

Daniel Zartman | Construction

Advisor : Dr. Robert Leicht

Images courtesy of the Design Alliance Architects

Project Background

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
 - I. General Information
- II. Building Information
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value EngineeringV. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images Courtesy of Microsoft Corporation

General Project Information:

- Owner: Phipps Conservatory
- Contractor: Turner Construction
- Location: Schenley Park, Pittsburgh, PA
- Function: Mixed Use (Office/Education)

Building Size:

- Area: 24,350 GSF
- Height: 40'- 4" (3 Stories)

Project Size:

- Contract Value: \$10 Million (\$410 per SF)
- Project Type: New Construction
- Project Duration: 11 Months

Images Courtesy of Turner Construction

Project Background

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
 - I. General InformationII. Building Information
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Structural System:

- Substructure: Concrete Strip/Spread Footing
- Superstructure: Braced Steel Frame

Building Envelope:

- Exterior Walls: 8" Metal Stud w/ Reclaimed Barn Wood Facade
- 7,600 SF Green Roof

Sustainable Achievements:

- LEED Platinum
- Living Building Challenge
- SITES Certification for Landscapes
- ■Net-Zero Annual Energy Consumption
- ■Net-Zero Annual Water Consumption

Images Courtesy of Turner Construction

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
 - I. Overview
 - II. Research
 - III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of the Design Alliance Architects

Critical Industry Issue: Legislation in Pennsylvania prevents public projects from utilizing progressive delivery systems.

State requirements for publicly funded projects:

- Traditional Design Bid Build
- Hard-bid
- Multiple Prime Contracts

Problems:

- Does not adequately address the needs of complex projects
- Does not incentivize the contractor to minimize schedule and cost growth

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
 - I. Overview
 - II. Research
 - III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of the Design Alliance Architects

Critical Industry Issue: Legislation in Pennsylvania prevents public projects from utilizing progressive delivery systems.

Research Goal: To create a decision tree that illustrates the progressive alternatives available to Penn State's OPP.

Funding Types:

- Private
- Public
- Combination

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
 - I. Overview
 - II. Research
 - III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of the Design Alliance Architects

Critical Industry Issue: Legislation in Pennsylvania prevents public projects from utilizing progressive delivery systems.

Research Goal: To create a decision tree that illustrates the progressive alternatives available to Penn State's OPP.

Research Method: Analyze projects completed in PA by public and private owners using public funding.

Project Features Analyzed:

- Funding Type
- Delivery System
- Contract Type
- Procurement Method

Industry Members Interviewed:

- John Bechtel Asst. Director of Design and Construction at Penn State's OPP
- James Hostetler Director of Construction and Design at Bucknell University
- Kristine Retetagos VP Preconstruction Turner Construction Pittsburgh
- Tim Gilotti Radner Property Group
- Jeff Sandeen Hensel Phelps Construction Co
- Mike Arnold Foreman Group
- Elizabeth O'Reilly Deputy Secretary of Pennsylvania's Public Works

	enter for Sustainable Landscapes Pittsburgh, PA Paniel Zartman Construction	Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects	Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman Construction
Presentation Outline: I. Project Background II. Analysis 1: Critical Industry Issue I. Overview II. Research III. Results/Conclusion III. Analysis 2: Constructability IV. Analysis 3: Value Engineering V. Analysis 4: Schedule Acceleration VI. Final Recommendations VII. Acknowledgements	Penn State's Office of Physical Plant: Operates as an extension of DGS Public funding types most commonly received: Delegated (most common) – OPP is given money with specific use Non-Delegated (uncommon) – DGS stays heavily involved		

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

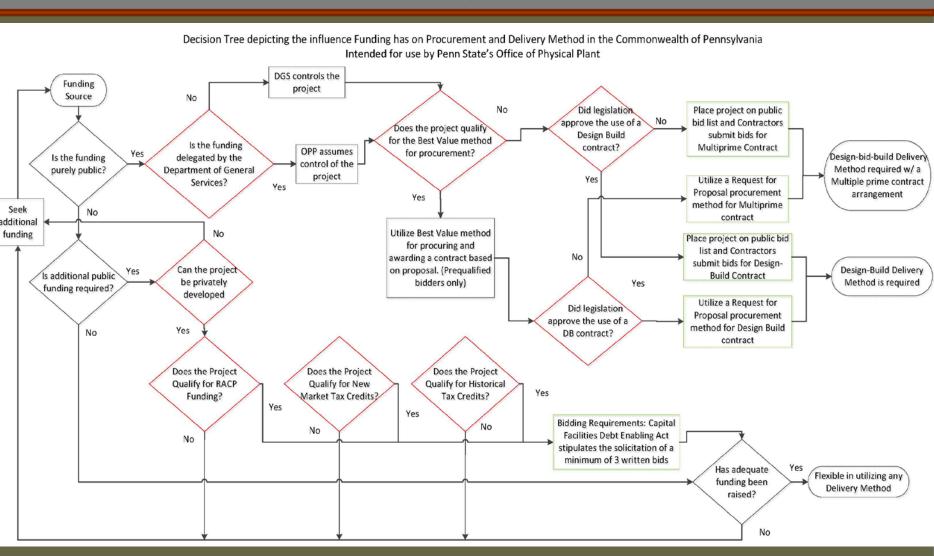
Presentation Outline:

- II. Analysis 1: Critical Industry Issue
 - I. Overview

I. Project Background

- II. Research
- III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Penn State's Office of Physical Plant:


- Operates as an extension of DGS
- Public funding types most commonly received:
 - Delegated (most common) OPP is given money with specific use
 - Non-Delegated (uncommon) DGS stays heavily involved

Projects Researched:

- SCI Benner: Design-Build, GMP
- Bucknell University Bookstore: Design-Bid-Build, CM At-Risk, GMP
- Center for Sustainable Landscapes: Design-Bid-Build, CM At-Risk, GMP

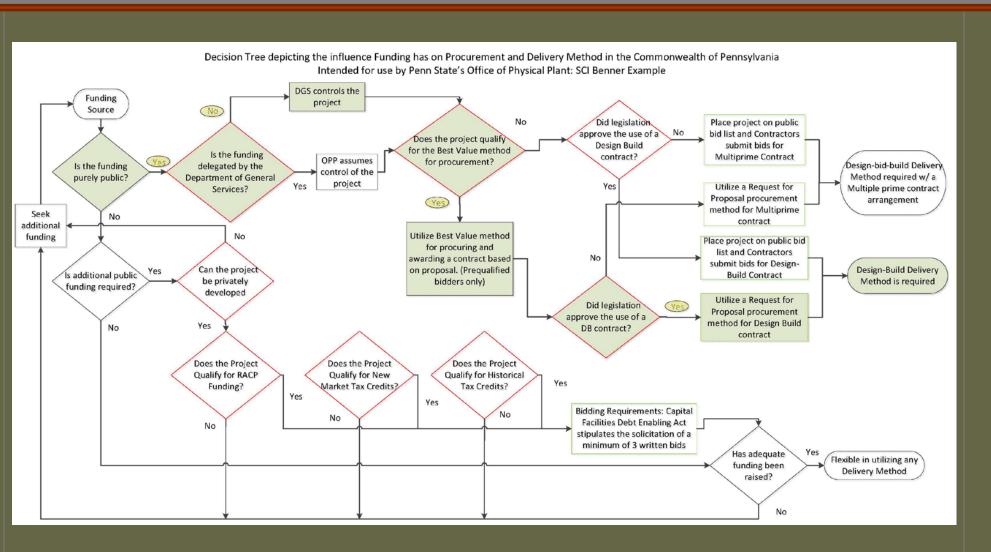
The Decision Tree: Illustrates the influence funding has on procurement, delivery and contract methods

- Black Diamonds: Represent questions that can be answered by OPP project staff
- Red Diamonds: Represent decisions that are made by the Government
- Green Boxes: Display the conditional procurement methods

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:


- II. Analysis 1: Critical Industry Issue
 - I. Overview

I. Project Background

- II. Research
- III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

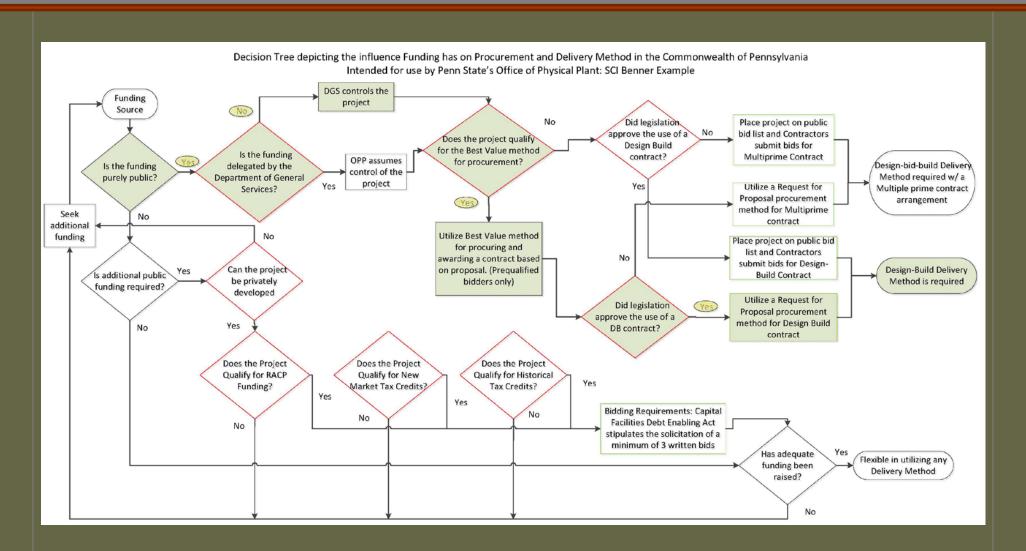
Project: SCI Benner

- Project Synopsis: \$174 million new construction of a 2,000 bed medium security prison
- Location: Bellefonte, PA
- Owner: Department of General Services
- Delivery Method: Design-Build
- Contract Type: GMP
- Procurement Method: Best Value

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:


- II. Analysis 1: Critical Industry Issue
 - I. Overview

I. Project Background

- II. Research
- III. Results/Conclusion
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Project: SCI Benner

- Project Synopsis: \$174 million new construction of a 2,000 bed medium security prison
- Location: Bellefonte, PA
- Owner: Department of General Services
- Delivery Method: Design-Build
- Contract Type: GMP
- Procurement Method: Best Value

Conclusions: Project Exemption is Plausible

- Provided exemption is approved by DGS
- Provided exemption is authorized by Legislation

Recommendations

- 2 out of 3 owners analyzed utilized a traditional delivery system despite exemption
- Pursue the use of contemporary delivery methods when necessary

Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
- III, Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations

VII. Acknowledgements

Problem Identification: 2-Story radiused cast-in-place concrete atrium stair

- Labor intensive
- Produces a large amount of onsite waste

Images courtesy of the Design Alliance Architects

Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue

III. Analysis 2: Constructability

- I. Overview
- II. Alternative Design
- III, Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Problem Identification: 2-Story radiused cast-in-place concrete atrium stair

- Labor intensive
- Produces a large amount of onsite waste

Research Goal: Develop an alternative atrium design that:

- Improves Constructability at a minimal cost
- Maintains the spaces passive performance
- Aesthetically pleasing

Images courtesy of the Design Alliance Architects

Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Problem Identification: 2-Story radiused cast-in-place concrete atrium stair

- Labor intensive
- Produces a large amount of onsite waste

Research Goal: Develop an alternative atrium design that:

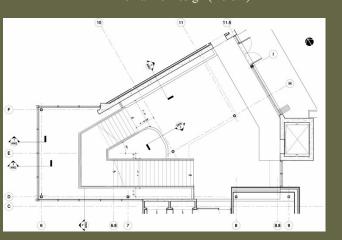
- Improves Constructability at a minimal cost
- Maintains the spaces passive performance
- Aesthetically pleasing

Proposed Solution:

- Structural steel stair
- Transfer thermal mass to atrium walls

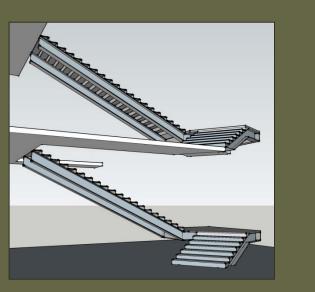
Images courtesy of the Design Alliance Architects

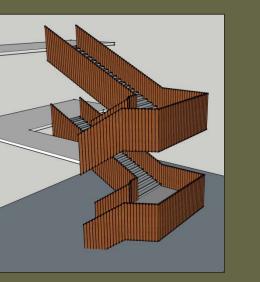
Analysis 2: Constructability – Alternative Design of Atrium

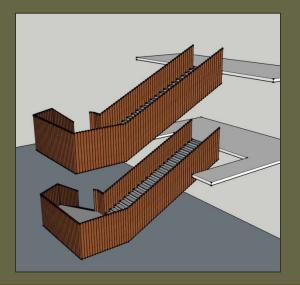

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
 - III, Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements


Original Design (Below)


Alternative Design (Below)



Changes to Original Design in Alternative Design

- Alternative Stair
 - Structural Steel
 - Rectilinear
 - Self-supporting

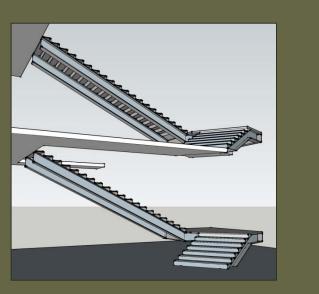
Imagery based off of one provided by The Design Alliance Architects

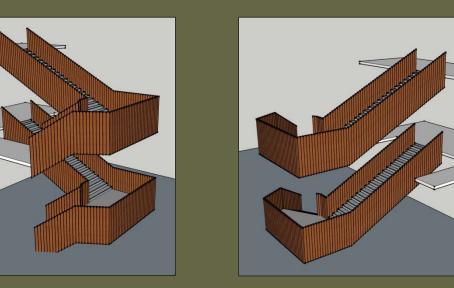
Original Design (Below)

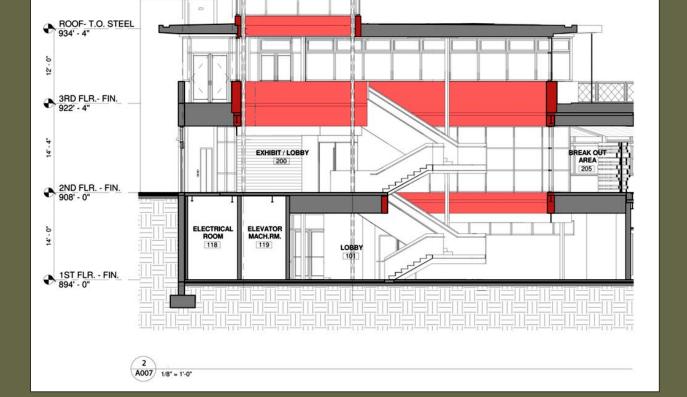
Alternative Design (Below)

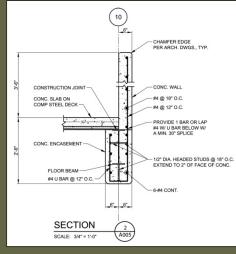
Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction


Presentation Outline:


- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

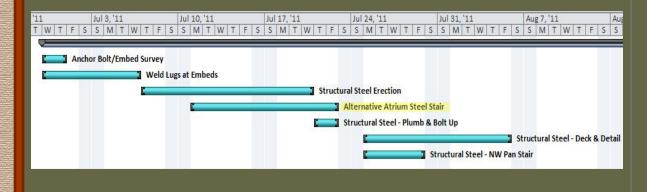

Changes to Original Design in Alternative Design:


- Alternative Stair
 - Structural Steel
 - Rectilinear
 - Self-supporting

- Alternative Wall Design
 - Inc. thickness of concrete by 3 inches
 - Net decrease in concrete: 3 cubic yards

Schedule Impacts:

Original Design: 20 days


Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
 VII. Acknowledgements

Alternative Design: 10 days (phased with steel erection)
 Not located on critical path

Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability

 I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Original Design: 20 days
- Alternative Design: 10 days (phased with steel erection)
- Not located on critical path

					1 T W T F S S M T W T F S S
	L	Charles Co.			
And	hor Bolt/Embed Su				
		Weld Lugs at Embeds			
			Structural	Steel Erection	
			7 Alt	ernative Atrium Steel Stair	
		1			
			Str	uctural Steel - Plumb & Bolt Up)
				7	Bar I las I n Lan I
					Structural Steel - Deck & Deta
				Structur	al Steel - NW Pan Stair

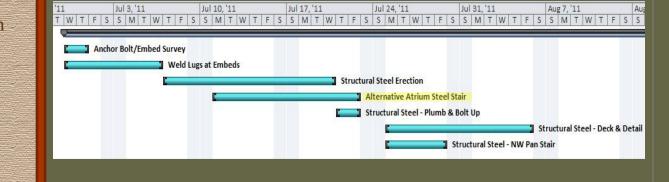
Cost Summary:

- Net Increase: \$70,000
- Resulting from:
 - No central support added approximately \$25,000
 - Increased connections costs
 - Increased structural steel costs
 - Terrazzo finishes added approximately \$15,000

Cost Comparison	
Original Design - Cost of Concrete Stair	\$ 49,950.00
Alternative Design - Total Cost	\$ 119,707.63
Alternative Design - Cost of Steel Stair	\$ 105,603.65
Alternative Design - Increase in Wall Thicknesses	\$ 14,103.98
Net Increase in Alternative Design over Original Design	\$ 69,757.63

Analysis 2: Constructability – Alternative Design of Atrium

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction


Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
 - I. Overview
 - II. Alternative Design
- III. Results/Conclusion

 IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Original Design: 20 days
- Alternative Design: 10 days (phased with steel erection)
- Not located on critical path

Cost Summary:

- Net Increase: \$70,000
- Resulting from:
 - No central support added approximately \$25,000
 - Increased connections costs
 - Increased structural steel costs
 - Terrazzo finishes added approximately \$15,000

Cost Comparison	
Original Design - Cost of Concrete Stair	\$ 49,950.00
Alternative Design - Total Cost	\$ 119,707.63
Alternative Design - Cost of Steel Stair	\$ 105,603.65
Alternative Design - Increase in Wall Thicknesses	\$ 14,103.98
Net Increase in Alternative Design over Original Design	\$ 69,757.63

Alternative Design Conclusions: Not Recommended

- Pros
 - Comparably Sustainable
 - Minimizes Construction Waste
 - Improves Aesthetics
 - Reduces Schedule by 10 days
- Cons
 - Significantly increased material cost

Recommendations

- Make adjustments to reduce cost:
 - Replace terrazzo
 - Add column

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - 1. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of accessfloorsystems.com

Problem Identification: Raised Floor Distribution Plenum

- Higher system costs
- Increased building height from redundant plenum spaces

Images courtesy of kingspan.com/raised_flooring/full.jpg

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry IssueIII. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of accessfloorsystems.com

Problem Identification: Raised Floor Distribution Plenum

- Higher system costs
- Increased building height from redundant plenum spaces

Research Goal:

- Reduce system cost without compromising performance
- Improve constructability

Images courtesy of kingspan.com/raised_flooring/full.jpg

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of accessfloorsystems.com

Problem Identification: Raised Floor Distribution Plenum

- Higher system costs
- Increased building height from redundant plenum spaces

Research Goal:

- Reduce system cost without compromising performance
- Improve constructability

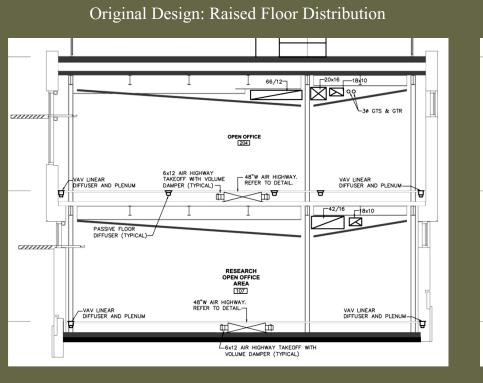
Proposed Solution: Relocated HVAC distribution to above the ceiling

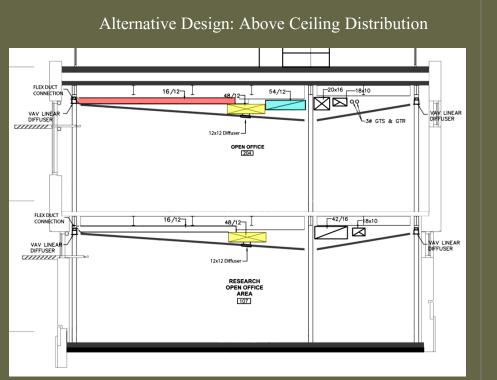
Images courtesy of kingspan.com/raised_flooring/full.jpg

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

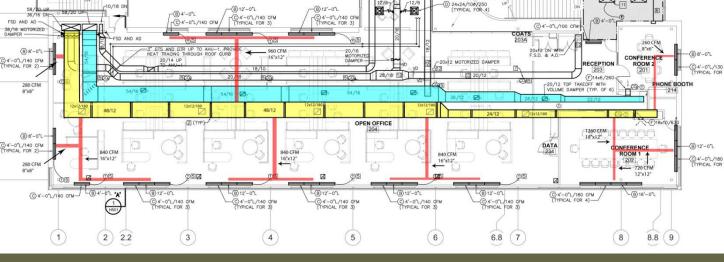
Presentation Outline:

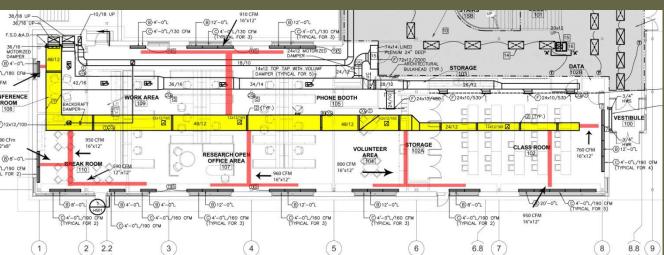

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - 1. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements


Original Design

- 14" Raised Access Floor System
- In-floor electrical distribution

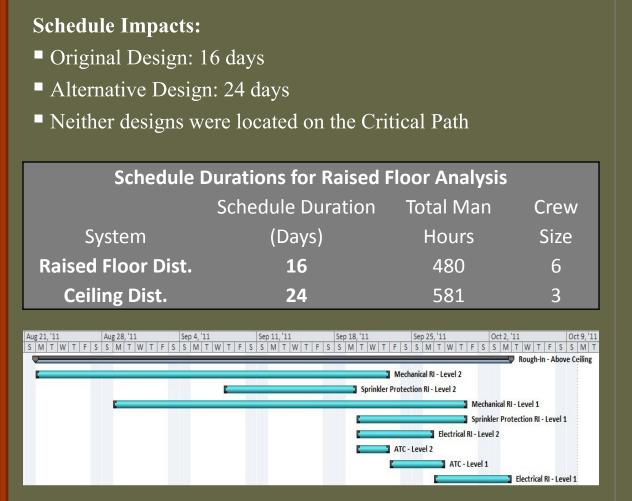
Alternative Design


- Lowered the ceiling 6"
- Reduced building height by 8"
- Maintained High Volume/Low Velocity flow rate



Alternative Design: Second Floor

Alternative Design: First Floor



Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - I. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Original Design: 16 daysAlternative Design: 24 days
- Neither designs were located on the Critical Path

Schedule I	Durations for Raised I	Floor Analysis	
	Schedule Duration	Total Man	Crew
System	(Days)	Hours	Size
Raised Floor Dist.	16	480	6
Ceiling Dist.	24	581	3

Aug	21, '	11				Aug	28,	'11					S	ep 4	, 1	1					9	Sep	11	l, '1	1					Se	p 18	3, '1	1				S	ep :	25,	11					Oct	t 2,	11	3				0	ct 9	, '11
S	MI	W	T	F	S	S	M	T	W	T	F	1	5	1	1	T	W	T	F	15	3	S	M	T	V	٧	T	F	S	S	M	T	W	T	1	5	1	3 1	M	T	W	Т	F	S	S	M	T	W	T	F	5	SS	IV	1 T
-				=	=	_																									=												=		=	=	F	Rou	gh-	In -	Abo	ove	Ceili	ng
ı				-																																Med	har	nical	RI-	Le	evel	2												
																																S	prir	ıkle	r P	ote	ctic	n R	1 - L	ev	el 2													
														÷				-										-								÷		i					Me	ech	anic	al R	l - L	eve	el 1					
																																4											Sp	rinl	der	Pro	tec	tio	n RI	I - Le	evel	1		
																																							5	Ele	ectr	ical	RI - I	Lev	el 2									
																																			1	ATC	- Le	evel	2															
																																			C						AT	rc -	Leve	el 1										
																																											-				I El	ect	rica	al RI	- Le	evel	1	

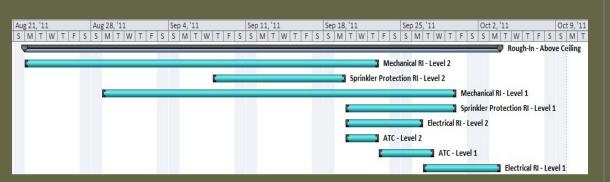
Cost Impacts

- 46% Decrease in cost
- Indirect Costs
 - Reduction in building height (credit)
 Electrical Distribution Contingency
 - Flooring Cost Sales Tax Credit

Total System Com	parisons	
Raised Floor Distribution System - Total Cost	\$	110,000.00
Raised Floor - Material Cost	\$	76,000.00
Raised Floor - Labor Cost	\$	34,000.00
Ceiling Distribution System	\$	50,838.00
Ceiling - Material Cost	\$	7,696.00
Ceiling - Labor Cost	\$	19,620.00
Indirect Costs	\$	23,521.00
Net Decrease in System Cost:	\$	59,162.00
Total Man Hours:		581 hrs

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction


Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
 - 1. Overview
 - II. Alternative Design
 - III. Results/Conclusion
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Original Design: 16 days
- Alternative Design: 24 days
- Neither designs were located on the Critical Path

Schedule	Durations for Raised I	Floor Analysis	
	Schedule Duration	Total Man	Crew
System	(Days)	Hours	Size
Raised Floor Dist.	16	480	6
Ceiling Dist.	24	581	3

Cost Impacts

- 46% Decrease in cost
- Indirect Costs
 - Reduction in building height (credit)Electrical Distribution Contingency
 - Flooring Cost

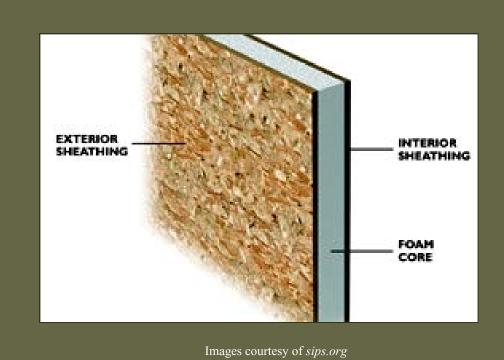
Sales Tax Credit

Total System Co	mparisons	
Raised Floor Distribution System - Total Cost	\$	110,000.00
Raised Floor - Material Cost	\$	76,000.00
Raised Floor - Labor Cost	\$	34,000.00
Ceiling Distribution System	\$	50,838.00
Ceiling - Material Cost	\$	7,696.00
Ceiling - Labor Cost	\$	19,620.00
Indirect Costs	\$	23,521.00
Net Decrease in System Cost:	\$	59,162.00
Total Man Hours:		581 hrs

Alternative Design Conclusions:

- Added 100 hours of work
- Reduced cost by approximately \$59,000

Recommendations:


- Met analysis goal to increase project's value
- Pursue alternative design based on significant decrease in system cost
- Marginal compromises in value

Analysis 4: Schedule Acceleration – Alternative Wall System

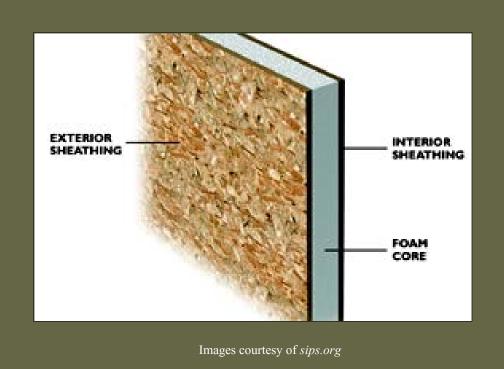
Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements

Problem Identification: 8" Metal Stud Exterior wall

- Time and Labor intensive
- Located on the Critical Path
- Produces a large amount of waste onsite


Images courtesy of sips.org

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

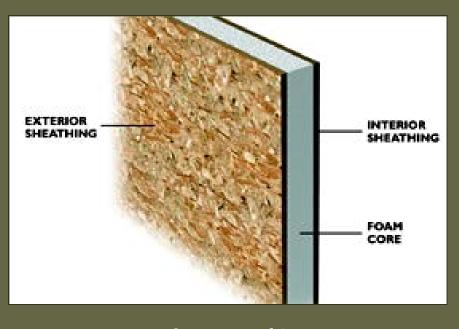
- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements

Problem Identification: 8" Metal Stud Exterior wall

- Time and Labor intensive
- Located on the Critical Path
- Produces a large amount of waste onsite

Research Goal: Develop alternative design

Decreases the project schedule


Images courtesy of sips.org

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements

Images courtesy of sips.org

Problem Identification: 8" Metal Stud Exterior wall

- Time and Labor intensive
- Located on the Critical Path
- Produces a large amount of waste onsite

Research Goal: Develop alternative design

Decreases the project schedule

Proposed Solution: Structural Insulated Panel System (SIPS)

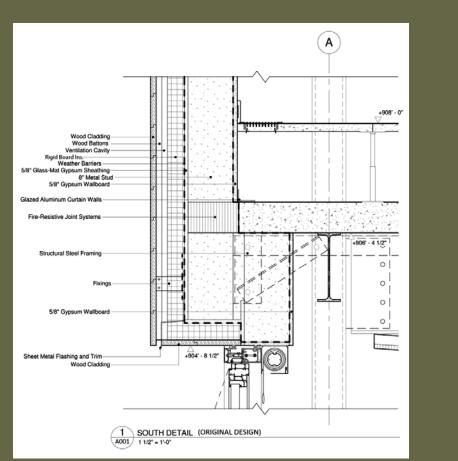
- High performance wall type composed of:
 - OSB Sheathing
 - EPS (Expanded Polystyrene) Foam Core
- Increase superstructure to accommodate additional load

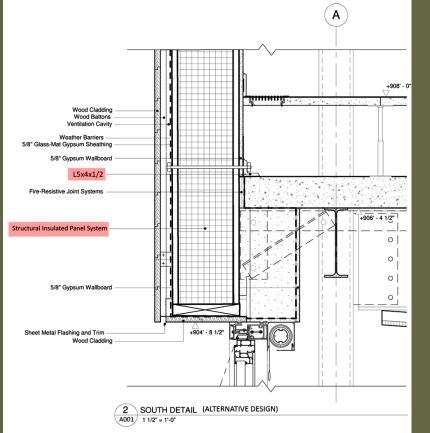
Images courtesy of sips.org

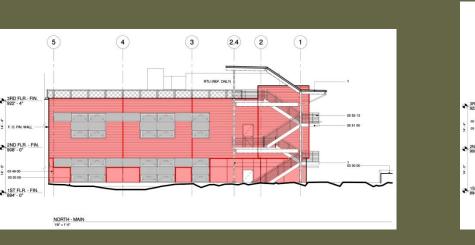
Analysis 4: Schedule Acceleration – Alternative Wall System

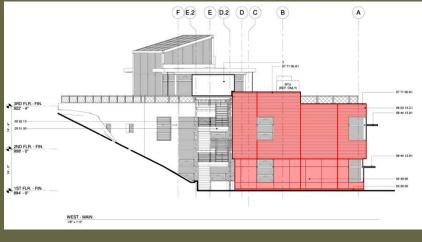
Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

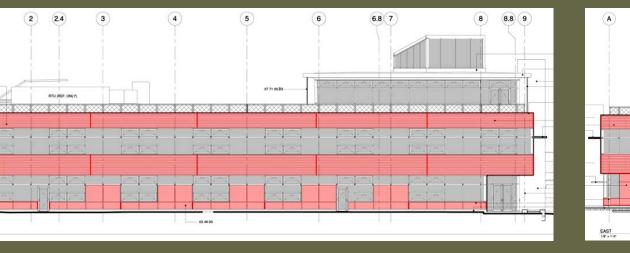

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - **H.** Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements


Original Design


- 8" Metal Stud Framing
- 2" Rigid Board Insulation
- 5/8" Fiberglass-matt gypsum board


Alternative Design

■ 10 1/4" SIP Panel

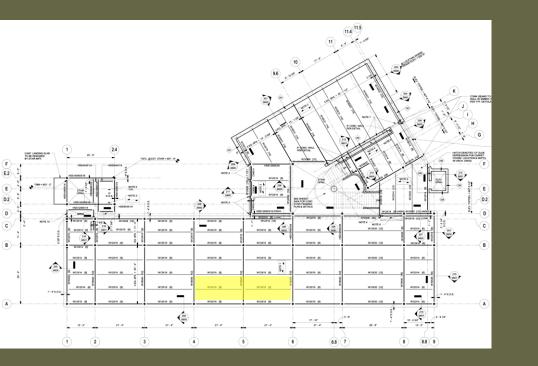


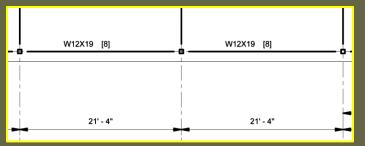
(B) (C) (D)

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:


- I. Project Background II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements


Structural Impacts: Structural Breadth

- Original Stud Wall: 45 PLF
- Alternative SIP Wall: 75 PLF

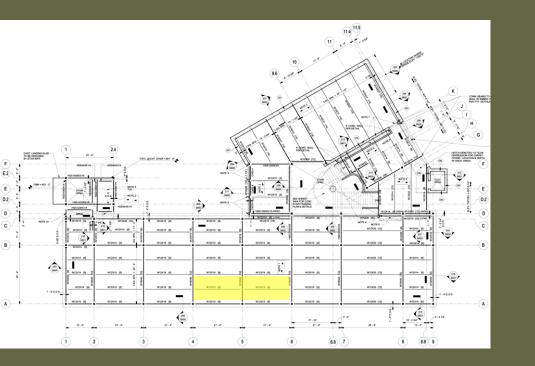
Results:

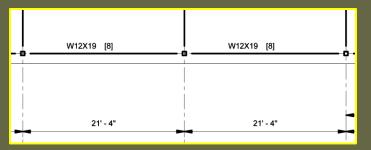
- W12x19 Spandrel Beams were found to be inadequate
 - Max. Allowable Def. = 1.07"
 - Deflection = 1.3"
 - Max. Allowable Bending Moment = 55.9 ft-kips
 - Bending Moment = 82.2 ft-kips
- W12x26 Spandrel Beams were found to be adequate
- HSS 6x6x5/8 Columns were found to be adequate

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:


- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements


Structural Impacts: Structural Breadth

- Original Stud Wall: 45 PLF
- Alternative SIP Wall: 75 PLF

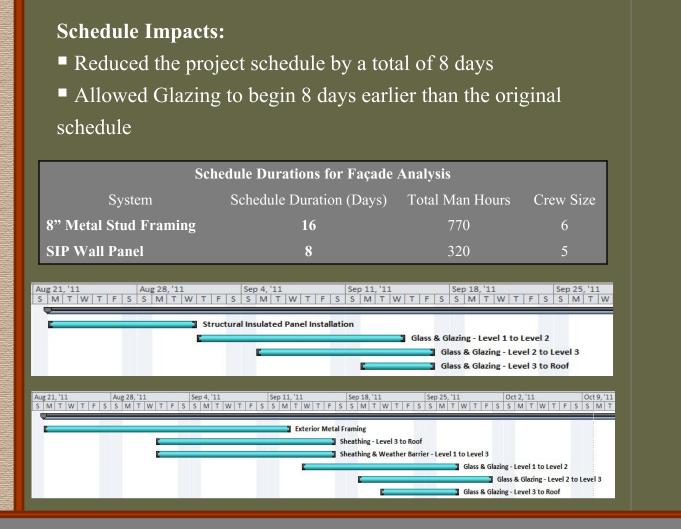
Results:

- W12x19 Spandrel Beams were found to be inadequate
 - Max. Allowable Def. = 1.07"
 - Deflection = 1.3"
 - Max. Allowable Bending Moment = 55.9 ft-kips
 - Bending Moment = 82.2 ft-kips
- W12x26 Spandrel Beams were found to be adequate
- HSS 6x6x5/8 Columns were found to be adequate

Sustainability

- Provides superior conductive and convective performance
- No additional LEED points gained

·	
Relative R-Value Comparison	
lue Original Design	25.3
Rigid Board Insulation	8
3" Fiberglass-mat	8
Wall Cavity	9.3
lue Alternative Design	35
7/16" OSB Sheathing	1
1/4" SIP w/ EPS Core	34


Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

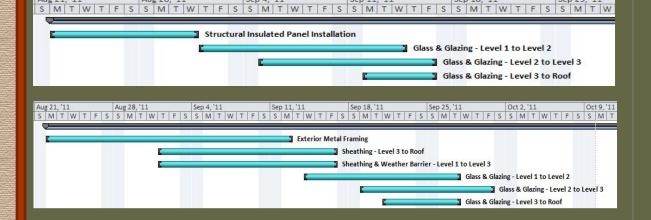
Presentation Outline: 1. Project Background

- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value EngineeringV. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations

VII. Acknowledgements

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction


Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Reduced the project schedule by a total of 8 days
- Allowed Glazing to begin 8 days earlier than the original schedule

ı	Sch	edule Durations for Façade	Analysis	
П	System	Schedule Duration (Days)	Total Man Hours	Crew Size
П	8" Metal Stud Framing	16	770	6
П	SIP Wall Panel	8	320	5

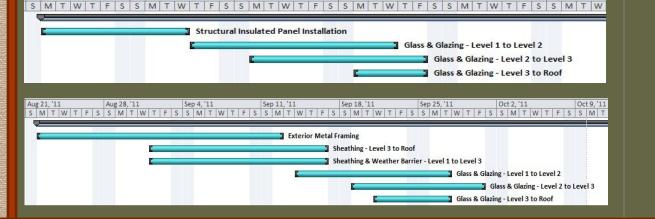
Cost Impacts:

- ■SIP System Cost w/ General Conditions Savings: \$74,920
 - Includes increased cost of superstructure of \$2,578

Façade Estimate Summary	
Гotal Original Metal Stud Wall System	\$ 71,216
Original Design Labor Cost	\$ 42,508
Original Design Material Cost	\$ 25,708
Adjusted Total Alternative Wall System Cost	\$ 74,920
Γotal Alternative SIP Wall System	\$ 88,382
Alt. Design Labor Costs	\$ 37,594
Alt. Design Material Costs	\$ 50,789
Estimated General Conditions Savings	\$ (13,462.00)
Net Increase in Cost	\$ 3,704

Analysis 4: Schedule Acceleration – Alternative Wall System

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction


Presentation Outline:

- I. Project BackgroundII. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
 - I. Overview
 - II. Alternative Design
 - III. Structural Breadth
 - IV. Results/Conclusion
- VI. Final Recommendations
- VII. Acknowledgements

Schedule Impacts:

- Reduced the project schedule by a total of 8 days
- Allowed Glazing to begin 8 days earlier than the original schedule

Schedule Durations for Façade Analysis			
System	Schedule Duration (Days)	Total Man Hours	Crew Size
8" Metal Stud Framing	16	770	6
SIP Wall Panel	8	320	5

Cost Impacts:

- ■SIP System Cost w/ General Conditions Savings: \$74,920
 - Includes increased cost of superstructure of \$2,578

Façade Estimate Summary				
Total Original Metal Stud Wall System		71,210		
Original Design Labor Cost	\$	42,508		
Original Design Material Cost	\$	25,708		
Adjusted Total Alternative Wall System Cost		74,920		
Total Alternative SIP Wall System	\$	88,382		
Alt. Design Labor Costs	\$	37,594		
Alt. Design Material Costs	\$	50,789		
Estimated General Conditions Savings		(13,462.00		
Net Increase in Cost	\$	3,704		

Alternative Wall Construction Design Conclusions:

- Reduces project schedule by 8 days
- ■Increases Superstructure
- Improves the performance of the building envelope
- •Marginal increase in cost

Recommendations:

- Met analysis goal to reduce project schedule
- Pursue alternative design as specified due to significant schedule savings

Recommendation/Conclusion

Center for Sustainable Landscapes
Pittsburgh, PA
Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability

VI. Final Recommendations

- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VII. Acknowledgements

Images courtesy of the Design Alliance Architects

Analysis 1: Critical Industry Issue - Avoiding Traditional Delivery Methods on Publicly Funded Projects

■ Project exemption can be gained by OPP

Analysis 2: Constructability – Alternative Design of Atrium

■ Rejected alternative design due to substantial increases in cost

Analysis 3: Value Engineering – Redesign of Raised Floor Distribution System

■ Accepted above ceiling distribution system as a result of the significant cost savings

Analysis 4: Schedule Acceleration –Alternative Wall System

Accepted Structural Insulated Panel System as a result of reduced schedule and marginal increase in cost

Images courtesy of the Design Alliance Architects

Questions

Center for Sustainable Landscapes Pittsburgh, PA Daniel Zartman | Construction

Presentation Outline:

- I. Project Background
- II. Analysis 1: Critical Industry Issue
- III. Analysis 2: Constructability
- IV. Analysis 3: Value Engineering
- V. Analysis 4: Schedule Acceleration
- VI. Final Recommendations

VII. Acknowledgements

Images courtesy of the Design Alliance Architects

Images courtesy of the Design Alliance Architects

Special Acknowledgements:

Dr. Robert Leicht – CM Faculty Advisor

Megan Corrie, Kristine Retetagos of *Turner Construction* contacts and project sponsors

Owner *Phipps Conservatory*

David Zartman and staff of Zartman Construction

James Hostetler Director of Construction and Design Bucknell University

John Bechtel Assistant Director of Design and Construction of *Penn State OPP*

Tim Gilotti of Radner Property Group

Jeff Sandeen of Hensel Phelps Construction Co.

