.778	4.417	614.5168859	
Bulkhead	8	170.667	40	0	15.989	0	0.640	0.640	109.1517865	13293.38758
	NORTH/SOUTH DIRECTION									
2	21.667	21.667	614	305	7.634	7.905	7.098	98.568	153.7988878	
3	10.75	32.417	305	305	7.905	7.929	4.829	91.470	156.5536873	
4	10.75	43.167	305	305	7.929	9.982	5.463	86.641	235.8150618	
5	10.75	53.917	305	305	9.982	10.788	6.335	86.641	341.5561075	
6	10.75	64.667	305	305	10.788	11.592	6.826	74.843	441.4104753	
7	10.75	75.417	305	305	11.592	12.28	7.281	68.017	549.1081603	
8	10.75	86.167	305	305	12.28	12.883	7.675	60.736	661.3071674	
9	10.75	96.917	305	305	12.883	13.412	8.020	53.061	777.2719171	
10	10.75	107.667	305	305	13.412	13.916	8.335	45.041	897.4087517	
11	10.75	118.417	305	305	13.916	14.421	8.643	36.706	1023.452671	
12	10.75	129.167	305	305	14.421	14.907	8.945	28.064	1155.403982	
13	10.75	139.917	305	305	14.907	15.319	9.219	19.119	1289.885029	
Penthouse	10.75	150.667	305	125	15.319	15.768	6.643	9.900	1000.925328	
Roof	12	162.667	125	40	15.768	16.067	2.614	3.256	425.1594846	
Bulkhead	8	170.667	40	0	16.067	0	0.643	0.643	109.6842676	9218.740978

T-47

WIND CALCO	LATIONS	TECHNICAL	REPORT 1	Jesse	COOPER
DETERMWI	WG WIND	LOADS			
Cobe - 1N Li	ACCORDANC PROVISION	C WITH IBO VS OF CHAP	2006 SEC.	HON 1609.1 ASCE / SEI	7-05 (ASCET)
~ MET	HOD 2 FOI	R THE MW	FRS		
FLOWENART 1.) DETER FIG 1609	5.5 : VEL MWE BASH (6.5.4)	OCITY PRE. 6 WIND SPEE NEW YORK C	SSURES, Q	E AND 9H FIG. 6-	-1 or m/s)
2.) DETER STRU	MINE WIND LTIRE TYPE Ka = 0	- BUILDWG	S - MWFRS	KJ (TABL COMPONEN	# 6-4) +5/ CLADDING
3.) DETER. AND T	MWE IMPOR 1486€ 6-1 Occupa <u>I=1,0</u>	талсы расто (6.5.5) асу = Ш	K I FROM → NON-HUR	IBL TABL	E 1604.5
4.) Expo. 54 0B Ste	SURE CATE URFACE ROO SUCTIONS, / EXPOSO	EGORY (6.5 UGUNESS - 1 VYC. RE B APP	.6) 3 - URBAN A LIES IN ALC	IREA, CLOSI	E SAALED
3.) ARE To	ALL S CON POLEADHY - 	Not SITUAT NOT ON A 2+= 1.0 -	6.5.7.1 МЕ ТЕД ОЛ А 1 1 ЕЭСАЕРЛ ТИРОБЕАРНІС	HILL HILL MENT PACTOR	
6.) D∉⊤ 1	ERMINE VE Able 6-3	FLOCITY PRE (6.5.6.6)	ssore coef	FILIENTS	KZ AND Kn.
FARLE 6-2	$\propto z_{s}$	a 6	2 1		e E Zain

WIND CALCULATION	S TECHNICA	L REPORT 1	JESSE	COOPER
ELEVATI	0.00			r
	HEIGHI		-	18
GROUND FLOOR	0' 1			.7
2~0	Z1' 8	LINEAR	1	.7
3 20	32' S"	NTERPOLATIO	N I	.7145
41 TH	43' 2	<		.7158
STH	53 11	USING TARLE		8756
6**	64 8 1	6-3 (ASE)		86.87
7 TH	75' 5"	EXPOSURER		.9117
STH	86' 2" 1		1	9435
9*4	96 11 1			98075
0 **	107' 8"	SAMPLE LINEA	R	1.000
174 .	118' 5"	LUT CR Cou Long		1.004
9 14	129 2" 1	IN IS CFOLATION		1.036
TH	139'11" 1	32'5"-30 (74-7)	+711	1.063
		40-30		1.089
ENTHOUSE	150 8			F.01
ROOF	162 8	= .7/45		1.135
BULKHEAD ROOF	170 8	* FOR 3 FLOG	RII	1.151 = Ku

TABLEG-3 CASE 2, EXPOSURE B

1	HEIGHT Above	GROU	~D	vs.	Kz
	FEET	K2			
	0-15	0.7			
	20	0.7			SAMPLE CALCULATION FORK2
	2.5	0.7			
	30	0.7			FOR 2=100 FEET
	40	0.76			(1/2)
	50	0.81		1	Kz= K100= 2.01 (2/_)
	60	0.85			(723)
	70	0.89			$(\frac{2}{7})$
	80	0.93			Kino = 2.01 (100/1700)
	90	0.96			(,
٭	100	0.99	-		K100 = 0.99
	120	1.04			
	140	1.09			
	160	1.13			
	180	1.17			

WIND CALCULATIONS JESSE COOPER TECHNICAL REPORT | Kz AFTER LINEAR INTERPOLATION VALUES , FOR · DETERMINE VELOCITY PRESSURE AT HEIGHT 2 AND H By EG. 6-15 2= 0.00256 Kz Kzt K1 V2 I 94= 0.00256 Ky Kzt Ky V2 I Sample CALCULATION - STH FLOOR 22= 286'z" = (.oczsc) (.9485) (1.0) (.85) (1102) (1.0 2 86'2" = 241.97 PSF 92 LEVEL HEIGHT Kz GROUND 200 3 80 41 74 5TH 674 7 TH 8TH 9TH 10 74 11 74 12 ** 13 TH PENTHOUSE ROOF BULKHEAD ROOF

TECHNICAL REPORT 1 CALCULATIONS JESSE COOPER WIND FLOWCHART S.6 - METHOD 2- GUST EFFECT FACTORS, GAND GE. = 78' 2'2" BUILDING DIMENSION PERPENDICULAR to WIND L = 56.79" BUILDING DIMENSION HORIZONTAL (PARALLEL TO WIND h = 170' 8" MEAN ROOF HEIGHT B = 1.5 DAMPING RATIO = 0,363 NATURAL FREQUENCY REFERENCE CG.S.8 - APPROXIMATE FUNDAMENTAL FREQUENCY LA STEEL MOMENT RESISTING FRAMES R = 22.2 (.8) = 22.2 (.8) = 1.363 = 1 H2 FLEXIBLE $g_{Q} = g_{V} = 3.4$ Z=0.6h= 0.6 (170'8")= 102.4 > 2min skay V IZ: C (1/2)"= 0.6 (33/102.41)"= .4968 Lz = l (Z/33) = 320 (102.4/33) = 466.74 Q= 1 + 0.63 (8+ h .63 78' 2'2" + 170 9 8380 V= 10 MPH

ALCULATIONS TECHNICAL REPORT | JESSE COOPER $\overline{V_{z}} = \overline{b} \left(\frac{\overline{z}}{\overline{z}_{3}}\right)^{3} V \left(\frac{88}{160}\right) = (.45) \left(\frac{102.41}{33}\right)^{4} (110) \left(\frac{88}{160}\right)$ Vz = 96.3569 $N_{i} = \frac{n_{i} L_{Z}}{V_{z}} = \frac{.363 (466.74)}{94.3564} = 1.75.83 = N_{i}$ $\frac{R_{n}}{(1+10.3N_{1})^{5/3}} = \frac{7.47(1.7583)}{(1+10.3(1.7583)^{5/3}} = \frac{1.09615 = R_{n}}{(1+10.3(1.7583)^{5/3})}$ Rh= 1/2 - - - - - 2/2 (1 - e-2) for R70 $\Lambda = 4.6 R_1 \frac{1}{V_2} = \frac{4.6(.363)(176'8')}{96.3569} = 2.957 = R_1^{1}$ $= \frac{1}{2(2.457)^2} \left(1 - e^{(-2 \cdot 2.457)} \right) = \left[\cdot 28115 = R_{h} \right]$ RB= 1 - 1 (1-e-2m) where n= 4.6 R, B/V= $n = \frac{4.6(.363)(78'2'2')}{4.3553} = \frac{1.3553}{1.3553}$ $R_{B} = \frac{1}{1.3553} - \frac{1}{2(13553)^{2}} \left(1 - e^{(-2 \cdot 1.3553)}\right) = \left(.4837 = R_{B}\right)$ RL= Vn - Zn= (1-e(-2n)) where 1= 15.4 n. L/V= B.2948 RL= .2575 R= V = R_R R_B (0.53 + 0.47 PL) = .09226=R (damping ratio

TECHNICAL REPORTI WIND CALCULATIONS JESSE COUPER NOTE: B = STRUCTURAL DAMPING * MEASURE OF ENERGY DISSIPATION IN A VIBRATING STRUCTURE THAT RESULTS IN BRINGING THE STRUCTURE TO A QUIESLENT STATE. IN WWO APPLICATION, DAMPING RATIOS OF 1% - 2% ARE TYPICALLY USED IN UNITED STATES FOR STEEL + CONCRETE BUILDINGS. TAKE MEAN OF RANGE: 1.5% = B $1 + 1.7 I_{\overline{2}} \sqrt{9_{Q}^{2} Q^{2} + 9_{R}^{2} R^{2}}$ Ge = 0.925 1 + 1.7 9, Iz 1+ 1.7 (.4968) V (3.4) (.838) + (3.788) (.09226)2 $G_{f} = 0.925$ 1+ 1.7 (3.4) (.4468) Gf = .8845 Ge= V 2 In (3, 600 R.) = 3.788

WIND CALCULATIONS TECHNICAL REPORT JESSE COOPER FLOWCHART 5.7 IS BUILDING ENCLOSED DE PARTIALLY ENCLOSED ? YES PARAPET 7 YES BUT LY PARADET AT DENTHOUSE LEVEL, 4' HIGH. HUWFUER TWO FLOORS RISE ABOUT PARAPET TO 170.67 2p MEANINES @ TOP OF PARAPET - 154.67 2P = 2154.67 = -00256 KZ KZE KZ V2I = .00256 (1.119341) (1.6) (.85) (1102) (1.0) 9p = 29.47 PSF LINFAR INTERPOLATION WHERE KZ = 154-67'-140' (1.13-109)+1.04 Kz= 1.11934 DETERMINE COMBINED NET PRESSURE COEFFICIENT GCAN: G(Pn= +1.5 WINDWARD G(pn = -1.0 LEEWARD DETERMINE COMBINED NET DESIGN PRESSURE ON PARAPET Pr= qr GCpn = (29.47 PSF) (1.5) = 44.207 WINDWARD (29.47 PSF) (-1.0) = -29.47 LEEWARD Low Rise Building? No -> h > 60 0"

JESSE COOPER WIND CALCULATIONS TECHNICAL REPORT 1 - BUILDING IS FLEXIBLE - NOT RIGID - CORRESPONDING GUST FACTOR G OR GF FROM FLOWCHART S.G Gr= . 8845 DETERMINE VELOCITY PRESSURE 92 FOR WINDWARD WALS ALONG THE HEIGHT OF THE BUILDING AND 9h FOR LEEWARD WALLS, SIDE WALLS, ROOF, DETERMINE CP FOR WALLS + ROOF (FIG. 6-6 or 6-8) WINDWARD -> CP=.8 LEEWARD -> Cp=-0.5 -> 46= 50.7 4/78'2'2" = .72661 SIDE WALS -> Cp=-0.7 DETERMINE INTERNAL PRESSORE COEFFICIENTS GCPi (Fig6-5) GCPi = 4 0.18 - 0.18 DETERMINE DESIGN WIND PRESSURES EQ. 6-19 PZ= 92 GFCF- 9h (GCp;) WINDWARD WHERE CP = .8 Pz. 9h Gr Cp - 9h (GCP:) LEEWARD WHERE CP = -0.5 SAMPLE CALCULATION STORY 10- WINDWARD FACE : P2= P1078" = (26.57)(-8845)(.8) - 3434(.18) Pz= 13.345

JESSE COOPER NORTH / SOUTH DIRECTION * NOTE THE EXACT SAME PROCEDURE + PROVISIONS WERE FOLLOWED TO OBTAIN THE WIND PRESSURE VALUES FOR THE EAST /WEST DIRECTION. SOME VALUES CHAUGED DUE TO CHANGE IN BUILDING D'MENSIONS W/ RESPECT TO WIND PATH! (SEEBELOW) NEW VALUES B= 56.79', L= 78' 2'2" $Q = \sqrt{\frac{1}{1 + 0.63 \left(\frac{B+h}{L_{s}}\right)^{-63}}} = \sqrt{\frac{1}{1 + .63 \left(\frac{56.79 + 170's''}{1 + .63}\right)^{-63}}} = .8449 = Q$ $\frac{R_{1}}{R_{1}} = \frac{15.4 (.363) (75' 2/2)}{96.3569} = 4.537$ $R_{L} = \frac{1}{4.537} - \frac{1}{2(4.537)^{2}} \left(1 - e^{(-2 \cdot 4.537)}\right) = \frac{14U = R_{L}}{14U = R_{L}}$ $\frac{R_{B}}{(22)} = \frac{4.6(.363)(56.74)}{96.3569} = \frac{.9841}{.9841}$ $R_{B} = \frac{1}{2.9841} - \frac{1}{2.98411^{2}} \left(1 - e^{\left(-2(-9.84^{\circ})\right)}\right) = .2605 = R_{B}$ $R = \sqrt{\frac{1}{1.5} (.09615) (.28115) (.2605) (.53 + .47 (.1461))}$ R= .07179 G-f = . 8877 NO PARAPET IN THIS DIRECTION DETERMINE CP: [WINDWORD: CP=.8] L/B = 78'2'2''/56.74' = 1.377 > 1.0LINEAR INTERPOLATION : CP = -472 LEEWARD

APPENDIX B - SEISMIC CALCULATIONS

The following tables **T-48** – **T-56**, and corresponding calculations, were obtained in accordance with IBC 2006 Section 1613.1 and by Referencing Chapters 12 and 13 of ASCE7-05. The 40 Gold street building is a slender steel framed structure located in Manhattan, New York. To quickly summarize the following tables, it is important to note the site class was recorded as D, the Seismic Design Category (SDC) was determined to be E, and the overall building weight was only 4,681,330 lbs (4,681.33 kips).

Based on the IBC Chapter 6 seismic flowcharts, it was determined that the Modal response spectrum Analysis should be conducted to determine seismic loads. However, for the purposes of this Thesis project, performing the analysis is not practical. Analytical procedures were therefore conducted according to the Equivalent Lateral Force Procedure.

	Total Building	Total Building Weight Calculations Due To Slab and Superimposed Loads				
	Floor	Floor Area	Dead Load	Additional Loads Required By Code	Floor Weight	
	Cellar					
	1st					
	Retail	3815	78	N/A	297570	
	Residential Lobby	714	96	N/A	68544	
	Retail Storage**	70	78	25% of Corresponding Live Load (100x.25 = 25)	7210	
	Mech. Mezzanine	176	71	N/A	12496	
	2nd					
	Residential	4149	53	N/A	219897	
	Outdoor Terrace Exposed	374	71	N/A	26554	
Note: Dead	to show Loads					
Load values in	3rd					
column three	Residential	4149	53	N/A	219897	
column three	4th					
of Table T-48	Residential	4149	53	N/A	219897	
are broken	5th	11.10	50		240007	
	Kesidential	4149	53	N/A	219897	
down by more	0111 Pasidantial	1110	52	N/A	210907	
specific	7th	4145	55	N/A	219097	
building	Residential	<i>A1A</i> 9	53	Ν/Δ	219897	
	8th	1115			213037	
components in	Residential	4149	53	N/A	219897	
table T-1.	9th	-		,		
	Residential	4149	53	N/A	219897	
	10th					
	Residential	4149	53	N/A	219897	
	11th					
	Residential	4149	53	N/A	219897	
	12th					
	Residential	4149	53	N/A	219897	
	13th					
	Residential	4149	53	N/A	219897	
	Penthouse					
	Residential Recreation	2338	58	N/A	135604	
	Outdoor Terraces -West	869	71	N/A	61699	

Outdoor Terraces - East	636	71	N/A	45156
Boiler Room / Mech	174	61	N/A	10614
Roof Level				
Flat Roof Exposed to Snow Loads	1895	47	N/A	89065
Mechancial Facility	236	61	N/A	14396
Bulkhead Roof				
Flat Roof Exposed to Snow Loads	525	71	N/A	37275
Note: Partitions, mechan with th	ical equipment, r ne dead loads (see	niscellaneous items we e table S-9 page 13)	re all properly superin TOTAL = 3,407,672	mposed and included lbs

T-48 Continued

Building Envelope Dead Load Broken Down By Level (lbs)					
Floor	h/2 below (ft)	h/2 above (ft)	Dead Load (PSF)	Perimeter of Building at Corresponding Story Elevation	Weight = 15*Perimeter*(h/2 below + h/w above)
1	N/A	10'10"	15	274	44,525
2	10'10"	5' 4.5"	15	270	65,644
3	5' 4.5"	5' 4.5"	15	270	43,538
4	5' 4.5"	5' 4.5"	15	270	43,539
5	5' 4.5"	5' 4.5"	15	270	43,540
6	5' 4.5"	5' 4.5"	15	270	43,541
7	5' 4.5"	5' 4.5"	15	270	43,542
8	5' 4.5"	5' 4.5"	15	270	43,543
9	5' 4.5"	5' 4.5"	15	270	43,544
10	5' 4.5"	5' 4.5"	15	260	41,925
11	5' 4.5"	5' 4.5"	15	260	41,926
12	5' 4.5"	5' 4.5"	15	260	41,927
13	5' 4.5"	5' 4.5"	15	260	41,928
Penthouse	5' 4.5"	6'0"	15	252	42,998
Roof	6'0"	4'0"	15	156	23,400
Bulkhead Roof	4'0"	0	15	50	3,000
				Total Building Envelope (lbs)	652,060

40 Gold Street – New York, New York Technical Report # 3

Jesse T. Cooper – Structural Option Thesis Consultant – Dr. Boothby

		BL	JILDING WEIGHT DUE	TO COLUMNS (lbs)			
Floor	Column Shape	# Identical Columns	Column Height	Weight / Column	Total Weight	Final Breakd	own
1st							
	W10x33	1	21'1"	696	696		
	W12x96	1	23'2"	2224	2224		
	W12x120	16	23'2"	2780	44480		
	W12x106	1	23'2"	2456	2456]	
	W10x77	1	23'2"	1784	1784		
	W10x54	1	23'2"	1251	1251		
	W14x132	3	31'8"	4180	12540		
	W10x60	1	23'2"	1390	1390		
	W14x132	1	23'2"	3058	3058		
	W14x109	1	31'8"	3451	3451		
	W10x88	1	31'8"	2787	2787		
				Total = 7	6,117	First Floor Weight	76,117
2nd - 3rd						_	
	W10x88	10	21'6"	1892	18920	-	
	W10x77	10	21'6"	1656	16560	_	
	W10x59	1	21'6"	1268	1268	_	
	W10x49	2	21'6"	1054	2108	-	
	W10x54	1	216	1162	1162	-	
	W10x68	3	216	1462	4386	Cocord Floor Woight	22,202
				Total = 4	4,404	Second Floor Weight	22,202
1th_5th							22,202
401-501	W/10x68	10	21'6"	1/62	1/620	-	
	W10x49	3	21'6"	1054	3162	-	
	W10x39	1	21'6"	839	839		
	W10x54	5	21'6"	1162	5810		
	W10x45	3	21'6"	968	2904	1	
	W10x60	2	21'6"	1290	2580	1	
	W10x77	2	21'6"	1656	3312		
	W10x35	1	21'6"	753	753	-	
				Total Woigh	+ - 22.090	Fourth Floor Weight	16990
				Total Weigh	1 - 55,580	Fifth Floor Weight	16990
6th-7th							
	W10x68	7	21'6"	1462	10234	_	
	W10x60	3	21'6"	1290	3870		
	W10x54	2	21'6"	1162	2324	_	
	W10x39	6	21'6"	839	5034		
	W10x33	2	21'6"	710	1420	_	
						_	
						-	
	W10x49	5	21'6"	1054	5270	-	
	W10x33	1	29'9"	988	988		
				Total Weigh	t = 29,140	Sixth Floor Weight	14570
						Seventh Floor Weight	14570

Num W10x54 3 21'6" 1162 3486 W10x53 2 21'6" 968 1935 W10x53 4 22'6" 710 524 W10x33 4 22'6" 710 524 W10x33 4 22'6" 710 5284 W10x39 8 21'6" 839 6712 W10x39 8 21'6" 839 6712 W10x39 6 21'6" 839 5034 W10x45 3 21'6" 710 6390 W10x45 3 21'6" 710 6390 W10x43 9 21'6" 710 6390 W10x33 9 21'6" 710 6390 W10x33 6 190" 627 3762 W10x33 6 190" 655 3420 W10x33 5 21'6" 710 3550 W10x33 5 21'6" 162 <	8th-9th							
Introde Introde <thintrode< th=""> <thintrode< th=""> <th< td=""><td>0(11-5(11</td><td>W10x54</td><td>3</td><td>21'6"</td><td>1162</td><td>3486</td><td>-</td><td></td></th<></thintrode<></thintrode<>	0(11-5(11	W10x54	3	21'6"	1162	3486	-	
W10x49 6 21'6" 1054 6324 W10x33 4 21'6" 710 2840 W10x33 8 21'6" 1290 3870 W10x39 8 21'6" 839 6712 W10x39 8 21'6" 839 6712 W10x39 8 21'6" 839 6712 W10x39 6 21'6" 7378 Ninth Floor Weight 12584 0th-11th 66 21'6" 738 Ninth Floor Weight 12584 0th/0x03 9 21'6" 710 6390 1422 1434 W10x33 9 21'6" 1162 1162 1142 11434 W10x33 6 19'0" 627 3762 3420 1434 W10x33 6 19'0" 627 3762 3420 1434 W10x33 5 21'6" 710 3550 3420 1444 149'0"		W10x45	2	21'6"	968	1936		
W10x33 4 21'6" 710 2840 W10x60 3 21'6" 12'0 3870 W10x60 3 21'6" 12'0 3870 W10x99 8 21'6" 12'0 3870 W10x9 7 216" 839 6712 W10x49 7 216" 10'4 7378 10th-11th 12'6" 10'4 7378 W10x49 7 21'6" 10'4 7378 12'5' 16'5 12'5' W10x45 3 21'6" 710 6390 14'5' 12'5' 16'2 1162 1162 1162 1162 1162 1163 11434		W10x49	6	21'6"	1054	6324		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x33	4	21'6"	710	2840		
M10x30 3 110 12.0 1300 W10x30 8 216" 839 6712 Eight Floor Weight 12584 M10x10 Total Weight = 25,168 Ninth Floor Weight 12584 10th -11th 1054 7378 Ninth Floor Weight 12584 10th -11th 1054 7378 Ninth Floor Weight 12584 10th -11th 968 2904		W10x55	3	21'6"	1290	3870	-	
N10x0 0 110 001 Eight Floor Weight 12584 10th-11th - - Total Weight = 25,168 Eight Floor Weight 12584 10th-11th - - - - Inthin Floor Weight 12584 10th-11th -		W10x39		21'6"	839	6712	-	
Interpretation Interpretation Total Weight 2.5.68 Organ Hore Weight 2.25.84 10th-11th Interpretation W10x49 7 21'6" 1054 7378 W10x49 6 21'6" 839 5034 5034 5034 W10x45 3 21'6" 988 2004 5034 5034 W10x45 3 21'6" 710 6390 5034 5034 W10x54 1 21'6" 1162 1162 1162 11434 Interpretation Interpretation Interpretation Total Weight 22288 Tenth Floor Weight 11434 Interpretation Interpretation Interpretation Interpretation 11434 Interpretation Interpretation Interpretation Interpretation Interpretation 11434 Interpretation		W10x33	0	210	855	0/12	Fight Floor Weight	1258/
10th 11th Wink 49 7 216" 1054 7378 W10k 39 6 216" 839 5034 W10k 33 9 216" 968 2904 W10k 33 9 216" 710 6390 W10k 33 9 216" 710 6390 W10k 33 9 216" 1162 1162 W10k 33 9 216" 1162 1162 W10k 30 6 190" 741 2223 W10k 33 6 190" 627 3762 W10k 39 3 190" 741 2223 W10k 39 2 216" 839 1678 W10k 33 5 216" 710 3550 W10k 41 216" 168 3872 W10k 49 1 216" 1054 1054 W10k 49 1 216" 1054 1054 W10k 39 3 19'1.5" 746 <td< td=""><td></td><td></td><td></td><td></td><td>Total Weigh</td><td>nt = 25,168</td><td>Ninth Floor Weight</td><td>12584</td></td<>					Total Weigh	nt = 25,168	Ninth Floor Weight	12584
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10th-11th							1200.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x49	7	21'6"	1054	7378	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x39	6	21'6"	839	5034		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x45	3	21'6"	968	2904	-	
w10x54 1 21'6" 1162 1162 1162 mathematical constraints mathematical constraints Total Weight = 22,868 Tenth Floor Weight 11434 12th-13th mathematical constraints mathematical constraints Total Weight = 22,868 Tenth Floor Weight 11434 12th-13th mathematical constraints mathematical constraints Total Weight = 22,868 Tenth Floor Weight 11434 12th-13th mathematical constraints mathematical constraints Total Weight = 22,868 Tenth Floor Weight 11434 W10x33 6 190" 627 3762 3762 W10x45 4 190" 855 3420 3420 W10x33 5 21'6" 839 1678 3872 W10x45 4 21'6" 1054 1054 1054 W10x45 1 21'6" 1054 1054 1054 Penthouse/Roof mathematical constraints 10'1.5" 367 1101 Thirteenth Weight 10361 W10x33		W10x33	9	21'6"	710	6390	_	
Image: second		W10x54	1	21'6"	1162	1162	-	
Interview <					-		Tenth Floor Weight	11434
12th-13th Image: second					lotal Weigr	nt = 22,868	Eleventh Floor Weight	11434
$ \begin{array}{ c c c c c c c } \hline W10x39 & 3 & 190'' & 741 & 2223 \\ \hline W10x33 & 6 & 190'' & 627 & 3762 \\ \hline W10x45 & 4 & 190'' & 855 & 3420 \\ \hline W10x39 & 2 & 21'6'' & 839 & 1678 \\ \hline W10x33 & 5 & 21'6'' & 710 & 3550 \\ \hline W10x45 & 4 & 21'6'' & 968 & 3872 \\ \hline W10x45 & 4 & 21'6'' & 1162 & 1162 \\ \hline W10x45 & 1 & 21'6'' & 1162 & 1162 \\ \hline W10x49 & 1 & 21'6'' & 1054 & 1054 \\ \hline W10x49 & 1 & 21'6'' & 1054 & 1054 \\ \hline W10x49 & 1 & 21'6'' & 1054 & 1054 \\ \hline W10x39 & 3 & 19' 1.5'' & 746 & 2238 \\ \hline W10x39 & 3 & 9'5'' & 367 & 1101 \\ \hline W10x39 & 3 & 9'5'' & 367 & 1101 \\ \hline W10x39 & 1 & 24'6'' & 956 & 956 \\ \hline W10x33 & 1 & 11' 7.5'' & 384 & 384 \\ \hline W10x33 & 1 & 19' 1.5'' & 631 & 631 \\ \hline W10x33 & 1 & 10' 1.5'' & 1000 \\ \hline W10x33 & 1 & 10' 1.5'' & 1000 \\ \hline W10x33 & 1 & 10' 1.5'' & 1000 \\ $	12th-13th							
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		W10x39	3	19'0"	741	2223		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		W10x33	6	19'0"	627	3762		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x45	4	19'0"	855	3420		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x39	2	21'6"	839	1678		
Image: matrix space spac		W10x33	5	21'6"	710	3550		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		W10x45	4	21'6"	968	3872		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x54	1	21'6"	1162	1162		
Image: constraint of the imag		W10x49	1	21'6"	1054	1054		
Image: space					Total Woigh	at - 20 721	Twelfth Weight	10361
Penthouse/Roof Image: marked base in the second seco					Total Weigh	11 - 20,721	Thirteenth Weight	10361
Image: Matrix	Penthouse/Roof							
Image: Matrix		W10x39	3	19' 1.5"	746	2238		
$ \begin{array}{ c c c c c c c c } \hline & W10x39 & 1 & 24'6'' & 956 & 956 \\ \hline & W10x33 & 1 & 11'7.5'' & 384 & 384 \\ \hline & W10x33 & 2 & 9'5'' & 311 & 622 \\ \hline & W10x33 & 1 & 19'1.5'' & 631 & 631 \\ \hline & W10x33 & 3 & 24'6'' & 809 & 2427 \\ \hline & W10x33 & 3 & 24'6'' & 809 & 2427 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$		W10x39	3	9'5"	367	1101		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W10x39	1	24'6"	956	956		
		W10x33	1	11' 7.5"	384	384		
W10x33 1 19'1.5" 631 631 W10x33 3 24'6" 809 2427 Image: Constraint of the symbol of the symb		W10x33	2	9'5"	311	622		
W10x33 3 24'6" 809 2427 Image: Constraint of the system o		W10x33	1	19' 1.5"	631	631		
Image: Constraint of the system Penthouse Weight 4179.5 Roof Terrace Weight 4179.5 4179.5		W10x33	3	24'6"	809	2427		
Roof Terrace Weight 4179.5					Total Weig	ht = 8.359	Penthouse Weight	4179.5
							Roof Terrace Weight	4179.5

T-50 Continued

Column Weights were determined by referencing the provided column Schedule. Calculations involved determining the height and Ib/ft of each column.

FIRST FLOOR Building Weight Due to Beams					
Beam	# of Identical Beams	Beam Length	Weight / Beam	Total Weight	
W12x22	4	14'0"	308	1232	
W12x22	1	17'6"	385	385	
W12x22	5	8'9"	193	965	
W12x22	1	6'7"	146	146	
W12x22	1	12'0"	264	264	
W12x26	4	17'6"	455	1820	
W12x26	2	12'0"	312	624	
W10x15	6	6'9"	101	606	
W10x15	1	<u>8'9"</u>	131	131	
W10x15	2	7'10"	119	236	
W10x15	6	5'1"	77	462	
W10x15	2	12'0"	180	360	
W10X13	1	12 0	270	270	
W14X22	2	12/11"	275	019	
VV 14x22	5	15 11	215	916	
VV14x22	1	14 4	315	315	
W14x22	1	21.0."	662	662	
W14x22	1	15.8"	345	345	
W12X19	2	13.11.	264	528	
W12x19	1	14'6"	276	276	
W12x19	1	10'0"	190	190	
W12x19	1	17'5"	331	331	
W10x12	5	5'1"	61	305	
W16x26	2	23'2"	602	1204	
W21x182	1	23'2"	4216	4216	
W21x182	2	14'5"	2639	5278	
W24x176	1	12'6"	2200	2200	
W12x16	1	5'0"	80	80	
W12x16	1	8'6"	136	136	
W24x279	2	13'0"	3627	7254	
W18x35	1	11'7"	406	406	
W18x35	1	18'6"	648	648	
W10x30	2	6'8"	200	400	
W16x45	1	17'1"	770	770	
W10x17	2	8'10"	151	302	
W24x306	1	15'2"	4641	4641	
W16x36	1	17'8"	636	636	
W16x31	1	14'2"	440	440	
W24x131	1	14'2"	1858	1858	
W24x250	1	15'5"	3861	3861	
W8x24	1	8'9"	210	210	
W12x35	1	17'8"	618	618	
W14x30	1	14'7"	440	440	
W18x119	1	23'2"	2759	2759	
W21x201	1	23'2"	4660	4660	
W8x15	2	7'9"	116	232	
W12x35	1	17'8"	618	618	
W24x279	1	17'6"	4883	4883	
W8x13	1	10'2"	132	132	
W8x13	2	2'11"	38	76	
	TOTAL WEIGHT DU	E TO BEAMS AT F	IRST FLOOR = 60,338	Blbs	

	SECOND FLOOR Building Weight Due to Beams						
Beam	# of Identical Beams	Beam Length	Weight / Beam	Total Weight			
W12x22	3	15'9"	346	1038			
W12x22	1	14'0"	308	308			
W12x22	1	11'0"	242	242			
W12x22	3	17'0"	374	1122			
W12x22	3	14'7"	322	966			
W12x22	2	11'8"	256	512			
W8x10	4	7'0''	70	280			
W8x10	9	2'4"	240	2160			
W8x10	2	8'2"	81	162			
W8x10	3	5'4"	53	159			
W8x10	2	12'0"	120	240			
W10x12	4	6'9"	81	324			
W10x12	2	7'10"	94	188			
W10x15	1	13'11"	208	208			
W10x15	3	11'0"	165	495			
W10x15	1	14'5"	216	216			
W12x30	2	14'5"	433	866			
W12x30	2	13'11"	417	834			
W12x30	1	15'0"	450	450			
W12x30	1	17'6"	525	525			
W12x30	1	28'0"	840	840			
W12x30	1	8'9"	262	262			
W12x30	1	7'10"	234	234			
W12x16	3	15'5"	246	738			
W12x16	1	22'8"	362	362			
W12x16	1	17'6"	280	280			
W12x16	1	23'2"	371	371			
W12x16	2	10'5"	166	332			
W12x19	5	23'2"	440	2200			
W12x19	2	15'5"	292	584			
W12x19	1	10'11"	207	207			
W8x13	3	8'10"	114	342			
W12x35	1	25'0"	875	875			
W12x35	1	17'0"	595	595			
W12x26	2	15'8"	407	814			
W12x26	3	17'8"	459	1377			
W12x26	1	11'7"	303	303			
W12x26	1	19'0"	494	494			
W12x30	1	14'0"	420	420			
W12x30	1	13'0"	390	390			
W10x17	1	10'0"	170	170			
	TOTAL WEIGHT DU	JE TO BEAMS AT SE	COND FLOOR = 23,48	5 lbs			
N	ote: This is approximately	same weight for fl	oors 3 - 13 and PENTH	OUSE as well			

ROOF Building Weight Due to Beams					
Beam	# of Identical Beams	Beam Length	Weight / Beam	Total Weight	
W12x22	2	12'0"	264	528	
W12x22	1	8'2"	180	180	
W12x22	1	10'11"	239	239	
W12x22	1	17'8"	388	388	
W12x22	5	20'0"	440	2200	
W12x22	6	16'6"	363	2178	
W10x15	8	8'9"	131	1048	
W10x15	4	4'2"	62	248	
W10x15	2	7'10"	107	214	
W10x15	3	1'5"	22.5	67.5	
W10x17	2	8'9"	148	296	
W12x26	1	15'5"	400	400	
W12x26	4	17'3"	448	1792	
W12x26	1	14'4"	372	372	
W12x19	1	14'8"	278	278	
W12x19	2	11'6"	218	436	
W12x19	1	10'0"	190	190	
W12x16	1	5'6"	88	88	
W12x16	2	6'7"	104	208	
W8x10	2	3'0"	30	60	
W10x22	6	7'0"	154	924	
W12x35	1	15'5"	539	539	
W12x35	1	17'4"	606	606	
W12x30	2	15'0"	450	900	
W12x50	1	11'7"	583	583	
C8x11.5	16	3'8"	42	672	
W8x13	3	3'5"	44	132	
	Total Weight At I	Roof Level Due To	Beams = 15,766.5		

BULKHEAD ROOF Building Weight Due To Beams							
Beam	# of Identical Beams	Beam Length	Weight / Beam	Total Weight			
W10x22	2	18'10"	410	820			
W0x22	1	13'4"	293	293			
W8x13	2	6'9"	87	174			
W8x13	2	8'9"	113	226			
W12x26	1	24'0"	624	624			
W12x26	W12x26 1 30'0" 780 780						
	Total Weight At Bull	khead Roof Level D	Due to Beams = 2,917	7			

Table T-54 Represents the

T-54

Culmination of Tables T51-T53

Total Building Weight	kips
Columns:	260.757
1st Floor Beams	60.338
2nd - 13th Floor and Penthouse Beams	281.82
Roof Beams	15.766
Roof Bulkhead Beams	2.917
Slab and All Superimposed Loads	652.06
Building Envelope	3407.672
TOTAL SUM	4681.33

T-55

SEISMIC CALCULATIONS

Floor Lovel	Height (feet)	Total Weight (kips)	Exponent Related To Structure	Weight*Height ^k	14/11*hule / (514/11*hule)	Base Shear (kips)	Lateral Seismic Force	Story Shear
FIOOF Level	hx	Wx	К	Wx*hx ^k	AAX, UXK \ (\ AAX, UXK)	v	Fx (kips)	Vx (kips)
Ground / 1st	0	547.094	2	0	0	46.81	0	46.8133
2nd Floor	21.667	357.782	2	167963.9402	0.004158738	46.81	0.19468427	46.8133
3rd Floor	32.4167	309.122	2	324838.5164	0.008042907	46.81	0.376515038	46.61861573
4th Floor	43.1667	303.911	2	566296.8132	0.014021345	46.81	0.656385421	46.24210069
5th Floor	53.9167	303.911	2	883472.4799	0.021874522	46.81	1.024018574	45.58571527
6th Floor	64.667	301.493	2	1260789.725	0.031216788	46.81	1.461360853	44.5616967
7th Floor	75.4167	301.493	2	1714795.296	0.042457834	46.81	1.987591322	43.10033584
8th Floor	86.167	299.5	2	2223713.191	0.055058493	46.81	2.577469772	41.11274452
9th Floor	96.9167	299.5	2	2813157.598	0.069652966	46.81	3.260685192	38.53527475
10th Floor	107.667	296.74	2	3439864.35	0.085170043	46.81	3.98709079	35.27458956
11th Floor	118.4167	296.74	2	4161041.053	0.103026169	46.81	4.82299497	31.28749877
12th Floor	129.167	295.67	2	4932991.954	0.12213945	46.81	5.717750697	26.4645038
13th Floor	139.9167	295.67	2	5788237.845	0.14331509	46.81	6.709052291	20.7467531
Penthouse	150.667	268.21	2	6088513.145	0.150749819	46.81	7.057096505	14.03770081
Roof	162.667	146.8065	2	3884581.158	0.096181102	46.81	4.502554804	6.980604304
Bulkhead Roof	170.667	73.4	2	2137938.307	0.052934732	46.81	2.4780495	2.4780495
				∑Wx*hx ^k = 40,388,195.37				

SEISMIC CALCULATIONS TECHNICAL REPORT	JESSE COOPER
DETERMUNG SEISMIL LOADS	
FLOWCHART 6.1 - CONSIDERATION OF SEISMIC	BESIEN REQUIREMENTS
11.1.2 EVERY STRUTURE, AND PORTION T NONSTRUCTURAL COMPANYS, SHALL BE DESKL RESUT THE EFFECTS OF EARTHQUAKE M	HEREEP, LUCLUDINE VED AND CONSTRUCTED TO HTICHS
IS THE STEUCTURE A BETALKED ONE-OR-TWO	MAMILY BUECLING? NO
AGRICULTURAL STURAGE STRUCTURE? NO	
STRUCTURE REQUIRE SPECIAL CONSIDERA	TUN ? NO
SEISME REQUIREMENTS - ASLE/SEI7	- OF MUST BE CONSIDERED
LOWCHART 6.2 SEISMIC GROUND MOT	TION VALUES (11.4)
DETERMINE THE PARAMETERS SS and S, for SPECTRAL RESPONSE ACCELERATIONS ON FIG	rom the 0.2 and 1.0s . 22-1 through 22-14 (11.4.1)
$S_{5} = 35 = .35$	
SI= 6.2 = 1062	
$S_3 \neq 0.15 \text{ and } S_1 \neq 0.04$	
S THE STRUCTURE SETSMICALLY ISCLATED ON	R DOES IT HAUF
DAMONG SYSTEMS ON SITES ON SIZE	b. No
5, 2.062 Z.6	
W 11-41-2 + CHPT. 20 (11-41.2 SEE #	TOW LHART 6.3)
IS THE SITE CLASSIFIED AS SITE CLASS F	
TABLE 20.3-1 BASED ON UPPER 100ft	of site profile
New York Control of Co	

DETERMINING SITE CLASS • REVIEW GEOTECHNICAL REPART FILL - STRATUM CONSISTS OF HETEROGENEOUS MINTURE OF FINE TO CONSIST SAND, GRAVEL, SILT, BRICK / CONCRETE FRAMMENTS. MEDIUM - DEVIE CONDITION MMEDIATELY BELOW FILL - ENTENDS DOWN BELOW BORING PENETRATION * SUMPONDE TO POOK SITE CONDITIONS * OUTIMATELY - CONCLUDED LIQUEFACTION / SUMPLELY DORING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE -> SITE D DETERMINE SMS and SMI BY EQS. 11.4-1 (AND 11.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = Sms SMI = FVS = 2.44 (.062) = 0.1488 = Smi YABLE 11.4-1 -> Fa = 1.52 (LINEAR WITERPOLATION FOR INTERPOLATION TO EXAMPLE SSTE STEAGHT LINE WITERPOLATION FOR INTERPOLATION TO EXAMPLE SS = STEAGHT LINE WITERPOLATION FOR INTERPOLATION SS = SS = .5 -> SITE D -> Fa = 1.6 (SS = .5 -> SITE D -> Fa = 1.6 (SS = .5 -> SITE D -> Fa = 1.4 1.6 - (0.35 - 0.25) / 1.6-1.4] = 1.52 = Fa	SEISMIL	CALCULATI	OUS TECHNICA	L REPORT 1	JESSE	COOPER
DETERMINING SITE CLASS PREVISEN GEOTOCHMICAL REPORT According to Geotechnical REPORT FILL - STRATUM CONSISTS OF HETEROGENEOUS MIXTORE OF FINE TO CORRECT SAND, GRAVEL, SILT, BRICK / CONCRETE FRAMMANTS. MEDIUM - DENSE CONDITION MMEDIUMELY GELOW FILL - ENTENDS DOWN BELOW BORING PENGTRATION \longrightarrow BILTY SANDS - MEDIUM BOBUST LIQUEFACTION ANALYSIS DUE TO POOL SITE CONDITIONS \rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE D DETERMINE SMS and SMI BY EQS. 11.4-(AND 11.4-2 SMS = FaSs = 1.52(.35) = 0.532 = SMS SMI = FVS = 2.41(.062) = 0.1488 = SMI MELE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION FOR INTERPOLATION BELOW) ABLE 11.4-2 \rightarrow Fu = 2.41 SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATION BELOW S = -35 $Ss = -35$ $= -5$ SITE D \rightarrow Fa = 1.6 $Ss = -5$ \rightarrow SITE D \rightarrow Fa = 1.4 1.6 - (0.35 - 0.25) $(1.6-1.41) = 1.52 = Fa$)		
REVIEW Georechanical REPORT According to Geotechanical REPORT <u>FIL</u> - STRATUM CONSISTS OF HETEROGENEOUS MIXTURE OF FINE TO COARSE SAND, GRAVEL, SILT, BRICH / CONRETE FRAMENTS. MEDIUM - DENSE CONDITION <u>MMEDIATELY RELOW FILL</u> - ENTENDS DOWN BELOW BORST <u>LIQUE FACTION ANALYSIS</u> DUE TO POOR SITE CONDITIONS \rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUE FACTION IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE D DETERMINE SMS and SMI BY EQS. II.4-(AND I.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = SMS SMI = FVS = 2.41 (.062) = 0.1488 - SMI MELE II.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION FOR INTERPOLATION BELOW) ABLE II.4-2 \rightarrow Fu = 2.41 SS = STEAIGHT LINE INTERPOLATION FOR INTERPOLATION BELOW S = 5 = .35 $Ss = .5 \longrightarrow SITE D \rightarrow Fa = 1.62Ss = .5 \longrightarrow SITE D \rightarrow Fa = 1.64Ss = .5 \longrightarrow SITE D \rightarrow Fa = 1.411.6 - (0.35 - 0.25) / 1.6 - 1.41 = 1.52 = Fa$	DETERMI	NING SITE	CLASS	, 		
According to Geotechnical REPART FILL - STRATUM CONSISTS OF HETEROGENEOUS MINTURE OF FINE TO CORRES SAND, GRAVEL, SILT, BRICK / CONRETE FRAMMATS. MEDIUM - DENSE CONDITION MMEDIATELY BELOW FILL - ENTENDS DOWN BELOW BORIAG PENETRATION BORIAG PENETRATION BORIAG PENETRATION BOBUST LIQUE FACTION ANALYSIS DUE TO POOR SITE CONDITIONS $\rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUE FACTION IS ONLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQ3. 11.4-1 AND 11.4-2SMS = FaSs = 1.52 (.35) = 0.532 = SMSSMI = FvS = 2.41 (.062) = 0.1488 = SMIMULE 11.4-1 \rightarrow Fa = 1.52(LINEAR INTERPOLATION FOR INTERPOLATION BELOWABLE 11.4-1 \rightarrow Fa = 1.52(LINEAR INTERPOLATION FOR INTERPOLATION BELOWABLE 11.4-2 \rightarrow Fr = 2.41SE STEALGHT LINE INTERPOLATION FOR INTERPOLATION BELOWSS = .35Ss = .35Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.41.6 - (0.35 - 0.25) / (1.6 - 1.4] = 1.52 = Fa$	PREVIS	GEOTECHI	HCAL REPORT			
$\frac{F(L)}{F(L)} - STRATUM CONSISTS OF HETEROGENEOUS MIXTURE OF FINE TO CORSE SAND, GRAVEL, SILT, BRICK / CONCRETE FRADMENTS. MEDIUM - DENSE CONDITION MMEDIATELY BELOW FILL - ENTENDS DOWN BELOW BORIAGE PENETRATION MMEDIATELY BELOW FILL - ENTENDS DOWN BELOW BORIAGE PENETRATION \frac{MMEDIATELY BELOW FILL - ENTENDS DOWN BELOW BOBUST LIQUEFACTION ANALYSIS DUE TO POOR SITE CONDITIONS \rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DORING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2SMS = FaSs = 1.52 (.35) = 0.522 = SMSSMI = FvS = 2.41 (.062) = 0.1488 = SMIMELE 11.4-1 \rightarrow Fa = 1.52(LINEAR INTERPOLATION FOR INTERPOLATION BELOW)ABLE 11.4-1 \rightarrow Fa = 1.52(LINEAR INTERPOLATION FOR INTERPOLATION BELOW)ABLE 11.4-2 \rightarrow Fv = 2.41SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATIONSS = .35Ss = .35Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.41.6 - (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = Fa$	A	CORDINIA T	GEDTETHAN	AI CHART		
MIXTURE OF FINE TO COARSE SAND, GRAVEL, SILT, BRICH / CONCRETE FRAMMENTS. MEDIUM - DENSE CONDITION MMEDIATELY GELOW FILL - ENTENDS DOWN BELOW BORIST LIQUEFACTION ANALYSIS DUE TO POOK SITE CONDITIONS \rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE D DETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = Sms SMI = FVS = 2.44 (.062) = 0.1488 = Smi MBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION FOR INTERPOLATION BELOW) ABLE 11.4-2 \rightarrow Fv = 2.4 SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATION BELOW SS = .35 $Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.41.6 - (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = Fa$		F1L1 -	STRATUM	CONSISTS OF	HETEROLEA	1600
BRICK / CONCRETE FRAGMENTS. MEDIUM - DENSE CONDITION MMEDIATELY BELOW FILL - EXTENDS DOWN BELOW BORING PENETRATION \longrightarrow SILTY SANDS - MEDIUM BOBUST LIQUEFACTION ANALYSIS DUE TO POOK SITE CONDITIONS \rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE D DETERMINE SMS and SMI BY EQS. 11.4-(AND 1.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = 5ms SMI = FVS = 2.41 (.062) = 0.1488 = 5mi MBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION FOR INTERPOLATION BELOW) ABLE 11.4-2 \rightarrow Fv = 2.41 SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATION SS = .35 $S_{S} = .35$ $S_{S} = .5 \longrightarrow$ SITE D \rightarrow Fa = 1.6 $S_{S} = .5 \longrightarrow$ SITE D \rightarrow Fa = 1.4 I.6 - (0.35 - 0.25) / (1.6 - 1.41) = 1.52 = Fa	MIXT	IRE OF	INE TO	COARSE SAN	D, GRAVEL	, SILT,
MEDIUM - DENSE CONDITION MEMOLIATELY BELOW FILL - EXTENDS DOWN BELOW BORING PENETRATION BORING PENETRATION BOBUST LIQUEFACTION ANALYSIS DUE TO POOK SITE CONDITIONS - ULTIMATELY -> CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE -> SITE D DETERMINE SMS and SMI BY EQS. 11.4-(AND 1.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = 5ms SMI = Fv S = Z.41 (.062) = 0.1488 = 5mi MBLE 11.4-2 -> Fa = 1.52 (LINEAR WITERPOLATION FOR INTERPOLATION BELOW) ABLE 11.4-2 -> Fv = Z.44 SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATION SS = SS = .35 $S_{S} = .35$ $S_{S} = .5 -> SITE D -> Fa = 1.6 S_{S} = .5 -> SITE D -> Fa = 1.4I.6 - (0.35 - 0.25) / (1.6 - 1.41) = 1.52 = Fa$	BRIC	KI CONCR	ETE FRAG	MENTS.		•
$\frac{ MMEDIATELY BELOW FILL - EXTENDS DOWN BELOW BORING PENETRATION \frac{ IIITY SANDS }{ SIITY SANDS } - MEDIUM BOBUST LIQUEFACTION ANALYSIS DUE TO POOR SITE CONDITIONS - VLTIMATELY -> CONCLUDED LIQUEFACTION IS UNLIKELY DO RING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE -> SITE D DETERMINE SMS and SMI BY EQS. II.4-I AND I.4-2 SMS = FaSs = 1.52 (.35) = 0.532 = Sms SMI = FvS = 2.41 (.062) = 0.1488 - Smi MBLE II.4-1 -> Fa = 1.52 (LINEAR INTERPOLATION RECOUNT RECOUNT ABLE II.4-2 -> Fv = 2.41 SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATION RECOUNT SS = .35\begin{cases} Ss = .25 -> SITE D -> Fa = 1.6 \\ (Ss = .5 -> SITE D -> Fa = 1.4) \end{cases}$			MEDIUM - D	ENSE CONDI	TION	
BORING PENETRATION $ = \frac{1}{311479} \frac{1}{32005} - MEDIUM $ BOBUST <u>Lique Faction</u> <u>ANALYSIS</u> DUE to Pook SITE CONDITIONS $\rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUE FACTION IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. II.4-I AND II.4-2SMS = FaSs = 1.52 (.35) = 0.532 = 5msSMI = FVS = 2.41 (.062) = 0.1488 = 5miMBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BELOW)ABLE 11.4-2 \Rightarrow Fv = 2.41SE STEAIGHT LINE INTERPOLATION FOR INTERPOLATIONSS = .35\begin{cases} Ss = .25 \rightarrow SITE D \rightarrow Fa = 1.6 \\ Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.4 \end{cases}$	IMM	DIATELY B	ELOW FILL	EXTEND	5 DOWN BE	Low
$\frac{1}{1.6} = \frac{1.52}{1.6} = \frac{1.52}$	Bor	LING P	ENETRATI	on	-	
BOBUST <u>Lique Faction ANALYSIS</u> DUE to poor SITE CONDITIONS $\rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUE FACTION IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. II.4-I AND II.4-ZSMS = FaSs = 1.5Z (.35) = 0.532 = 5msSMI = FvS = Z.41 (.062) = 0.1488 = 5miMBLE II.4-I \rightarrow Fa = 1.5Z (LINEAR INTERPOLATION BECOM)ABLE II.4-Z \rightarrow Fv = Z.41SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATEAUES OF S5Ss = .35Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.4I.6 - (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = Fa$				SILTY SA	NDST - ME	DIUM
BOBUST <u>Lique Faction ANALYSIS</u> DUE TO POOK SITE CONDITIONS $\rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2SMS = FaSs = 1.52 (.35) = 0.532 = 5msSMI = Fv S = 2.41 (.062) = 0.1488 = 5miMBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BECON)ABLE 11.4-2 \rightarrow Fv = 2.41SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATEALUES OF SsSs = .35Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.411.6 - (0.35 - 0.25) / (1.6 - 1.41) = 1.52 = Fa$:				
SITE CONDITION ANTERIS DUE TO THE SITE CONDITION ANTERIS DUE TO THE SITE CONDITIONS $\rightarrow ULTIMATELY \rightarrow CONCLUDED LIQUEFACTION IS UNLIKELY DURING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2SMS = FaSs = 1.52 (.35) = 0.532 = SMSSMI = Fv S = 2.41 (.062) = 0.1488 = SMISMBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BECON)ABLE 11.4-2 \rightarrow Fv = 2.41SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATEALUES OF SSSS = .35\begin{cases} Ss = .2S \rightarrow SITE D \rightarrow Fa = 1.6 \\ Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.4 \end{cases}I.6 - (0.3S - 0.2S) / 1.6 - 1.4] = 1.52 = Fa$	Ros	DST / SGL	EFACTION	A A/ CIA	DUE to P	201 /
$ = \int ULT (MATELY \rightarrow CONCLUDED LIGUEFACTION IS UNLIKELY DURING SEISMIL GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE DDETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2SMS = FaSs = 1.52 (.35) = 0.532 = 5msSMI = FvS = 2.41 (.062) = 0.1488 = 5miMBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BELOW)ABLE 11.4-2 \rightarrow Fv = 2.4SE STRAIGHT LINE INTERPOLATION FOR INTERMEDIATEALVED OF SsSs = .35Ss = .35Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.6Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.41.6 - (0.35 - 0.25) (1.6 - 1.41) = 1.52 = Fa$	SITE	ECONDIT	(DN)	A.0.14-10-0		
IS UNLIKELY DURING SEISMIC GROUND SHAKING EVENT. SITE CLASS - CONSERVATIVE \rightarrow SITE D DETERMINE Sms and Smi BY EQS. 11.4-1 AND 11.4-2 Sms = FaSs = 1.52 (.35) = $0.532 = 5ms$ Smi = Fv S = 2.41 (.062) = $0.1488 = 5mi$ MBLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BELOW) ABLE 11.4-2 \rightarrow Fv = 2.4 SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVED OF S ₅ Ss = .35 (Ss = .2S \rightarrow SITE D \rightarrow Fa = 1.6 (Ss = .5 \rightarrow SITE D \rightarrow Fa = 1.4 1.6 - (0.35 - 0.2S) / (1.6 - 1.41) = 1.52 = Fa		-> ULI	MATELY ->	CONCLUBED	LIQUEFA	CTION
SHAKING EVENT. SITE CLASS - CONSERVATIVE -> SITE D DETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2 SMS = $F_{\alpha}S_{s} = 1.52(.35) = 0.532 = 5ms$ SMI = $F_{\nu}S_{i} = 2.41(.062) = 0.1488 = 5mi$ WHELE 11.4-1 -> $F_{\alpha} = 1.52$ (LINFAR INTERPOLATION BELOW) ABLE 11.4-2 -> $F_{\nu} = 2.41$ SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVES OF S ₅ Ss = .35 $\begin{cases} S_{s} = .2S \longrightarrow SITE D \Rightarrow F_{\alpha} = 1.6 \\ S_{s} = .5 \longrightarrow SITE D \Rightarrow F_{\alpha} = 1.4 \end{cases}$ $I = 6 - (0.3S - 0.2S) / (1.6 - 1.41) = 1.52 = F_{\alpha}$		15 UN	LIKELY DU	RING SEIS	MIC GROUN	20
SITE CLASS - CONSERVATIVE -> SITE D DETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2 SMS = $F_a S_s = 1.52 (.35) = 0.532 = 5ms$ SMI = $F_V S_i = 2.41 (.062) = 0.1488 = 5mi$ WHELE 11.4-1 -> $F_a = 1.52$ (LINEAR INTERPOLATION BETOW) ABLE 11.4-2 -> $F_V = 2.41$ SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVED OF S ₅ SS = .35 $\begin{cases} S_s = .2S \longrightarrow SITE D \implies F_a = 1.6 \\ S_s = .5 \longrightarrow SITE D \implies F_a = 1.4 \end{cases}$ $I \cdot 6 - (0.35 - 0.2S) / (1.6 - 1.41) = 1.52 = F_a$		SHAKIA	16 EVER	/ ナ.		
Determine Sms and Smi By EQS. 11.4-(AND 11.4-2 Sms = $F_a S_s = 1.5Z (.35) = 0.5BZ = Sms$ Smi = $F_v S_i = Z.41 (.062) = 0.1488 = Smi$ Walter 11.4-1 \rightarrow $F_a = 1.5Z (LINEBAR INTERPOLATION ISECON)$ ABLE 11.4-2 \rightarrow $F_v = Z.4$ SE STRAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVES OF S ₅ Ss = .35 $\begin{cases} S_s = .2S \longrightarrow SITE D \implies F_a = 1.6 \\ S_s = .5 \implies SITE D \implies F_a = 1.4 \end{cases}$ $I.6 - (0.35 - 0.2S) / 1.6 - 1.41 = 1.52 = F_a$	SITE CI	Act			-	
DETERMINE SMS and SMI BY EQS. 11.4-1 AND 11.4-2 SMS = $F_a S_s = 1.52 (.35) = 0.532 = 5ms$ SMI = $F_v S_i = 2.41 (.062) = 0.1488 = 5mi$ WELE 11.4-1 $\rightarrow F_a = 1.52$ (LINEAR INTERPOLATION BELOW) ABLE 11.4-2 $\rightarrow F_v = 2.41$ SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVES OF S ₅ SS = .35 $S_s = .25 \rightarrow SITE D \rightarrow F_a = 1.6$ $S_s = .5 \rightarrow SITE D \rightarrow F_a = 1.4$ $I.6 - (0.35 - 0.25) / 1.6 - 1.41 = 1.52 = F_a$		- Col	USERVATIVE		. 0	
$S_{MS} = F_{a}S_{S} = 1.52(.35) = 0.532 = S_{MS}$ $S_{M1} = F_{v}S_{1} = 2.41(.062) = 0.1488 = S_{M1}$ $WBLE 11.4-1 \rightarrow F_{a} = 1.52 (LINEAR INTERPOLATION BELOW)$ $ABLE 11.4-2 \rightarrow F_{v} = 2.41$ $SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE$ $ALVES OF S_{S}$ $S_{S} = .35$ $\left\{S_{S} = .2S \rightarrow SITE D \rightarrow F_{a} = 1.6\right\}$ $\left\{S_{S} = .5 \rightarrow SITE D \rightarrow F_{a} = 1.4\right\}$ $\left[1.6 - (0.3S - 0.2S) / (1.6 - 1.41) = 1.52 = F_{a}$	DETERM	Ne Sms	and Sm	BY EQS	- 11.4-1	AND 11.4-2
$S_{M1} = F_{v} S_{1} = Z.41 (.062) = 0.1488 = S_{M1}$ $ABLE 11.4-1 \rightarrow F_{a} = 1.52 (LINEAR INTERPOLATION TOEZOW)$ $ABLE 11.4-2 \rightarrow F_{v} = Z.4$ $SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVED OF S5 S_{5} = .35 S_{5} = .25 \rightarrow SITE D \rightarrow F_{a} = 1.6 S_{5} = .5 \rightarrow SITE D \rightarrow F_{a} = 1.4 I.6 - (0.35 - 0.25) / (1.6 - 1.41) = 1.52 = F_{a}$	Sm	$s = F_a S$	s = 1.57	2 (.35) = [0.532 = 5	ms
ABLE 11.4-1 \rightarrow Fa = 1.52 (LINEAR INTERPOLATION BELOW) ABLE 11.4-2 \rightarrow Fv = 2.4 SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVED OF S ₅ S ₅ = .35 $\begin{cases} S_5 = .25 \rightarrow 5 \text{ ITE D} \rightarrow Fa = 1.6 \\ S_5 = .5 \rightarrow 5 \text{ ITE D} \rightarrow Fu = 1.4 \end{cases}$ $I = (0.35 - 0.25) / (1.6 - 1.41) = 1.52 = F_a$	Sm	$i = FvS_i$	= 7.4	(.062) =	. 1488 = 5	m
ABLE 11.4-2 \rightarrow FV = 2.4 SE STRAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVES OF S ₅ S ₅ = .35 $\begin{cases} S_5 = .25 \rightarrow 5 \text{ ITE D} \rightarrow F_0 = 1.6 \\ S_5 = .5 \rightarrow 5 \text{ ITE D} \rightarrow F_0 = 1.4 \end{cases}$ $I \cdot 6 - (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = F_0$	ABLE 1	.4-1 -> [1	Fa = 1.52	(LINEAR)	NTERPOLATION	· BELOW)
SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALUED OF S ₅ S ₅ =.35 $\begin{cases} S_5=.25 \longrightarrow SITED \rightarrow F_{\alpha}=1.6 \\ S_5=.5 \longrightarrow SITED \rightarrow F_{\alpha}=1.4 \end{cases}$ $I \cdot 6 - (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = F_{\alpha}$	ABLE 11	.4-2-> 1	= 2.4			
SE STEAIGHT LINE INTERPOLATION FOR INTERMEDIATE ALVED OF S ₅ S ₅ =.35 $\begin{cases} S_5=.25 \longrightarrow SITED \rightarrow F_{\alpha}=1.6 \\ S_5=.5 \longrightarrow SITED \rightarrow F_{\alpha}=1.4 \\ \end{cases}$ $1.6 - \frac{(0.35 - 0.25)}{(1.6 - 1.41)} = 1.52 = F_{\alpha}$		L.		4 	•	
$S_{S} = .35$ $\begin{cases} S_{S} = .25 \longrightarrow SITE D \longrightarrow F_{\alpha} = 1.6 \\ S_{S} = .5 \longrightarrow SITE D \longrightarrow F_{\alpha} = 1.4 \end{cases}$ $I \cdot 6 = (0.35 - 0.25) / (1.6 - 1.4) = 1.52 = F_{\alpha}$	SE STE ALVES	OF S5	VE INTER	oclation fo	r intermed	IATE
$\begin{cases} 5s = .25 \longrightarrow SITE D \longrightarrow Fa = 1.6 \\ Ss = .5 \longrightarrow SITE D \longrightarrow Fa = 1.4 \\ 1.6 - (0.35 - 0.25) / 1.6 - 1.4 \\ = 1.52 = Fa \end{cases}$	S _S =	.35				
$\begin{cases} S_{S} = .5 \longrightarrow SITE D \longrightarrow F_{\alpha} = 1.4 \\ 1.6 - (0.35 - 0.25) / 1.6 - 1.4 \\ 1.6 - F_{\alpha} = 1.52 = F_{\alpha} \end{cases}$	(S.=	.25	SITE N -	> Freich		
$(5s = .5 \longrightarrow SITE D \longrightarrow F_{w} = 1.4)$ $1.6 - (0.35 - 0.25) / 1.6 - 1.41 = 1.52 = F_{a}$	3			5		
$1.6 - (0.35 - 0.25) / 1.6 - 1.41 = 1.52 = F_a$	(Ss =	.5	SITE D -	> Fa = 1.4)		
$1.6 - (0.35 - 0.25) / 1.6 - 1.41 = 1.52 = F_{a}$			·	/		
$1.6 - (1.6 - 1.4) = 1.52 = F_{a}$	1.1	10.35	- 0.25)	1		
	1.6	- ((1.6-1.4)	= 1.52 =	Fà

SEISMIC CALCULATIONS TECHNICAL REPORT 1 JESSE COOPER DETERMINE SDS AND SDI BY EQS 11.4.3 AND 11.4-4 Sos = 25ms/3 = 2(.532)/3 = .3547 Soi = 2 Smi/2 = 2 (.1488)/3 = .0992 FLOWCHART 6.4 OCCUPANCY = I S, 2 0.75 ? NO STRUCTURE IS ASSIGNED TO SDC E SDL = B OR C ? NO IS THE STRUCTURE AN OCCUPANCY I OF II OF 7" NO LIGHT FRAME CONSTRUCTION THAT IS & 3 STORIES ?" NO 2 2 STORIES ? NO DETERMINE TS = SDI/SDS = .0992/.3547 = .2797 DETERMINE STRUCTURE FUNDAMENTAL PERCOD T Ta= C+ hn hn= 193.01 - 6.34 = 186.67 TABLE 12-8-2 BRACED FRAMES + .03 = Ct , X=.75 $T_{\alpha} = (.03)(186.67)^{75} = 1.515$ $T_{\alpha} \approx T = 1.515$ 3.5 $T_{5} = 3.5(.2797) = .97895$ IS T < 3.5T, ? NO

40 Gold Street – New York, New York Technical Report # 3

THE FOLLOWING ANALYSIS PROCEDURES CAN BE WED: - MUDAL RESPONSE SPECTRUM ANALYSIS (12.9) - SEISMIL RESPONSE HISTORY PROCEDURES ((HAPT. 16) * NOTE: DUE TO THE POOR SITE CONDITIONS AND THE SDC, THE MODAL RESPONSE SPECTRUM ANALYSIS SHOULD BE PERFORMED. HOWEVER FOR THE PURPOSES OF THIS THESIS PROJECT, PERFORMING THE ANALYSIS IS NOT PRACTICAL. ANALYTICAL PROCEDURES WILL THEREFORE BE CONDUCTED ACCORDING TO THE EQUIVALENT LATERAL FORCE PROCEDURE. RESPONSE MODIFICATION COEFFICIENT R FROM TABLE 12.2-1 DUAL SYSTEM WI MOMENT FRAMES CAPABLE OF RESISTING @ LEAST 25% OF PRESCRIBED SEISMIC FORCES. · STEEL ECCENTRICALLY BRACED FRAMES $P^a = 8$ SYSTEM OVERSTRENGTA FACTOR: 1,9 = 2 2 DEFLECTION AMPLIFICATION FACTOR 4 = C1 FIGURE 22-15 -> T_ =6 T>TL? NO $\frac{C_{S} = \frac{S_{DI}}{T(\frac{R}{L})} \leq \frac{S_{DS}}{\left(\frac{R}{T}\right)}$ $C_{5} = \frac{.6992}{1.515(8/1)} = .00818 < .01 . . [C_{5} = .0]$ TOTAL BUILDING WEIGHT CALCULATED = 4,681,330 155 AND WEIGHT / FLOOR V

DETERMINE BASE SHEAR V by EQ. 12.8-1
$$V=C_SW$$

 $C_S = .00818 \rightarrow C_S = .61$
 $V= .01 (4,681-33) = 46.81^{k:PS} = V$
 $T: 1.515 \le 0.5$ Sec? NO $T \ge 2.5$ Sec? NO
 K FOR STRUCTURES HAVING A PERIOD BETWEEN 0.5
AND 2.5, K SHALL BE 2 OR SHALL BE
DETERMINED BY LINEAR INTERPOLATION BETWEEN
 I AND 2.
 $K=2$

• DETERMINE LATERAL SEISMIC FORCE FX Q EACH LEVEL.

$$F_{x} = \frac{W_{x} h_{x}^{k}}{\sum W_{i} h_{i}^{k}} V =$$

Sample calc

$$7^{TH} FLOOR \rightarrow F_7 = (301.493)(75.4) (4,681.3) = 198.8 KiP.$$

(4,681.3) = 198.8 KiP.

APPENDIX C – APPROXIMATE HAND CALCULTATIONS (METHOD ONE)

	TECH 3 APPROX CALCULATIONS	1
	APPROXIMATE CALCULATIONS	
0	CALCULATING APPROXIMATE STIFFNESS FOR EACH LATERAL FRAME	
	K = _ WHERE P = I KIP load	
	BR = BRACE FRAME	
	$\frac{BR-1}{K} : K = \frac{1}{.3177} = 3.1476 \text{ K/in}$	
	$\frac{BR-2}{K} : K = \frac{1}{.2807} = 3.5625 $ K/in	
	$BR-3: K = \frac{1}{.1674} = 5.9737 \text{ k/m}$	
	$\frac{1}{1879}$	
	$\frac{BR-5}{K} = \frac{1}{1742} = 3.289 \frac{K}{in}$	
	$MF-2: K = \frac{1}{.3269} = 3.059 \frac{k}{.1}$	
	<u>MF-3:</u> $k = \frac{1}{.1985} = 5.037$ K/in	
	$MF-4: K = \frac{1}{1861} = 5.373 \text{ K/in}$	
	CALCULATING CENTER OF RIGIDITY	
	$\overline{X} = \underbrace{\overline{\Sigma} K_{iy} X_{i}}_{\overline{\Sigma} K_{iy}}$	
	$\underline{BP-1} : K:y X_{i} = (3.1476) (0) = 0$	
	$BR-2 : kiy X_i = (3.5625)(77'-5') = (3.5625)(929 in) = 3309.5625$	
	$\frac{MF-1}{K_{1Y}} : K_{1Y} X_{1} = (3.289)(11-8) = (3.059)(345 \text{ in}) = \frac{1055.355}{100000000000000000000000000000000000$	
	$MF-3: kiy X_i = (5.037)(46'-5'') = (5.037)(557 in) = 2805.609$	
	$MF-4: K_{iY} \times_{1} = (5.373)(62'-1') = (5.373)(745 in) = 4002.885$	

40 Gold Street – New York, New York Technical Report # 3

4 TORSION EFFECT (X- DIRECTION) ~ (SHOULD BE MINIMAL DUE TO SMALL ECCENTRICITY) di = distance from C. O.R. TO EACH WALL BR-1 d: = 41'-4" - 0 = 41'-4" BR-2 d: = 77'-5" - 41'4" = 36'-1" BR-3 di = 37'-9" - 25'-3" = 12.416667' 1312-41 di = 25'-3" - 23'-2" = 2'-1" BR-5 di = 25'-3" - 14'-5" = 10'10" MF-1 d: = 411'-4" - 11'-8" = 29'-8" MF-2 di = 41'-4" - 28'-9" = 12'-7" MF-3 d: = 416'-5" - 411'41" = 5'-1" MF-4 d: = 62'-1" - 41'4" = 20'- 9" $J = \sum k_i d_i^2 = (s.9737)(12.416)^2 + (s.3214)(2'-1)^2 + (s.744)(10'-16)^2$ + $(3.1476)(41'-4'')^2$ + $(3.5625)(36'-1'')^2$ + $(3.289)(24'-8'')^2$ + $(3.059)(12'-7'')^2$ + $(5.037)(5'-1'')^2$ + $(5.373)(20'-9'')^2$ J = 17,444-31 (K1:n) f+2 BR-3: fit= K: d: Px ey = (5.9737) (12.41667) (Px) (.5833) 17,444.31 S. K: d:2 = .00248 Px BR-4 Sit = (5.3219) (2'-1") Px (.5833) = .000371 Px 17,444.31 BE-5 S:t = (5.74) (101-10") Px (.5833) = .002079 Px 17,444-31

5 TOTAL FORLES X DIRECTION Fi = FIDIRECT - FitoRSION * NOTE: THE - DEDENDS ON WHAT SIDE OF THE C.O.R. THE LATERAL ELEMENT OF INTEREST IS. BR-3 -> F; = .3506 Px + .00248Px = [.3531 Px] BR-4 -> Fi = .3124 Px - .000371 Px = .312 Px BE-5 -> Fi = .3370 Px - .002079Px = .3349 Px DIRECT FORCES (Y DIRECTION) Fiy = Kiy Py Skiy= SKiy 3.1476 XPy = . 1341 Py BR-1 = 23.41681 3.5625 xPy = .1517 Py B12-2 = 23.4681 3.289 xPy = -140 PY MF-1 = 23.41681 MF-2 = 3.05%/23.4681 XPY = . 1302 PY ME-3 = 5.037/23.4681 XPy = .2144 Py ME-4 = 5.373 / 23.4681 × PY = 22874 PY TURSION FORCES (Y DIRECTION) BR-1 : 5:4 = (3.1476) (41'-4") (Py) (21-8") / 17,444131 = .0198 Py BR-2: Sit = (3.5625) (36'-1") (Py)(2'-8") / 17,444.31 = .0197 Py MF-1; fit = (3.289) (29'-5") (Pr) (2'-8") /17,444.31 = .0149 Py M=-2: 5:t= (3.059) (12'-7") (P(1) (21-8") /17,444-31= .0149 Py MF-3 : Sit = (5-037) (5'-1") (Py) (2'-8")/17,444.31 = ,00391 Py MF-4: fit= (5.373) (20'-4") (Py) (2'-8")/17,444.31= .017 Py

			6	
	TOTAL FORCES IN Y- DIRECTION			
	BR-1 . 134 Py + . 0198 Py =	.1538 Py		
	BR-2 .1517Py0197 Py =	[.132 PY]		
	MF-1 . 140 Py + . 01 LI 9 Pr =	1.1549 PY		
	MF-2 .1302Py + .0149Py -	.1451 Py		
	MF-3 . 2144 Py 00391 Py =	. 21049 Py		
	.22874Py017 Py =	. 2 1174 Py		
\bigcirc				