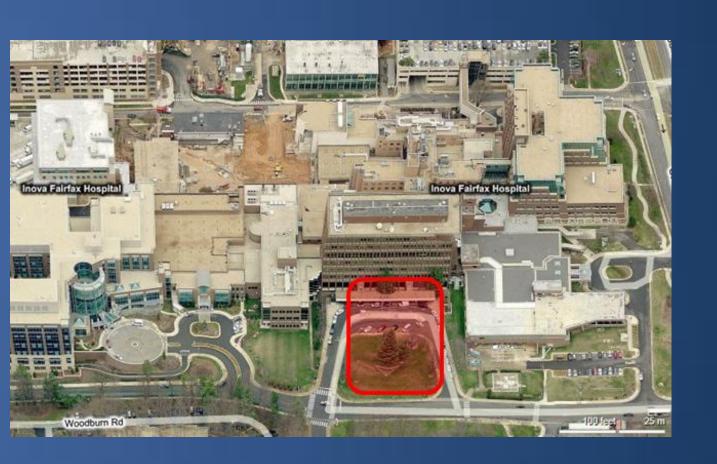
INOVA Fairfax Hospital South Patient Tower Falls Church, VA

Senior Thesis 2012

Mike Morder Mechanical Option

Advisor: Dr. William Bahnfleth

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



Building Introduction

Site Map

- Introduction
 - South Patient Tower
 - Mechanical System
 - Design Objective
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

- Addition to Existing Patient Bed Tower
- Located in Falls Church, VA
- 236,000 SF
- Overall Cost: \$76 Million
- Completion Expected in June 2012

Project Team

Architectural Aspects

- Introduction
 - South Patient Tower
 - Mechanical System
 - Design Objective
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

- Owner: INOVA Health System
- Architect: Wilmot/Sanz, Inc.
- General Contractor: Turner Construction
- Structural Engineer: Cagley & Associates
- MEP Engineer: RMF Engineering, Inc.
- Civil Engineer: Dewberry & Davis

- Designed to Respect Existing Tower
- Natural Daylight Essential for Patient Rooms
- Focal Point Atrium with Fountain at Entrance
- Pursuing LEED Silver

Structural System

Electrical System

- Introduction
 - South Patient Tower
 - Mechanical System
 - Design Objective
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

- Typical 29' x 29' Bays
- Reinforced Normal Weight Concrete
- Two-Way Slab with Drop Panels

- Two 2000 kVA Transformers
- 600 A Bus Ducts Provide Service Throughout
 - Building
- 2000 kW Emergency Generator

Existing Mechanical System

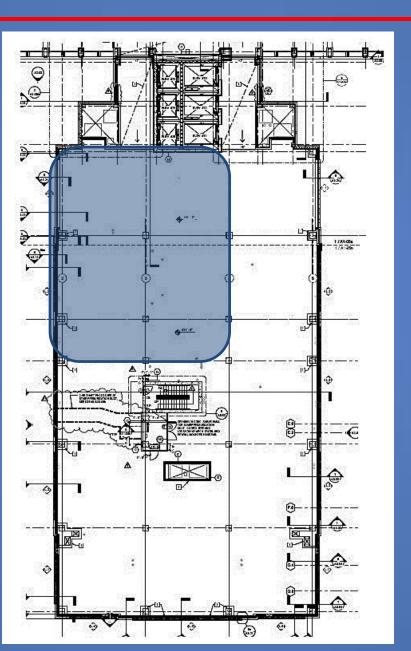
- Introduction
 - South Patient Tower
 - Mechanical System
 - Design Objective
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

- Connected to Existing Campus Central Plant
- Steam System-
 - Domestic Hot Water Heating
 - Heat Exchangers Provide HHW
- Chilled Water System-
 - Supplies Cooling to AHUs
 - No Booster Pumps in Building

- Four (4) 20,000 CFM AHU
 - Majority of Bed Tower
- 10,000 CFM and 13,000 CFM AHU
 - Supply Cafeteria and Kitchen Hoods
- Baseboard Radiators (Hot Water)
- Constant Air Volume Terminal Units
 - Reheat Provided on Exterior Rooms

Design Objective

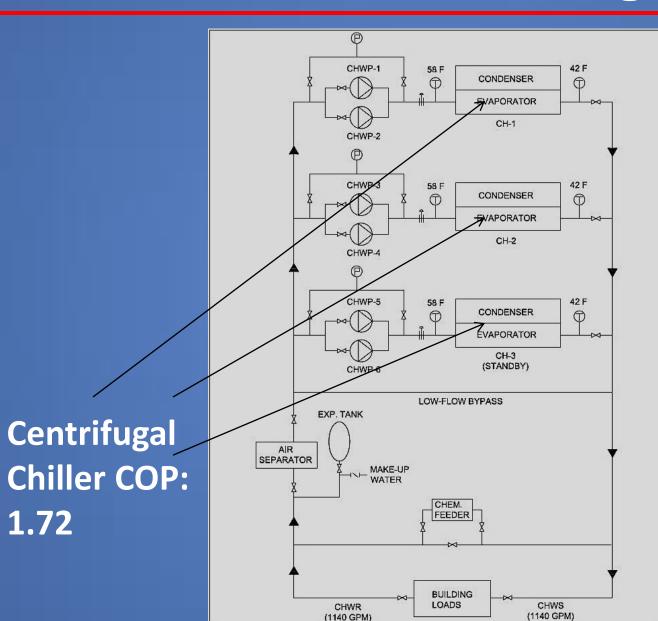
- Introduction
 - South Patient Tower
 - Mechanical System
 - Design Objective
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

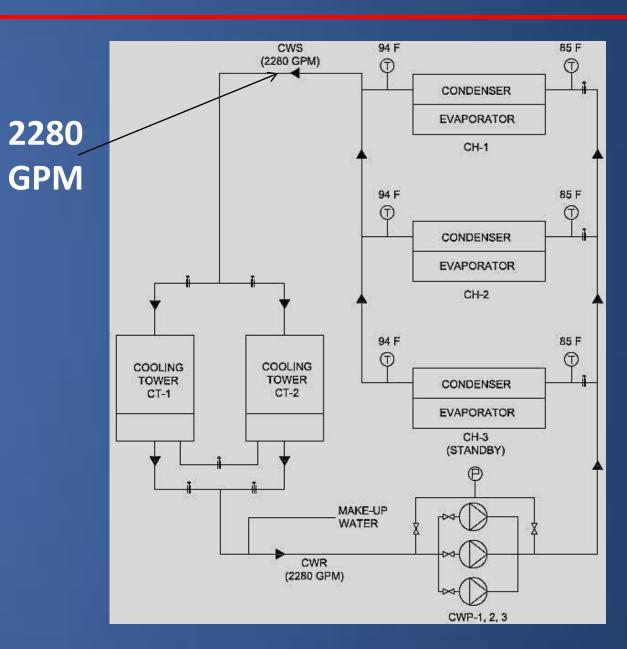

- Chilled Water Plant Optimization Study
- Chiller Design/ Layout
 - Centrifugal vs. Absorption
 - Primary Secondary vs. Variable Primary Flow
- Dedicated Heat Recovery Chiller

Air-Handler Condensate Recovery System

- Best Selections = Most Economical
 - Most Energy Reduction
 - Lowest Emissions

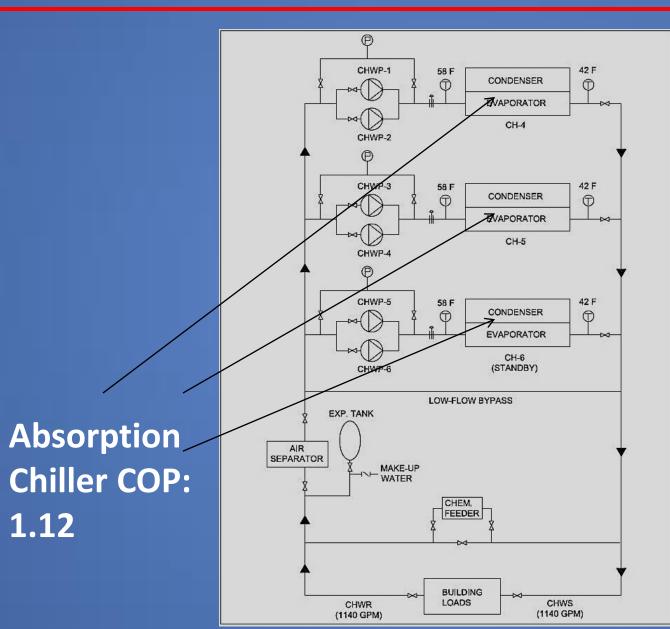
Introduction

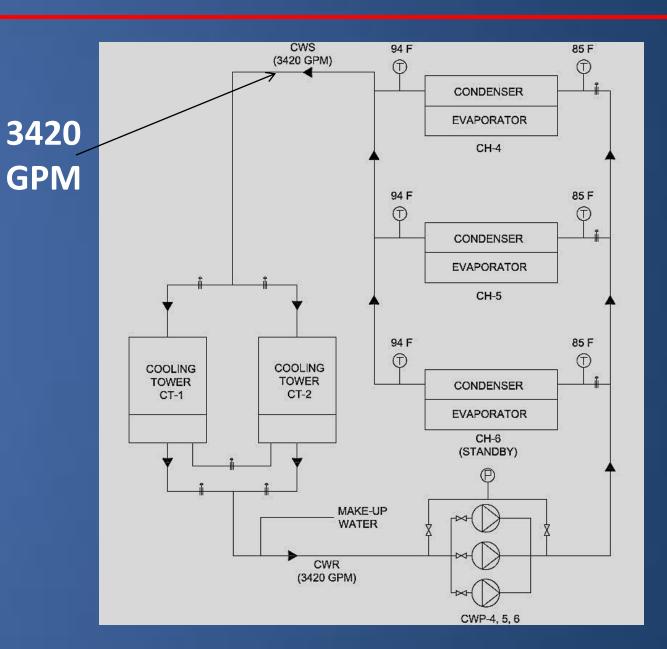

- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



- Location: 5th Floor Mechanical Space
- Alternative 1: Purchased CHW and Steam
- Alternative 2: Centrifugal (Primary/Secondary)
- Alternative 3: Centrifugal (VPF)
- Alternative 4: Absorption (Primary/Secondary)
- Alternative 5: Absorption (VPF)

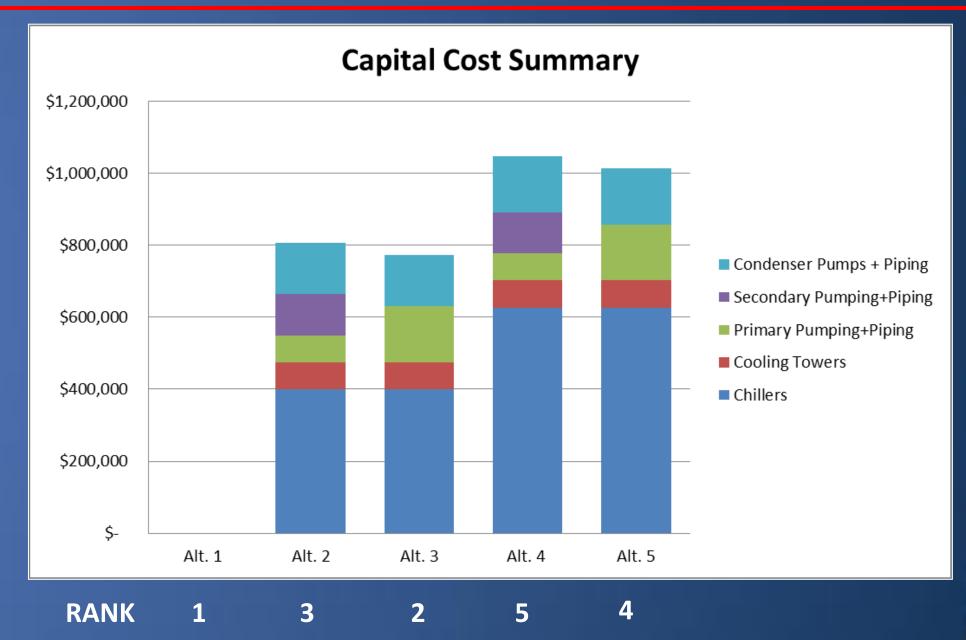
Alternative 3: Centrifugal (VPF)


- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



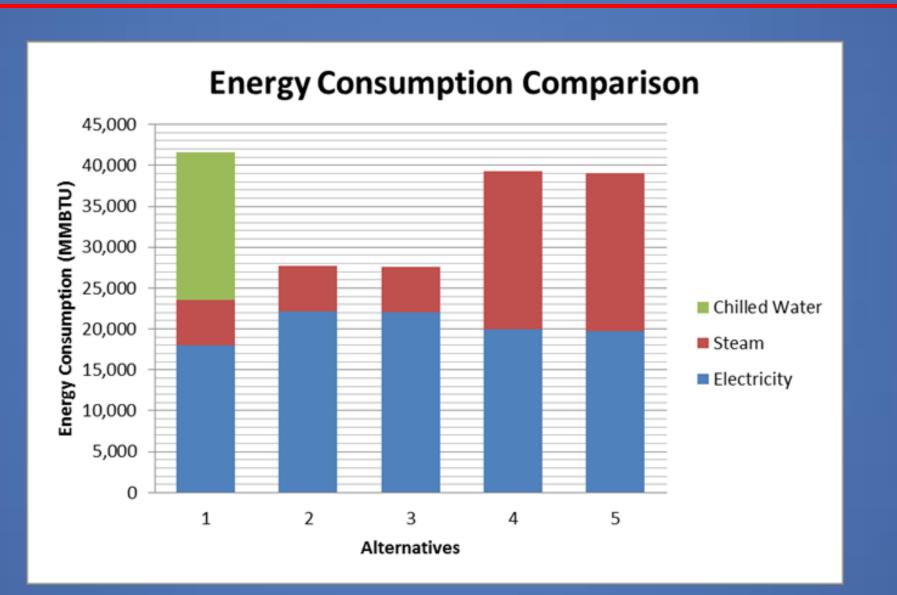
Alternative 5: Absorption (VPF)

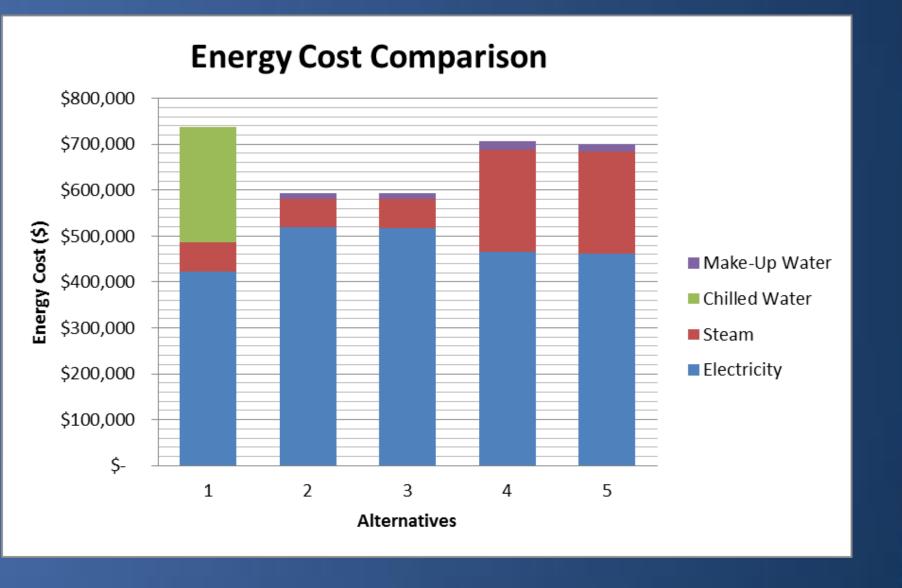
- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



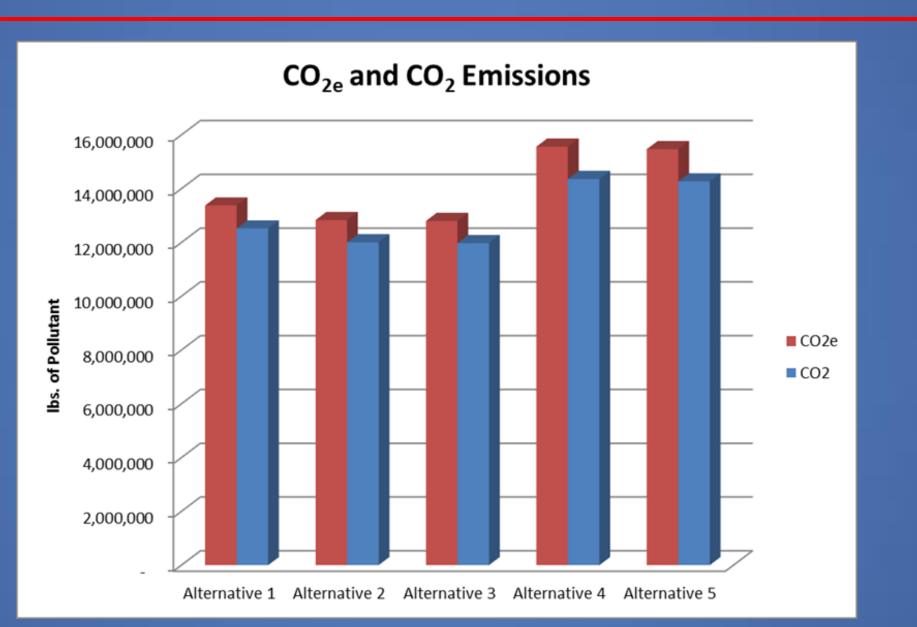
First Costs

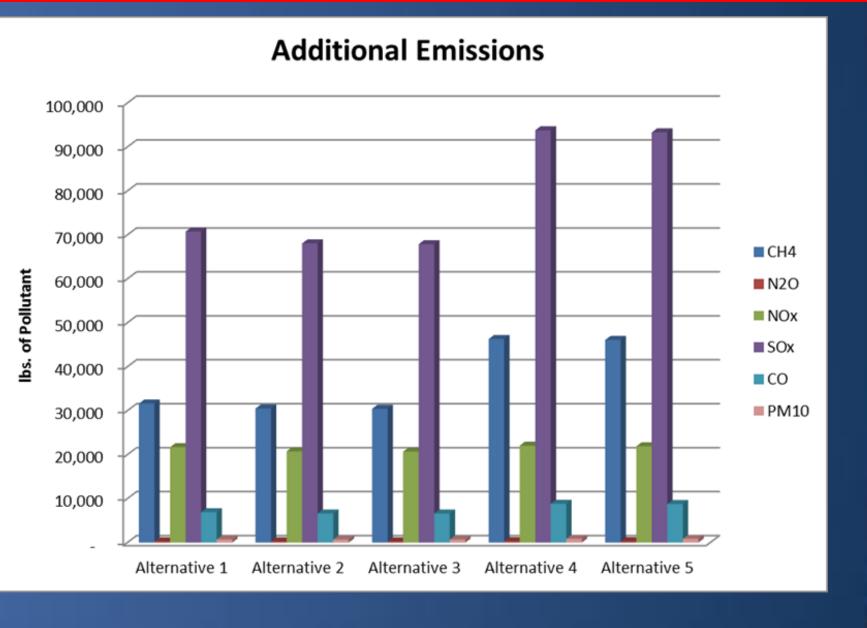
- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions


Unit Costs of Equipment

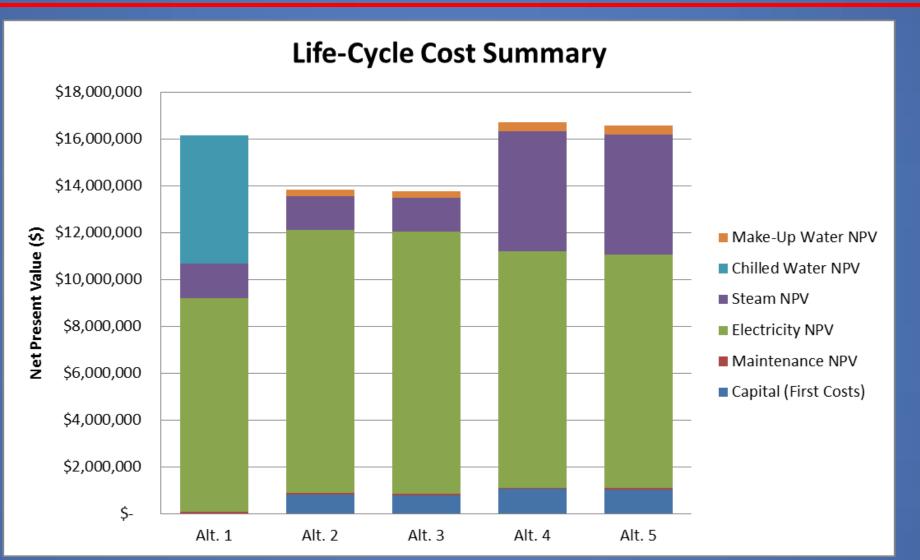

Equipment	Unit Cost
Pump (7.5 HP)	\$ 4,070 / pump
Pump (15 HP)	\$ 4,810 / pump
Pump (30 HP)	\$ 8,440 / pump
Cooling Towers – Induced (Axial)	\$ 38,220 / tower
Centrifugal Chillers	\$ 350 / ton
Absorption Chillers	\$ 550 / ton
Schedule 40 Piping (8")	\$ 203.15 / LF
Insulation	\$ 25.33 / LF

Energy


- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



Emissions


- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Life-Cycle Cost Analysis

- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Payback Summary

	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Simple Payback	BASELINE	5.6 yrs.	5.3 yrs.	32.1 yrs.	26.9 yrs.
Discounted Payback	BASELINE	7.0 yrs.	6.0 yrs.	30+ yrs.	30+ yrs.

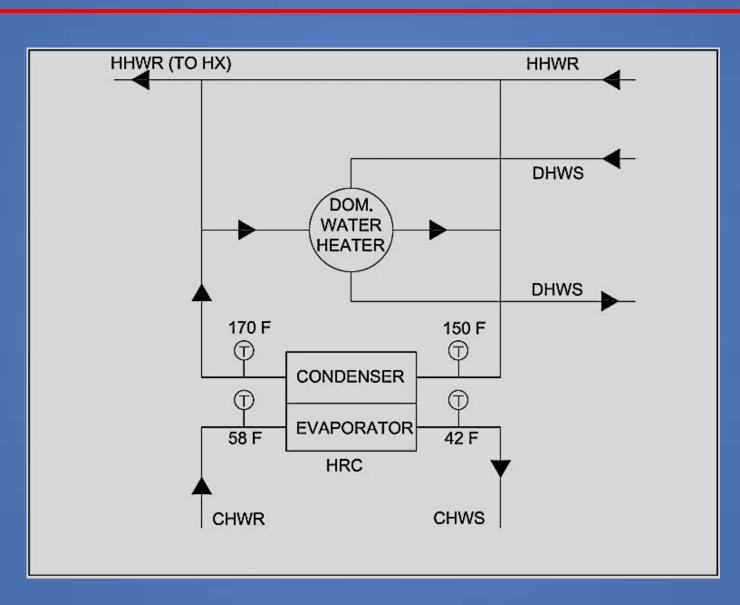
Alternative 3: Centrifugal Chillers (VPF)

- Lowest Payback (Simple and Discounted)
- \$2.4 Million Savings Compared to Current Design
- Lowest Energy and Emissions

Life-Cycle Cost Analysis

- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

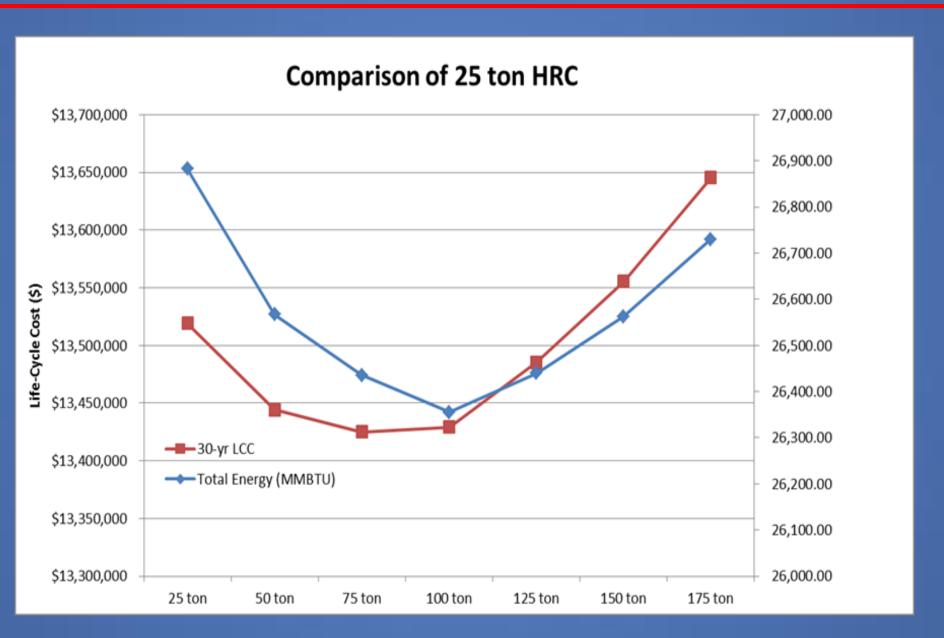
Life-Cycle Cost Analysis

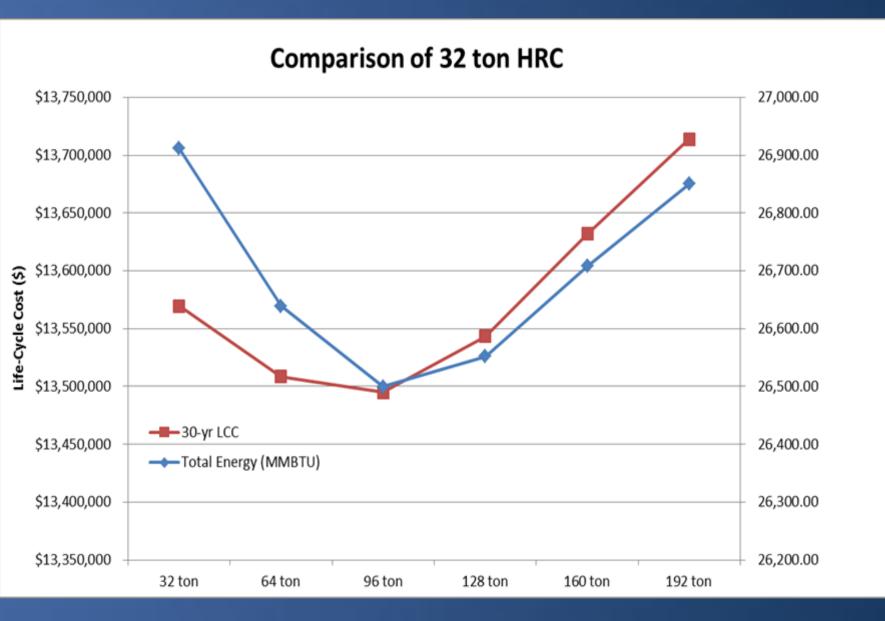

- Introduction
- Depth 1: Central Chilled Water Plant
 - Design Alternatives
 - First Costs / Energy
 - Life-Cycle Cost
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Dedicated Heat Recovery Chiller

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
 - Design/ Comparison
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

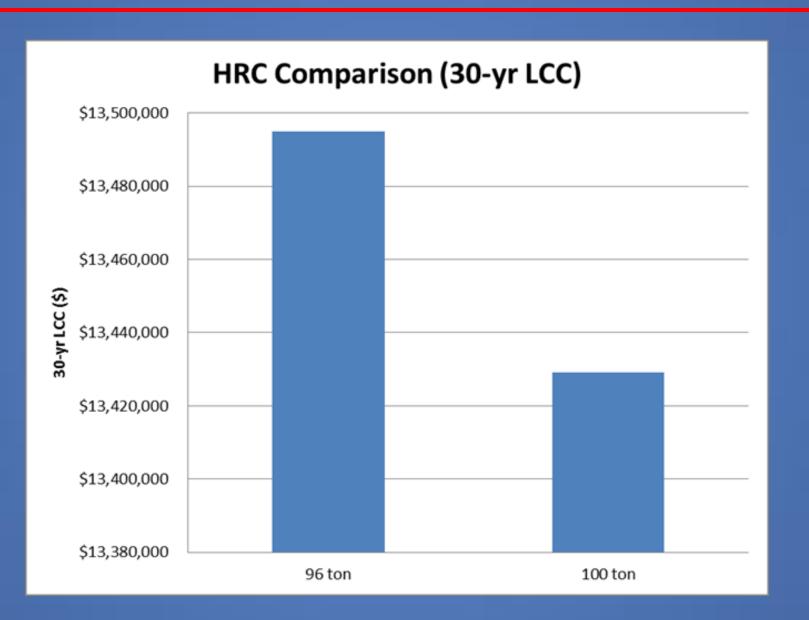
Heat Recovery Chiller Operating Conditions

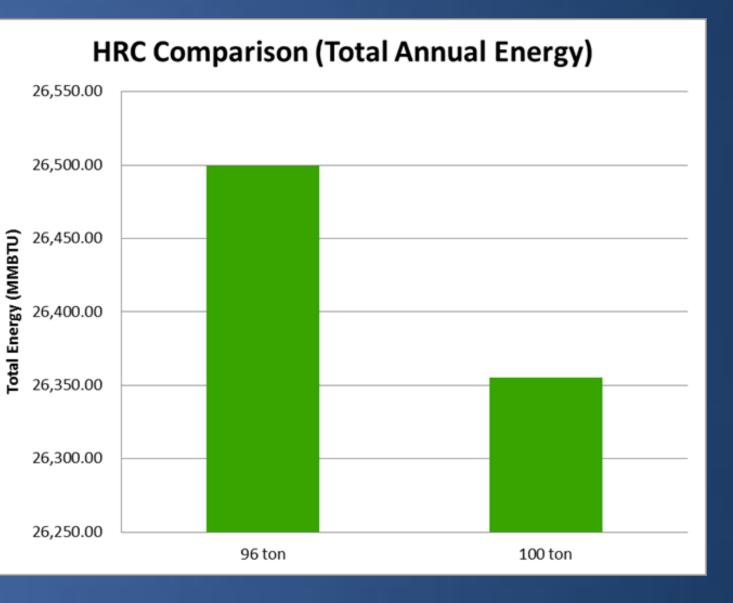

Madula	Chilled Water		Heat Rejection		Cooling	Heatin
Module	EWT (F)	LWT (F)	EWT (F)	LWT (F)	EER	g COP
25 ton	58	42	150	170	3.7	2.1
32 ton	58	42	150	170	3.8	2.1


Unit Cost

	Cost / Unit
Heat Recovery Chiller	\$ 600 / ton

Dedicated Heat Recovery Chiller


- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
 - Design/ Comparison
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions



Dedicated Heat Recovery Chiller

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
 - Design/ Comparison
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Condensate Recovery System

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
 - Design
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Condonaato	(lbs.)	-center = min	
conaensate	(\overline{hr})	$= CFM * \rho_{air} * 60 \frac{min}{hr} * \Delta w$	

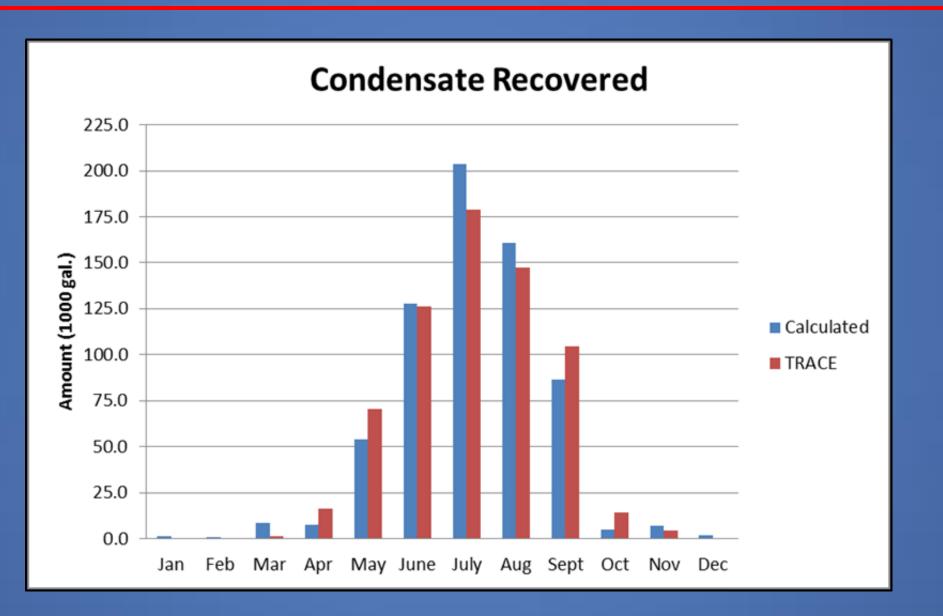
Where:

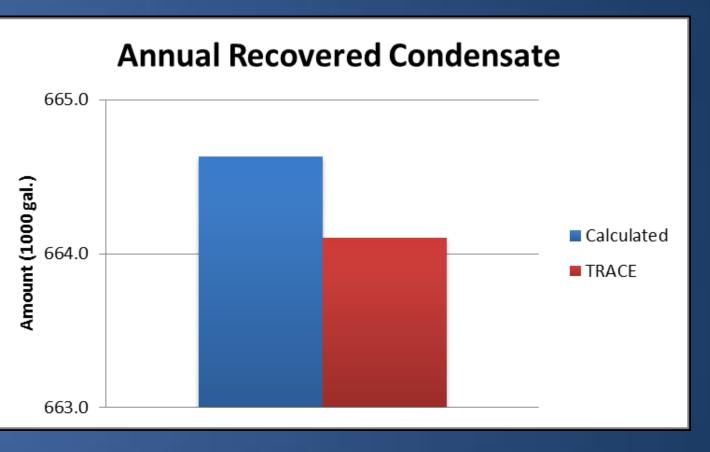
CFM = Airflow over Coil

 ρ_{air} = density of air

 Δw = difference in humidity ratios across cooling coil

	January	February	March	April	May	June
ondensate 1000 gal.)	1.1	0.8	8.6	7.5	53.9	128.0
	July	August	September	October	November	December
ondensate 1000 gal.)	203.9	161.1	86.4	4.7	6.8	1.8

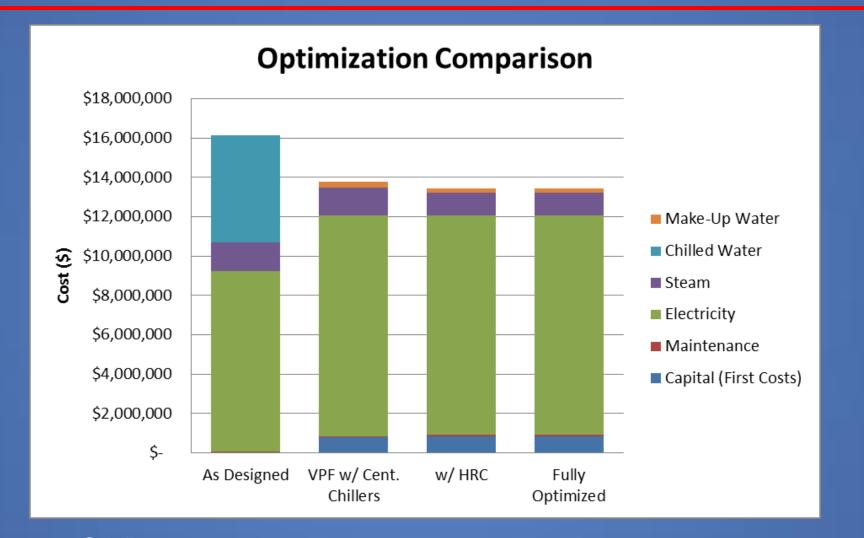

Example Monthly Calculation (July)

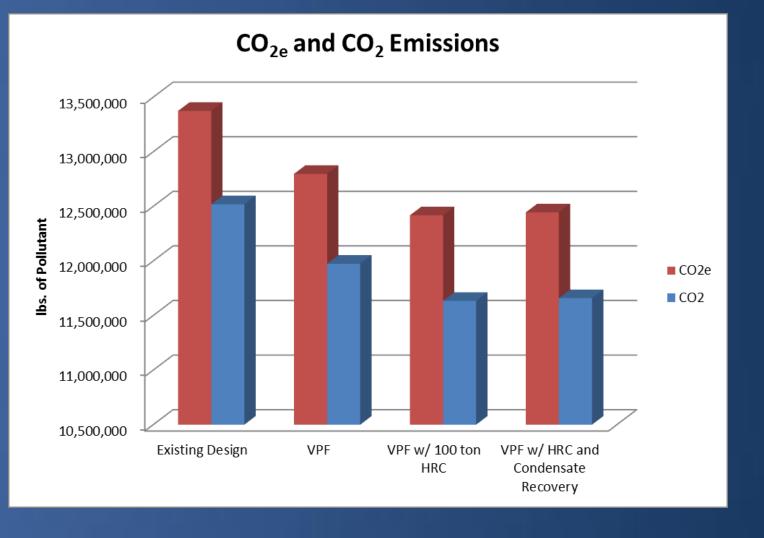

Hour	OADB	OAWB	MADB	MAWB	Clg (Tons)
1	73.3	66.8	73.3	66.8	405.5
2	72.0	66.0	72.0	66.0	379.5
3	71.0	65.6	71.0	65.6	365.5

CFM	Entering HR	Leaving HR	Condensate
85,191.5	0.01257	0.006189	2375.0
79,745.5	0.0123	0.006189	2129.1
76,789.2	0.01224	0.006189	2030.1

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
 - Design
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Condensate Recovery System




	Amount (1000 gal.)	Annual Cost
Water (Make-Up)	4,891	\$ 10,565
Reduced Make-Up	4,226	\$ 9,129
Savings	14 %	14 %

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
 - Design
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Depth Conclusions

Structural Breadth

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
 - Analysis
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Equipment	Amount	Weight/Unit	Total Weight (lbs)
Centrifugal Chillers	3	22,173 lb /each	66,519
leat Recovery Chiller	4	2,000 lb / 25 ton	8,000
umps	9	200 lbs / each	1,800
Piping	300 ft	36.32 lb / ft	10,896
Vater	_	19.66 lb / ft	
teel Pipe (8")	-	16.66 lb / ft	
otal			87,215
Distributed Load	Area =	3,364 ft ²	25.9 lb / ft²

			· ·		
Assuming #6 Bars	Neg.	Pos.	Neg.	Pos.	
	Moment	Moment	Moment	Moment	
Moment (M _U)	-194.3	+ 167.4	-583.1	+251.2	
Width Column Strip	174"	174"	174"	174"	
ffective Depth	9.375"	9.375"	14.25"	9.375"	
$M_N = M_U / \Phi$	-215.94	+186	-647.9	+279.1	
R = (Mn x 12000) / bd ²	169.4	145.95	220.04	219	
(Table A-3)*	0.0033	0.0033	0.0039	0.0039	
$A_s = \rho bd$	5.383 in ²	5.383 in ²	9.67 in ²	6.362 in ²	
A _{smin} = 0.0018bt	3.289 in ²	3.289 in ²	3.289 in ²	3.289 in ²	
N = (larger 7 or 8) / 0.44	13	13	22	15	
N _{min} = width / (2t)	9	9	9	9	

Middle Strip

Column Strip

Structural Breadth

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
 - Analysis
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

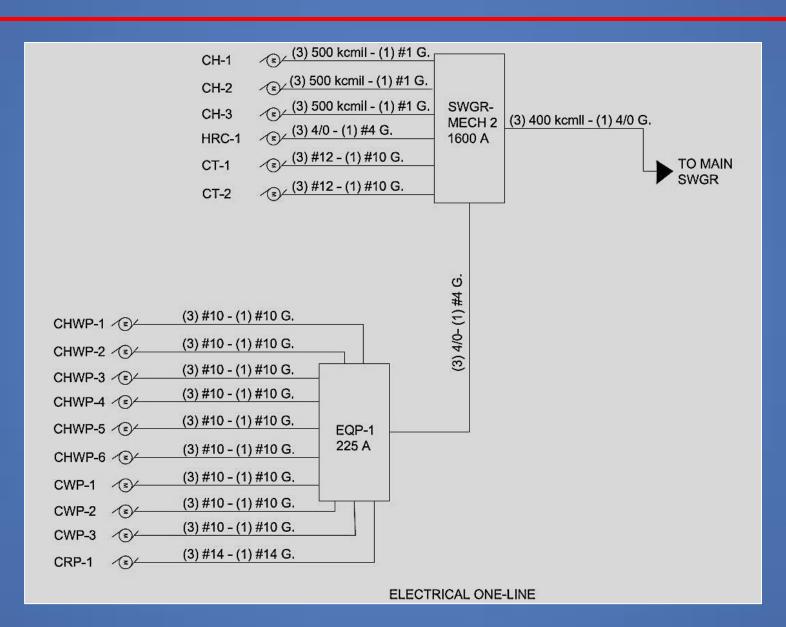
Column Strip:

Negative Moment: 0 bars (Design OK)
Positive Moment: (10) #6 bars / bay

Middle Strip:

Negative Moment: (6) #5 bars / bay

Positive Moment: (8) #5 bars / bay


Size	lb/ft	Amount	Length (ft)	Total Weight (lb.)
# 6	1.502	40	14.5	871.2
# 5	1.043	56	14.5	846.9
OTAL				1718.1

Structural Additional Cost:

\$ 0.76 / lb X 1718.1 lb = \$ 1,305.76

Electrical Breadth

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
 - Equipment Sizing
- Conclusion
- Acknowledgements
- Questions

Equipment	Cost			
1600 A Switchboard	\$ 3,450			
225 A Panelboard	\$ 1,090			
Motor Starters	\$ 5,751			
Wire	\$ 17,650			
Conduit	\$ 7,501			
Circuit Breakers	\$ 38,047			

Electrical Additional Cost: \$ 73,489

Conclusion

MAE Course Relation

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

- Centrifugal Chillers with VPF
 - Dedicated Heat Recovery Chiller
 - Condensate Recovery
- Savings: \$ 2.729 million over 30 year life
- Simple Payback: 5.1 years
- Additional Structural / Electrical Costs Included
- Savings: \$ 2.655 million over 30 year life
- Simple Payback: 5.6 years

- AE 557- Centralized Cooling
 - Chilled Water Plant Design / Study
- AE 558- Centralized Heating
 - Life-Cycle Cost Analysis
 - Utility Costs

Acknowledgements

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

Dr. William Bahnfleth Faculty Advisor, Penn State University

Joseph Kranz Project Executive, Turner Construction

Tessa Teodoro Project Engineer, Turner Construction

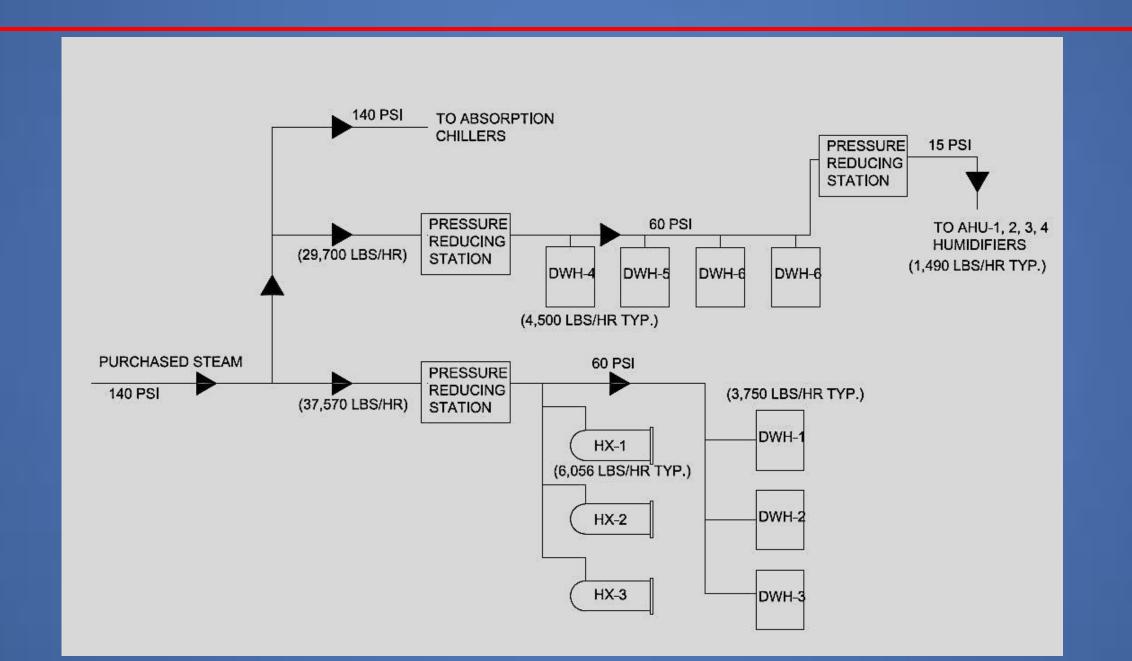
Andrew Rhodes Design Engineer, Southland Industries

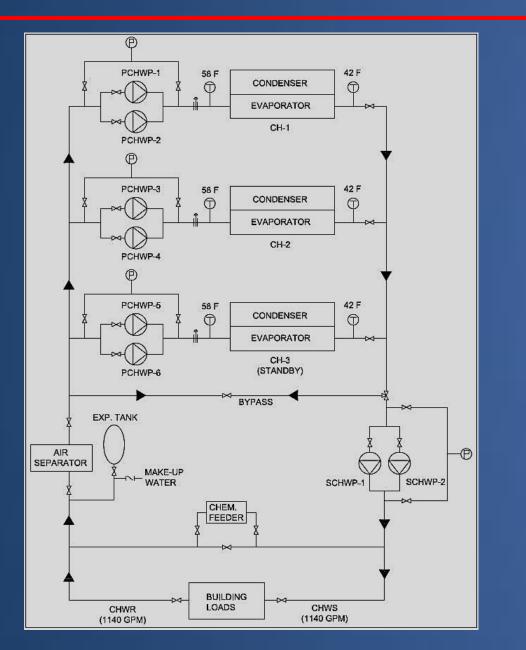
Kevin Smith Energy Engineer, Southland Industries

Raj Vora Director, Life Sciences, Southland Industries

Joe Mulligan Sales Engineer, Boland TRANE

Tony McGhee Account Executive, Johnson Controls Inc.


All my fellow AE peers, friends and family for their support throughout the thesis process.


THANKS ALL OF YOU!

- Introduction
- Depth 1: Central Chilled Water Plant
- Depth 2: Dedicated Heat Recovery Chiller
- Depth 3: Condensate Recovery
- Breadth 1: Two-Way Slab Reinforcing
- Breadth 2: Electrical
- Conclusion
- Acknowledgements
- Questions

THANK YOU

QUESTIONS?

Equipment	НР	FLA	Volts	KVA	PF	KW	ОСР	Wire Size	Conduit Size	Motor Starter
CHWP-1	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CHWP-2	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CHWP-3	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CHWP-4	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CHWP-5	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CHWP-6	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CWP-1	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CWP-2	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CWP-3	15	21	480	17.4	0.9	15.7	50	(3) #10 - (1) #10 G.	3/4"	1
CH-1	-	294	480	244.1	0.88	214.8	600	(3) 500 kcmil - (1) #1 G.	3"	N/A
CH-2	•	294	480	244.1	0.88	214.8	600	(3) 500 kcmil - (1) #1 G.	3"	N/A
CH-3	-	294	480	244.1	0.88	214.8	600	(3) 500 kcmil - (1) #1 G.	3"	N/A
HRC-1	-	184	480	152.8	0.8	122.2	450	(3) 4/0 - (1) #4 G.	2-1/2"	N/A
CT-1	10	14	480	11.6	0.9	10.5	30	(3) #12 - (1) #10 G.	1/2"	0
CT-2	10	14	480	11.6	0.9	10.5	30	(3) #12 - (1) #10 G.	1/2"	0
CRP-1	3	4.8	480	4.0	0.85	3.4	15	(3) #14 - (1) #14 G.	1/2"	00