

Brian Rose

AE Senior Thesis Presentation

General Office Building

Structural Option
Faculty Consultant:
Dr. Boothby

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Introduction

Project Location

Headquarters Expansion Greater Washington, D.C. Area

Introduction

Base Steel Redesign

Progressive Collapse

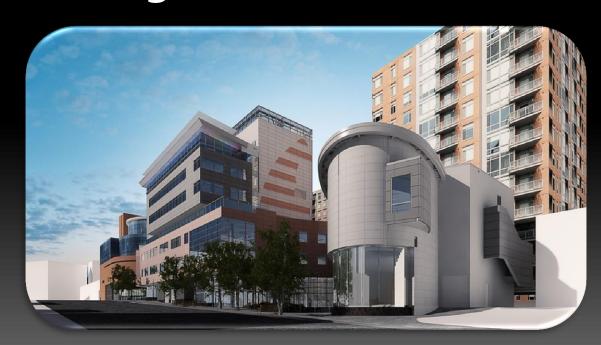
Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions


Introduction

120,000 SF

10 Stories (90ft)

\$40 Million

Aug. 2010 – Dec. 2011

Project Team

Owner:

Health Research

Architect & Engineer:

COLE

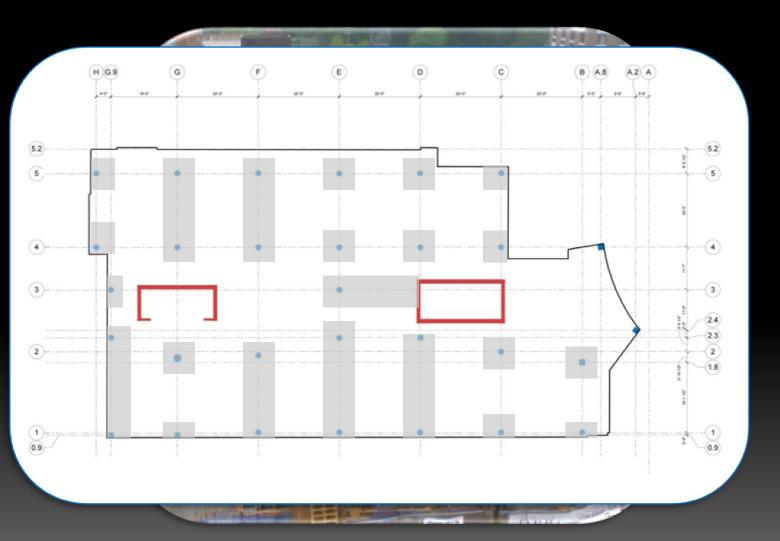
General Contractor:

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Introduction

Existing Structure

Two-Way Flat Slab 22'x20' Bays Drop Panels Shear Wall Cores Spread Footings

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Introduction

Proposed Redesign Depth

Progressive Collapse

ASCE 7 Definition:

"The spread of an initial local failure from element to element, eventually resulting in the collapse of an entire structure or a disproportionately large part of it"

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth Conclusions

Presentation Outline

Introduction

UNIFIED FACILITIES CRITERIA (UFC)

PROGRESSIVE COLLAPSE

Proposed Redesign Depth

Goals

- Design to UFC criteria
- Explore impacts of this analysis
- Minimal architectural impact

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Introduction

Proposed Redesign Breadths

Architecture

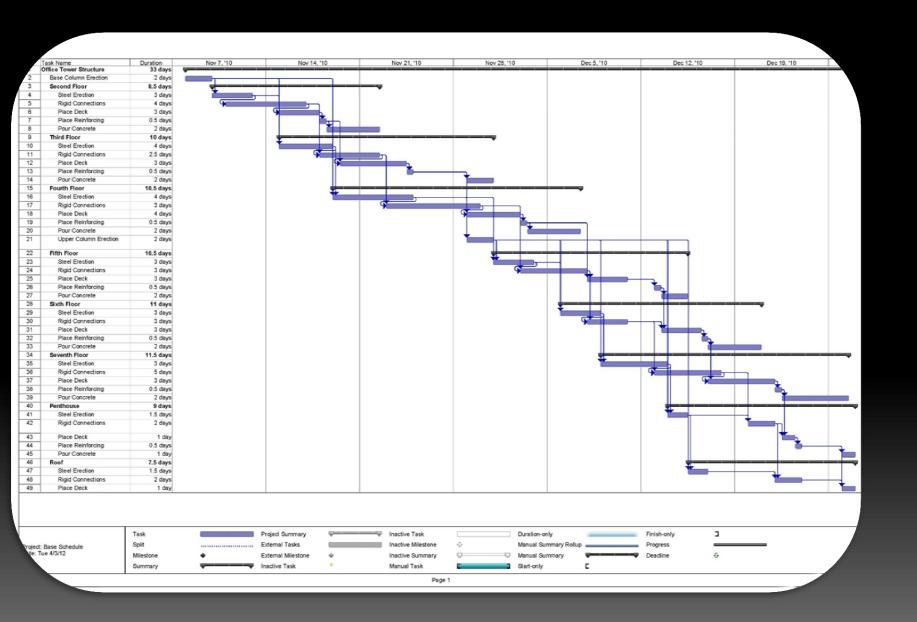
Structural Impacts
Atrium Façade
Site Plan

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Introduction

Proposed Redesign Breadths

Architecture

Structural Impacts
Atrium Façade
Site Plan

Construction Management

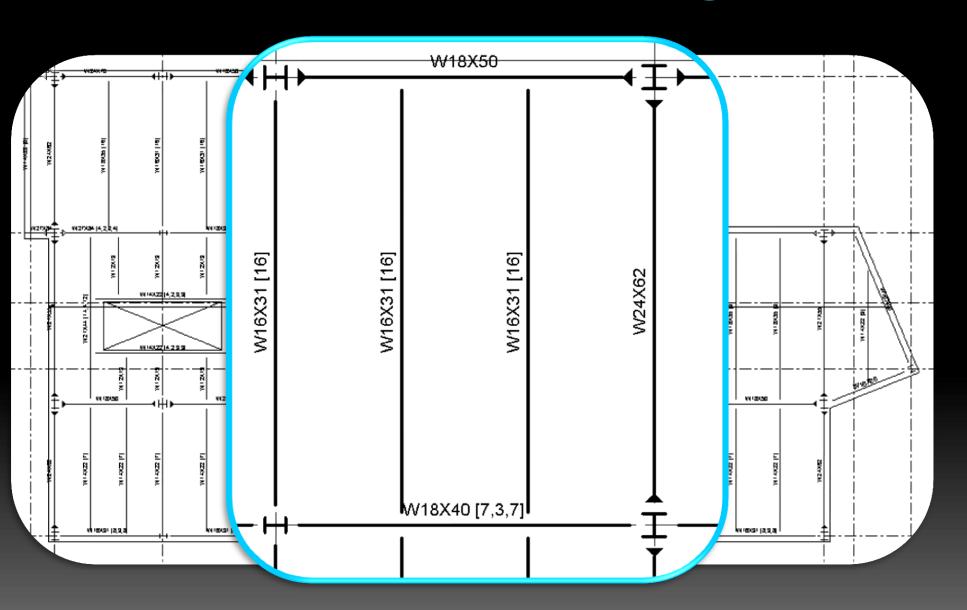
Cost Schedule

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Base Steel Redesign

Gravity System

Results

Typical Infill Beam: W16x31 [16]

Typical Girder: w18x40 [7,3,7]

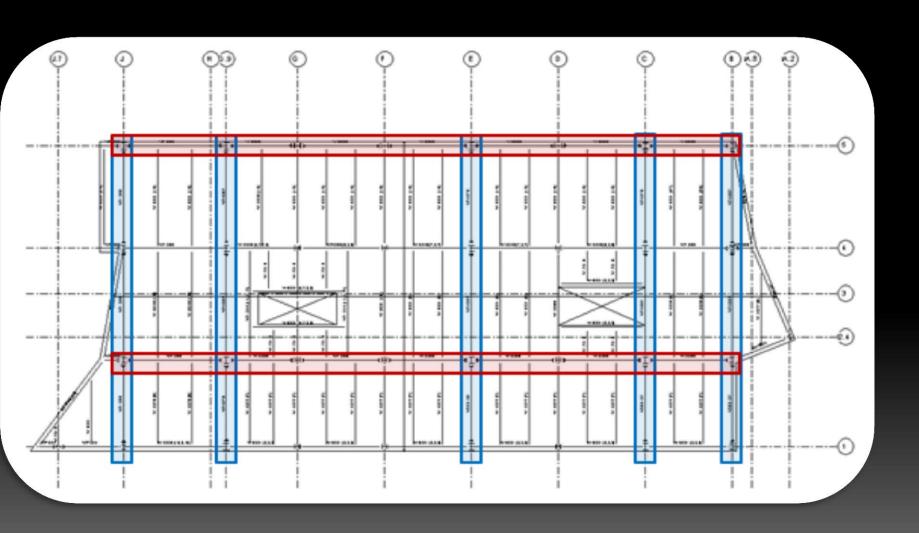
Introduction

Base Steel Redesign

Progressive Collapse

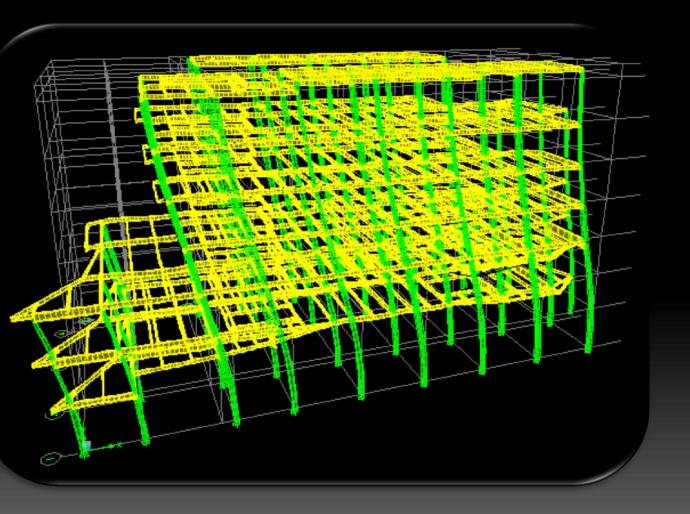
Tie Force

Alternative Path


Enhanced Local Resistance

Architectural Breadth

Conclusions


Base Steel Redesign

Moment Frame Location

Lateral System

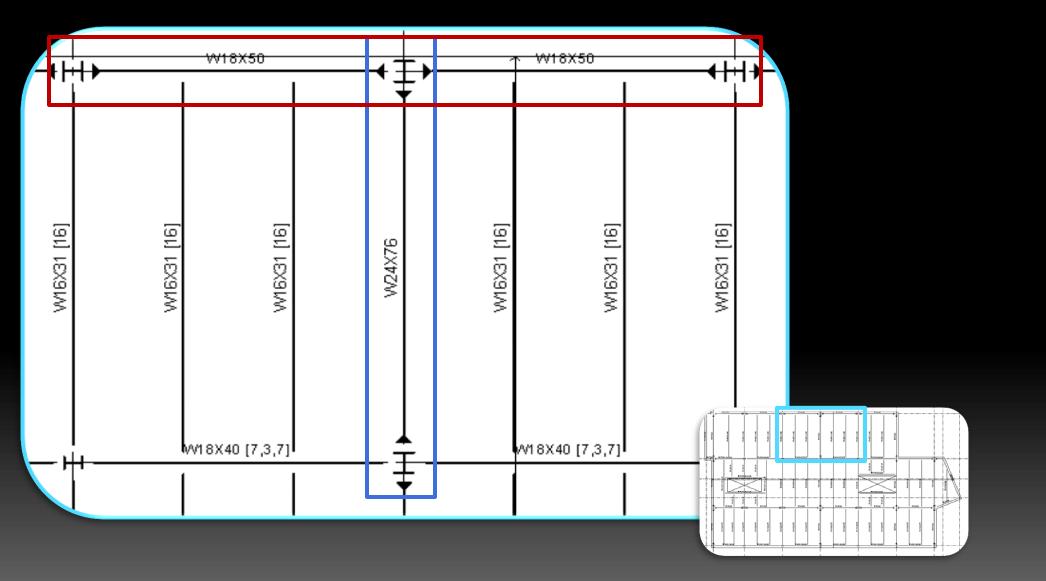
ETABS Computer Model

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth

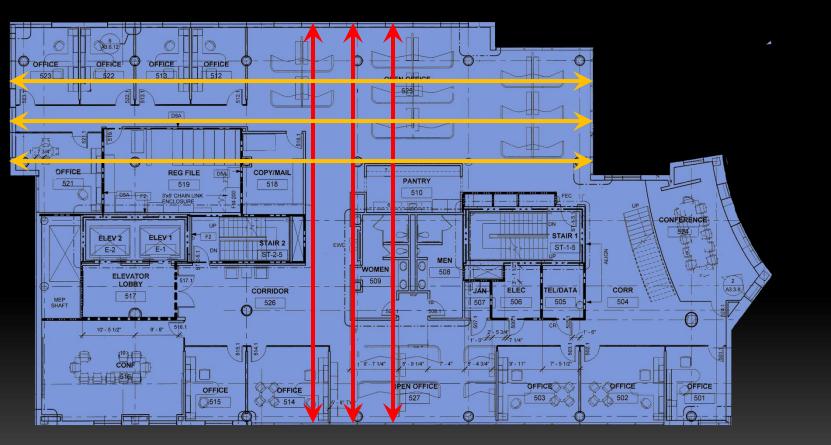
Conclusions

Base Steel Redesign

Lateral System

Results

		Table 4.2: Fra	me Sizes		
	Typical	Typical	Typical 2 nd	Typical 3 rd	Typical
	Lower	Upper	Floor	Floor	4 th + Floor
	Column	Column	Beam	Beam	Beam
North-South	W14X233	W14X233	W36x182	W30x108	W24x76
rames (C, E,					
& G.9)					
North-South	W14X211	W14X145	W36x182	W30x108	W24x76
rames (B & J)					
ast West	W14x176	W14x176	W18x50	W18x50	W18x50
rames (2&5)					
aravity	W14X132	W14x82			
Columns					


Introduction
Base Steel Redesign
Progressive Collapse

Conclusions

• Tie Force
Alternative Path
Enhanced Local Resistance
Architectural Breadth

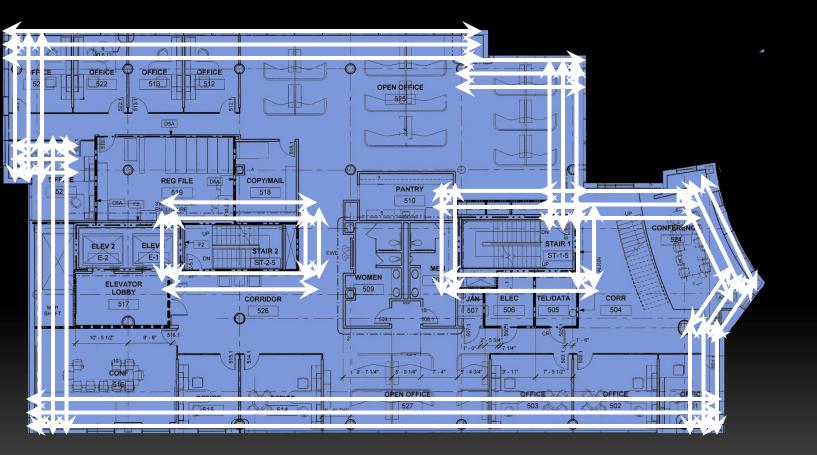
Progressive Collapse

UFC 4-023: Design Requirements

Tie Force Analysis

Longitudinal Ties
#4@12"O.C.

Transverse Ties
#4@13"O.C.


Introduction
Base Steel Redesign
Progressive Collapse

Tie Force
 Alternative Path
 Enhanced Local Resistance

Architectural Breadth
Conclusions

Progressive Collapse

UFC 4-023: Design Requirements

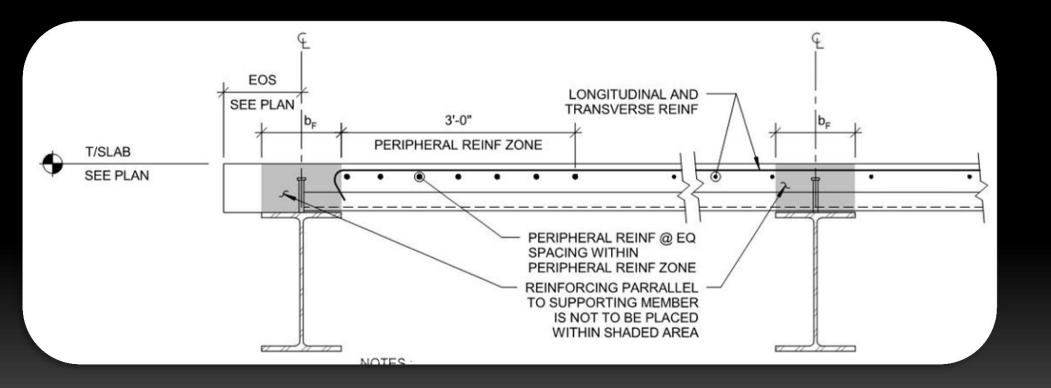
Tie Force Analysis

Longitudinal Ties #4 @ 12" O.C.

Transverse Ties

#4@13"O.C.

PeripheralTies


(4) #6 in 3'-o" section

Introduction
Base Steel Redesign
Progressive Collapse

• Tie Force
Alternative Path
Enhanced Local Resistance
Architectural Breadth
Conclusions

Progressive Collapse

UFC 4-023: Design Requirements

Tie Force Analysis

Detailing

Seismic Hooks

Introduction
Base Steel Redesign
Progressive Collapse
Tie Force

• Alternative Path
Enhanced Local Resistance
Architectural Breadth
Conclusions

Progressive Collapse

UFC 4-023: Design Example

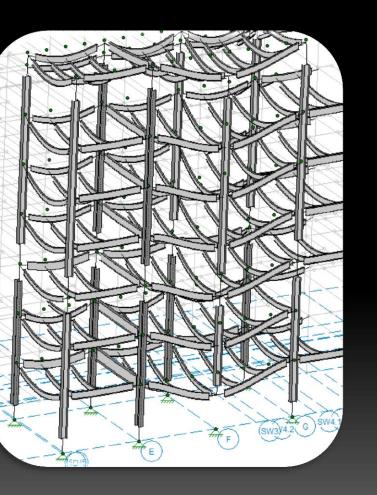
Alternative Path Analysis

UFC 023: "determine if the structure can bridge over the deficient element after it has been notionally removed"

Linear Static Method

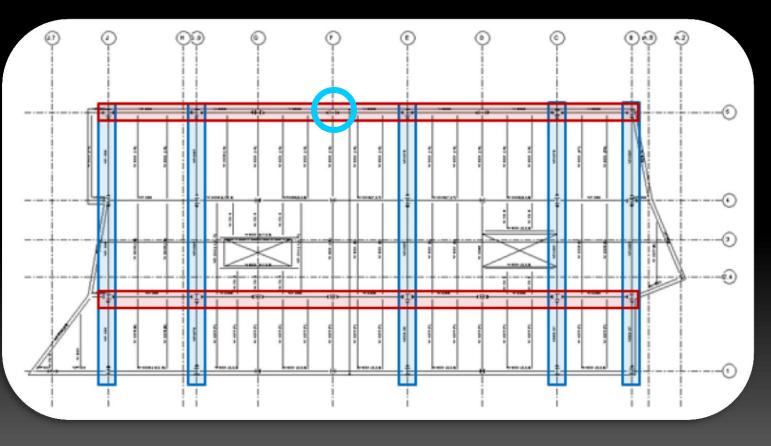
Introduction
Base Steel Redesign

Progressive Collapse


Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions


Progressive Collapse

Isometric of Area Near Removed Column

Alternative Path Analysis

Second Floor Framing Plan

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path
 Enhanced Local Resistance

 Architectural Breadth
 Conclusions

Progressive Collapse

UFC 4-023: Typical Action Classifications

Component	Deformation- Controlled Action	Force- Controlled Action
Noment Frames • Beams • Columns • Joints	Moment (M) M 	Shear (V) Axial load (P), V V ¹
Shear Walls	M, V	Р
Braced Frames • Braces • Beams • Columns • Shear Link	P V	 P P P, M
Connections	P, V, M ²	P, V, M

Alternative Path Analysis

Linear Static Method

M-factors

ASCE 41 definition: "non-linear deformation capacities"

Introduction
Base Steel Redesign
Progressive Collapse
Tie Force

• Alternative Path
Enhanced Local Resistance
Architectural Breadth
Conclusions

Progressive Collapse

UFC 4-023: Typical Action Classifications

Component	Deformation- Controlled Action	Force- Controlled Action
Noment Frames • Beams • Columns • Joints	Moment (M) M 	Shear (V) Axial load (P), V V ¹
Shear Walls	M, V	Р
Braced Frames • Braces • Beams • Columns • Shear Link	P V	 P P P, M
Connections	P, V, M ²	P, ∨, M

Alternative Path Analysis

Interaction Equation

Moment Divided by m-factor Expected Strengths Used Typical Frames = 6

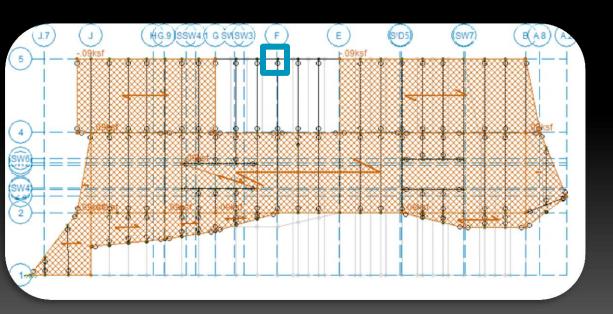
$$\frac{Pr}{\Omega * Pc} + \frac{8}{9} \left[\frac{Mrx}{\Omega * Mcx} + \frac{Mry}{\Omega * Mcy} \right]$$

$$\frac{m - factor}{m}$$

Introduction
Base Steel Redesign

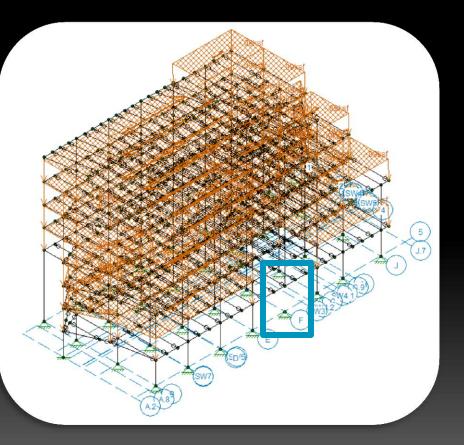
Progressive Collapse

Tie Force


Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions

Progressive Collapse


UFC 4-023: Far Load Combination

 $(0.9 \text{ or } 1.2)D + (0.5L \text{ or } 0.2S) + 0.002\Sigma P$

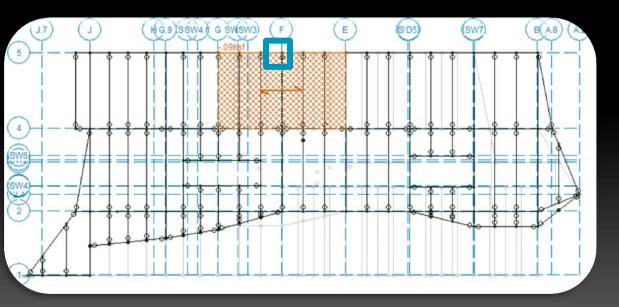
Alternative Path Analysis

Isometric of Far Loads

Introduction
Base Steel Redesign

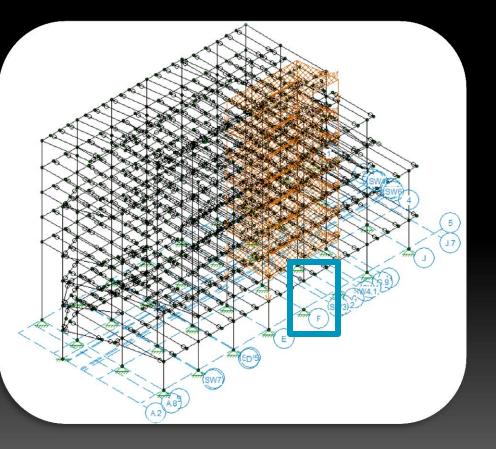
Progressive Collapse

Tie Force


Alternative Path
 Enhanced Local Resistance

Architectural Breadth
Conclusions

Progressive Collapse


UFC 4-023: Near Load Combination

 $\Omega[(0.9 \text{ or } 1.2)D + (0.5L \text{ or } 0.2S)] + 0.002\Sigma P$

Alternative Path Analysis

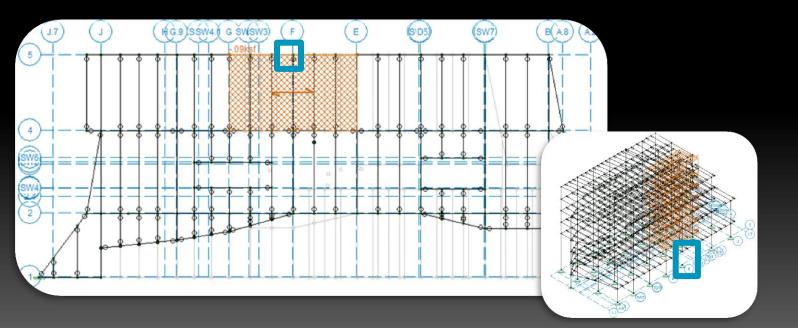
Isometric of Far Loads

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path
 Enhanced Local Resistance

Architectural Breadth
Conclusions

Progressive Collapse

UFC 4-023: Near Load Combination

 $\Omega[(0.9 \text{ or 1.2})D + (0.5L \text{ or 0.2S})] + 0.002\Sigma P$

Alternative Path Analysis

Force Controlled Actions:

$$\Omega_{\rm IF}$$
 = 2.0

Deflection Controlled Actions:

$$\Omega_{ID} = 0.9 m_{IF} + 1.1$$

m_{LIF}: smallest m-factor of adjacent elements

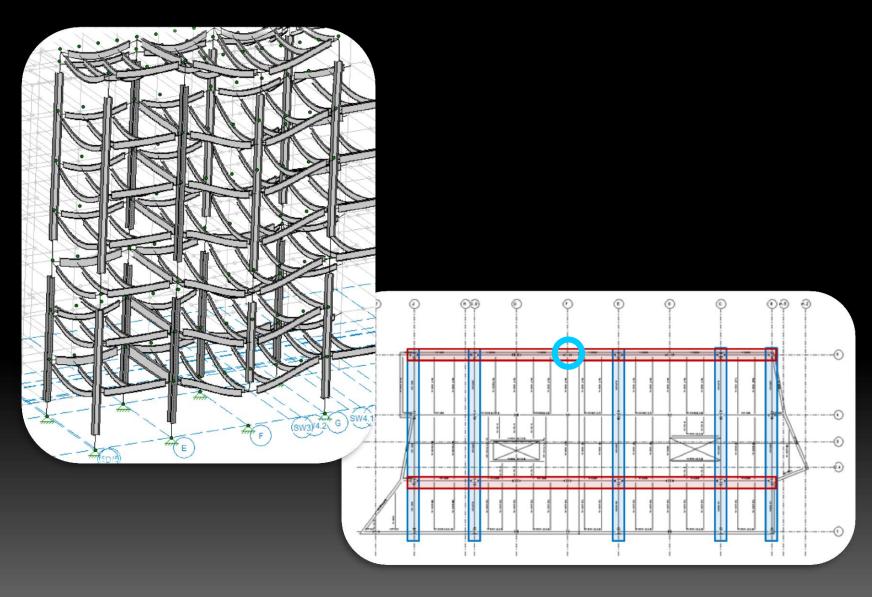
Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path
 Enhanced Local Resistance


Architectural Breadth
Conclusions

Progressive Collapse

Results

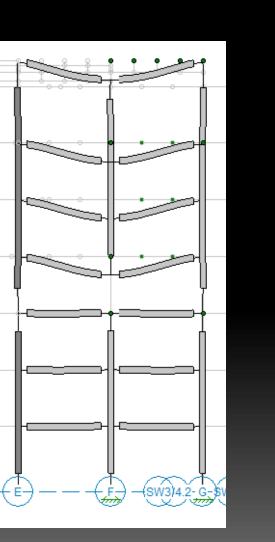
Frame Sizes That Pass Removal of Column F5 Scenario						
	Typical Lower Column	Typical Upper Column	Typical 4 th + Floor Beam			
North-South Frames	W14x370	W14x370	W24x76			
(C, E, & G.9)						
North-South Frames	W14x370	W14x370	W24x76			
(B & J)						
East West Frames	W14x370	W14x370	W21x68			
(18:5)		l				
East West Frames (2)	W14x370	W14x370	W18x50			
Gravity Columns	W14X132	W14x82				

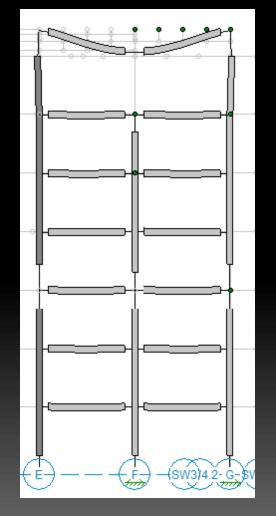
Alternative Path Analysis

Introduction

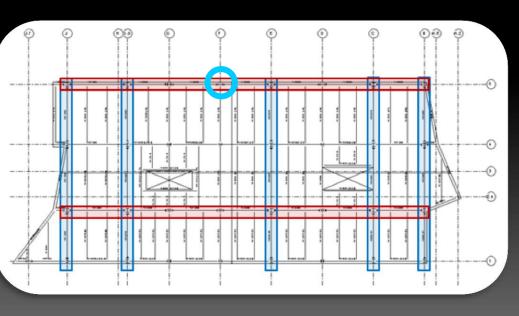
Base Steel Redesign

Progressive Collapse


Tie Force


Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions


Progressive Collapse

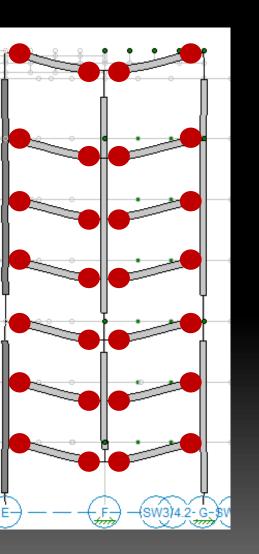
Removal at 4th Floor | Removal at 7th Floor

Alternative Path Analysis

Introduction

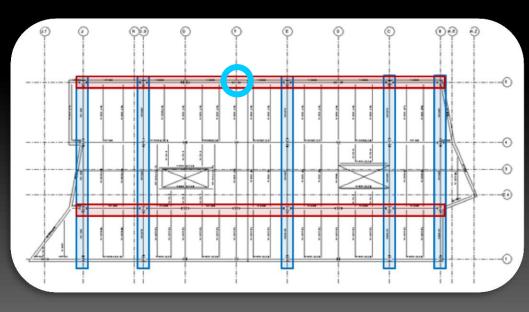
Base Steel Redesign

Progressive Collapse


Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions


Progressive Collapse

Nonlinear Hand Calculations

Alternative Path Analysis

Linear Static Results: w21x68 Nonlinear Results: W21x62

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth
Conclusions

Progressive Collapse

RAM Connection: Moment Connection

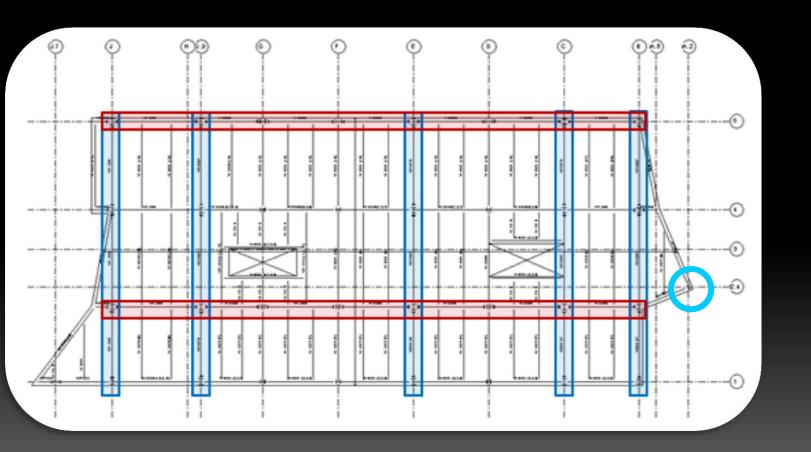
Alternative Path Analysis

Results:

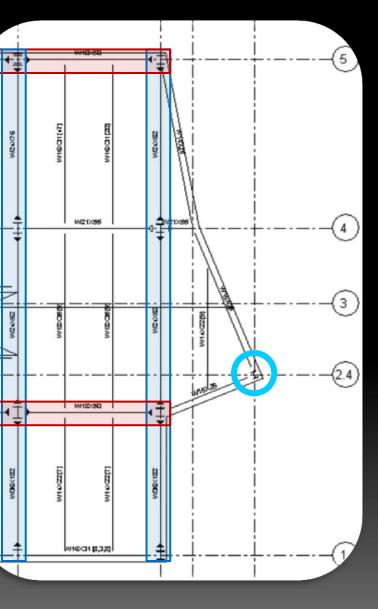
Full Penetration Welds

(6) 1" dia. A325N Bolts

Introduction
Base Steel Redesign
Progressive Collapse


Tie Force

Alternative Path
 Enhanced Local Resistance


Architectural Breadth Conclusions

Progressive Collapse

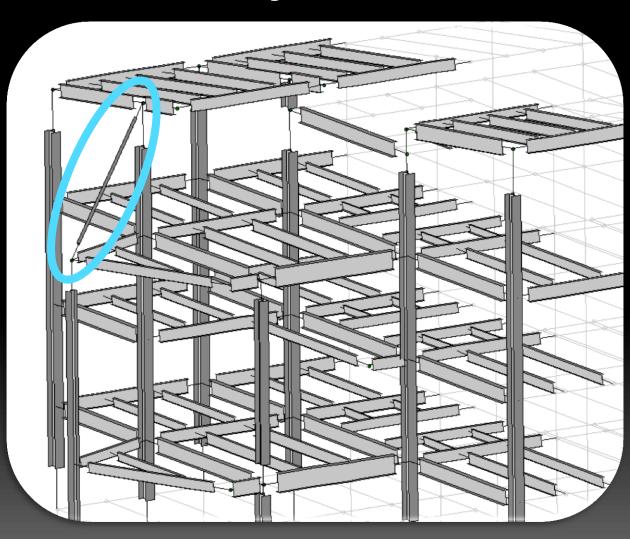
West Façade Column

Alternative Path Analysis

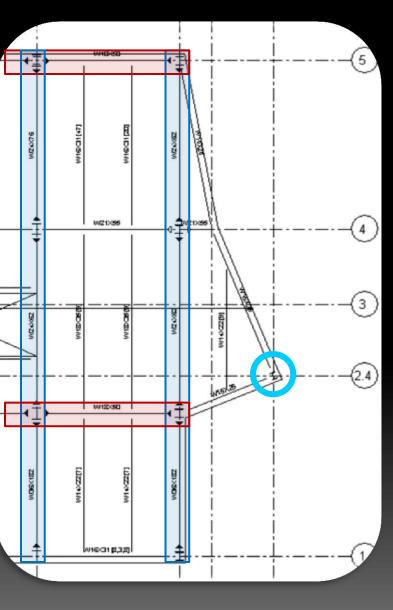
Introduction

Base Steel Redesign

Progressive Collapse


Tie Force

Alternative Path
 Enhanced Local Resistance


Architectural Breadth Conclusions

Progressive Collapse

West Façade Column

Alternative Path Analysis

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions

Progressive Collapse

Atrium Curtain Wall

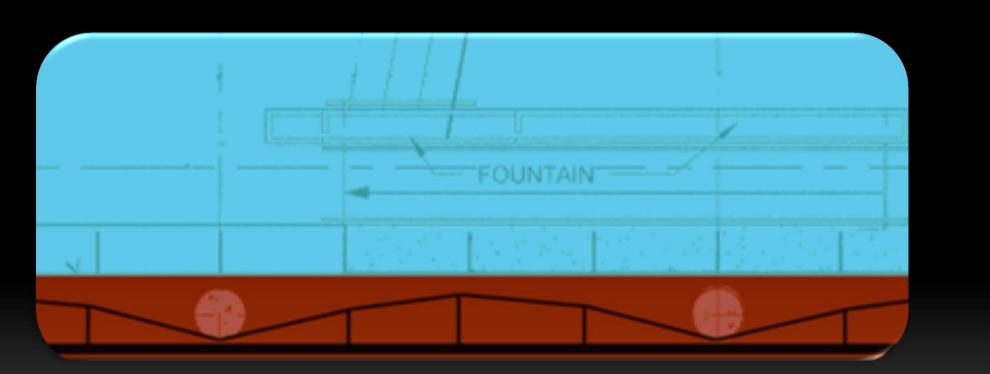
Alternative Path Analysis

Floor Plan

Introduction

Base Steel Redesign

Progressive Collapse


Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions

Progressive Collapse

Atrium Curtain Wall Plan

Alternative Path Analysis

Results

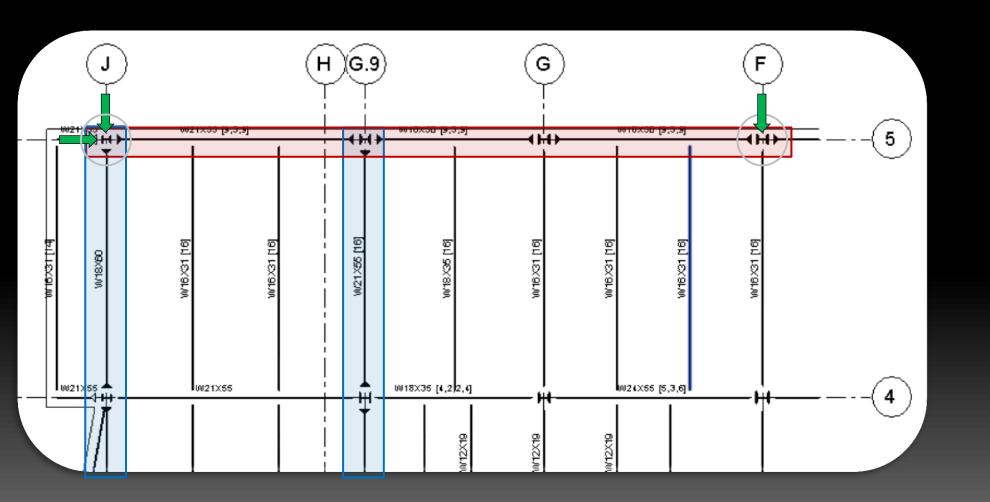
1/2" Cable 20" Sag at Midspan

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth
Conclusions

Progressive Collapse

Nonlinear Hand Calculations

Enhanced Local Resistance

Lateral Load Causes Flexural Failure

Corner Column Results
7/16" Doubler Plate

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth
 Conclusions

Architecture Breadth

Existing Exterior Atrium View

Atrium Curtain Wall

Existing First Floor Plan

Introduction

Base Steel Redesign

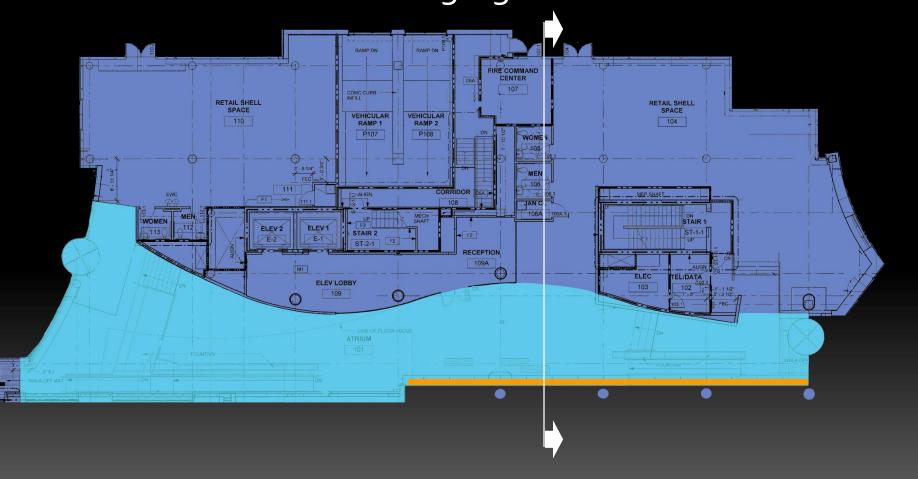
Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth
 Conclusions


Architecture Breadth

Existing Atrium Section

Atrium Curtain Wall

Existing First Floor Plan
Atrium Highlighted

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path
 Enhanced Local Resistance

Architectural Breadth Conclusions

Progressive Collapse

Atrium Curtain Wall

Alternative Path Analysis

Floor Plan

Introduction

Base Steel Redesign

Progressive Collapse

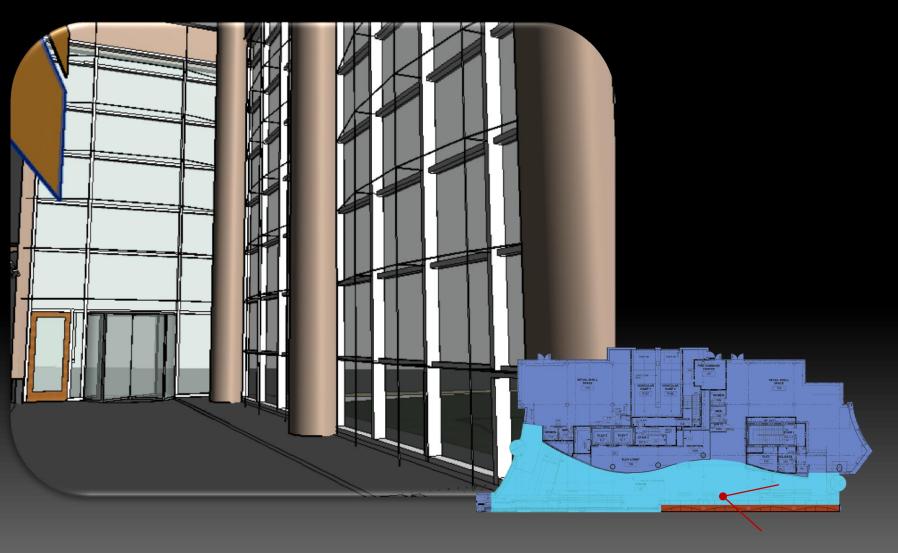
Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions


Architecture Breadth

Existing Interior Atrium View

Atrium Curtain Wall

Redesigned Interior Atrium View

Introduction

Base Steel Redesign

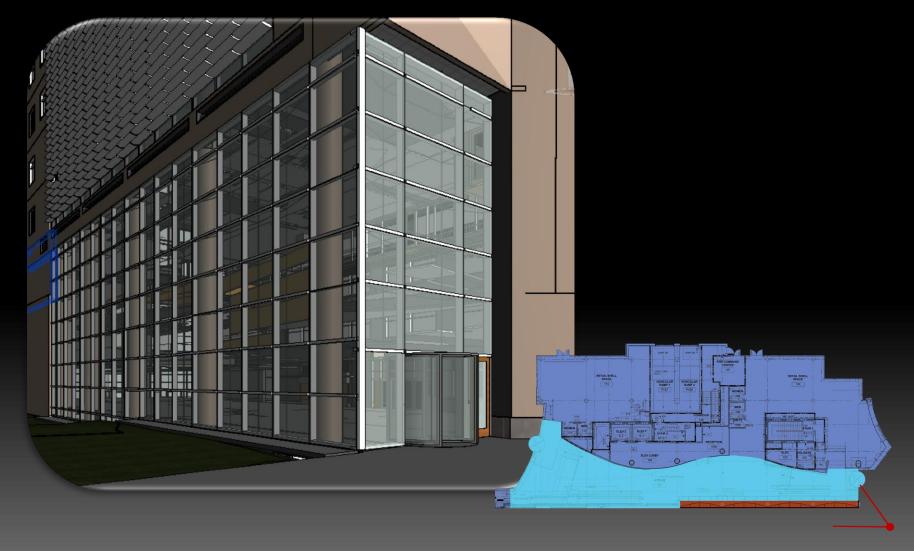
Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth
 Conclusions


Architecture Breadth

Existing Interior Atrium View

Atrium Curtain Wall

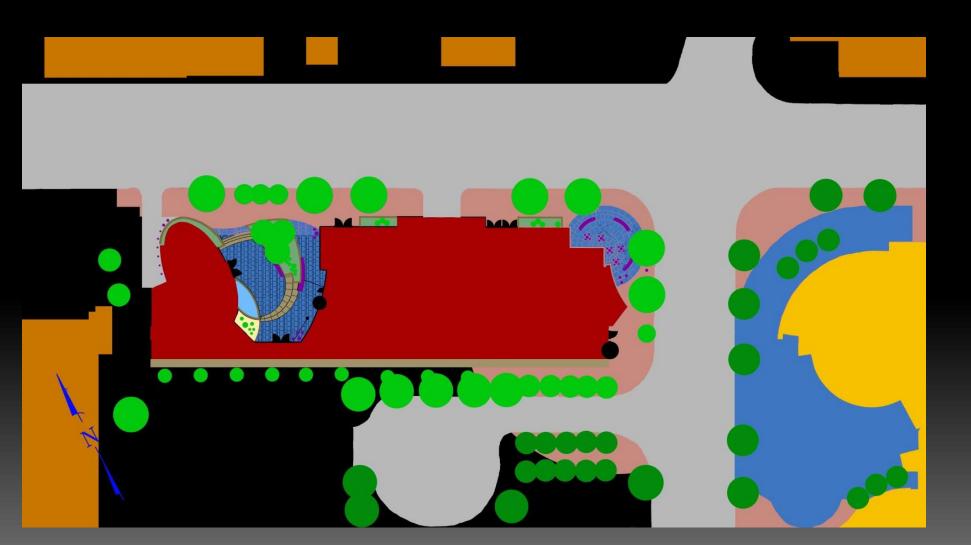
Redesigned Interior Atrium View

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force


Alternative Path

Enhanced Local Resistance

Architectural Breadth
 Conclusions

Architecture Breadth

Existing Site Plan

Site Redesign

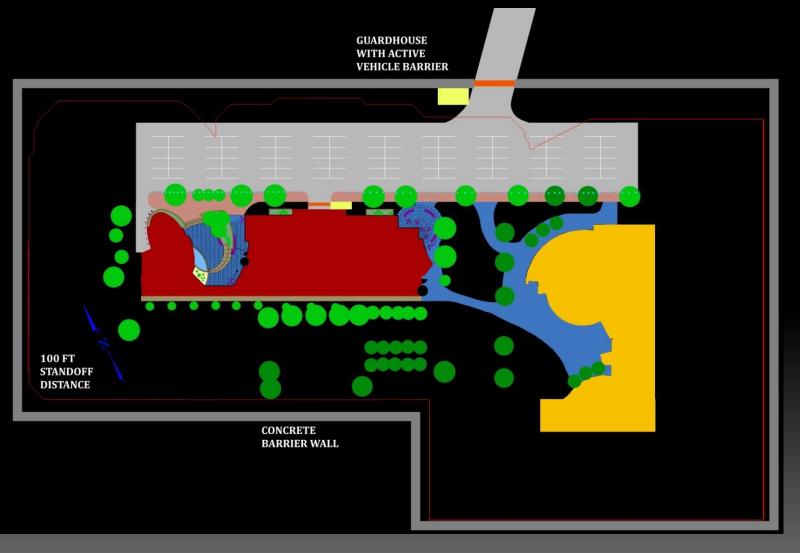
Existing Project Location

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

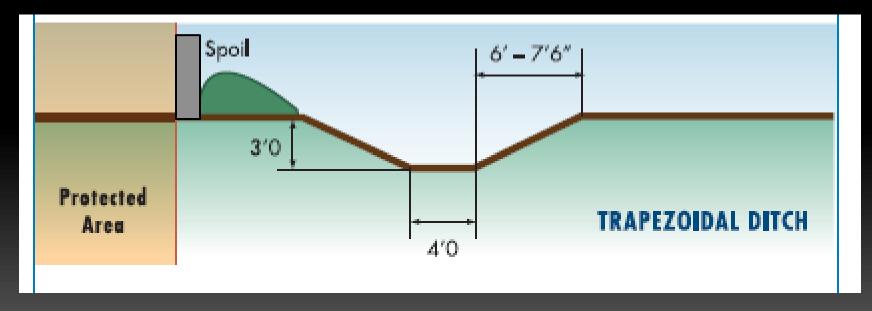

Alternative Path

Enhanced Local Resistance

Architectural Breadth
 Conclusions

Architecture Breadth

Redesigned Site Plan


Site Redesign

Alterations

100 ft. standoff distance

Location

Security Wall

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Conclusions

Goals

- ✓ Design to UFC criteria
- ✓ Explore impacts of this analysis
- ✓ Minimal architectural impact

Costs

Progressive Collapse Requirements

Slab Reinforcement: 596% Increase

Columns: 113% Increase

Beams: 9.9% Increase

Total Superstructure: 7.4% Increase

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Conclusions

Acknowledgements

PSU AE Faculty:

Dr. Boothby, Dr. Lepage, Dr. Geshwindner

EwingCole:

Brent Elleman

Cannon Design:

Brian Alesius

RISA 3D

Friends and Family

Introduction

Base Steel Redesign

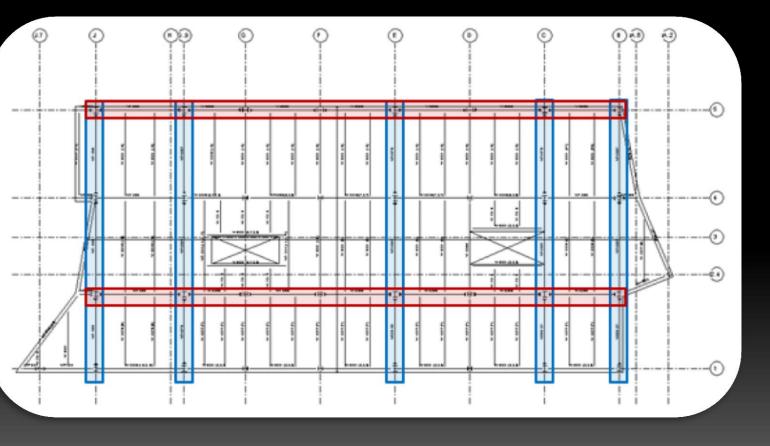
Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth


Conclusions

Conclusions

Thank You

Questions

Introduction

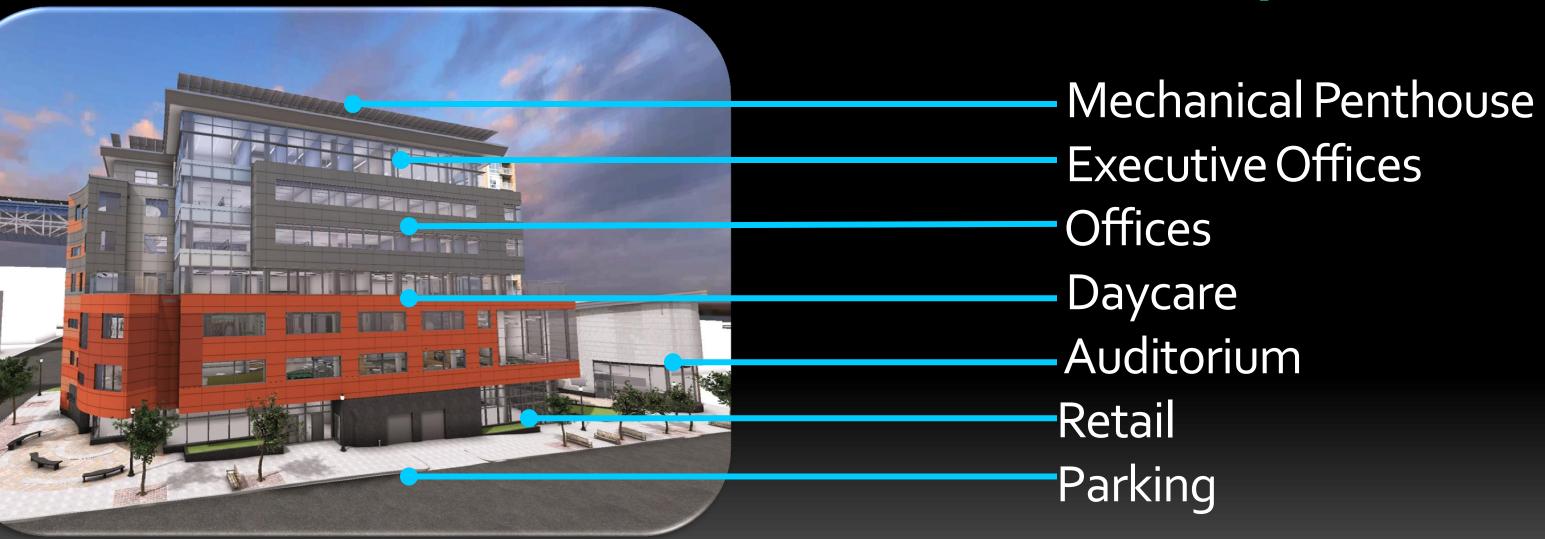
Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance


Architectural Breadth

Conclusions

Appendix

Introduction

Occupancies

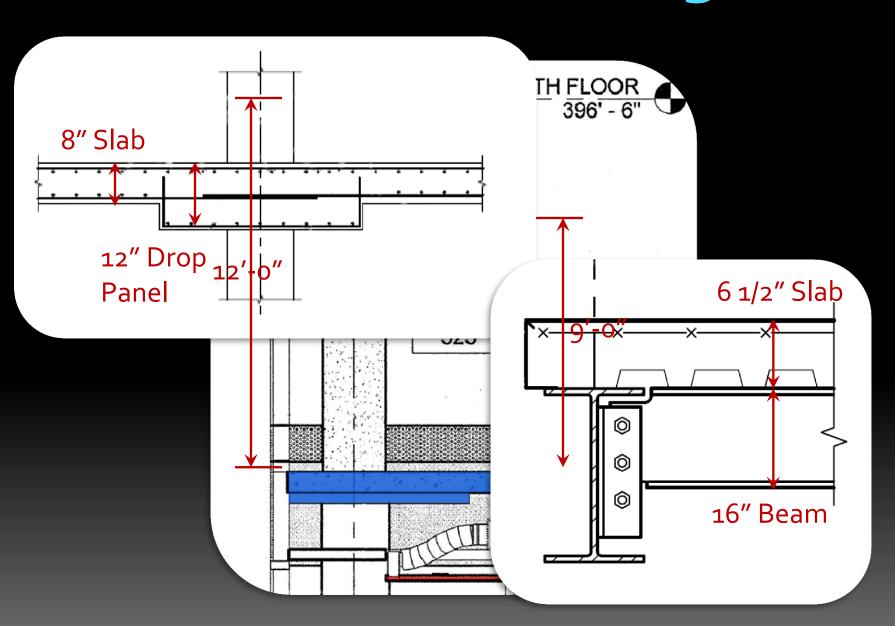
Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path


Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Base Steel Redesign

Layout Alterations

Floor to Floor Heights

Existing: 12'-0"

Proposed: 13'-6"

Total Building

Height Increase: 10'-6"

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Progressive Collapse

UFC 3-301-01: Occupancy Categories

Occupan Categor		Nature of Occupancy		Snow Factor I _S	Wind Factor <i>I_W</i>	Ice Factor <i>I</i> ;
IV	face face face face face face face face	cilidings and other structures designed as essential cilities, including, but not limited to: Group I-2 occupancies having surgery or emergency atment facilities Grier, rescue, and police stations, and emergency vehicle rages Gesignated earthquake, hurricane, or other emergency elters Gesignated emergency preparedness, communication, disperation centers, and other facilities required for ergency response Gergency backup power-generating facilities required primary power for Category IV Gower-generating stations and other utility facilities puired for primary power for Category IV, if emergency countries containing highly toxic materials as defined by extinuctures containing highly toxic materials as defined by eximum allowable quantities of Table 307.7(2) Existion control towers and air traffic control centers quired for post earthquake operations where lack of stem redundancy does not allow for immediate control of space and the use of alternate temporary control facilities not feasible. Contact the authority having jurisdiction for ditional guidance. Emergency aircraft hangars that house aircraft required post-earthquake emergency response; if no suitable and practices exist suildings and other structures not included in Category V, ving DoD mission-essential command, control, primary mmunications, data handling, and intelligence functions	1.50	1.20	1.15	1.25
L	tha as	t are not duplicated at geographically separate locations, designated by the using agency				
		intain water pressure for fire suppression				

Requirements

 Buildings and other structures not included in Category V, having <u>DoD mission-essential</u> command, control, primary communications, data handling, and intelligence functions that are not duplicated at geographically separate locations, as designated by the using agency

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Progressive Collapse

UFC 4-023: Design Requirements

Occupancy Category	Design Requirement
1	No specific requirements
II	Option 1: Tie Forces for the entire structure and Enhanced Local Resistance for the corner and penultimate columns or walls at the first story. OR Option 2: Alternate Path for specified column and wall removal locations.
III	Alternate Path for specified column and wall removal locations; Enhanced Local Resistance for all perimeter first story columns
	Of Wallot
IV	Tie Forces; Alternate Path for specified column and wall removal locations; Enhanced Local Resistance for all perimeter first and second story columns or walls.

Requirements

Tie Force

Develop tensile strength in floor

Alternative Path

Span over removed column

Enhanced Local Resistance

Strengthen columns to resist blast

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Progressive Collapse

., •		m-F	actors for Linear Pr
		Prin	nary
Component/Action	Ю	LS	CP
Columns—Flexure 11,12	-		
For $P/P_{cL} < 0.2$			
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_y} \le \frac{300}{\sqrt{F_{ye}}}$	2	6	8
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{wc}}}$ or $\frac{k}{t_w} \ge \frac{460}{\sqrt{F_{wc}}}$	1.25	1.25	2
c. Other		rpolation between th	
			ss (second term) sha
•	resulting va	alue shall be used.	
For $0.2 \le P/P_{CL} \le 0.5$			
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{pr}}}$ and $\frac{h}{t_p} \le \frac{260}{\sqrt{F_{pr}}}$	1.25	 ;	_²
b. $\frac{b_f}{2t} \ge \frac{65}{\sqrt{E}}$ or $\frac{h}{t} \ge \frac{400}{\sqrt{E}}$	1.25	1.25	1.5
c. Other	Linear inte	rpolation between th	he values on lines a

Alternative Path Analysis

Columns:

20% Axial Capacity Limit >50% Axial Capacity is Force Controlled Life Safety Values

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth Conclusions

Appendix

Progressive Collapse

ASCE 41: Steel m-factors

		m-Factors for Linear Procedures							
		Pris	nary	Secondary					
Component/Action	Ю	LS	CP	LS	CP				
Beams—Flexure									
$\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{pe}}}$ and $\frac{h}{t_w} \le \frac{418}{\sqrt{F_{pe}}}$	2	6	8	10	12				
$\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{pe}}} \text{ or } \frac{h}{t_w} \ge \frac{640}{\sqrt{F_{pe}}}$	1.25	2	3	3	4				
. Other	(first term)		the values on lines ss (second term) sl						

Alternative Path Analysis

Columns:

20% Axial Capacity Limit >50% Axial Capacity is Force Controlled Life Safety Values

Beams:

>20% Axial Capacity is Force Controlled Primary: Frames & Girders Secondary: Infill Beams

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Progressive Collapse

UFC 023: Connection m-factors

	Linear Acceptance Criteria							
Connection Type	m-fac	ctors						
	Primary ⁽¹⁾	Secondary ⁽¹⁾						
Illy Restrained Moment Connections								
proved WUF with Bolted Web	2.3 – 0.021d	4.9 – 0.048d						
educed Beam Section (RBS)	4.9 – 0.025d	6.5 - 0.025d						
UF	4.3 – 0.083d	4.3 -0.048d						
dePlate [®]	6.7 - 0.039d ⁽²⁾	11.1 – 0.062d						

Alternative Path Analysis

Connections:

Full Penetration Moment Connections
Deeper Members Result in Lower m-Factors
Typically between 2-3

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Progressive Collapse

Alternative Path Analysis

Analysis Spreadsheet

REMOVAL OF COLUMN F5 at 1st Story - PRIMARY ELEMENTS										
Element Name	Next to	Size	Connection	Connection	P _u /ΦP _{CL} ⁽¹⁵⁾	M /mM	M _{uv} /ΦM _{CLv}	Element m-factor (7)	Interaction	$V_u/\Phi V_{CL}$
	Removed	SIZE	Type	m-factor	I μ/ΨI CL	wuz/ ♥ wCLz	muy + mcLy	Element In-lactor	≤ 1.0	≤ 1.0
C,L,E5	Υ	W14X500	Fixed Base		0.66	0.03	0.32	Col Mom Force Cont (8)	0.97	0.02
C,L,F5	Υ	W14X193	Fixed Base		0.04	0.02	0.00	6.00	0.02	0.01
C,L,G5	Υ	W14X193	Fixed Base		1.54	0.55	0.00	Col Mom Force Cont (8)	2.04	0.19
C,L,G.95	N	W14X500	Fixed Base		0.25	0.01	0.03	5.58	0.26	0.00
C,L,J5	N	W14X211	Fixed Base		0.24	0.06	0.12	5.73	0.27	0.01
C,U,C5	N	W14X500	Fixed Base		0.29	0.03	0.05	5.14	0.30	0.01
C,U,D5	N	W14X120	Fixed Base		1.49	0.03	0.00	Col Mom Force Cont (8)	1.52	0.01
C,U,E5	Υ	W14X500	Fixed Base		0.72	0.03	0.40	Col Mom Force Cont (8)	1.11	0.02
C,U,F5	Υ	W14X120	Fixed Base		0.92	0.09	0.00	Col Mom Force Cont (8)	1.00	0.02
C,U,G5	Υ	W14X120	Fixed Base		3.11	0.99	0.00	Col Mom Force Cont (8)	3.99	0.22

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

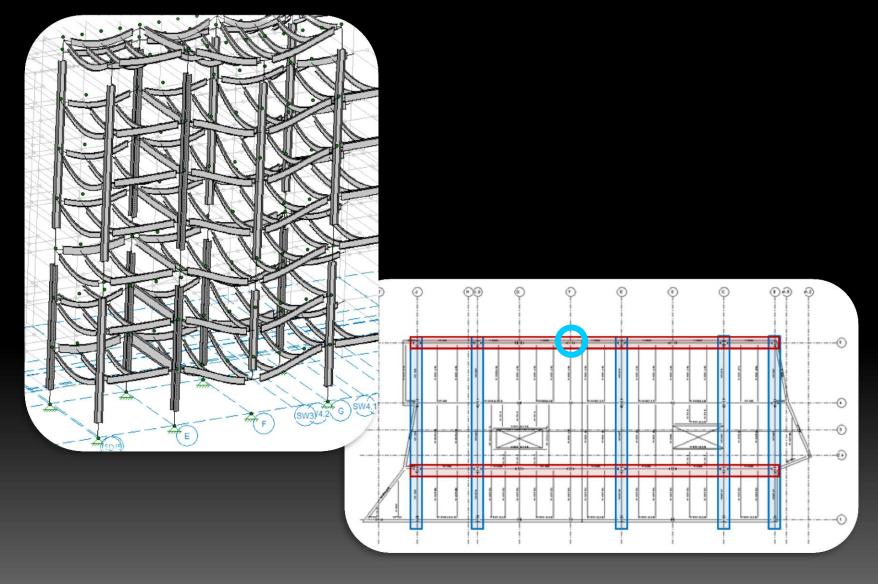
Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix


Progressive Collapse

Results

Existing Column Results									
Location	Size	Pu/ΦPn	Mu/ ΦM n	m-factor	Interaction				
Exterior Moment Frame	W14x193	1.54	0.55	Force Controlled: 1.o	2.03				
Interior Gravity Column	W14x120	2.10	0.00	Force Controlled: 1.0	2.10				

Table 7.2: Frame Sizes That Pass Removal of Column F5 Scenario										
	Typical Lower	Typical Upper	Typical 2 nd	Typical 3 rd	Typical 4 th +					
	Column	Column	Floor Beam	Floor Beam	Floor Beam					
North-South Frames	W14x370	W14x370	W36x182	W30x108	W24x76					
C, E, & G.9)										
North-South Frames	W14x370	W14x370	W36x182	W30x108	W24x76					
B & J)										
ast West Frames	W14x370	W14x370	W21x68	W21x68	W21x68					
185)										
ast West Frames (2)	W14x370	W14x370	W18x50	W18x50	W18x50					
Fravity Columns	W14x132	W14x82								
	1									

Alternative Path Analysis

Introduction
Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Architecture Breadth

UFC 010 Minimum Standoff Distances 18 ft.

		Standoff Distances									
		Conventional Construction Standoff Distance									
istance to:	Building Category	Applicable Level of Protection	Load Bearing Walls ⁽¹⁾	Non-Load Bearing Walls ⁽¹⁾	Minimum Standoff Distance ⁽²⁾	Applicable Explosive Weight ⁽³⁾					
controlled derimeter or darking and doadways	Billeting and High Occupancy Family Housing	Low	A	С	18 ft (5.5 m)	I					
rithout a controlled erimeter	Primary Gathering Building	Low	A	С	18 ft (5.5 m)	I					
	Inhabited Building	Very Low	В	D	18 ft (5.5 m)	I					

Site Redesign

UFC 010 Conventional Construction
Standoff Distances
151 ft.

	Column Letter										
Wall Type	Α	В	С	D	E	F	G	н			
Vood Studs –	105 ft	105 ft	79 ft	66 ft	36 ft	36 ft	23 ft	16 ft			
rick Veneer	(32 m)	(32 m)	(24 m)	(20 m)	(11 m)	(11 m)	(7 m)	(5 m)			
Vood Studs –	207 ft	207 ft	164 ft	141 ft	85 ft	85 ft	66 ft	56 ft			
IFS	(63 m)	(63 m)	(50 m)	(43 m)	(26 m)	(26 m)	(20 m)	(17 m)			
letal Studs –	187 ft	108 ft	207 ft (2)	186 ft ⁽²⁾	75 ft	43 ft	82 ft ⁽²⁾	75 ft ⁽²⁾			
rick Veneer	(57 m)	(33 m)	(63 m)	(57 m)	(23 m)	(13 m)	(25 m)	(23 m)			
letal Studs –	361 ft	207 ft	420 ft ⁽²⁾	361 ft ⁽²⁾	151 ft	85 ft	167 ft ⁽²⁾	151 ft ⁽²⁾			
IFS	(110 m)	(63 m)	(128 m)	(110 m)	(46 m)	(26 m)	(51 m)	(46 m)			
letal Panels	n/a ⁽¹⁾	n/a ⁽¹⁾	151 ft	108 ft	n/a ⁽¹⁾	n/a ⁽¹⁾	56 ft	39 ft			
			(46 m)	(33 m)			(17 m)	(12 m)			

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Construction Management Breadth

Base Design Cost and Schedule

	System	Material Take-Offs					RS Means Cost Data						Total Estimate		
Floor			Count	Unit	Total	# Studs	Crew	Daily Output	Cost (Incl O&P)	Studs Daily Output	Stud Cost (Incl O&P)	Total Cost	Total Schedule (Days)		
		W12X19	12	L.F.	120.25	0	E-2	880	35.75	910	2.82	\$4,299	O.14		
		W14X22	20	L.F.	447.5	157	E-2	990	41.5	910	2.82	\$19,014	0.62		
		W 14722 W16x26	20	L.F.	40.2	0	E-2	1000	46	910	2.82	\$1,849	0.04		
		W16X31	17	L.F.	414	290	E-2	900	54	910	2.82	\$23,174	0.78		
		W16x40	5	L.F.	141.85	45	E-2	800	68.5	910	2.82	\$9,844	0.10		
		W18x35	5	L.F.	126.75	63	E-2	960	62	910	2.82	\$8,036	0.20		
	W	W18x40	2	L.F.	44	34	W-2	960	69.5	910	2.82	\$3,154	0.28		
	E	W18x50	10	L.F.	221.85	0	E-2	912	85	910	2.82	\$18,857	0.24		
	Bear	W21x44	2	L.F.	56.75	56	E-2	1064	68	910	2.82	\$4,017	0.11		
_		W21x55	4	L.F.	107.1	0	E-2	1064	92.75	910	2.82	\$9,934	0.10		
		W24x62	8	L.F.	194.3	ŏ	E-2	1110	92	910	2.82	\$17,876	0.18		
4		W24x76	2	L.F.	22	8	E-2	1110	111	910	2.82	\$2,465	0.03		
Fifth		W27x84	3	L.F.	26	ŏ	E-2	1190	121	910	2.82	\$3,146	0.02		
ш		Total A992 Steel	92		1962.6	653		,,,,,		2.0	2.02	\$125,663	2.8		
i	동	Moment Connections	44	Ea.			E-14	9.6	115			\$5,060	4.6		
	S (Cantilever Connections	4	Ea.			E-14	9.6	115			\$460	0.4		
		Total Rigid Connections										\$5,520	5.0		
	ن	-													
	-	22 Ga 2"VLI		S.F.	9637.7		E-4	3560	2.24			\$21,588	2.71		
		5x6- W2.1xW2.1		C.S.F.	9.6377		2 Rodm		61			\$588	0.31		
		4500 psi Concrete		C.Y.	193.3		C-20	31	116			\$22,423	0.51		
	å	Pump Placing, Elev. Slab		C.Y.	193.3		C-20	140	28			\$5,412	1.38		
	_	Fotal Floor System		0.1.	100.0		C-20	140	20			\$50,012	4.4		
		i otal Floor System										₩ 50,012	4.4		

Cost

Deck Reinf: \$12,500

Columns: \$829,900

Beams: \$948,300

Connections: \$39,100

Total: \$2.15 million \$17.52 / SF

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Construction Management Breadth

Base Steel: \$17.52 / SF

Progressive Collapse: \$18.8 / SF

Existing Concrete: \$16.39 / SF

Cost

Deck Reinf: \$87,021

Columns: \$1.77 million

Beams: \$1.04 million

Connections: \$58,600

Total: \$2.31 million \$18.80 / SF

Introduction

Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance

Architectural Breadth

Conclusions

Appendix

Construction Management Breadth

Base Steel Schedule

ID	Task Name	Duration	Nov 7, '10	Nov 14, '10
1	Office Tower Structure	33 days	V	
2	Base Column Erection	2 days		
3	Second Floor	8.5 days		
4	Steel Erection	3 days		
5	Rigid Connections	4 days	9	
6	Place Deck	3 days		9
7	Place Reinforcing	0.5 days		
8	Pour Concrete	2 days		
9	Third Floor	10 days		
10	Stool Erection	4 dov.o		

Introduction

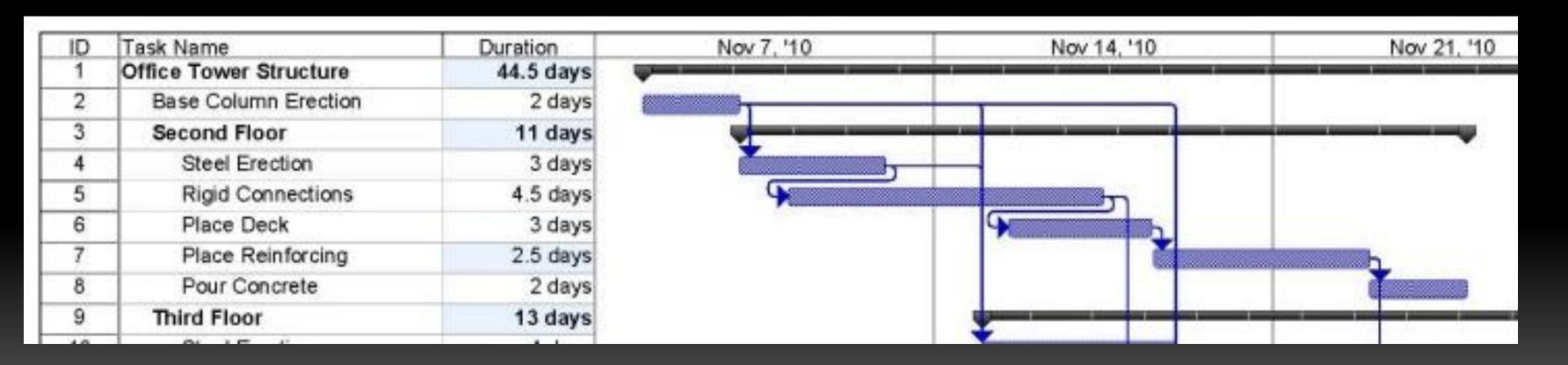
Base Steel Redesign

Progressive Collapse

Tie Force

Alternative Path

Enhanced Local Resistance


Architectural Breadth

Conclusions

Appendix

Construction Management Breadth

Pro Collapse Schedule

