

CBD Chemical **Production Building**

Virginia, USA

Christina DiPaolo Structural Option

Building Statistics

111

A TITLE

Primary Project Team: Withheld at request of Engineers and Contractors Dates of Construction: April 2008 – January 2009 Cost Information: \$125 Million Project Delivery Method: Design-Bid-Build with a Negotiated Guaranteed Max Contract

Function/Occupant Type: High Hazard, Chemical Manufacturing Plant

Size: 55,000 GSF

Stories: 5 floors, a mezzanine in the first floor, and a penthouse

Site Plan

100-ton capacity each

Structural Overview Foundation System

• 12 inch x12 inch precast piles

- Tie beams between each column

Structural Overview

100-ton capacity each

Floor System

• 12 inch x12 inch precast piles

- Tie beams between each column

- 7 ¹/₂ inches of normal weight concrete on 3VLI18
- roof has 6 inches of normal weight concrete on 3VLI18

Structural Overview

• Tie beams between each column

• 100-ton capacity each

Framing System

• 12 inch x12 inch precast piles

• 7 ¹/₂ inches of normal weight concrete on 3VLI18

 roof has 6 inches of normal weight concrete on 3VLI18

Third floor framing plan

Structural Overview Framing System

Third floor framing plan

Structural Overview Lateral System

• Moment frame in both N-S and E-W

Odd column rotation

Third floor framing plan

- Thesis Goals
- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

Outline

Structural Depth

- Optimize the steel for the same assumptions •
- Design a concrete beam and girder system for these constraints •
- Compare steel and concrete systems
- Analyze impact on deep foundation system

one-way slab system.

- Compare cost of two structural systems •
- Compare schedules of two structural systems •

Construction Management Breadth

Outline

- Thesis Goals •
- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

Structural Depth

- Optimize the steel for the same assumptions •
- Design a concrete beam and girder system for these constraints •
- Compare steel and concrete systems
- Analyze impact on deep foundation • system

A sketchup model of the layout of the one-way slab system.

Compare schedules of two structural systems

• 3D lateral modeling in ETABS from AE 597A

Construction Management Breadth

PV/Electrical Breadth

Compare cost of two structural systems

MAE Course Material

- Analyze potential output of photovoltaic panels on roof •
- Size wiring for panels and inverter
- Cost benefit analysis / payback period •

Steel Optimization

- $\frac{3}{4}$ " shear studs spaced 1' o.c. on all beams
- All beams designed non-compositely
- Redesign using these shear studs already in place

E-STRUCTURAL STEEL

- . SHOP AND FIELD CONNECTIONS: WELDS: E70XX ELECTRODES
- W8, W10 2 ROWS W12, W14 3 ROWS W16, W18 4 ROWS W21, W24 5 ROWS W27, W30 6 ROWS W33, W36 7 ROWS
- ON ALL BEAMS

Structural notes from drawings

1. THE STRUCTURAL STEEL FABRICATOR SHALL FOLLOW THE AISC QUALITY CERTIFICATION PROGRAM FOR CATEGORY-1 CONVENTIONAL STEEL STRUCTURES.

FABRICATE AND ERECT ALL STRUCTURAL STEEL IN ACCORDANCE WITH THE DRAWINGS, THE THIRD EDITION OF THE AISC STEEL CONSTRUCTION LRFD AND STRUCTURAL STEELWORK SPECIFICATION No. 05120.

3. ROLLED STEEL WIDE FLANGE SHAPES, BASE PLATES, STIFFENER AND WEB PLATES SHALL BE ASTM A992 OR A572 GRADE 50 (FY=50ksi)

4. ROLLED STEEL CHANNELS, ANGLES AND BARS SHALL BE ASTM A36.

5. STEEL PIPE SHALL BE ASTM A53, TYPE E, GRADE B, FY=35 KSI. ALL PIPE SHALL BE STANDARD SCHEDULE 40 WEIGHT UNLESS NOTED OTHERWISE AND IS CALLED OUT BY NOMINAL DIAMETER.

6. ALL STEEL TUBING SHALL BE ASTM A500, GRADE C, FY=46 KSI.

BOLTS: 3/4" DIAMETER ASTM A325-N UNLESS NOTED OTHERWISE.

SIMPLE BEAM BOLTED CONNECTIONS SHALL BE SINGLE ANGLE FRAMED CONNECTION WITH THE FOLLOWING MIN. ROWS OF BOLTS, UNO

SEE TYPICAL DETAIL 7 DRAWING 7020Y ANY VARIATION FROM THE ABOVE SCHEDULE MUST BE APPROVED BY THE ENGINEER.

. The method to be used for tightening bolts shall be turn—of—nut—tightening

11. SHEAR STUDS SHALL BE 3/4" DIAMETER HEAD STEEL STUDS IN ACCORDANCE WITH ASTM A108, GRADE 1015 OR 1020, COLD FINISH CARBON STEEL WITH DIMENSIONS COMPLYING WITH ASTM SPECIFICATIONS AND SHALL BE INSTALLED WITH WELDING GUNS INTENDED FOR THAT PURPOSE. PROVIDE 5" LONG STUDS AT 1'-0" ON CENTER

> COMMERCIAL BLAST IN ACCORDANCE WITH SSPC SP6 AND PAINT AS PER SPECIFICATION TOUCH UP WELDS AND BOLTED CONNECTIONS IN THE FIELD WITH SAME OR COMPATIBLE PAINT STEEL THAT WILL RECEIVE FIREPROOFING SHALL NOT BE PAINTED.

Outline

• Thesis Goals

- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

Steel Optimization

- ³/₄" shear studs spaced 1' o.c. on all beams
- All beams designed non-compositely
- Redesign using these shear studs already in place

Original D	esig
------------	------

Size	# of studs / ft	linear feet	plf	Price/ft	Total wt	Total Price
W24x55	1	3600	55	\$71.41	198000	\$257,076.00
W12x26	1	720	26	\$36.23	18720	\$ 26,085.60
				Σ =	216720	\$ 283,161.60

n

New Design

Size	# of studs / ft	linear feet	plf	Price/ft	Total wt	Total Price
W16x31	1	3600	31	\$42.13	111600	\$ 151,668.00
W12x14	1	720	14	\$24.08	10080	\$ 17,337.60
				Σ =	121680	\$ 169,005.60

Total Weight Savings: 95,040 lbs

Total Cost Savings: \$114,156

Floor Dead Loads above Ground Floor						
b on 2VLI18 Deck (NWC)	82 psf					
ent Pads (NWC)	50 psf					
raming	18 psf					
	20 psf					
ns	10 psf					
Total	180 psf					
Roof Dead Load						
on 2VLI18 Deck (NWC)	63 psf					
ent Pads (NWC)	50 psf					
raming	18 psf					
	20 psf					
	4 psf					
ead	5 psf					
Total	160 psf					

Live Loads						
ive Load	200 psf					
ive Load	100 psf					

Gravity Design

- Loads
- Gravity Beams

- All beams are 12x22 for constructability
- Gravity beams use only #6 and #8 bars
- Controlling load case: 1.2D + 1.6L

Detailing for gravity beam

Concrete framing plan

• 6" slab based on worst beam spacing

- Loads
- Gravity Beams

East-West Wind Loads

New Earthquake Loads

Floor	Total Weight
1	30
2	30
3	31
4	31
5	28
RÓÓF	28
Penthouse	1

North-South Wind Loads

- Design Category C \bullet
- Must use at least Intermediate Moment Frame
- R value of 5

• Lateral Loads / Recalculation of earthquake loads

A birds eye view of ETABS model

- Rigid end zones are applied to all beams with a reduction of 50%
- The slabs are considered to act as rigid diaphragms •
- All self weights were applied as an additional area mass at the center of gravity of the diaphragms
- $P-\Delta$ effects are considered
- The moment of inertia for columns = 0.7lg
- The moment of inertia for beams = 0.35lg

- Lateral Loads / Recalculation of earthquake loads
- ETABS model •

Intermediate Moment Frame

- Positive moment capacity at supports must be at least 1/3 negative moment capacity
- Positive and negative moment capacity must be at least 1/5 the maximum moment capacity throughout entire length

- Lateral Loads / Recalculation of earthquake loads
- ETABS model •
- Lateral design •

Concrete framing plan

	BEAMS 2/3/4/5								
Trib Width=	6.7	ft.	b =	12	h =	30	d =	27.5	
	Beam 1			Be am 2			Be am 3		
	ext. support	midspan	int. support	int.support	midspan	int. support	int. support	midspan	int. support
Span	30	-	-	12	-	-	30	-	-
l _n (ft) =	27.5	27.5	18.5	18.5	9.5	18.5	18.5	27.5	27.5
w _u (kif) =	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
w _u l _n ² =	2218	2218	1004	1004	265	1004	1004	2218	2218
C _m =	-0.0417	0.0714	-0.100	-0.0909	0.0625	-0.0909	-0.1000	0.0714286	-0.0417
$M_{ug} = C_m W_u L_n^2 =$	-92.4	158.5	- 100.4	-91.3	16.5	-91.3	-100.4	158.5	-92.4
M _{ue} =	-150.6	0.0	- 144.5	- 282.3	0.0	-282.3	-144.5	0.0	- 150.6
M _{utet} =	-243.0	158.5	- 244.9	- 373.6	16.5	-373.6	-244.9	158.5	-243.0
b _{eff} (in) =	39.5	12	55.5	55.5	12	55.5	55.5	12	40
A _{s(req(d)} (in.) =	2.060865167	1.311277	2.107409095	3.2145967	0.136925	3.2146967	2.10740909	1.3112769	2.06086517
a =	2.588235294	1.294118	3.352941176	3.35294118	1.294118	3.35294118	3.35294118	1.2941176	2.58823529
t-beam?	NO	NO	NO	NO	NO	NO	NO	NO	NO
A	2.2	1.32	2.46	2.46	1.32	2.46	2.46	1.32	2.2
	(5) #6	(3)#5	(2)#5, (2)#8	(2)#6, (2)#8	(3)#6	(2)#6, (2)#8	(2)#6, (2)#8	(3) #6	(5) #6
A.'(in.) =	1.32	0.88	1.32	1.32	0.88	1.32	1.32	0.88	1.32
	(3) #6	(2)#5	(3) #6	(3)#5	(2)#6	(3)#5	(3)#6	(2) #6	(3) #6
Φ=	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
ΦMn =	356.1	205.3	413.4	413.4	205.3	413.4	413.4	205.3	356.1
OK?	ОК	ОК	OK	ОК	OK	OK	ОК	ОК	ОК
ρ=	0.0067	0.0040	0.0075	0.0075	0.0040	0.0075	0.0075	0.0040	0.0067
OK?	ОК	OK	ОК	ок	OK	OK	ок	ОК	ОК
capacity ratio :	0.683	0.772	0.592	0.904	0.081	0.904	0.592	0.772	0.683

Calcs for lateral beam

Detailing for lateral beam

Concrete framing plan

Column Design

- All columns are 30x30 for ease of construction
- Controlling Load Case: 1.2D+1.0W+L+.5S
- Three rebar configurations:

(12) #8 (12) #10 (16) #10

spColumn Output for the columns shaded in purple

Concrete framing plan

Drift Checks

- Wind loads were checked against h/400
- Earthquake loads were checked against .015 for category III buildings
- All drifts acceptable

Drift (in.)									
			WIND ANALYSIS						
Floor	Height (ft)	WIND - E/W		WIND - N/S		Allow	Dace2		
		x-dir	y-dir	x-dir	y-dir	Allow	Passr		
Penthouse	15	0.07	0.04	0.12	0.09	0.45	YES		
Story 5	18	0.19	0.08	0.10	0.20	0.54	YES		
Story 4	18	0.30	0.13	0.14	0.32	0.54	YES		
Story 3	18	0.40	0.16	0.20	0.43	0.54	YES		
Story 2	18	0.46	0.18	0.24	0.51	0.54	YES		
Story 1	24	0.44	0.12	0.23	0.66	0.72	YES		

Drift (in.)									
			EAF	THQUAN		/SIS			
Floor	Height (ft)	EQ - E/W		EQ - N/S			00		
		x-dir	y-dir	x-dir	y-dir	Allow	Passr		
Penthouse	15	0.19	0.05	0.06	0.06	2.7	YES		
Story 5	18	0.59	0.10	0.14	0.61	3.24	YES		
Story 4	18	0.93	0.17	0.26	0.95	3.24	YES		
Story 3	18	1.19	0.21	0.30	1.17	3.24	YES		
Story 2	18	1.27	0.22	0.33	1.27	3.24	YES		
Story 1	24	0.85	0.13	0.22	0.87	4.32	YES		

- Lateral Loads / Recalculation of earthquake loads
- ETABS model
- Lateral design
- Drift checks

Column	Р	Р	Existing Cassions	Needed Cassions
column	D+.75(.6W)+.75L+.75S	D+L	in Steel Design	in Conc Design
A.2	345.5	356.3	3	3
A.3	657.5	712.5	4	4
A.4	658.1	712.5	4	4
A.5	659.1	712.5	4	4
A.6	820.6	890.7	4	5
A.7	507.3	534.4	4	4
B.1	137.2	89.1	3	3
B.2	584.8	587.8	4	4
B.3	954.0	997.5	4	5
B.4	950.3	997.5	4	5
B.5	954.0	997.5	4	5
B.6	1183.8	1246.9	6	7
B.7	736.2	748.2	6	6
C.1	340.6	311.8	3	3
C.2	788.2	810.6	4	5
C.3	954.0	997.5	4	5
C.4	950.3	997.5	4	5
C.5	954.0	997.5	4	5
C.6	1184.7	1246.9	6	7
C.7	737.2	748.2	6	6
C9.1	184.4	193.1	3	3
D.2	498.6	534.4	4	4
D.3	657.5	712.5	4	4
D.4	658.1	712.5	4	4
D.5	658.9	712.5	4	4
D.6	1185.5	1291.6	6	7
D.7	865.0	935.2	6	6
E.6	829.1	890.7	4	5
E.7	829.1	890.7	4	5
F.6	385.8	400.9	4	4
F.7	385.8	400.9	4	4
		Σ=	132	145

• Each pile has a 100-ton capacity

A simplified approach to the number of piles needed for each column.

Foundation Impact

- Lateral Loads / Recalculation of earthquake loads
- ETABS model
- Lateral design
- Drift checks
- Foundation Impact

Original Cost Estimate provided by project engineer

		Sum = \$5,197,429					
50007	Siding	0	4 400 000				
S0006	Concrete Slabs	\$	900,000	\$	597,530	6,226	
S0005	Underground Piping and Utilities	\$	430,000	\$	534,211	5,108	
S0004	Structural Steel - Fabricate and Erect	\$	6,000,000	\$	4,599,899	41,381	
					2,117,000	20,002	

- Cost information for existing structure obtained from Engineers
- Detailed concrete, formwork, and reinforcement takeoffs were done by hand
- RS Means used to obtain unit prices for concrete structure
- Comparison of steel versus concrete cost performed

Estimated Cost of Concrete Structure

Concrete Structual Element	Total-O&P			Total Price
Concrete	\$	1,810,613.96	\$	2,161,293.70
Finish	\$	3,612.00	\$	5,882.40
Formwork	\$	493,028.65	\$	748,430.13
Reinforcing	\$	1,273,313.64	\$	1,665,788.74
Total	\$	3,072,127.56	\$	3,930,836.88

Cost Analysis

- Thesis Goals
- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

utline

Original Cost Estimate provided by project engineer

		Sum = \$5,197,429						
S0007	Siding	0	4 400 000	<u> </u>	0.000.000			
S0006	Concrete Slabs	\$	900,000	\$	597,530	6,226		
S0005	Underground Piping and Utilities	\$	430,000	\$	534,211	5,108		
S0004	Structural Steel - Fabricate and Erect	\$	6,000,000	\$	4,599,899	41,381		
			.,		2,117,000	20,002		

- Engineers
- structure

Estimated Cost of Concrete Structure

Concrete Structual Element	Total-O&P			Total Price		
Concrete	\$	1,810,613.96	\$	2,161,293.70		
Finish	\$	3,612.00	\$	5,882.40		
Formwork	\$	493,028.65	\$	748,430.13		
Reinforcing	\$	1,273,313.64	\$	1,665,788.74		
Total	\$	3,072,127.56	\$	3,930,836.88		

Cost Analysis

Cost information for existing structure obtained from

• Detailed concrete, formwork, and reinforcement takeoffs were done by hand

• RS Means used to obtain unit prices for concrete

Comparison of steel versus concrete cost performed

Concrete is \$1,266,592.12 cheaper

Schedule Analysis

- Schedule Information from RS Means
- One schedule made for each structural system

- Concrete schedule took 107 days while steel took 223 days
- Saving over a hundred days may justify the more expensive structure

ID	Task Name
	The second second
1	Ground Floor
2	Column Forms
3	Column Rebar
4	Place Columns
5	Second Floor
6	Slab/Beam Forms
7	Slab/Beam Rebar
8	Place Slab/Beam
9	Column Forms
10	Column Rebar
11	Place Columns
12	Third Floor
13	Slab/Beam Forms
14	Slab/Beam Rebar
15	Place Slab/Beam
16	Column Forms
17	Column Rebar
18	Place Columns
19	Fourth Floor
20	Slab/Beam Forms
21	Slab/Beam Rebar
22	Place Slab/Beam
23	Column Forms
24	Column Rebar
25	Place Columns
26	Fifth Floor
27	Slab/Beam Forms
28	Slab/Beam Rebar
29	Place Slab/Beam
30	Column Forms
31	Column Rebar
32	Place Columns
33	Roof
34	Slab/Beam Forms
35	Slab/Beam Rebar
36	Place Slab/Beam
37	Column Forms
38	Column Rebar
39	Place Columns
40	Penthouse
41	Slab/Beam Rebar
42	Slab/Beam Forms
43	Place Slab/Beam

Project: Project1 Date: Thu 4/5/12

Concrete Schedule

ID	Task Name	Duration	Start	Finish		Ap	r '1
					25	1	
1	Ground Floor -Second Floor	44 days	Mon 4/9/12	Thu 6/7/12			V
2	Set Structural Steel	16 days	Mon 4/9/12	Mon 4/30/12			C
3	Detail Steel	10 days	Tue 5/1/12	Mon 5/14/12			
4	Install Decking	18 days	Tue 5/15/12	Thu 6/7/12			
5	Third Floor-Fourth Floor	17 days	Thu 6/7/12	Fri 6/29/12			
6	Set Structural Steel	16 days	Tue 5/1/12	Tue 5/22/12			
7	Detail Steel	10 days	Wed 5/23/12	Tue 6/5/12			
8	Install Decking	18 days	Wed 6/6/12	Fri 6/29/12			
9	Fifth Floor-Penthouse	3 days	Fri 6/29/12	Tue 7/3/12			
10	Set Structural Steel	10 days	Wed 5/23/12	Tue 6/5/12			
11	Detail Steel	8 days	Wed 6/6/12	Fri 6/15/12			
12	Install Decking	12 days	Mon 6/18/12	Tue 7/3/12			
13	Concrete Pour	13 days	Tue 7/3/12	Thu 7/19/12			
14	Pour 1st floor	6 days	Fri 6/8/12	Fri 6/15/12			
15	Pour 2nd floor	6 days	Mon 6/18/12	Mon 6/25/12			
16	Pour 3rd floor	6 days	Mon 7/2/12	Mon 7/9/12			
17	Pour 4th floor	6 days	Tue 7/10/12	Tue 7/17/12			
18	Pour 5th floor	6 days	Wed 7/4/12	Wed 7/11/12			
19	Pour Roof floor	6 days	Thu 7/12/12	Thu 7/19/12			
19	Pour Roof floor	6 days	Thu 7/12/12	Thu 7/19/12			
		Tesh			F		

	Task		External Mile
	Split		Inactive Task
ject: Project2	Milestone	♦	Inactive Mile
te: Thu 4/5/12	Summary		Inactive Sum
	Project Summary	$\overline{}$	Manual Task
	External Tasks		Duration-on
			Page 1

Steel Schedule

- The concrete redesign is a viable solution
- The concrete system is significantly cheaper
- A longer construction schedule does pose a significant loss in income for CBD Chemical

Conclusions

- Thesis Goals
- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

Outline

Questions / Comments

Outline

- Thesis Goals
- Structural Depth (MAE Requirement)
- Construction Management Breadth
- Conclusions
- Questions / Comments

• 100-ton capacity each

Structural Overview Framing System

• 12 inch x12 inch precast piles

- Tie beams between each column

- 7 ¹/₂ inches of normal weight concrete on 3VLI18
- roof has 6 inches of normal weight concrete on 3VLI18

Steel Optimization

- ³/₄" shear studs spaced 1' o.c. on all beams
- All beams designed non-compositely
- Redesign using these shear studs already in place

Original D	esig
------------	------

Size	# of studs / ft	linear feet	plf	Price/ft	Total wt	Total Price
W24x55	1	3600	55	\$71.41	198000	\$257,076.00
W12x26	1	720	26	\$36.23	18720	\$ 26,085.60
				Σ =	216720	\$ 283,161.60

n

New Design

Size	# of studs / ft	linear feet	plf	Price/ft	Total wt	Total Price
W16x31	1	3600	31	\$42.13	111600	\$ 151,668.00
W12x14	1	720	14	\$24.08	10080	\$ 17,337.60
				Σ =	121680	\$ 169,005.60

Total Weight Savings: 95,040 lbs

Total Cost Savings: \$114,156

Floor L Roof Li

Floor Dead Loads above Ground Floor							
b on 2VLI18 Deck (NWC)	82 psf						
ent Pads (NWC)	50 psf						
raming	18 psf						
	20 psf						
ns	10 psf						
Total	180 psf						
Roof Dead Lo	ad						
on 2VLI18 Deck (NWC)	63 psf						
ent Pads (NWC)	50 psf						
raming	18 psf						
	20 psf						
	4 psf						
ead	5 psf						
Total	160 psf						

Live Loads	•
ive Load	200 psf
ive Load	100 psf

Gravity Design

- Loads
- Gravity Beams

- 6" slab based on worst beam spacing
- All beams are 12x22 for constructability
- Gravity beams use only #6 and #8 bars
- Controlling load case: 1.2D + 1.6L

- Loads
- Gravity Beams

East-West Wind Loads

New Earthquake Loads

Floor	Total Weight
1	30
2	30
3	31
4	31
5	28
RÓÓF	28
Penthouse	1

North-South Wind Loads

- Design Category C \bullet
- Must use at least Intermediate Moment Frame
- R value of 5

• Lateral Loads / Recalculation of earthquake loads

BEAMS 2/3/4/5									
Trib Width=	6.7	ft.	b =	12	h =	30	d =	27.5	
	Beam 1			Be am 2			Be am 3		
	ext. support	midspan	int. support	int.support	midspan	int. support	int. support	midspan	int. support
Span	30	-	-	12	-	-	30	-	-
l _m (ft) =	27.5	27.5	18.5	18.5	9.5	18.5	18.5	27.5	27.5
w _u (klf) =	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
w_l_2 =	2218	2218	1004	1004	265	1004	1004	2218	2218
C _m =	-0.0417	0.0714	-0.100	-0.0909	0.0625	-0.0909	-0.1000	0.0714286	-0.0417
$M_{ug} = C_m W_u L_n^2 =$	-92.4	158.5	- 100.4	-91.3	16.5	-91.3	-100.4	158.5	-92.4
M _{ue} =	-150.6	0.0	- 144.5	-282.3	0.0	-282.3	-144.5	0.0	- 150.6
M _{utet} =	-243.0	158.5	-244.9	- 373.6	16.5	-373.6	-244.9	158.5	- 243.0
b _{eff} (in) =	39.5	12	55.5	55.5	12	55.5	55.5	12	40
$A_{a(reg(d)}(in.) =$	2.060865167	1.311277	2.107409095	3.2145967	0.136925	3.2146967	2.10740909	1.3112769	2.06086517
a =	2.588235294	1.294118	3.352941176	3.35294118	1.294118	3.35294118	3.35294118	1.2941176	2.58823529
t-beam?	NO	NO	NO	NO	NO	NO	NO	NO	NO
A.(2.2	1.32	2.46	2.46	1.32	2.46	2.46	1.32	2.2
10000	(5) #6	(3)#5	(2)#6, (2)#8	(2)#6, (2)#8	(3) #6	(2)#6, (2)#8	(2)#6, (2)#8	(3) #6	(5) #6
A.'(in.) =	1.32	0.88	1.32	1.32	0.88	1.32	1.32	0.88	1.32
	(3) #6	(2)#6	(3) #6	(3)#6	(2) #6	(3)#5	(3)#6	(2) #6	(3) #6
Φ=	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
ΦMn =	356.1	205.3	413.4	413.4	205.3	413.4	413.4	205.3	356.1
OK?	ок	OK	OK	ОК	OK	ОК	ОК	OK	ок
ρ =	0.0067	0.0040	0.0075	0.0075	0.0040	0.0075	0.0075	0.0040	0.0067
OK?	ок	ОК	OK	ок	OK	ОК	ок	ОК	ок
capacity ratio :	0.683	0.772	0.592	0.904	0.081	0.904	0.592	0.772	0.683

- Lateral Loads / Recalculation of earthquake loads
- ETABS model
- Lateral design

Column Design

- All columns are 30x30 for ease of construction
- Controlling Load Case: 1.2D+1.0W+L+.5S
- Three rebar configurations:

(12) #8 (12) #10 (16) #10

spColumn Output for the columns shaded in purple

Concrete framing plan

Drift Checks

- Wind loads were checked against h/400
- Earthquake loads were checked against .015 for category III buildings
- All drifts acceptable

Drift (in.)									
		WIND ANALYSIS							
Floor	Height (ft)	WIND - E/W		WIND - N/S		A.I	0		
		x-dir	y-dir	x-dir	y-dir	Allow	Passr		
Penthouse	15	0.07	0.04	0.12	0.09	0.45	YES		
Story 5	18	0.19	0.08	0.10	0.20	0.54	YES		
Story 4	18	0.30	0.13	0.14	0.32	0.54	YES		
Story 3	18	0.40	0.16	0.20	0.43	0.54	YES		
Story 2	18	0.46	0.18	0.24	0.51	0.54	YES		
Story 1	24	0.44	0.12	0.23	0.66	0.72	YES		

Drift (in.)										
		EARTHQUAKE ANALYSIS								
Floor	Height (ft)	EQ - E/W		EQ - N/S		A.I	Dara 2			
		x-dir	y-dir	x-dir	y-dir	Allow	Passr			
Penthouse	15	0.19	0.05	0.06	0.06	2.7	YES			
Story 5	18	0.59	0.10	0.14	0.61	3.24	YES			
Story 4	18	0.93	0.17	0.26	0.95	3.24	YES			
Story 3	18	1.19	0.21	0.30	1.17	3.24	YES			
Story 2	18	1.27	0.22	0.33	1.27	3.24	YES			
Story 1	24	0.85	0.13	0.22	0.87	4.32	YES			

- Lateral Loads / Recalculation of earthquake loads
- ETABS model
- Lateral design
- Drift checks

Column	P P Exis		Existing Cassions	Needed Cassions		
column	D+.75(.6W)+.75L+.75S	D+L	in Steel Design	in Conc Design		
A.2	345.5	356.3	3	3		
A.3	657.5	712.5	4	4		
A.4	658.1	712.5	4	4		
A.5	659.1	712.5	4	4		
A.6	820.6	890.7	4	5		
A.7	507.3	534.4	4	4		
B.1	137.2	89.1	3	3		
B.2	584.8	587.8	4	4		
B.3	954.0	997.5	4	5		
B.4	950.3	997.5	4	5		
B.5	954.0	997.5	4	5		
B.6	1183.8	1246.9	6	7		
B.7	736.2	748.2	6	6		
C.1	340.6	311.8	3	3		
C.2	788.2	810.6	4	5		
C.3	954.0	997.5	4	5		
C.4	950.3	997.5	4	5		
C.5	954.0	997.5	4	5		
C.6	1184.7	1246.9	6	7		
C.7	737.2	748.2	6	6		
C9.1	184.4	193.1	3	3		
D.2	498.6	534.4	4	4		
D.3	657.5	712.5	4	4		
D.4	658.1	712.5	4	4		
D.5	658.9	712.5	4	4		
D.6	1185.5	1291.6	6	7		
D.7	865.0	935.2	6	6		
E.6	829.1	890.7	4	5		
E.7	829.1	890.7	4	5		
F.6	385.8	400.9	4	4		
F.7	385.8	400.9	4	4		
		Σ=	132	145		

• Each pile has a 100-ton capacity

A simplified approach to the number of piles needed for each column.

Foundation Impact

- Lateral Loads / Recalculation of earthquake loads
- ETABS model
- Lateral design
- Drift checks
- Foundation Impact

Original Cost Estimate provided by project engineer

		Sum = \$5,197,429							
S0007	Siding	0	4 400 000	<u> </u>	0.000.000				
S0006	Concrete Slabs	\$	900,000	\$	597,530	6,226			
S0005	Underground Piping and Utilities	\$	430,000	\$	534,211	5,108			
S0004	Structural Steel - Fabricate and Erect	\$	6,000,000	\$	4,599,899	41,381			
			.,		2,117,000	20,002			

- Engineers
- structure

Estimated Cost of Concrete Structure

Concrete Structual Element		Total-O&P	Total Price		
Concrete	\$	1,810,613.96	\$	2,161,293.70	
Finish	\$	3,612.00	\$	5,882.40	
Formwork	\$	493,028.65	\$	748,430.13	
Reinforcing	\$	1,273,313.64	\$	1,665,788.74	
Total	\$	3,072,127.56	\$	3,930,836.88	

Cost Analysis

Cost information for existing structure obtained from

• Detailed concrete, formwork, and reinforcement takeoffs were done by hand

• RS Means used to obtain unit prices for concrete

Comparison of steel versus concrete cost performed

Concrete is \$1,266,592.12 cheaper

Schedule Analysis

- Schedule Information from RS Means
- One schedule made for each structural system

- Concrete schedule took 107 days while steel took 223 days
- Saving over a hundred days may justify the more expensive structure

ID	Task Name
1	Ground Floor
2	Column Forms
3	Column Rebar
4	Place Columns
5	Second Floor
6	Slab/Beam Forms
7	Slab/Beam Rebar
8	Place Slab/Beam
9	Column Forms
10	Column Rebar
11	Place Columns
12	Third Floor
13	Slab/Beam Forms
14	Slab/Beam Rebar
15	Place Slab/Beam
16	Column Forms
17	Column Rebar
18	Place Columns
19	Fourth Floor
20	Slab/Beam Forms
21	Slab/Beam Rebar
22	Place Slab/Beam
23	Column Forms
24	Column Rebar
25	Place Columns
26	Fifth Floor
27	Slab/Beam Forms
28	Slab/Beam Rebar
29	Place Slab/Beam
30	Column Forms
31	Column Rebar
32	Place Columns
33	Roof
34	Slab/Beam Forms
35	Slab/Beam Rebar
36	Place Slab/Beam
37	Column Forms
38	Column Rebar
39	Place Columns
40	Penthouse
41	Slab/Beam Rebar
42	Slab/Beam Forms
43	Place Slab/Beam

Project: Project1 Date: Thu 4/5/12

Concrete Schedule

ID	Task Name	Duration	Start	Finish		Apr	12	
					25	1		
1	Ground Floor -Second Floor	44 days	Mon 4/9/12	Thu 6/7/12			Ψ.	
2	Set Structural Steel	16 days	Mon 4/9/12	Mon 4/30/12	2		C	
3	Detail Steel	10 days	Tue 5/1/12	Mon 5/14/12	2			
4	Install Decking	18 days	Tue 5/15/12	Thu 6/7/12				
5	Third Floor-Fourth Floor	17 days	Thu 6/7/12	Fri 6/29/12				
6	Set Structural Steel	16 days	Tue 5/1/12	Tue 5/22/12				
7	Detail Steel	10 days	Wed 5/23/12	Tue 6/5/12				
8	Install Decking	18 days	Wed 6/6/12	Fri 6/29/12				
9	Fifth Floor-Penthouse	3 days	Fri 6/29/12	Tue 7/3/12				
10	Set Structural Steel	10 days	Wed 5/23/12	Tue 6/5/12				
11	Detail Steel	8 days	Wed 6/6/12	Fri 6/15/12				
12	Install Decking	12 days	Mon 6/18/12	Tue 7/3/12				
13	Concrete Pour	13 days	Tue 7/3/12	Thu 7/19/12				
14	Pour 1st floor	6 days	Fri 6/8/12	Fri 6/15/12				
15	Pour 2nd floor	6 days	Mon 6/18/12	Mon 6/25/12	2			
16	Pour 3rd floor	6 days	Mon 7/2/12	Mon 7/9/12				
17	Pour 4th floor	6 days	Tue 7/10/12	Tue 7/17/12				
18	Pour 5th floor	6 days	Wed 7/4/12	Wed 7/11/12	2			
19	Pour Roof floor	6 days	Thu 7/12/12	Thu 7/19/12				
		Task			Exter	nal N	/ile	
		Split				Inactive Task		
Project: Project2		Milestone	•		Inacti	ve N	1ile:	

Steel Schedule

Project Sun

xternal T

Page

Date: Thu 4/5/12

