The University Sciences Building Northeast, USA

Chris Dunlay

Structural Option

Dr. Boothby

Existing

Problem

Located i

Solution

- **2**09,000
- 2 below g
- Maximum
- Classroor
- Construct
- August 20
- LEED GC

Gravity	Lateral	Construction	Cor
Project Facts			
in Northeast, USA			
S.F.			
grade stories / 7 above grade s	stories		
n Height: 117'-0"			
m, Laboratories, and Offices			
tion Cost: \$ 80 Million			
007 – December 2009			
OLD Certification			

nclusion

Existing

Problem

Existing S

Solution

- Problem
- Gravity Description
- Lateral De
- Construct
- Mechanic

Gravity	Lateral	Construction	Con
Thesis Topics			
Structural System			
and Solution			
Design			
esign			
tion Management Study			
cal System Study			

nclusion

Solution

Problem

- Architect: Mack Scogin Merrill and Elam
- General Contractor: PJ Dick
- Structural Engineer: ARUP Boston
- Mechanical Engineer: ARUP Boston
- Electrical Engineer: ARUP Boston
- Civil Engineer: Civil and Environmental Consultants

Project Team

Gravity

• **Owner**: Not Release

WEB Contractor: Graziano Construction

Construction

Lateral

Conclusion

Questions?

Mack Scogin Merrill Elam Architects

Existing

Problem

Solution

- Unique Façade:
 - Zinc Panels
 - Aluminum Window Trim
- Multiple Atriums
- Unsymmetrical floor plans

Gravity Construction Lateral Architecture Independent from surrounding campus architecture 1

Conclusion

Existing

Problem

Solution

Gravity Lateral Construction Conclusion **Existing Structural System** Superstructure (4 – Roof) Composite Deck on steel framing Foundation (Levels 1-3) Drilled caissons, strip and column footings Concrete walls and columns 150 car parking garage

Lateral System

Dual Shear Walls and Braced Frames

Questions?

Existing

Problem

Solution

- Superstructure (4 Roof)
 - Composite Deck on steel framing
- Foundation (Levels 1-3)

 - Concrete walls and columns
 - 150 car parking garage
- Lateral System
 - Dual Shear Walls and Braced Frames

Existing Structural System

Lateral

Gravity

Drilled caissons, strip and column footings

Conclusion

Construction

Existing

Problem

Solution

Existing

Problem

Supers

Solution

- Erect
 - mon
- Incurre
 - Delayed schedule added general condition costs
 - Change orders were frequent
 - Other trades inherently feel behind schedule

Gravity	Lateral	Construction	Cor
Problem Statement			
structure Schedule			
tion and detailing of steel put p	project 2		
hs behind schedule			
ed Costs			

nclusion

Existing

Problem

Solution

Concrete Structure

- One trade
- No 'Connections'
- Predictable and efficient schedule
- - Two Way Flat Plate
 - Shear Wall-Moment Frame Interactive System

			_
Problem Solution			G
Gravity	Lateral	Construction	Cor

Structural Systems

Concrete Design

- Manageable budget and schedule
- Shear wall core
- Moment frames to help reduce torsion

Truss

nclusion

Questions?

ioals

Design truss to resist gravity loads on west cantilever

Existing

Problem

Solution

Two Way Flat Plate Design

spSlab: Level 6 Equivalent Frame Analysis

RAM Concept: Level 6 Longitudinal Design Strips

Lateral

Construction

RAM Concept: Level 6 Latitude Design Strips

Conclusion

Existing

Two Way Flat Plate Design

ACI § 13.3.8.1 Minimum slab reinforcement extension

RAM Concept: Level 6 Deflection Plan

Conclusion

Existing

Problem

Solution

Beam Edge Location

Design Edge Beam Span

Conclusion

Existing

Problem

Solution

Beam Edge Location

Questions?

Designed Edge Beam Section

Existing

Problem

Solution

Truss Design

West Elevation: Cantilever Highlight

Lateral

Construction

Level 6 Truss Plan

Conclusion

Existing

Problem

Solution

Truss Design

West Elevation: Cantilever Highlight

Gravity

Lateral

Construction

Conclusion

Frame GO: Portal Frame Analysis

Level 6 Truss Plan – Frame GO Highlight

Existing

Problem

Solution

Truss Design

West Elevation: Cantilever Highlight

Level 6 Truss Plan – Frame GO Highlight

Frame GO: ETABS Analysis

Conclusion

Existing

Problem

Solution

Truss Design

West Elevation: Cantilever Highlight

Gravity

Lateral

ETABS: 3D Truss

Construction

Conclusion

Existing

Problem

Truss Design

West Elevation: Cantilever Highlight

ETABS: 3D Truss

Conclusion

Questions?

Mid-span Design Section

Existing

Problem

Solution

Truss Design

West Elevation: Cantilever Highlight

Conclusion

Existing

Problem

Solution

Conclusion

Questions?

V = 588 kM = 54,134 ft-k

Existing

Problem

Solution

→ x

- 4 North/South
- 3 East/West

Questions?

Shear \

Moment Frame

Existing

Problem

Shear V

Solution

- **8000**
- Membra
- **I** = 0.
- Moment
 - **6000**
- $\blacksquare I_{col} = 0$
- I_{bm} =
- Rigid
- Rigid Diaphragm

Gravity	Lateral	Construction	Cor
ETABS Analysis			
Valls			
) psi			
brane			
.35l _g			
t Frames			
) psi			\$
0.7I _g			
0.35l _g			
End Offset = 0.5			

ETABS: 3D Shear Walls

nclusion

Questions?

ETABS: 3D Moment Frames

Existing

Problem

Solution

Lateral

Construction

Shear Wall G7 (N/S)

- Design Values
 - $V_{max} = 157.5^{k}$
 - M_{max} = 9642 ^{ft-k}
 - $P_{max} = 1704^{k}$

Shear Wall GG (E/W)

Design Values

- V_{max} = 196 ^k
- $M_{max} = 15,000 \text{ ft-k}$
- $P_{max} = 960^{k}$

Existing

Problem

Solution

	Gravity		L	ateral	Constru	iction	C
Shear	Wall G	7 (N	/S)				She
	Flexural	Reinf	orcement				
As,min As As,max	5.8 1 7.78 54.6	in2 in2 in2	Try (14) #10's			As,min As As,max
es=	0.01848		>.00207	OK!			ε _s =
			>.005	ф = 0.9			
Φ Mn	10,997	ft-k	> 9641.7	OK!			ΦMn
	(14) #10s	@ Ea	a. End				

ear Wall GG (E/W)

Flexural Reinforcement						
10.3	in2					
17.78	in2	Try (14) #10's			
72.7 in2						
0.0261		>.00207	OK!			
		>.005	ф = 0.9			
15,158	ft-k	> 15,000	OK!			
14) #10s @ Ea. End						

Existing

Problem

Solution

Gravity Lateral Construction

Shear Wall Design

Shear Wall Design Section

Conclusion

Existing

Problem

Solution

15'

Conclusion

Existing

Problem

Solution

(8) #8's

Moment Frame Column Design

Moment Frame Column Design Section

Conclusion

Questions?

spColumn: Interaction Diagram

Existing

Problem

Solution

GravityLateralConstructionMoment Frame Beam Design

Design Beam Section: Exterior Span

Conclusion

Existing

Problem

Existing

Solution

- Proposed
- Comparison
 - 2 months more efficient

• **Finish**: August 12th, 2008

Conclusion

Existing

Problem

Existing

Solution

- Start
- Finisl
- Propose
 - Start
 - Finisl
- Compari
 - 2 mor

Gravity	Lateral	Construction	Con
Schedule Analysis			Cost A
		Existing	
: May 5 th , 2008		\$ 4,486,	006
h : November 11 th , 2008		Proposed	
ed		■ \$ 5,281,	312
: May 5 th , 2008		 Compariso 	n
h : August 12 th , 2008		- (\$795 ,3	306)
rison			•
nths more efficient			

Inclusion

Questions?

Analysis

Existing

Problem

Solution

Gravity	Lateral	Construction	Concl

clusion

Existing

Problem

Design

Solution

- Strength a
 - Gravity System OK!
- Construction
 - Incurred cost Plausible
 - Shortened Schedule OK!

Gravity	Lateral	Construction	Conclu
Conclusions			
and Serviceability Require	ments		

Lateral System OK!

lusion

Introductior	n Existing	Problem	Solution	Gravity	Lateral	Construction	Conc
				Acknowledgemen	nts		
			Dr. Boothk	ру			
			Professor	Parfitt			
			AE Faculty				
			Matt Wetze	el of PJ Dick			
			Bill Hawk	of Graziano Constructio	n		
			Family				
			 Friends fo 	r reinforcing core struct	tural concepts		

lusion

Questions and Comments?

Chris Dunlay

Structural Option

Dr. Boothby