

MATT STEVENSON

ADVISER: ROBERT LEICHT

- Presentation Overview
- Project Background
- III. Analysis #1: Geothermal Heat Pumps
- IV. Analysis #2: Modular Classroom Wings
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

Depth Topics:

Analysis #1: Feasibility and Impact of Geothermal Heat Pumps

Analysis #2: Feasibility and Impact of Modular Classrooms

Analysis #3: Analysis of Electrical Underground Rough-In Method

Analysis #4: Project Delivery Method Analysis

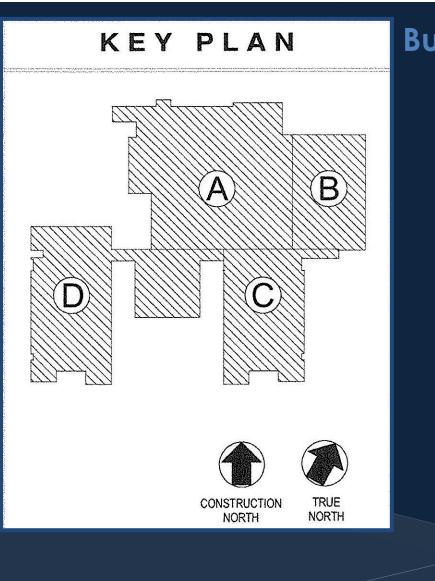
Breadth Topics:

Breadth Topic #1: Mechanical System Reduction (Tied into Analysis #1)

Breadth Topic #2: Acoustical Study of Modular Wall (Tied to Analysis #2)

- Presentation Overview
- II. Project Background
- III. Analysis #1: Geothermal Heat Pumps
- IV. Analysis #2: Modular Classroom Wings
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

General Project Information:


- □ 210,000 SF Middle School (5th & 6th Grades)
- Total Building Cost \$26.4 Million
- One Story in Areas A & B
- Three Stories in Areas C & D
- Striving for LEED Silver

Building Layout:

- Area A: Administrative Suite, Gymnasium, Cafeteria
- Area B: Mechanical Room, Music Classrooms
- Area C: Classrooms
- Area D: Classrooms and Library

Project Background

Matt Stevenson Construction Management

Building Systems:

Facade

□Brick and Decorative CMU Veneer Glazing

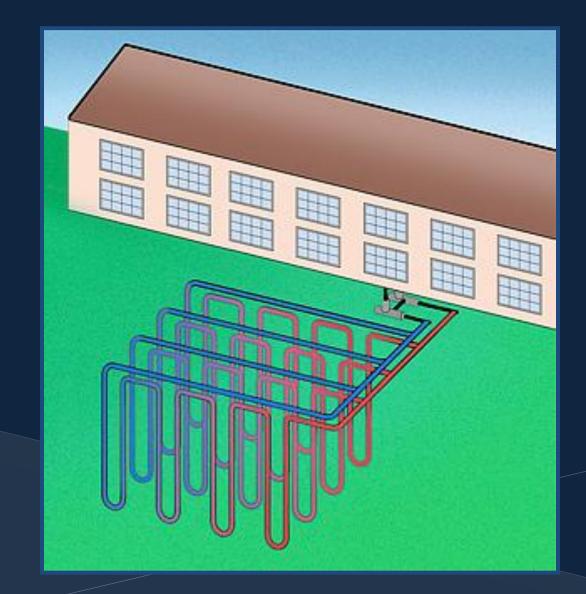
Structural System

□Load Bearing Masonry Open Web K Joists □CIP Concrete on Composite Deck

Mechanical System **UVAV** System w/ Nine AHUs

Landis Run Intermediate Lancaster, PA	G
I. Presentation OverviewII. Project Background	Potential Prob LEED Silver Cor
 III. Analysis #1: Geothermal Heat Pumps a) Background Information 	 Possibility of Ac
 b) Feasibility and Construction Impact c) Cost Impact 	Great Deal of S
d) LEED Impact	Long Life Span Energy
 IV. Analysis #2: Modular Classroom Wings V. Breadth #1: Noise Reduction of Modular Walls 	
 VI. Analysis #3: Electrical Rough-In Method VII. Analysis #4: Project Delivery Method 	Goal Is To Dete
VIII. Summary and Conclusion	Cost Impacts
IX. Acknowledgements	Construction IrLEED Impact

- A Tana ata ter ter meterer 6 ifters


Geothermal Heat Pumps

blem/Opportunity

- ommendable
- Achieving Higher
- f Space on Site
- n Can Sustain Longer Payback Periods for Renewable

ermine:

Impact

- I. Presentation Overview
- II. Project Background
- III. Analysis #1: Geothermal Heat Pumps
 - a) Background Information
 - **b)** Feasibility and Construction Impact
 - c) Cost Impact
 - d) LEED Impact
- IV. Analysis #2: Modular Classroom Wings
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

Q	uantity & Pla
	GLD Software
	Two Well Field
	Minor Constru

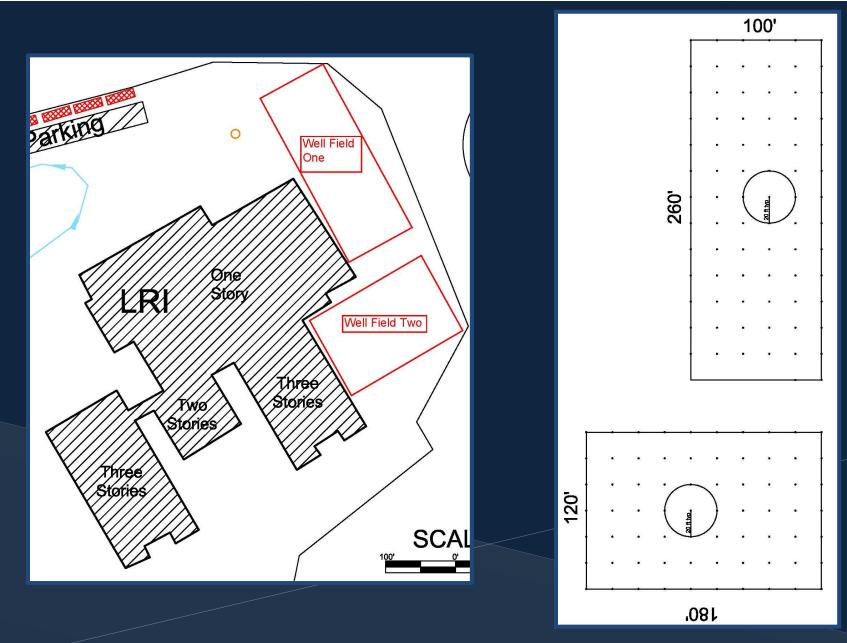
Borehole Design Project #1						
Results Fluid Soil U-Tube						

Calculate

Design Day

Total Length (ft): Borehole Number: Borehole Length (ft):

Geothermal Heat Pumps


icement

e:150 Wells at 343' ds to East of Building uction Traffic Interrupted

1	Pattern Extra kW Info	ormation
у	V 📈 COOLING	HEATING
	0.0	<u>51533.</u> 7
	150 0.0	150 343.6
	0.0	545.0

Schedule

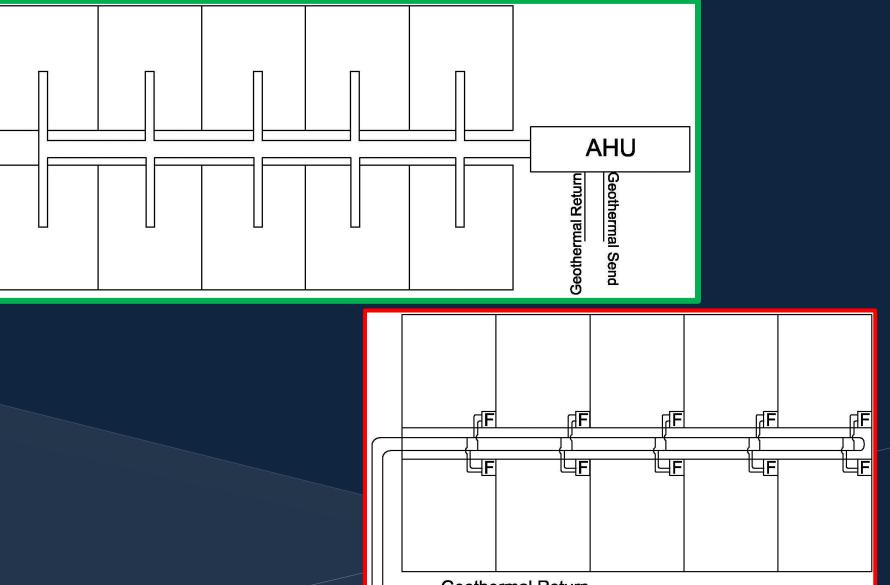
Assuming 2 Wells Per Day
Drilling Would Start 5/25/11
Drilling Would End 9/7/11
Earliest AHU Tie-In 10/7/11

- Presentation Overview
- Project Background
- III. Analysis #1: Geothermal Heat Pumps
 - Background Information a)
 - Feasibility and Construction Impact b)
 - Cost Impact C)
 - LEED Impact d)
- IV. Analysis #2: Modular Classroom Wings
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

Initial Cost

- Deduct \$104,438
- □ Add \$1,008,000 For Wells
- Mechanical Contract Will

Long Term Cost


Requires System Design, Building Loads, etc. Less Maintenance Required Longer Life Expectancy Efficiency Typically In the 300-450% As Compared With 80-90% of Typical Boilers

Geothermal Heat Pumps

Matt Stevenson Construction Management

 \rightarrow Increase By 18.4% to \$5,803,562

Equipment	Quantity	Cost
Electric Boiler, 2616 MBH, 218 Ton	2	\$61,292
Cooling Tower, 459 Ton	1	\$43,146
	Total Cost	104,438

Geothermal Return Geothermal Send

Geothermal Heat Pumps Landis Run Intermediate Lancaster, PA Presentation Overview Existing LEED Rating Project Background □ 44 Credits For 52 Points III. Analysis #1: Geothermal Heat Pumps 2 Regional Priority Credits Missing For 2 Points Background Information a) Public Transportation Access Feasibility and Construction Impact b) Storm Water Design – Quality Control Cost Impact C) **Probable Additional Credits** LEED Impact d) Optimize Energy Performance IV. Analysis #2: Modular Classroom Wings Unknown Possible Point Value v. Breadth #1: Noise Reduction of Modular Walls On-Site Renewable Energy VI. Analysis #3: Electrical Rough-In Method Probable 7 Points VII. Analysis #4: Project Delivery Method

- VIII. Summary and Conclusion
- IX. Acknowledgements

Revised LEED Rating

Obtain LEED Gold with 61 Points

% Renewable Energy	Points	
1%	1	
3%	2	
5%	3	
7%	4	
9%	5	
11%	6	
13%	7	

LEED Category	Number of Credits	Number of Points
Sustainable Sites	10	10
Water Efficiency	5	5
Energy & Atmosphere	4	11
Materials & Resources	8	8
Indoor Environmental Quality	14	15
Innovation & Design Process	3	3
Total	44	52

- Presentation Overview
- Project Background
- III. Analysis #1: Geothermal Heat Pumps
- IV. Analysis #2: Modular Classroom Wings
 - a) Background and Benefits
 - Module Assumptions b)
 - Cost and Schedule Impact C)
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

Potential Opportunity

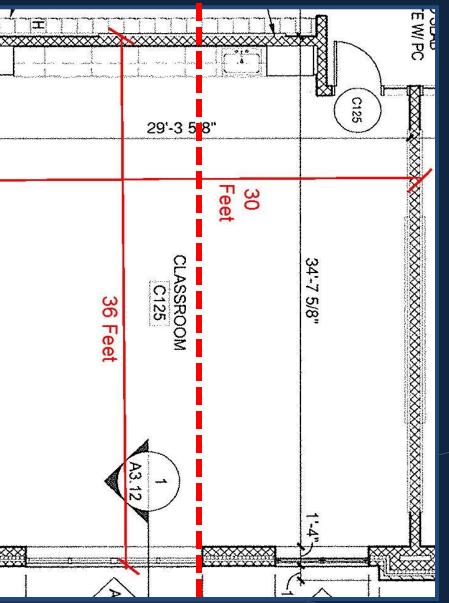
- □ C & D Are Repetitive Both Horizontally & Vertically
- □ 70% of Building Square Footage
- Could Dramatically Impact Project Efficiency

Goal Is To Determine

- Cost Impact
- Schedule Impact

Modular Classrooms

- I. Presentation Overview
- II. Project Background
- III. Analysis #1: Geothermal Heat Pumps
- IV. Analysis #2: Modular Classroom Wings
 - a) Background and Benefits
 - b) Module Assumptions
 - c) Cost and Schedule Impact
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements



Module Assumptions

- □ All Systems (MEP), Finishes, & Casework Preinstalled
- Each Classroom Comprised of Two Modules
- Interior Module Layout Two
- Cost Savings of 20%
- Four Modules Can Be Set per Day

Modular Classrooms

Layout Option One	Layout Option Two	
		<u> </u>
		an ang tao
		2
		DS

- Presentation Overview
- Project Background
- III. Analysis #1: Geothermal Heat Pumps
- IV. Analysis #2: Modular Classroom Wings
 - Background and Benefits a)
 - Module Assumptions b)
 - **Cost and Schedule Impact** c)
- v. Breadth #1: Noise Reduction of Modular Walls
- VI. Analysis #3: Electrical Rough-In Method
- VII. Analysis #4: Project Delivery Method
- VIII. Summary and Conclusion
- IX. Acknowledgements

Schedule Impact

- \square 186 Modules / 4 (mod/day) = 46.5 Working Days
- Area C Accelerated 347
- Area D Accelerated 363 Days

Cost Impact

Modular Classrooms

Overall Project Savings of \$3.72 Million Results in Cost Savings of 14.1%

Area	FRP Slab Completion Date	Stick-Built Completion Date		
С	7/1/11	8/21/12		
D	7/28/11	8/28/12		

	Stick-Built Construction Method	Modula Construc Metho	
Cost per SF	\$125.71	\$100.5	
Total Cost	\$18,622,679.	\$14,902,	

Landis Run Intermediate Lancaster, PA	Noise
 I. Presentation Overview II. Project Background III. Analysis #1: Geothermal Heat Pumps IV. Analysis #2: Modular Classroom Wings 	Goal Determine Diff Ensure Module
 v. Breadth #1: Noise Reduction of Modular Walls vI. Analysis #3: Electrical Rough-In Method vII. Analysis #4: Project Delivery Method vIII. Summary and Conclusion IX. Acknowledgements 	 Results Significantly Distance Modular Wall S Prerequisite Or Classrooms Still

Modula Assembly Existing

Assembly

e Reduction of Modular Wall

Matt Stevenson Construction Management

fference in Noise Reduction of Existing & Modular Wall les Still Meet Acoustical Prerequisite

- Differ At 2k and 4k
- Still Performs Adequately
- Only Based on Area and NR Rating of Ceiling Materials till Meet Acoustical Prerequisite

		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
r	10log(a/S)	6.17	5.00	4.58	5.72	6.64	6.60
	TL (dB)	28.00	37.00	46.00	52.00	38.00	43.00
y	Noise Reduction (dB)	34.17	42.00	50.58	57.72	44.64	49.60
5	10log(a/S)	3.95	4.52	4.47	5.85	6.54	6.50
	TL (dB)	33.00	37.00	47.00	54.00	63.00	72.00
У	Noise Reduction (dB)	36.95	41.52	51.47	59.85	69.54	78.50
	Difference	2.78	-0.48	0.89	2.13	24.90	28.89

Noise Reduction = TL + 10log(a/S), where S = Area of Common Wall and a = Room Absorption

Material	Area (Ft ²)		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Carpet, heavy	890	α	0.02	0.06	0.14	0.37	0.6	0.65
		a (sabins)	17.8	53.4	124.6	329.3	534	578.5
Drywall, 1 layer 5/8" thick	1250	α	0.55	0.14	0.08	0.04	0.12	0.11
		a (sabins)	687.5	175	100	50	150	137.5
ACT, 3/4" thick	890	α	0.76	0.93	0.83	0.99	0.99	0.94
		a (sabins)	676.4	827.7	738.7	881.1	881.1	836.6
Window	72	α	0.35	0.25	0.18	0.12	0.07	0.04
		a (sabins)	25.2	18	12.96	8.64	5.04	2.88
		Total Absorption (sabins)	1406.9	1074.1	976.26	1269.04	1570.14	1555.48
α = sound absorption coefficien	α = sound absorption coefficient			a = sound absorption per specified octave				

Material	Area (Ft ²)		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Carpet	890	α	0.02	0.06	0.14	0.37	0.6	0.65
		a (sabins)	17.8	53.4	124.6	329.3	534	578.5
Concrete Block, Painted	1250	CL	0.1	0.05	0.06	0.07	0.09	0.08
		a (sabins)	125	62.5	75	87.5	112.5	100
ACT	890	α	0.76	0.93	0.83	0.99	0.99	0.94
		a (sabins)	676.4	827.7	738.7	881.1	881.1	836.6
Window	72	α	0.35	0.25	0.18	0.12	0.07	0.04
		a (sabins)	25.2	18	12.96	8.64	5.04	2.88
		Total Absorption (sabins)	844.4	961.6	951.26	1306.54	1532.64	1517.98
α = sound absorption coefficient a = sound absorption per specified octave								

Landis Run Intermediate Lancaster, PA	Ele
 Presentation Overview Project Background Analysis #1: Geothermal Heat Pumps Analysis #2: Modular Classroom Wings Breadth #1: Noise Reduction of Modular Walls VI. Analysis #3: Electrical Rough-In Method 	 Potential Proble Underground F Activity Part of Possibly More E
 a) Background b) Schedule & Cost Impact 	Goal Is To Dete
VII. Analysis #4: Project Delivery Method	Cost Impact
 VIII. Summary and Conclusion IX. Acknowledgements 	Schedule Impo

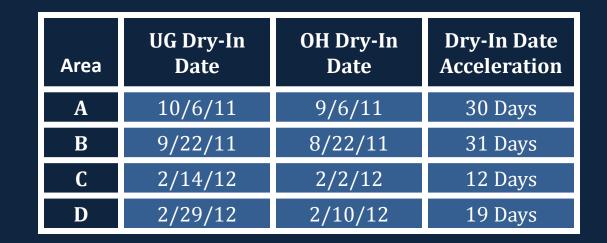
lectrical Rough-In Method

lem

- d Rough-In Used for All Ground Floors
- of Critical Path, & Delays Dry-In
- e Expensive, Longer
- termine

pact

Landis Run Intermediate Lancaster, PA	Ele
 Presentation Overview Project Background Analysis #1: Geothermal Heat Pumps Analysis #2: Modular Classroom Wings Breadth #1: Noise Reduction of Modular Walls V. Analysis #3: Electrical Rough-In Method Background 	 Schedule Impo Overhead Perf Underground F OH Finishes on
 b) Schedule & Cost Impact VII. Analysis #4: Project Delivery Method VIII. Summary and Conclusion IX. Acknowledgements 	 Duration Impact Electricians: 2.4 Equals Saving 3


lectrical Rough-In Method

act

- erformed After Dry-In
- Performed Prior To Slab Pouring
- n Average 23 Days Sooner

2.6 Hours Less per Classroom with OH g 34.5 Working Days By Using Overhead RI

Matt Stevenson Construction Management

2.6 Hours = 156 Min / 975 Ft² = .16 Min/Ft² * 60 Secs / 1 Min = 9.6 Secs / Ft²

16, 483 Min*1 Hrs/60 Min = 275 Hrs*1 Working Day/8 Hrs = 34.5 Working Days

9.6 Secs/Ft²*103, 018 Ft² = 988,973 Secs*1 Min/60 Secs = 16, 483 Min

Landis Run Intermediate	Lancaster, PA	Ele
 Presentation Overview Project Background Analysis #1: Geothermal Heat Purrow Analysis #2: Modular Classroom With Breadth #1: Noise Reduction of Materia VI. Analysis #3: Electrical Rough-In Materia a) Background b) Schedule & Cost Impact VII. Analysis #4: Project Delivery Method VIII. Summary and Conclusion IX. Acknowledgements 	ings odular Walls ethod	 Cost Impact Estimate Yields Differing Items Results In A Sav 1.7% of Electric 0.18% of Overc

ds OH is \$.49 Cheaper

- s Include Conduit, Wire, Hangers, & Trench Digging
- avings of \$50,086.71
- rical Contract
- rall Building Cost

Electrical Rough-In Method Cost Difference Estimate							
Underground Method	Cost	Per Unit	Quanity	Unit	Waste Factor	Total Cost	
Trench Digging, Backfilling Stone	\$28.87	Hr	1.5	Hr	0	\$43.31	
PVC Conduit	\$5.90	L.F.	208	L.F.	10%	\$1,349.92	
Conduit Hanger, Strap 3/4" dia.	\$3.71	Ea.	18	Ea.	0%	\$66.78	
Wires	\$71.50	C.L.F.	208	L.F.	5%	\$148.72	
					Total	\$1,608.73	
Overhead method	Cost	Per Unit	Quanity	Unit	Waste Factor	Total Cost	
MC Cable, #12, 2 wire	\$330.00	C.L.F.	240	L.F.	5%	\$831.60	
Cable Support, Clip 3/4" dia.	\$2.60	Ea.	100	Ea.	0%	\$260.00	
Cable Hanger, Strap 3/4" dia.	\$1.77	Ea.	2	Ea.	0%	\$3.54	
					Total	\$1,095.14	
Cost Difference Total per Classroom						\$513.59	
Location Factor						0.923	
Adjusted Cost Difference Total per Classroom						\$474.04	
Adjusted Cost Difference Total per SF						\$0.49	
Total Cost Difference For Building						\$50,086.71	

 II. Project Background III. Analysis #1: Geothermal Heat Pumps IV. Analysis #2: Modular Classroom Wings V. Breadth #1: Noise Reduction of Modular Walls V. Breadth #1: Noise Reduction of Modular Walls V. Analysis #3: Electrical Rough-In Method VII. Analysis #4: Project Delivery Method a) Background and Separations Act of 1913 b) Results For Variety of Government Owners VIII. Summary and Conclusion IX. Acknowledgements Using Multiple I Using Multiple I Increases C Increases C Increases C Increases C Increases C Goal 		
 II. Project Background III. Analysis #1: Geothermal Heat Pumps IV. Analysis #2: Modular Classroom Wings V. Breadth #1: Noise Reduction of Modular Walls V. Analysis #3: Electrical Rough-In Method VII. Analysis #4: Project Delivery Method a) Background and Separations Act of 1913 b) Results For Variety of Government Owners VIII. Summary and Conclusion IX. Acknowledgements 	Landis Run Intermediate Lancaster, PA	P
	 II. Project Background III. Analysis #1: Geothermal Heat Pumps IV. Analysis #2: Modular Classroom Wings V. Breadth #1: Noise Reduction of Modular Walls VI. Analysis #3: Electrical Rough-In Method VII. Analysis #4: Project Delivery Method a) Background and Separations Act of 1913 b) Results For Variety of Government Owners VIII. Summary and Conclusion 	 Potential Proble Using Multiple F Increases C Increases O Multiples Cc Increases th Increases C

Project Delivery Method

em

- Prime;
- Coordination & Communication
- Owner Paperwork & Organization Load
- osts
- he Litigation Potential Against Owner
- Chances of Miscommunication & Mistakes

w Government Projects Can Gain Exemption To The Pennsylvania Separations Act of 1913

Matt Stevenson Construction Management

The Pennsylvania Separations Act of 1913

- Requires Government Entities To Seek & Hold Separate Contracts For Electrical, Heating, Ventilation, and Plumbing In Excess of \$4,000
- Only Three Other States Have Similar Laws (ND, IL, NY)
- Present In Both State Law & School Code

Landis Run Intermediate Lancaster, PA	P
 Presentation Overview Project Background Analysis #1: Geothermal Heat Pumps Analysis #2: Modular Classroom Wings Breadth #1: Noise Reduction of Modular Walls Analysis #3: Electrical Rough-In Method Analysis #4: Project Delivery Method 	 Department of Places Require Contractor Mu At Discretion of
 a) Background and Separations Act of 1913 b) Results For Variety of Government Owners VIII. Summary and Conclusion IX. Acknowledgements 	 Department of Waiver Program Could Apply To Challenged In

Expired in 2010, No Similar Programs or Plans To Renew

Project Delivery Method

General Services

- rements on DB Contractor
- Nust Identify Major Subs Before Hand
- of DGS

Education

- am As Part of EEA
- To Be Waived From Separations Act
- n Court But Ultimately Upheld

Matt Stevenson Construction Management

Exemptions

- The Act Has Long Since Been Repealed For:
 - Boroughs
 - > Townships
 - Second-Class Townships
 - > Third Class Cities
 - > Counties

Landis Run Intermediate Lancaster, PA	
 Presentation Overview Project Background Analysis #1: Geothermal Heat Pumps Analysis #2: Modular Classroom Wings Breadth #1: Noise Reduction of Modular Walls Analysis #3: Electrical Rough-In Method Analysis #4: Project Delivery Method Summary and Conclusion Acknowledgements 	Geothermal H Initial Cost Lower Utility Reduces Er No Significo Pushes Projeto Modular Class

Summary & Conclusion

leat Pumps - Implement

- Increased By 18.4%
- ty & Maintenance Cost
- Emissions
- ant Construction Impact
- pject To LEED Gold

srooms - Implement

Substantial Completion Date of Areas C & D Accelerated □ Savings of \$3.72 Million or 14.1% of Project Cost

Matt Stevenson Construction Management

Electrical Rough-In Method - Implement

□ OH RI Saves \$50,000

- Dry-In Dates Accelerated 23 Days on Average
- Activity Duration Reduced By 35 Working Days

Alternative Project Delivery Method – Not Possible

- Design Build May Be Used For DGS Projects At Their Discretion
- Previously Used To Be Able To Use Single Prime For DOE But No Longer Can
- Multiple Prime Not Required For Boroughs, Townships, Second-Class Townships, Third-Class Cities, and Counties

Academic Acknowledgements

Dr. Robert Leicht Dr. Moses Ling Dr. Linda Hanagan All Penn State AE Faculty

Industry Acknowledgements

Warfel Construction Crabtree, Rohrbaugh & Associates MBR Construction Services

Questions/Comments?

Matt Stevenson Construction Management

Special Thanks To:

Brett Calabretta Kyle Goodyear

Manheim Township School District

Family & Friends

John Hess Jim Spence Joshua bower