Hunter's Point South

Intermediate School & High School

Long Island City, NY

L

0

Ρ

Т

0

Ν

Technical Report Two

Building and Plant Energy

Analysis Report

By: Britt Kern

Advisor: Dr. Stephen Treado

Date: 10/19/11

Table of Contents

executive Summary	4
Building Overview	5
Mechanical System Overview	5
Building Load Calculations	6
System Energy Consumption and Cost	. 15
missions	. 20
Conclusion	. 23

Figures and Tables

Table 1 – Internal Loads
Table 2 – Building Construction 8
Table 3 – Weather for JFK Airport 8
Table 4 – Room Design Temperatures 9
Table 5 – Occupancy Schedule for Classrooms9
Table 6 – TRACE Loads 10
Table 7 – Elite Software Loads11
Table 8 – Percent Difference in Models 11
Table 9 – Energy Prices
Table 10 – Energy and Cost Comparison 16
Figure 1 – Energy Consumption TRACE Model 17
Figure 2 – Energy Consumption Design Engineer's Model17
Figure 3 – Electricity Usage per Month 18
Figure 4 – Electricity Cost per Month 18
Figure 5 – Natural Gas Usage per Month 19
Figure 6 – Natural Gas Cost per Month 19
Table 11 – Pollutants Due to Electricity 20

Table 12 – Pollutants Due to Transportation	21
Table 13 – Pollutants Due to On-Site Combustion	21
Table 14 – Total Pollutants	22
Figure 7 – Total Pollutants Bar Chart	22

Appendices

Appendix A – Weather Data	25
Appendix B – Trace Schedules	26
Appendix C – Templates	29

Executive Summary

The purpose of thesis technical report two is to analyze our building and plant energy consumption using a computer-based method. Hunter's Point South Intermediate School & High School is a new schoolhouse for grades 5 through 12 which is located in Long Island City, New York. Hunter's Point South School was commissioned by the NYC School Construction Authority and designed to the guidelines of the NYC Green Schools Guide. Construction of the schoolhouse began recently on January 10th, 2011 and is expected to be complete on October 7th, 2013.

The program chosen to run this analysis in was Trane TRACE 700, due to program familiarity. Trane TRACE 700 has the capability to perform both load calculations and energy simulations so it was a perfect fit for this assessment. After all the information was input into TRACE, it was calculated that Hunter's Point South School's total heating load is 6,751,800 Btuh and total cooling load is 475.2 tons. As expected, the heating loads were greater than the cooling loads. This was expected because the building site is in New York and is primarily used during the cooling season with little occupancy in the summer. The total heating load was 23% higher when compared to the mechanical engineers' model and the total cooling load was 11% lower. The cooling load was reasonable considering the variation in U-values used for windows between the two models. The total heating load was not too far off but broken down on a zone to zone basis gave some alarming results, especially for AHU-4 which serves the gymnasium. Further explanations for why these differences may have occurred can be read under the Building Load Calculations section.

Energy usage and costs that resulted from the TRACE model were very close to those calculated by the design engineer. The total kWh of electricity used per year was 1,079329, 5% higher than the design engineer's value. Natural gas is used for heating and it was determined that 64,491 therms would be used a year, which is less than one percent off the Energy Cost Budget Method result. The TRACE analysis determined that Hunter's Point South School would have an energy bill of \$256,371 a year with an operating cost of \$1.67 per square foot. Both of these numbers were only 13% lower than the ones calculated by the design engineer. Finally, the emissions analysis found that Hunter's Point South School would emit approximately 2,084,233 pounds of CO₂ equivalent pollutants.

A lot can be learned from the results found above. Moving forward it will be very helpful to look back at these results to see where the highest costs are being incurred and how to remedy them. Even more can be learned about the assumptions made that gave way to these results.

Building Overview

Hunter's Point South Intermediate School & High School is a public school for grades 5 through 12 serving the PS 287 Queens School district. Hunters Point is a five story school that will house over 1,000 students. It consists of 26 classrooms, 8 special education classrooms, library, gym, assembly space, cafeteria with open terrace seating, kitchen, and support spaces. The building is a part of the Hunter's Point South Project, a redevelopment of the 30 acre Queens area to become a more sustainable, middle income urban community along the waterfront park. This redevelopment in Queens also includes residential housing, apartments, retail space, community/cultural facilities, parking, and a new 11 acre waterfront park.

Mechanical System Overview

Conditioned air is served to Hunter's Point South Intermediate School & High School via the six rooftop air handling units. Units 1, 2, and 3 are variable air volume (VAV) systems that service the classrooms, offices, corridors, and non-public spaces. Units 4, 5, and 6 are constant air volume (CAV) systems that serve the gymnasium, cafeteria/kitchen, and auditorium, respectively. All air handling units have variable frequency drives, wrap around heat pipes for dehumidification, and economizer controls. Preheat coils in the AHU's use a 35% propylene glycol – water mixture while the cooling coil utilizes a 30% propylene glycol – water mixture. This heat-transfer fluid has low toxicity and volatility. It poses little harm to humans in case of a leak.

Four natural gas fired, condensing boilers are used for Hunter's Point South School's heating needs. These boilers are located in the mechanical penthouse's boiler room. Each boiler can produce 1860 MBH worth of 35% propylene glycol – water mixture which is used for the AHU's, perimeter fin tube radiators, unit heaters, and cabinet heaters. All heating hot water and secondary pumps are located in the boiler room along with the hot and chilled water expansion tanks. Two 276 ton air cooled chillers with scroll compressors are also located on the roof. A 30% propylene glycol – water mixture is cooled by the R-410a refrigerant which is used for the AHU's cooling coils.

Cabinet and unit heaters are used to heat the building's entrances, locker rooms/showers, and stairwells. Split heat pumps are utilized in the telecom rooms on each floor, food storage, and elevator machine room. The outdoor section of each heat pump is located on the roof. Fin tubed radiators are used along the perimeter walls to heat the space in conjunction with AHU's. Upblast and mushroom fans are located on the roof where they exhaust air from the science lab's fume hoods and kitchen.

Building Load Calculations

An energy analysis on Hunter's Point South Intermediate School & High School was conducted using Trane TRACE 700. The building's heating loads, cooling loads, and energy usage were calculated using this program and then checked against the Elite Energy Software model created by the mechanical engineers. The assumptions and schedules used to create the Trane TRACE 700 model are outlined below.

Block Load Assumptions

Room areas for each space were taken from the ventilation tables. Added spaces were measured using the building drawings. Heat transfer coefficients and other U-values were found through the specifications or calculated. Finally, window areas, doors, and wall heights were measured from the sections in the building drawings. These were all entered individually in Trane TRACE 700 room by room.

Occupancy Assumptions

The number of occupants for each room of Hunter's Point South School was outlined in the design documents. Because these numbers were given, the occupant density values from ASHRAE Standard 62.1-2007 were not needed and a more accurate model could be created.

Ventilation Assumptions

As outlined in the scope of this assignment, ventilation rates were taken from ventilation tables created by the mechanical engineers. Hunter's Point South School due to its location fell under jurisdiction of the New York State Mechanical Code of 2007. In striving for LEED Silver Certification, ASHRAE Standard 62.1-2007 Procedure 6 was also required to determine minimum ventilation rates. Minimum outside air was calculated using both procedures and then the higher results were taken. These numbers have been inserted into the rooms for the TRACE model. A neutral, average construction was assumed for infiltration.

Lighting and Misc. Equipment Load Assumptions

The lighting and miscellaneous equipment loads were determined on a Watt per square foot basis. The lighting loads were found from the lighting power densities in Table 9.6.1 from ASHRAE Standard 90.1-2007. Lighting fixtures and their corresponding wattages were outlined in the building drawings. For simplicity, the values from Table 9.6.1 were used. A more accurate model could be created using the known lighting fixtures but time did not permit.

The equipment loads in the building were determined through multiple sources. No information was disclosed from the mechanical engineers about the miscellaneous loads assumed when creating their model. Values were determined using the ASHRAE Pocket Guide and knowledge gained through past experience. The gymnasium and exercise room were both assume to have a 700 W load for miscellaneous equipment. This is the equivalent of two computers assumed because the gym will house a scoreboard and the exercise room will have digital equipment. The assumed loads for lighting and equipment are outlined below in Table 1.

Room Type	Lighting Power Densities, W/sf	Misc Loads, W/sf	Workstations
Office	1.1	1	0
Conference/Meeting	1.3	1	0
Classroom	1.4	1	0
Lobby	1.3	0	0
Auditorium	2.6	1	0
Lounge/Break Room	1.2	1.5	0
Dining Area	0.9	0	0
Kitchen	1.2	10	0
Laboratory	1.4	2	1 per person
Restrooms	0.9	0	0
Dressing/Locker	0.6	0	0
Corridor	0.5	0	0
Stairs	0.6	0	0
Storage	0.8	0	0
Elec/Mech/Telecom	1.5	5	0
Gymnasium	1.4	700 W	0
Lifting Area	0.9	700W	0
Library	1.7	1	2
Computer Lab	1.1	0.5	1 per person
Medical	1.4	0.22	0

Table 1 – Internal Loads

Building Construction

Multiple templates were made in TRACE to represent the different facades and glazing of Hunter's Point South School. Below in Table 2 is an outline of the U-values and shading coefficients used for the different components.

	U-Value (Btu/(h-sf-°F))	Shading Coefficient
Exterior Wall	0.056	-
Roof	0.05	-
Floor	0.49	-
Windows:		
Typical Window	0.3	0.438
ITSPS	0.28	0.264
Window w/ perforated steel	0.3	0.291
Typical Door	0.2	-

Table 2 – Building Construction

Weather Data/Design Conditions

The weather data for Long Island City, NY was not in the ASHRAE Handbook of Fundamentals 2009. The closest city to the building's location with weather data in the handbook was New York City, JFK International Airport station. The building site and JFK Airport station are within fifteen miles of one another so the weather is very similar. Below is the weather information in Table 3. A more complete look at the weather data can be seen in Appendix A.

ASHRAE HoF 2009 Chapter 14					
Appendix: Climate Data					
JFK Airport, NY	dB Temp				
0.4% Cooling	89.7°F				
99.6% Heating	12.8°F				

Table 3 – Weather for JFK Airport

The room temperatures that Hunter's Point South Intermediate School & High School are maintained at are outlined below in Table 4.

Room Desig	gn Temperatures
Winter	72°F Dry Bulb
Summer	75°F Dry Bulb

Table 4 – Room Design Temperatures

Schedules/Templates

Hunter's Point South School is open all year long. Summer session will have a greatly reduced occupant load. The schedules for people, lighting, and miscellaneous loads were all found in Trane TRACE 700. The schedules used are those that resemble middle schools and high schools with some minor tweaks. Below in Table 5 shows a sample of a typical occupancy schedule. Appendix B has all schedules used.

Months and Days of the Week	Start time	End time	% of Peak
Jan-May and Sept-			
Dec, Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	50
	8:00 AM	11:00 AM	100
	11:00 AM	Noon	80
	Noon	1:00 PM	20
	1:00 PM	3:00 PM	100
	3:00 PM	5:00 PM	30
	5:00 PM	Midnight	0
June-August,			
Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	10
	8:00 AM	3:00 PM	30
	3:00 PM	5:00 PM	10
	5:00 PM	Midnight	0
Jan-Dec, Weekends	Midnight	Midnight	0

Table 5 – Occupancy Schedule for Classrooms

The templates created and used in Trane TRACE 700 may be found in Appendix C.

Systems

For convenience of comparing results, the zones have been broken down similar to the ones in the Elite Software model. The six AHU's were inserted with their corresponding rooms. All other spaces are served by heat pumps or unit/cabinet heaters and were lumped together as "Other" in the results.

Results from Trace Model vs. Elite Software Model

Below in Table 6 are the results for the building loads calculated in TRACE. AHU's 1, 2, and 3 serve the classrooms, offices, corridors, and non-public spaces. AHU's 4, 5, and 6 serve the gymnasium, cafeteria/kitchen, and auditorium, respectively. The stairs and main entrances were modeled as well. "Other" refers to the collection of the restrooms, telecom rooms, electrical closets, and mechanical penthouse. The diversity of the loads created by each different space can be seen through the zones. As expected, the heating load is greater than the cooling load. This is no surprise considering the school is located in New York and is mainly occupied during the heating season with little occupancy for summer session.

	Conditioned Space (sf)	Supply Air per unit area (cfm/sf)		Area per Cool Cooling Capac Capacity per A	nit area Cooling Capacity		Heating Capacity per Area	Total Heating (Btuh)	Total Cooling (tons)
		Cooling	Heating	(sf/ton)	(tons/sf)	(Btuh/sf)			
AHU-1	30637	0.6	0.37	379.6	0.0026	36.53	1,119,300	80.7	
AHU-2	29722	0.89	0.5	274.9	0.0036	51.17	1,521,000	108.1	
AHU-3	22567	0.82	0.51	271.9	0.0037	48.89	1,103,300	83.0	
AHU-4	12735	1.77	1.77	107.6	0.0093	105.79	1,347,200	118.4	
AHU-5	11449	1.34	1.34	208.2	0.0048	85.71	981,300	55	
AHU-6	4341	1.34	1.34	144.7	0.0069	118.13	512,800	30	
Stairs	1584	n/a	1.1	n/a	n/a	71.21	112,800	n/a	
North and South Entrances	668	n/a	0.13	n/a	n/a	8.53	5,700	n/a	
Other	4711	n/a	0.17	n/a	n/a	10.27	48,400	n/a	
Total Building	118414	0.904	0.710	256.1	0.0040	57.02	6,751,800	475.2	

Table 6 – TRACE Loads

Below in Table 7 are the loads calculated by the mechanical engineers in Elite Software.

		Supply Air		Cooling	Heating		Total
	Conditioned	per unit area	Area per Cooling	Capacity per	Capacity per	Total Heating	Cooling
	Space (sf)	(cfm/sf)	Capacity (sf/ton)	Area (tons/sf)	Area (Btuh/sf)	(Btuh)	(tons)
AHU-1	28115	0.9801	286.5	0.0035	37.82	1,063,259	98.12
AHU-2	27690	1.0412	232.5	0.0043	48.83	1,351,976	119.1
AHU-3	21646	1.1427	234.6	0.0043	43.36	938,642	92.25
AHU-4	12527	1.4766	113.8	0.0088	70.87	887,731	110.1
AHU-5	9833	1.624	144	0.0069	80.1	787,669	68.27
AHU-6	4341	2.0131	110.7	0.009	84.01	364,697	39.21
Stairs	1080	2.9079	186.3	0.0054	65.47	70,713	5.8
South Entrance	800	0.7225	0	0	31.29	25,034	0
Total Building	106032	1.2022	201	0.005	51.77	5,489,721	532.85

Table 7 – Elite Software Loads

Overall the results do not seem too unreasonable. The total heating load calculated in TRACE is 23% percent higher than the mechanical engineer's model while the total cooling load calculated in TRACE is 11% lower. However, when a closer look is taken zone by zone some discrepancies do occur. Table 8 shows a percent comparison for heating and cooling loads between the two models.

Percent Difference in Trace					
vs. Elite Software Loads					
	Heating Cooling				
AHU-1	-5%	18%			
AHU-2	-13%	9%			
AHU-3	-18%	10%			
AHU-4	-52%	-8%			
AHU-5	-25%	19%			
AHU-6	-41%	23%			
Stairs	-60%	n/a			
Entrances	77%	n/a			
Total	-23%	11%			
*Note: Negatives mean Trace value is higher than Elite					
Software value.					

Table 8 – Percent Differences in Models

Below is an outline of the differences in the modeling through TRACE and Elite Software as well as an outline of assumptions that may have led to these skewed results for zones.

Assumptions by the Mechanical Engineers:

- For ventilation for the whole building, 20 cfm per person were used for both cooling and heating. This is a valid assumption but no information was found on what was used for corridors.
- The lighting density was generalized for the whole building and was not broken down space by space.
- Occupants were assumed to give off 245 Btuh sensible and 200 Btuh latent loads per person. This assumption was held constant for all spaces. The TRACE model had varied sensible and latent loads for occupants depending on the activity level in the space. This will give a more realistic outcome especially for the gymnasium and weight room.
- No infiltration was assumed for heating and cooling. This would cause there calculated loads to be lower than the TRACE calculated values.
- A U-value 0.5 was used for glazing. This is much higher than the 0.30 value outlined in the specifications. Using a higher U-value will cause more thermal loses and thus increase the heating and cooling loads on the zones.
- A summer dry bulb temperature of 78°F for the rooms was used as opposed to the 75°F used in my TRACE model. Conditioning the rooms at a lower temperature in the summer will require more cooling.
- A discrepancy in floor areas for certain rooms arose between the two models, with the Trace model having a greater total floor area.
- Occupants were added to the locker rooms. This will increase the load on these spaces. No
 occupants were added in the TRACE model due to the sporadic use of the space. It was
 assumed that the short duration of occupants' stay would not generate enough loads to the
 space as to discomfort them. Furthermore, with the time between uses of the locker room
 there was plenty of time for the space to be reconditioned.
- Stairs and entrances were modeled as being served by AHU's as opposed to unit and cabinet heaters, which is outlined in the drawings.

Though both models are based off the same information, there are differences in how the loads are calculated through each program. I am unfamiliar with how Elite Software works so I cannot expand too much more upon this subject. It should be noted that no two programs will give exactly the same results given the same inputs.

Cooling

Cooling overall was not too far off. Considering the difference in U-values between the two models, the TRACE model would result with lower cooling loads because of the lower U-values used for windows, which it did. 256 sf/ton was calculated in the TRACEmodel for cooling. Checking against the ASHRAE Pocket Guide, the square feet per ton of cooling is just outside the low range of 240 sf/ton. All spaces were modeled in the building for TRACE even those that did not receive cooling. If the area for the spaces that do not receive cooling were taken out, then the sf/ton would fall well in the range outlined in the ASHRAE Pocket Guide.

The only outlier for cooling loads calculated in TRACE was AHU-4, which serves the gymnasium and weight room area. For the gymnasium and exercise room, occupants were modeled as giving off 710 Btuh sensible and 1090 Btuh latent loads. These values were found using the ASHRAE Pocket Guide for the highest degree of activity, athletic. Since the occupants are at a higher level of activity, they will create a much greater load on the space and thus require more cooling. If it is assumed the occupants are at a typical office activity level, like was done in the Elite Software model, then cooling loads will be much lower and will not reflect the actually needed cooling.

Heating

Heating loads overall in TRACE were only above the mechanical engineers' model by 23%. Considering extra spaces were added to the TRACE model that only required heating, the overall heating load increase is no surprise. There are some alarming differences in the heating loads calculated for the different zones; primarily for AHU-4, AHU-6, the stairs, and entrances.

AHU-4:

The gymnasium's façade includes the Insulated Translucent Sandwich Panel System (ITSPS). This is a fiberglass system that allows light transmission with a U-value of 0.28. The heating load calculated in TRACE is approximately 50% higher than the one calculated in Elite Software. It is unclear how the gymnasium walls were modeled in Elite Software. If the ITSPS were not taken into account, than the wall U-value of 0.056 would have been used. This would prevent much more thermal loses than the ITSPS would. The TRACE model took into account the ITSPS. The ITSPS comprised of 41% of the gymnasium's exterior wall area. If the ITSPS was not accounted for in the Elite Software model than the heating loads would be far less. This could be the source of this huge discrepancy.

AHU-6:

Britt Kern Hunter's Point South Intermediate School & High School

The spaces served by this system are all interior rooms. Since no exterior walls or rooms exist, the heating loads should be significantly less as compared to the other zones, which they are for both models. The reason the percent difference may be so great is because the heating loads are both lower so the graver the difference between the two numbers is at a lower value, the percent difference will increase much more. In the future, this zone will have to be given careful attention as to try to understand why there was such a high heating load as well as what assumptions made for the space may need to be reworked.

Stairs:

The heating load calculated in the TRACE model is significantly higher than the one found using Elite Software. The TRACE model accounted for all three stairwells as opposed to only the north and south stairwells which were used for the Elite Software model. The Elite Software model also used a much smaller floor area, approximately 2/3 of the area used in TRACE. The added stairwell did not have any glazing but it did have a large amount of exterior wall which would increase the heating load. Also, the Elite Software model assumed the stairwells were supplied by air handling units when in actuality they are supplied by unit and cabinet heaters. The difference in these systems and how the two programs model them both can produce some difference in the calculated load.

Entrances:

The elite software analysis only modeled the south entrance and neglected the north entrance. This may have been done since the south entrance will see a lot of solar loading and the north will only receive diffuse sunlight. In the TRACE model, both the north and south entrances were taken into account. The Elite Software used a much smaller floor area for the south entrance too. All this information points towards that the entrances modeled in the TRACE model should have a much higher heating load, but from the calculations the opposite has been found. With how little the area the entrances account for and that the only glazing is in the doors, it is unclear how the Elite Software model calculated such a high heating load for this space.

System Energy Consumption and Cost

Trane TRACE 700 was also used to run a full year energy simulation of Hunter's Point South Intermediate School & High School. Systems were added to the model created above and an energy analysis was performed. The results are compared against the values calculated by the design engineer.

Systems

Six VAV systems with baseboard heating were added for the simulation. Fan static pressure and horsepower were found in the design documents and inputted into the VAV systems. All AHU's have economizers and dehumidification wrap around heat pipes. The economizers run based on enthalpy and were added to the VAV systems. The heat pipes could not be added however because there was no viable option in TRACE.

The remaining spaces that were not assigned to the VAV systems use unit and cabinet heaters. A final system was added and modeled as a unit heater. The remaining rooms were added to this.

Plants

The four gas fired, condensing boilers and two air cooled chillers were added under the plants tab. The total loads and efficiencies were inputted from the design documents for all six systems. Pumps were also found in the design documents and they were added along with their horsepower.

Fuel Costs

The following fuel costs were given through the NYPA and used in the design engineers' model. These values can be seen below in Table 9. These same numbers have been used for the economic rates in the TRACE model as well.

Energy Prices					
Туре	Price				
Electricty (based	\$0.0553/kWh				
on NYPA)	\$21.49/kW				
Natural Gas (based	\$1.579/ccf				
on National Grid	\$1.542/therms				
firm charges)	\$11.65/month				

Table 9 – Energy Prices

Results

The results obtained from the TRACE model for the energy simulation were very close to the values calculated by the design engineer. All categories were within an acceptable variance from the design engineer's values and no out liars occurred. Below in Table 10 are the results from the TRACE model energy simulation as compared to the design engineer's results using the Energy Cost Budget Method from ASHRAE Standard 90.1 Section 11.

		Natural Gas		Natural Gas		Cost per
	Electricty (kWh	(BTU x 10 ⁶	Electricity	Cost per	Total Cost per	Square Foot
	per year)	per year)	Cost per year	year	year	of Building
TRACE	1,079,329	6449.1	\$ 170,668	\$ 85,703	\$ 256,371	\$ 1.67
Design Engineer	1,030,849	6,441	\$ 194,745	\$ 99,467	\$ 294,212	\$ 1.91
Difference	-5%	0%	12%	14%	13%	13%

Table 10 – Energy and Cost Comparison

Two factors were not able to be modeled that would further reduce energy costs; occupancy sensors for lights and the wrap around heat pipes for dehumidification. Also note that there would be a little increased load on the building in electricity and pump energy if the wrap around heat pipes were added but a lowering in cooling costs due to these two factors.

The total energy consumption for Hunter's Point South School was broken down so the energy usage could be better understood. Figure 1 shows these results and Figure 2 has the energy consumption breakdown calculated by the design engineer. The auxiliary fraction includes both the pumps and fans in the building. The Misc fraction includes loads such as plug loads, kitchen equipment, and exterior lights. Miscellaneous loads due to computers and internal equipment is included in the Cooling fraction in Figure 1. This is a reason why the Cooling fraction is higher in the TRACE model as opposed to the design engineer's model.

Figure 1 – Energy Consumption TRACE Model

Figure 2 – Energy Consumption Design Engineer's Model

The electricity and natural consumption rates and cost per month were obtained from the TRACE energy simulation. As expected the electricity consumption peaked during the summer while the natural gas consumption peaked during the winter months. This information can be seen in Figures 3 through 6 that follow.

Figure 3 – Electricity Usage per Month

Figure 4 – Electricity Cost per Month

Figure 5 – Natural Gas Usage per Month

Figure 6 – Natural Gas Cost per Month

Emissions

Hunter's Point South School uses delivered electricity and on-site combustion for power so both must be accounted for when determining total emissions. For on-site combustion, both the pollutants produced by transporting the natural gas to site and the actual combustion process must be taken into account. The pounds of pollutant per kWh of electricity were pulled from Table B10 for New York from the *Source Energy and Emission Factors for Energy Use in Buildings* technical report. The pounds of pollutant per unit of fuel were also taken from this same document for fuel delivered to the building (Table 6) and on-site combustion in commercial boilers (Table 8).

Table 11 below shows the pounds of pollutant per year for each different pollutant due to electricity. The breakdown of pounds of pollutant per year due to shipping the natural gas to site and on-site combustion are shown below in Table 12 and Table 13, respectively.

Pollutant	lb of pollutant per kWh of electricity	lb of pollutant per year due to electricity
CO _{2e}	1.03E+00	1,111,708.87
CO ₂	9.61E-01	1,037,235.17
CH4	2.59E-01	279,546.21
N2O	1.68E-05	18.13
NOx	1.72E-03	1,856.45
SOx	6.23E-03	6,724.22
CO	1.75E-03	1,888.83
TNMOC	6.38E-05	68.86
Lead	5.59E-08	0.06
Mercury	3.99E-08	0.04
PM10	6.87E-05	74.15
Solid Waste	6.18E-02	66,702.53
kWh/year =	1079329	

Table 11 – Pollutants Due to Electricity

Pollutant	lb of pollutant per 1000 cubic ft of natural gas	lb of pollutant per year due transportation to site
CO _{2e}	2.78E+01	179,284.98
CO ₂	1.16E+01	74,809.56
CH4	7.04E-01	4,540.17
N2O	2.35E-04	1.52
NOx	1.64E-02	105.77
SOx	1.22E+00	7,867.90
CO	1.36E-02	87.71
TNMOC	4.56E-05	0.29
Lead	2.41E-07	0.00
Mercury	5.51E-08	0.00
PM10	8.17E-04	5.27
PM-unspecified	1.42E-03	9.16
Solid Waste	1.60E+00	10,318.56
cubic feet of na	6449100	

Table 12 – Pollutants Due to Transportation

Pollutant	lb of pollutant per 1000 cubic ft of natural gas	Ib of pollutant per year due to on-site combustion
CO _{2e}	1.23E+02	793,239.30
CO2	1.22E+02	786,790.20
CH4	2.50E-03	16.12
N2O	2.50E-03	16.12
NOx	1.11E-01	715.85
SOx	6.32E-04	4.08
СО	9.33E-02	601.70
VOC	6.13E-03	39.53
Lead	5.00E-07	0.00
Mercury	2.60E-07	0.00
PM10	8.40E-03	54.17
cubic fee	t of natural gas =	6449100

Table 13 – Pollutants Due to On-Site Combustion

Finally, Table 14 has the total pounds of pollutant due to the combined effects of electricity and on-site combustion for Hunter's Point South School. This information can also be seen in Figure 7.

Pollutant	Total Pollutants (lb of pollutant)
CO _{2e}	2,084,233.15
CO ₂	1,898,834.93
CH4	284,102.50
N2O	35.77
NOx	2,678.06
SOx	14,596.20
CO	2,578.23
TNMOC	69.16
VOC	39.53
Lead	0.07
Mercury	0.05
PM10	133.59
PM-unspecified	9.16
Solid Waste	77,021.09

Table 14 – Total Pollutants

Figure 7 – Total Pollutants Bar Chart

Conclusion

Hunter's Point South Intermediate School & High School contains a multitude of different rooms with varying loads. Through using Trane TRACE 700 building loads and energy simulations have been created. The building loads were accurate for cooling but a bit high overall for heating when compared to the Elite Software model ran by the mechanical engineers. The energy and cost analysis were very close to the design engineer's calculations. In the end, most of the results were fairly reasonable.

References

ASHRAE. <u>Handbook of Fundamentals.</u> Atlanta: ASHRAE, 2009.

ANSI/ASHRAE. (2007). *Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality*. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Condition Engineers, Inc.

ANSI/ASHRAE. (2007). *Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings*. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

Deru, M., & Torcellini, P. (2007). Source Energy and Emission Factors for Energy Use in Buildings. *National Renewable Energy Laboratory*, 5-28.

FXFOWLE Architects. <u>100% Construction Documents Volume 1 – Architectural & Structural</u>. FXFOWLE Architects, New York, NY.

FXFOWLE Architects. <u>100% Construction Documents Volume 2 – MEP, Fire Protection & Audio Visual</u>. FXFOWLE Architects, New York, NY.

Pocket Guide. Atlanta: ASHRAE, 1997.

Specifications Books 1-3 (2011). Solicitation NO.: SCA10-006621-1

Appendix A- Weather Data

2009 AS	2009 ASHRAE Handbook - Fundamentals (IP) © 2009 ASHRAE, Inc.														
					NEW YO	ORK J F	KENNE	DY INT	'L AR, M	NY, USA				WMO#:	744860
Lat:	40.66N	Long:	73.80W	Elev	23	StdP:	14.68		Time Zone	:: -5.00 (N	AE)	Period:	82-06	WBAN:	94789
Annual He	sating and a	Humidirioa	tion Design (Conditions											
Coldest	Heath	ng DB		Humi	dification D	P/MCD6 and	d HR			Coldest mo	nth WS/MC0	08	MCWS to 99	VPCWD	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCOB	MCW8	PCWD	
1	12.8	17.2	-5.4	4.1	16.0	-1.6	5.1	20.2	31.7	26.2	28.8	27.4	16.7	320	
Annual Co	oling, Deh	umidificati	on, and Enti	alpy Desig	n Conditio	ing									
	Hoffest			Cooling D	BIMOWB					Evaporatio	n WB/MCD	8		MCW8	PCWD
Hottest Month	Month	0	4%	1	196	2	%	0.	4%		195	2	96	to 0.4	% DB
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
	13.4	89.7	73.5	86.5	72.2	83.7	71.4	77.0	84.3	75.8	81.9	74.6	80.2	12.6	230
<u> </u>	0.4%		Dehumidifica	1% 1%	CDB and H	Ì	2%		0	.4%	Enthal	py/MCDB 1%	2	5	8 to 4 &
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/69
74.9	130.8	80.5	73.7	125.7	79.0	72.7	121.2	77.9	40.2	84.4	39.1	82.5	38.0	79.7	769
Extreme A	innual Deci	ign Conditi	lons												
E-te			Extreme		Extreme	Annual DB		1		n-Year R	eturn Period	i Values of E	Extreme DB		
EXIN	eme Annua	ws	Max	M	ean	Standard	deviation	n=5	years	n=1	0 years	n=20	years	n=50	years
1%	2.5%	5%	WB	7.0	Max	 5.0	Max .	<u> </u>	- Max	Min	100.0		101.7	Min	102.0
ZI.3 Monthly C	24.5	21.4	02.4	7.5	36.1	ə.z	3.0	3.5	90.2	0.5	100.0	-2.4	101.7	-6.3	103.6
monthly C		agn conan	Annual	ine.	Exc.	Max	4.00	Max	hur.	M		Ĉ.	0.4	Mary	Dee
		Tavo	54.5	33.0	35.1	41.5	50.9	60.3	70.0	75.6	74.8	68.0	57.1	47.7	38.2
		Sd		9.27	7.90	7.73	6.54	6.24	5.92	4.84	4.79	6.03	6.88	7.37	8.67
Temper	ratures,	HDD50	1813	529	419	281	63	1	0	0	0	0	15	128	377
Degree	e-Days nd	HDD65 CDD50	4828	993	837	17	424	322	21 601	792	769	37	261	519	832
Degree	Hours	CDD65	978	ō	ō	0	2	30	172	327	305	128	14	0	0
		CDH74	6064	0	0	3	22	193	963	2329	1962	554	38	0	0
		CDH80	1636	0	0	0	4	54	275	707	484	107	5	0	0
		0,4%	DB	55.5	59.2	69.0	77.1	86.5	91.9	95.5	92.6	88.5	79.0	68.2	62.5
Monthly	Design		DB	51.5	48.0	55.0	69.6	79.2	87.1	76.6	75.0	73.4	73.4	63.7	56.9
a	nd	2%	MCWB	49.1	45.8	50.1	56.3	65.6	71.5	73.6	73.7	70.2	65.5	58.4	52.6
Mean Co Wet	oinoident Ruib	5%	DB	48.4	49.0	55.4	64.7	74.2	82.7	86.8	84.9	79.5	70.3	61.2	53.2
Tempe	ratures		MCWB DB	44.9	44.0	47.4	53.1	63.1 70.4	69.3	72.3	72.7	69.4	63.9	57.2	50.1
		10%	MCWB	41.5	41.9	45.9	51.2	60.8	68.2	71.6	71.7	68.6	61.7	55.1	46.4
			WB	53.4	52.2	57.9	63.2	71.6	76.4	79.1	78.6	76.6	70.6	63.9	58.4
Monthly	Decion	0.4%	MCDB	54.7	54.6	65.2	72.2	81.7	86.8	89.7	87.3	84.2	74.0	65.9	60.8
Wet	Bulb	2%	WB	50.0	47.9	52.5	59.0	68.1	74.2	77.2	77.0	74.4	68.4	60.6	54.0
ar Mean Co	nd pinoldent		MCDB WB	51.3 45.8	50.6 45.4	49.9	65.9 56.0	76.1 65.4	82.5	84.9	83.4	78.9	65.8	62.3 58.3	55.8
Dry I	Bulb	5%	MCDB	48.0	48.0	54.0	61.6	72.0	79.1	82.5	81.0	76.3	69.2	60.4	52.9
Tempe	ratures	10%	WB	42.0	42.5	47.1	53.4	62.9	70.6	74.5	74.7	71.1	63.2	55.9	47.2
			MCDB	44.6	45.7	50.8	57.7	68.1	76.4	80.6	79.6	74.7	66.4	58.3	49.6
			MDBR	12.0	12.7	13.8	14.4	14.4	14.1	13.4	12.9	13.5	13.7	12.7	11.7
Mean Tempe	Daily	5% DB	MCDBR MCWBR	14.6	15.7	18.6	20.6	20.8	15.3	7.6	7.6	15.2	15.6	14.4	14.6
Rai	nge	C05 1010	MCOBR	14.4	14.7	17.4	17.5	19.0	16.6	14.3	12.8	12.6	13.5	13.2	13.8
_		576 005	MCWBR	14.1	13.5	13.2	11.3	10.7	8.9	7.1	7.0	8.2	10.4	13.0	14.5
Class	a Alex	t	aub	0.331	0.362	0.401	0.439	0.476	0.534	0.541	0.527	0.418	0.379	0.357	0.328
80	lar	t	aud	2.299	2.147	2.038	1.955	1.890	1.786	1.800	1.822	2.170	2.231	2.246	2.353
Irradi	lance	Edh	1,ncon	32	265	49	265	62	69	236	64	255 43	37	245	250
CDDn CDHn DB DP	Cooling de Cooling de Dry buib te Dew point t	gree-days b gree-hours mperature, lemperature	ase n°F, °Fk base n°F, °F °F t, °F	iay hour	Lat Long MCDB MCDBR	Latitude, " Longitude, Mean coin: Mean coin:	cident dry b cident dry b	uib tempera uib temp. ra	sture, "F ange, "F	Period Sd StdP taub	Years use Standard (Standard) Clear sky	d to calculat deviation of pressure at s optical depti	te the design daily average station eleve h for beam i	n conditions ge temperatu ation, psi madiance	ure, "F
Ebn,noon Edh,noon) Clear sky) zontal Irra	beam norm diances at	nai and diffusi solar noon. B	e hori- tu/h/t2	MCDP MCWB	Mean coinc Mean coinc	cident dew cident wet b	point tempe suib temper	ature, "F ature, "F	taud Tavp	Clear sky Average to	optical depti emperature.	h for diffuse "F	Irradiance	
Elev	Elevation, f	t			MCWBR	Mean coinc	cident wet t	ulb temp. n	ange, 'F	Time Zon	e Hours ahe	ad or behind	d UTC, and	time zone o	ode
Enth HDDn	Enthalpy, B Heating de	itu/ib gree-davs k	ase n'F. 'F-	day	MCWS MDBR	Mean coinc Mean dry b	cident wind	speed, mpl ange, "F	h	WB WBAN	Wet bulb t Weather P	temperature, Sureau Army	, "F Navy numi	ber	
Hours 8/4 &	\$ 55/69	Number	of hours betw	veen 8 a.m.	PCWD	Prevailing	coincident v	wind direction	on, •,	WMO#	World Met	teorological	Organizatio	n number	
HR	HR Humidity ratio, grains of molsture per lo of dry air														

Appendix B- Trace Schedules

Occupancy Schedule for Classrooms

Months and Days of the Week	Start time	End time	% of Peak
Jan-May and Sept-			
Dec, Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	50
	8:00 AM	11:00 AM	100
	11:00 AM	Noon	80
	Noon	1:00 PM	20
	1:00 PM	3:00 PM	100
	3:00 PM	5:00 PM	30
	5:00 PM	Midnight	0
June-August,			
Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	10
	8:00 AM	3:00 PM	30
	3:00 PM	5:00 PM	10
	5:00 PM	Midnight	0
Jan-Dec, Weekends	Midnight	Midnight	0

Occupancy Schedule for Cafeteria

	Months and Days of the Week	Start time	End time	% of Peak
	Jan-May and			
	Sent-Dec			
	Weekdays	Midnight	7:00 AM	0
		7:00 AM	8:00 AM	0
		8:00 AM	9:00 AM	0
		9:00 AM	11:00 AM	20
		11:00 AM	1:00 PM	100
		1:00 PM	3:00 PM	20
		3:00 PM	5:00 PM	0
		5:00 PM	Midnight	0
_				
	June-August,			
	Weekdays	Midnight	7:00 AM	0
		7:00 AM	1:00 PM	10
		1:00 PM	Midnight	0
_				
	Jan-Dec,			
	Weekends	Midnight	Midnight	0

Occupancy Schedule for Kitchen

 liteliteli									
Months and Days of the Week	Start time	End time	% of Peak						
Jan-May and Sept-									
Dec, Weekdays	Midnight	7:00 AM	0						
	7:00 AM	8:00 AM	50						
	8:00 AM	9:00 AM	50						
	9:00 AM	Noon	100						
	Noon	1:00 PM	100						
	1:00 PM	3:00 PM	100						
	3:00 PM	5:00 PM	0						
	5:00 PM	Midnight	0						
June-August,									
Weekdays	Midnight	7:00 AM	0						
	7:00 AM	1:00 PM	10						
	1:00 PM	Midnight	0						
Jan-Dec, Weekends	Midnight	Midnight	0						

Lighting Schedule for Building

Months and Days of the Week	Start time	End time	% of Peak
Jan-May and Sept-			
Dec, Weekdays	Midnight	6:00 AM	5
	6:00 AM	8:00 AM	10
	8:00 AM	9:00 AM	80
	9:00 AM	Noon	90
	Noon	1:00 PM	40
	1:00 PM	3:00 PM	90
	3:00 PM	4:00 PM	55
	4:00 PM	8:00 PM	5
	8:00 PM	9:00 PM	30
	9:00 PM	Midnight	5
June-August,			
Weekdays	Midnight	Midnight	5
Jan-Dec, Weekends	Midnight	Midnight	5

Miscellaneous Equipment Schedule for Educational Facilities

Months and Days of the Week	Start time	End time	% of Peak
Jan-May and Sept-			
Dec, Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	50
	8:00 AM	11:00 AM	100
	11:00 AM	Noon	80
	Noon	1:00 PM	20
	1:00 PM	3:00 PM	100
	3:00 PM	5:00 PM	30
	5:00 PM	Midnight	0
June-August,			
Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	10
	8:00 AM	3:00 PM	30
	3:00 PM	5:00 PM	10
	5:00 PM	Midnight	0
Jan-Dec, Weekends	Midnight	Midnight	0

Miscellaneous Equipment Schedule for Kitchen

Months and Days of the Week	Start time	End time	% of Peak
Jan-May and Sept-			
Dec, Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	50
	8:00 AM	11:00 AM	100
	11:00 AM	Noon	80
	Noon	1:00 PM	20
	1:00 PM	3:00 PM	100
	3:00 PM	5:00 PM	30
	5:00 PM	Midnight	0
June-August,			
Weekdays	Midnight	7:00 AM	0
	7:00 AM	8:00 AM	10
	8:00 AM	3:00 PM	30
	3:00 PM	5:00 PM	10
	5:00 PM	Midnight	0
Jan-Dec, Weekends	Midnight	Midnight	0

Appendix C – Trace Templates

*Note: People density is 0 in templates because they were manually entered in later.

Internal Load	Templates - Project					23
Alternative	Alternative 1		•			Apply
Description	Auditorium		•			Close
People						
Туре	Auditorium				-	New
Density	0 People	-	Schedule Peop	ple - Middle School	-	Сору
Sensible	225 Btu/h		Latent 105	Btu/h		Delete
Workstations						Add Global
Density	0 workstations	T				
Lighting	,					
Туре	Recessed fluorescent, not v	ented, 80%	load to space		•	
Heat gain	2 W/sq.ft	-	Schedule Ligh	ts - School	-	
Miscellaneou	s loads					
Туре	None				•	
Energy	1 W/sq.ft	-	Schedule Misc	- Elementary School		
Energy meter	None	•	,		_	
Internal	Load <u>A</u> irflow		<u>T</u> hermostat	<u>C</u> onstructio	n	<u>R</u> oom

Internal Load	Templat	tes - Project						×
Alternative Description	Alterr	native 1 room		•				Apply Close
People								
Туре	General	Office Space					-	New
Density	0	People	-	Schedule	People - M	iddle School	•	Сору
Sensible	250	Btu/h		Latent	200 B	tu/h		Delete
Workstations	s							Add Global
Density	0	workstations	-					
Lighting								
Туре	Recess	ed fluorescent, not ve	nted, 80	1% load to sp	ace		-	
Heat gain	1.4	W/sq ft	-	Schedule	Lights - Scl	hool	-	
Miscellaneou	us loads							
Туре	None						-	
Energy	1	W/sq ft	-	Schedule	Misc - Elen	nentary School	-	
Energy meter	None		•					
Internal	Load	Airflow		<u>T</u> herm	ostat	Construction		<u>R</u> oom

Britt Kern H

Internal Load	Templat	es - Project					—
Description	Altern	ative 1 uter Lab	•				Apply Close
People							
Туре	General	Office Space				-	New
Density	0	People	Schedule	People - Mi	ddle School	-	Сору
Sensible	250	Btu/h	Latent	200 Bt	u/h		Delete
Workstations							Add Global
Density	1	workstation/person 💌					
Lighting							
Туре	Recesse	ed fluorescent, not vented, 80	1% load to sp	ace		•	
Heat gain	1.1	W/sq.ft 💌	Schedule	Lights - Scł	nool	-	
Miscellaneou	ıs loads						
Туре	Std Offic	e Equipment				•	
Energy	0.5	W/sq ft 💌	Schedule	Misc - Elem	entary School	•	
Energy meter	Electricit	y 💌					
<u>I</u> nternal	Load	Airflow	<u>I</u> herm	iostat	<u>C</u> onstruction		<u>R</u> oom

Internal Load	l Templat	es - Project						×
Alternative Description	Altern	native 1 lor		•				Apply Close
People Type	None						•	New
Density	0	People	•	Schedule	Cooling On	ly (Design)	-	Сору
Sensible	250	Btu/h		Latent	250 B	:u/h		Delete
Workstation	s							Add Global
Density	0	workstations	•					
Lighting								
Туре	Recesse	ed fluorescent, not ven	ted, 80	% load to sp	асе		•	
Heat gain	0.5	W/sq ft	•	Schedule	Cooling On	ly (Design)	•	
Miscellaneou	us loads							
Туре	None						-	
Energy	0	W/sq ft	•	Schedule	Cooling On	ly (Design)	-	
Energy meter	None		•					
<u>Internal</u>	Load	Airflow		<u>T</u> herm	ostat	<u>C</u> onstruction		<u>R</u> oom

Britt Kern Hunter's Point South Intermediate School & High School

Internal Load	Templat	es - Project					—
Alternative Description	Altern	ative 1 g Area	• •				Apply Close
People							
Туре	Cafeteria	3				-	New
Density	0	People 💌	Schedule	People - Ca	afeteria	-	Сору
Sensible	275	Btu/h	Latent	275 Bt	u/h		Delete
Workstations	s						Add Global
Density	0	workstations 💌					
Lighting							
Туре	Recesse	ed fluorescent, not vented, 8	0% load to sp	ace		-	
Heat gain	0.9	W/sq ft 💽	Schedule	Lights - Ele	mentary kitchen	-	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	0	W/sq ft 📃	Schedule	Cooling On	ly (Design)	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	nostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Templat	tes - Project						×
Alternative Description	Alterr	native 1 sing/Locker		•				Apply Close
People Type Density Sensible Workstations Density Lighting	None 0 250 s	People Btu/h workstations	•	Schedule Latent	Cooling Or 250 B	nly (Design) tu/h	•	New Copy Delete Add Global
Туре	Recess	ed fluorescent, not venl	ted, 80	% load to spa	ice		-	
Heat gain	0.6	W/sq.ft	•	Schedule 🛛	Cooling Or	nly (Design)	-	
Miscellaneou Tupe	us loads							
Enerau		Wisaft	•	Schedule [Cooling ()	du (Design)		
Energy meter	None	Imiodia	-		Cooming Of	ny (5 caigiri)	<u>·</u>	
<u>Internal</u>	Load	Airflow		<u>T</u> hermo	ostat	<u>C</u> onstruction		<u>R</u> oom

Britt Kern

Internal Load	Templat	tes - Project					×
Alternative Description	Alterr	native 1 nasium	•				Apply Close
People							New
Туре	Manufa	cturing				•	New
Density	0	People 💌	Schedule	People - Mi	ddle School	-	Сору
Sensible	710	Btu/h	Latent	1090 Bt	u/h		Delete
Workstations	:						Add Global
Density	0	workstations 💌					
Lighting							
Туре	Recess	ed fluorescent, not vented, 8	0% load to sp	ace		-	
Heat gain	1.4	W/sq.ft 🔹	Schedule	Lights - Scł	nool	-	
Miscellaneou	ıs loads						
Туре	None					•	
Energy	700	w 🔹	Schedule	Misc - Elem	entary School	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	iostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Template	es - Project					- ×
Alternative	Alterna	ative 1	•				Apply
Description	Kitche	n	•				Close
People							
Туре	Cafeteria					-	New
Density	0	People 💌	Schedule	People - Ca	afeteria	-	Сору
Sensible	275	Btu/h	Latent	275 Bt	u/h		Delete
Workstations	s						Add Global
Density	0	workstations 💌					
Lighting							
Туре	Recesse	d fluorescent, not vented, 80	% load to sp	ace		•	
Heat gain	1.2	W/sq ft 🔹 💌	Schedule	Lights - Ele	mentary kitchen	-	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	10	W/sq.ft 🔹	Schedule	Misc - Kitcł	nen	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>I</u> herm	ostat	Construction		Boom

Britt Kern

Internal Load	l Template	s - Project				—
Alternative	Alterna	tive 1	•			Apply
Description	Labora	tory	-			Close
Paarla	,		_			
георіе Типе	Laborator	1			-	New
Densitu		People V	Schedule People - Mir	ddle School		Сору
Sensible	250	Rtu/h	Latent 250 Bh	u/h	<u> </u>	Delete
001101010	1200	Stor 11		Grif		Add Global
Workstation	s					
Density	1	workstation/person 💌				
Lighting						
Туре	Recessed	l fluorescent, not vented, 8	0% load to space		-	
Heat gain	1.4	W/sq ft 🗾 👻	Schedule Lights - Sch	nool	-	
Miscellaneou	us loads					
Туре	None				-	
Energy	2	W/sq.ft 👻	Schedule Misc - Elem	entary School	–	
Energy	None	-	,		_	
meter	1	_				
<u>I</u> nternal	Load	Airflow	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom
Internal Lo	ad Templa	tes - Project				×
Alternative	a Alton	astiue 1	-			Apply
Descriptio	n Libra					
Descriptio	in jeibid	<i>y</i>				
People						New
lype	Genera	Uffice Space			-	Сору
Density		People	Schedule People - M	liddle School	-	Delete
Sensibi	e 200	Btu/n	Latent 200 B	tu/n		
Workstati	ons					Add Global
Density	2	workstations 💌				
Lighting						
Туре	Recess	ed fluorescent, not vented,	80% load to space		-	
Heat ga	ain 1.7	W/sq.ft 💌	Schedule Lights - Sc	hool	•	
Miscellans	enus loade					
Miscellane	eous loads	,			•	
Miscellane Type Energy	eous loads None	W/sg ft	Schedule Misc - Fler	nentary School	•	
Miscellane Type Energy Energy	None	W/sq ft	Schedule Misc - Eler	nentary School	•	
Miscellane Type Energy Energy meter	eous loads None 1 None	W/sq ft	Schedule Misc - Eler	nentary School	•	

Internal Load	Templat	tes - Project					×
Alternative	Altern	native 1	•				Apply
Description	Lifting	j Area	•				Close
People							
Туре	Manufa	cturing				-	New
Density	0	People 💌	Schedule	People - Mi	ddle School	•	Сору
Sensible	710	Btu/h	Latent	1090 Bt	u/h		Delete
Workstations							Add Global
Density	0	workstations					
Liabtina		,					
Tupo	D	10	09/1 11				
туре	Recesse	ed fluorescent, not vented, 8	U% load to sp	ace		-	
Heat gain	0.9	W/sq.ft 💽	Schedule	Lights - Sch	ool	•	
Miscellaneou	ıs loads						
Туре	None					-	
Energy	700	W 💌	Schedule	Misc - Elem	entary School	-	
Energy meter	None	•					
Internal	beal	Airflow	Them	ostat	Construction		Boom
Turcula	Luau		Tuem	iov.di			<u>Teou</u>

Internal Load	Template	es - Project				×
Alternative Description	Altern	ative 1	• •			Apply Close
People Type Density Sensible Workstations Density	General I 0 250 8	Diffice Space People tu/h workstations	Schedule Pa Latent 20	eople - Middle School 10 Btu/h	•	New Copy Delete Add Global
Lighting Type	Recesse	d fluorescent, not vented, 8	0% load to space	e ebbo Cohool	•	
Miscellaneou	us loads	wrsq It	Schedule [L]	gnis - a chuur	-	
Energy Energy meter	1 None	W/sq ft 🔹	Schedule M	isc - Elementary School	•	
<u>I</u> nternal	Load	Airflow	<u>I</u> hermost	at <u>C</u> onstru	iction	<u>R</u> oom

Britt Kern Hunter's Point South Intermediate School & High School

Internal Load	Templat	es - Project				×
Alternative	Altern	ative 1	•			Apply
Description	Restr	DOMS	•			Close
People						
Туре	None				-	New
Density	0	People 💌	Schedule Cooling On	ly (Design)	•	Сору
Sensible	250	Btu/h	Latent 250 Bt	:u/h		Delete
Workstation	s					Add Global
Density	0	workstations 💌				
Lighting						
Туре	Recesse	ed fluorescent, not vented, 80	% load to space		-	
Heat gain	0.9	W/sq.ft	Schedule Cooling On	ly (Design)	•	
Miscellaneo	us loads					
Туре	None				-	
Energy	0	W/sq ft 🔹	Schedule Cooling On	ly (Design)	•	
Energy meter	None	•				
<u>I</u> nternal	Load	Airflow	<u>T</u> hermostat	<u>Construction</u>		<u>R</u> oom

Internal Load	Templa	tes - Project					×
Alternative	Alterr	native 1	•				Apply
Description	Stairs	3	•				Close
People							
Туре	None					-	New
Density	0	People 💌	Schedule	Cooling On	ly (Design)	•	Сору
Sensible	250	Btu/h	Latent	250 B	tu/h		Delete
Workstations	S						Add Global
Density	0	workstations 💌	ĺ				
Lighting							
Туре	Recess	ed fluorescent, not vented,	80% load to sp	ace		-	
Heat gain	0.6	W/sq.ft 💌	Schedule	Cooling On	ly (Design)	-	
Miscellaneous loads							
Туре	None					-	
Energy	0	W/sq.ft 💌	Schedule	Cooling On	ly (Design)	•	
Energy meter	None	•	[
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	nostat	<u>Construction</u>		<u>R</u> oom

Internal Load	Templa	tes - Project					×
Alternative Description	Alterr	native 1 ge	•				Apply Close
People							
Туре	None					-	New
Density	0	People 💌	Schedule	Cooling On	ly (Design)	-	Сору
Sensible	250	Btu/h	Latent	250 Bt	u/h		Delete
Workstation:	s						Add Global
Density	0	workstations 💌					
Lighting							
Туре	Recess	ed fluorescent, not vented, 8	0% load to sp	ace		-	
Heat gain	0.8	W/sq ft 🔹	Schedule	Cooling On	ly (Design)	-	
Miscellaneou	us loads						
Туре	None					-	
Energy	0	W/sq ft 🔹	Schedule	Cooling On	ly (Design)	-	
Energy meter	None	•					
<u>I</u> nternal	Load	Airflow	<u>T</u> herm	nostat	<u>C</u> onstruction		Boom

Thermostat Templates -	Project			×			
Alternative Alternat	ive 1	Apply					
Description Thermostat							
Thermostat settings							
Cooling dry bulb	75 °F			New			
Heating dry bulb	72 °F			Сору			
Relative humidity	50 %			Delete			
Cooling driftpoint	78 °F			Add Global			
Heating driftpoint	65 °F						
Cooling schedule	Cstat		•				
Heating schedule	Hstat		•				
Sensor Locations							
Thermostat Room 💌							
CO2 sensor None							
Humidity							
Moisture capacitance Medium							
Humidistat location	Room		•				
Internal Load	Airflow	<u>T</u> hermostat	<u>C</u> onstruction	<u> </u>			