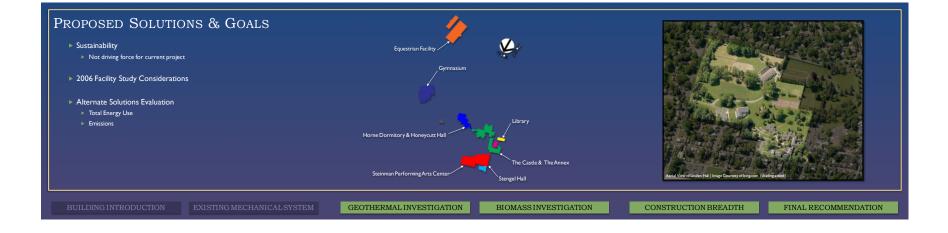
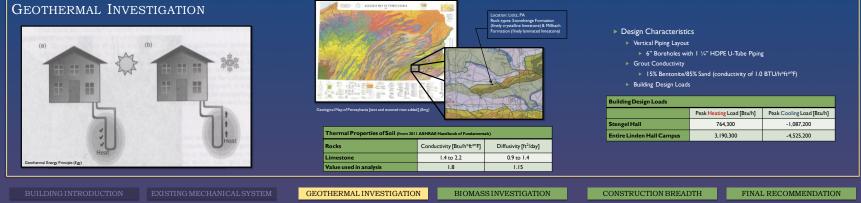
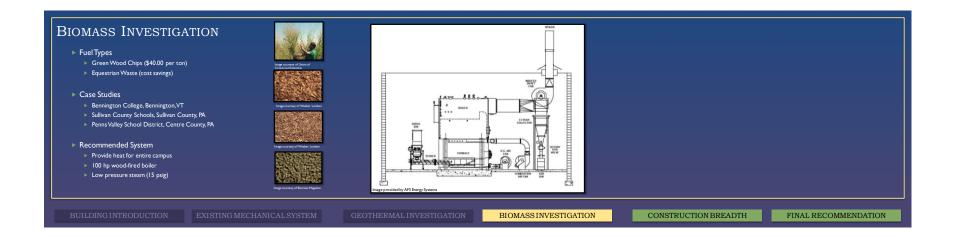


Madeline Haus | Mechanical Option | Advisor: Dr. Treado


1




GEOTHERMAL INVESTIGATION

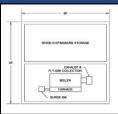
GEOTHERMAL INVESTIGATION Energy Consumption Summary

		Energy Consumption Summa					
			Elect	ricity	G	as	Combined Existing Energy Use: 789,928 kBTU/year
Equipment Selection			kV	Vh	kE	štu	GSHP Energy Use: 460.681 kBTU/year
I ½ - 5 Ton Water Source Heat Pumps			Boilers &	Ground Source	Boilers &	Ground Source	
 (2) 7 ½ hp centrifugal pumps 			Condensing Units	Heat Pumps	Condensing Units	Heat Pumps	
 270 gpm (3 gpm/ton) 		Heating					41% Reduction in Energy Consumption
71 ft of head loss		Primary Heating	0	32.670	586,424	0	
1750 RPM PUMP CURVES		Other Heating Accessories	4.305	62	0	0	
	Water Source Heat Pump Image courtesy of Trane	Cooling	1,505		, , , , , , , , , , , , , , , , , , ,	, ,	Initial Cost: \$285,080.00 increase
		CoolingCompressor	39,706	28.963	0	0	
		Tower/CondFans	16.039	0	0	0	Electric Cost: \$4,026.44/year increase
		Other Heating Accessories	1.901	55	0	0	Gas Cost: \$9,790.83/year decrease
		Auxiliary					
		Supply Fans	25,192	24.877	0	0	
6 45 90 120 100 200 200 200 305 306 402 442 480 500 Opency with Enclosed Per Manufer		Pumps	0	48.391	0	0	32 year payback
a 2m 40 40 40 40 50	Base-mounted centrifugal pump Image courtesy of Bell & Gossett						
	-						
			ami o Ami o N	DIO		CATTON .	
BUILDINGINTRODUCTION		GEOTHERMAL INVE	STIGATION	BION	IASSINVEST	IGATION	CONSTRUCTION BREADTH FINAL RECOMMENDATION

BIOMASS INVESTIGATION

Fuel Types

- Green Wood Chips (\$40.00 per ton)
- Equestrian Waste (cost savings)


Case Studies

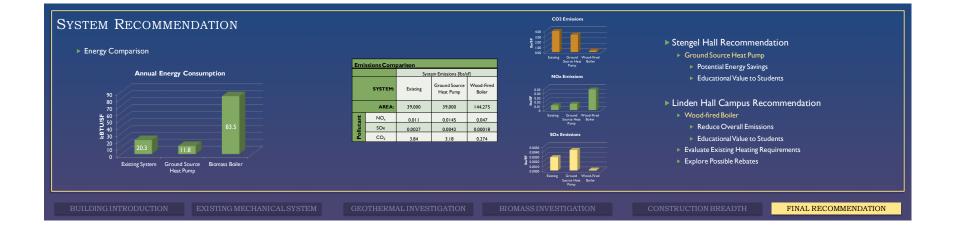
- Bennington College, Bennington, VT
- Sullivan County Schools, Sullivan County, PA
- Penns Valley School District, Centre County, PA

Recommended System

- Provide heat for entire campus
- I00 hp wood-fired boiler
 - Low pressure steam (15 psig)

NVESTIGATION

BIOMASSINVESTIGATION

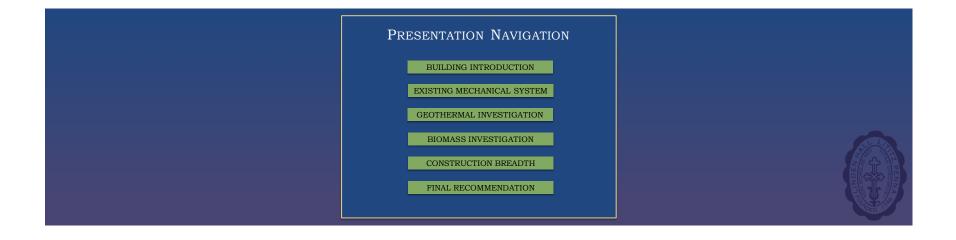

CONSTRUCTION BREADTH

FINAL RECOMMENDATION

PENNSTATE Cology of Applicational Sciences Compositive Extension Agricultural and Biological Engineering **BIOMASS INVESTIGATION** ENERGY COST COMPARISONS, \$/Million BTU \$5 \$10 \$15 \$20 \$25 \$30 \$35 Energy Use Demand remains constant Efficiency changes Initial Cost of Boiler System: \$5.88 Natural Gas Natural Gas: 100,000 BTU/therm & 85% efficient \$2.8 Million Maintenance Cost Energy Cost Comparison \$25,572/year increase -\$100.0 -\$150,000.00 Cost Analysis Maintenance Cost: \$10,000/year + \$5,000 /5 years Years \$5.04 Kiln Dried Woo Equestrian Waste Utilization: \$33,960/year savings BIOMASSINVESTIGATION CONSTRUCTION BREADTH FINAL RECOMMENDATION

CONSTRUCTION BREADTH SUMMARY

Geothermal Estimate Biomass Estimate Geothermal Estimate Summary Biomass Boiler Estimate Summary Material Cost Labor Cost Total Cost Activity Cost/SF Area Total Cost Activity Drilling Trenching \$0.00 \$162,500.00 \$162,500.00 New Boiler Building \$71.41 \$58,998.94* 900 \$0.00 \$3,623.54 \$3,623.54 Steam Piping Repairs/Installation \$2,199,890.00 \$22.00 99,995 Piping Welding Backfill/Grout 7-1/2 hp Pump \$55,187.62 \$0.00 \$55,187.62 Wood-Fired Boiler System \$600,000 \$7,618.20 \$7,618.20 \$0.00 TOTAL \$465,083.38 \$11,920.80 \$1,103.22 \$13,024.02 \$15,200.00 \$930.00 \$16,130.00 Water Source Heat Pumps \$162,000.00 \$45,000.00 \$207,000.00 TOTAL \$465,083.38 CONSTRUCTION BREADTH FINAL RECOMMENDATION



QUESTIONS

Acknowledgements
Dr. Stephen Treado – Faculty Advisor
Jeff Chambers – Chambers & Associates
Linden Hall School for Girls – Project Owne
Paul Lewandowski – AFS Energy

SUPPORTING GEOTHERMAL VALUES

Figure C.4 - Required Bore Length for Cooling						
Variable	Units	Coefficient	Stengel Hall	Linden Hall Campus		
Short Circuit Heat Loss Factor		F _{er}	F., 1.04			
Part Load Factor During Design Month		PLF_		1.0		
Building Design Cooling Block Load	Btu/h	q.,	-1087200	-4525200		
Net Annual Average Heat Transfer to Ground	Btu/h	q.,	-322900	-1334900		
Thermal Resistance of Pipe	h*ft*°F/Btu	Rb	0.09			
Effective Thermal Resistance of Ground (annual pulse)	h*ft*°F/Btu	Rm	0.117			
Effective Thermal Resistance of Ground (monthly pulse)	h*ft*°F/Btu	Rm				
Effective Thermal Resistance of Ground (daily pulse)	h*ft*°F/Btu	Red	0.133			
Undisturbed Ground Temperature	°F	t,	52			
Temperature Penalty for Interference of Adjacent Bores	°F	*F L L				
Liquid Temperature at Heat Pump Inlet	°F	t _{ei}		65		
Liquid Temperature at Heat Pump Outlet	°F	t _{wo}		75		
Power Input at Design Cooling Load	w	W,	10000	10000		
Required Bore Length for Cooling	ft	L	24605	100177		

Figure C.5 - Required Bore Length for Heating											
Variable	Units	Coefficient	Stengel Hall	Linden Hall Campus							
Short Circuit Heat Loss Factor		F _{sc}		1.04							
Part Load Factor During Design Month		PLFm		1.0							
Building Design Heating Block Load	Btu/h	q _b	764300	3190300							
Net Annual Average Heat Transfer to Ground	Btu/h	q,	-322900	-1334900							
Thermal Resistance of Pipe	h*ft**F/Btu	R _b	R _h 0.09								
Effective Thermal Resistance of Ground (annual pulse)	h*ft**F/Btu	Rm	0.117								
Effective Thermal Resistance of Ground (monthly pulse)	h*ft**F/Btu	R _{gm}	0.172								
Effective Thermal Resistance of Ground (daily pulse)	h*ft**F/Btu	R _{ed}		0.133							
Undisturbed Ground Temperature	°F	t,		52							
Temperature Penalty for Interference of Adjacent Bores	۴F	t,	1.8								
Liquid Temperature at Heat Pump Inlet	°F	Lwi		35							
Liquid Temperature at Heat Pump Outlet	°F	Ewo		45							
Power Input at Design Heating Load	w	W _b	10000	10000							
Required Bore Length for Heating	ft	L.	25006	108779							

fear	Increased Electric Cost (assuming 1% inflation)	Gas Savings (assuming 2% inflation)	Sum of Annual Costs & Savings	Cumulative Cost of System
C4r	\$4.026.00	-\$9,790.83	\$279.3 5. 7	\$279.3 5. 7
2	\$4,066.26	-\$9,986.65	-\$5,920.39	\$273,394,78
3	\$4,106.92	-\$10,186.38	-\$6,079.46	\$267,315.33
4	\$4,147.99	-\$10,390,11	-\$6.242.12	\$261.073.21
5	\$4,189,47	-\$10,597.91	-\$6,408,44	\$254,664.77
6	\$4,231.37	-\$10,809,87	-\$6,578.50	\$248.086.27
7	\$4,273,68	-\$11,026.06	-\$6.752.38	\$241,333.89
8	\$4,316,42	-\$11,028.08	-\$6.930.17	\$234,403.72
•	\$4,359.58	-\$11,210.57	-\$7.111.94	\$227,291,78
10	\$4,403,18	-\$11,700.95	-\$7.297.77	\$219,994.01
ii ii	\$4,447.21	-\$11,934.97	-\$7,487.76	\$212,506.25
12	\$4,491,68	-\$12,173,67	-\$7.681.99	\$204,824,27
13	\$4,536.60	-\$12,417.14	-\$7,880.54	\$196,943.72
14	\$4,581.96	-\$12,665,48	-\$8.083.52	\$188,860,21
15	\$4,627,78	-\$12,918.79	-\$8.291.01	\$180,569,20
16	\$4,674.06	-\$13,177.17	-\$8,503.11	\$172,066.09
7	\$4,720.80	-\$13,440,71	-\$8,719.91	\$163,346,18
8	\$4,768.01	-\$13,709.53	-\$8.941.52	\$154,404.66
19	\$4,815.69	-\$13,983,72	-\$9,168.03	\$145,236.64
20	\$4,863,85	-\$14,263.39	-\$9,399.54	\$135,837.09
21	\$4,912.49	-\$14,548.66	-\$9.636.17	\$126,200,92
22	\$4,961,61	-\$14,839,63	-\$9.878.02	\$116,322.90
23	\$5.011.23	-\$15,136.42	-\$10,125.20	\$106,197,70
24	\$5,061.34	-\$15,439.15	-\$10,377.81	\$95,819.89
25	\$5.111.95	-\$15,747.94	-\$10.635.98	\$85,183.90
26	\$5,163.07	-\$16.062.89	-\$10.899.82	\$74,284,08
27	\$5.214.70	-\$16,384,15	-\$11,169,45	\$63,114,63
28	\$5.266.85	-\$16.711.84	-\$11,444,99	\$51,669,64
29	\$5,319.52	-\$17,046.07	-\$11,726.55	\$39,943.09
10	\$5.372.71	-\$17,386.99	-\$12.014.28	\$27,928.81
31	\$5,426.44	-\$17,734.73	-\$12,308.29	\$15,620.51
32	\$5,480.70	-\$18,089.43	-\$12,608.72	\$3,011.79
3	\$5.535.51	-\$18.451.22	-\$ 2.9 5.7	-\$9,903.92

		4 - Simple Payt	ack Calculation of I	Biomass Boiler							
Supporting Biomass Values	Year	Maintenance Cost	initial ()	Natural Gas Savings (assuming 2% inflation)	Waste Savings	(includes initial cost)	Cumulative Cost of System				
	· · ·	\$ 10,000.00				\$ 2,860,500.94					
	2	\$ 10,000.00 \$ 10,000.00	\$ 91,005.77 \$ 91,460.79		\$ (33,960.00) \$ (33,960.00)		\$2,861,266.09 \$2,860,166.44				
		\$ 10,000.00 \$ 10,000.00	\$ 91,460.79 \$ 91,918.10		\$ (33,960.00) \$ (33,960.00)		\$2,860,166.44				
		\$ 15,000.00	\$ 92,377.69		\$ (33,960.00)		\$2,857,054,26				
	6	\$ 10,000.00	\$ 92,839.58		\$ (33,960.00)		\$2,849,875.30				
	7	\$ 10,000.00	\$ 93,303.77	\$ (78,720.58)	\$ (33,960.00)		\$2,840,498.49				
	8	\$ 10,000.00	\$ 93,770.29		\$ (33,960.00)		\$2,828,832.98				
	9	\$ 10,000.00	\$ 94,239.14		\$ (33,960.00)		\$2,814,784.66				
	10	\$ 15,000.00	\$ 94,710.34		\$ (33,960.00)		\$2,803,256.08				
	11	\$ 10,000.00 \$ 10,000.00	\$ 95,183.89 \$ 95,659.81		\$ (33,960.00) \$ (33,960.00)		\$2,784,146.30 \$2,762,350,75				
	12	\$ 10,000.00 \$ 10,000.00	\$ 95,659.81		\$ (33,960.00) \$ (33,960.00)		\$2,762,350.75				
	14	\$ 10,000.00	\$ 96,618,80		\$ (33,960.00)		\$2,710,265.39				
		\$ 15,000.00	\$ 97,101.90		\$ (33,960.00)		\$2,684,747,31				
	16	\$ 10,000.00	\$ 97,587.40	\$ (107,288.08)	\$ (33,960.00)	\$ (33,660.67)	\$2,651,086.64				
	17	\$ 10,000.00	\$ 98,075.34	\$ (111,043.16)	\$ (33,960.00)	\$ (36,927.82)	\$2,614,158.82				
	18	\$ 10,000.00	\$ 98,565.72		\$ (33,960.00)		\$2,573,834.87				
		\$ 10,000.00	\$ 99,058.55		\$ (33,960.00)		\$2,529,981.21				
	20	\$ 15,000.00	\$ 99,553.84 \$ 100.051.61		\$ (33,960.00)		\$2,487,459.52				
	21	\$ 10,000.00 \$ 10,000.00	\$ 100,051.61		\$ (33,960.00) \$ (33,960.00)		\$2,436,126.55 \$2,380,833,97				
	22	\$ 10,000.00	\$ 100,331.87		\$ (33,960.00)		\$2,380,833.97				
	2.5	\$ 10,000.00		\$ (141.277.91)			\$2,257,750.20				
	25	\$ 10,000.00		\$ (146,222.64)			\$2,189,635.26				

	Initial Cost of Geothermal System								
SUPPORTING CONSTRUCTION VALUES	System Component	Unit	Material [\$/Unit]	Labor [\$/Unit]	Quantity	COST Material Labor		TOTAL	
	Drill Boreholes, 6" diameter	L.F.	\$0.00	\$6.50	25,000	\$0.00	Labor \$162,500.00	\$162,500.00	Biomass Boiler Structure:
	Trench Excavation for Header, 8" wide, 48" dee and backfill	P L.F.	\$0.00	\$1.03	3518	\$0.00	\$3,623.54	\$3,623.54	Concrete Block (Concrete Frame) = 149.25 \$/SF for exterior wall perimeters of 220 L.F.
	U-tube piping, I-1/4" HDPE	L.F.	\$0.91	\$0.00	52,392	\$47,676.72	\$0.00	\$47,676.72	- 18.70 \$/100 L.F. (because the 30'x30' building
	Header Piping, 4* HDPE	E LF. \$3.05 \$0.00 1526 \$4,654.30 \$0.00 \$4,654.30	proposed only has a perimeter of 120')						
	Fusion for HDPE joint, 1-1/4" (every 40' of piping)	EA	\$0.00	\$8.30	718	\$0.00	\$5,959.40	\$5,959.40	- 22.9% (Interiors)
	Fusion for HDPE joint, 4" (every 40' of piping) Sand, grout mixture and pipe bedding in trench	EA	\$0.00	\$18.85	88	\$0.00	\$1,658.80	\$1,658.80	- 10.2% (HVAC)
		C.Y.	\$1.60	\$0.81	174	\$278.40	\$140.94	\$419.34	- 1.8% (Plumbing) -10.4% (Electrical)
	Granular Bentonite, 50lb bag (0.625 ft ³)	Bag	\$9.80	\$0.81	1188	\$11,642.40	\$962.28	\$12,604.68	= \$71.41/SF
	90d Elbow, 4* HDPE	EA	\$18.70	\$0.00	36	\$673.20	\$0.00	\$673.20	
	90d Elbow, I-1/4" HDPE	EA	\$6.70	\$0.00	252	\$1,688.40	\$0.00	\$1,688.40	$\frac{\$71.41}{\$F} * 30'x30' = \$64,269 * 0.918 (location) = \$58,998.94$
	Tee, 4" HDPE	EA	\$22.50	\$0.00	22	\$495.00	\$0.00	\$495.00	SF ST
	7-1/2 hp, 1750RPM Centrifugal Pump, end suction, base mounted	EA	\$7,600.00	\$465.00	2	\$15,200.00	\$930.00	\$16,130.00	
	Water Source Heat Pump	ton	\$1,800.00	\$500.00	90	\$162,000.00	\$45,000.00	\$207,000.00	
						\$244,308.42	\$220,774.96	\$465,083.38	