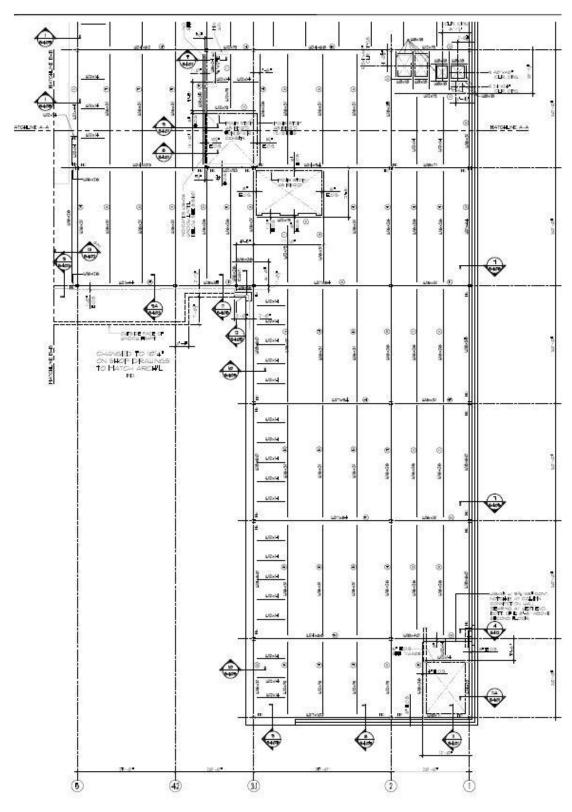
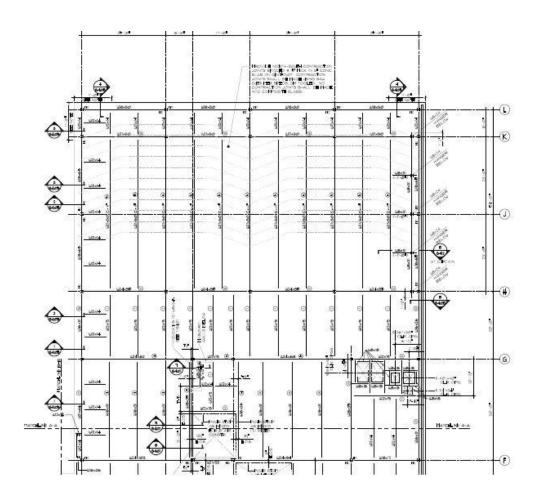
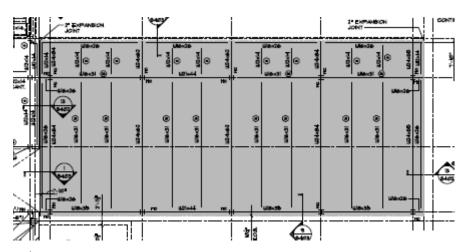
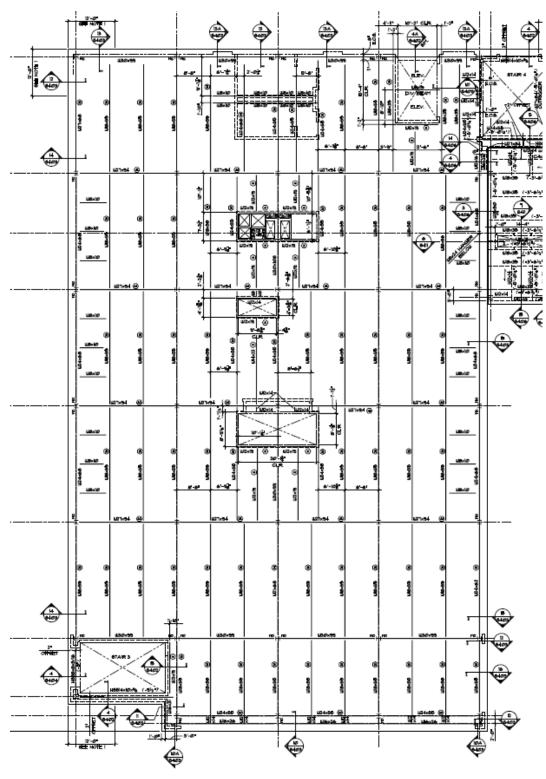

Appendix A: Typical Floor Plans


Framing Plan of the 2nd Floor, Courtesy of Highland Associates

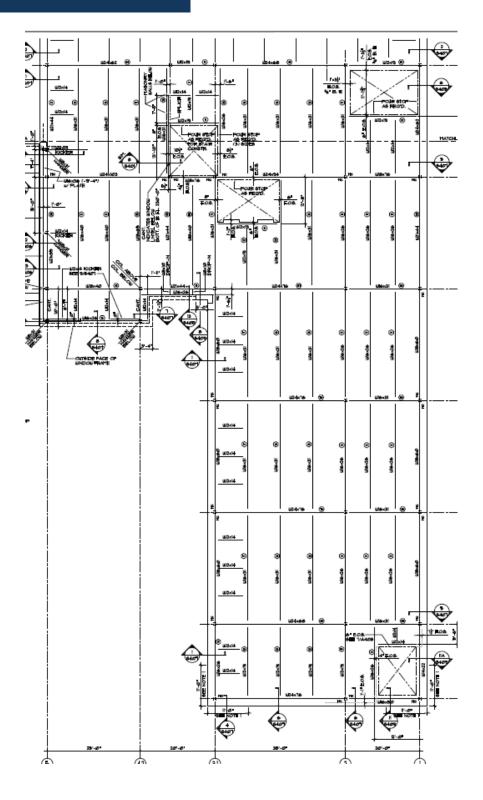

2nd Story frame, west wing, Courtesy of Highland Associates

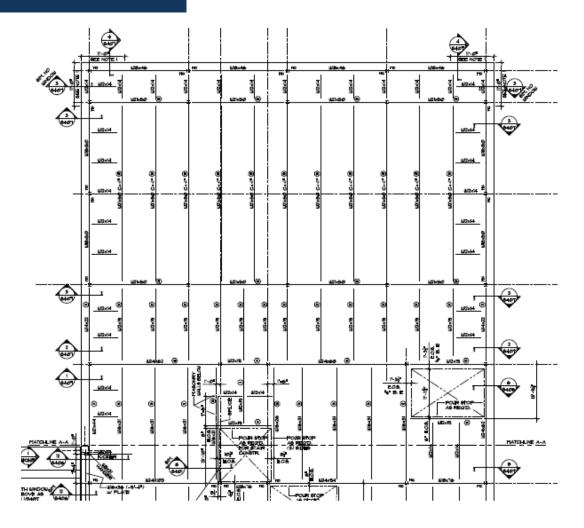


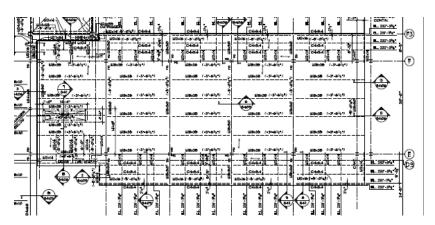
2nd Story frame, east wing (south), Courtesy of Highland Associates



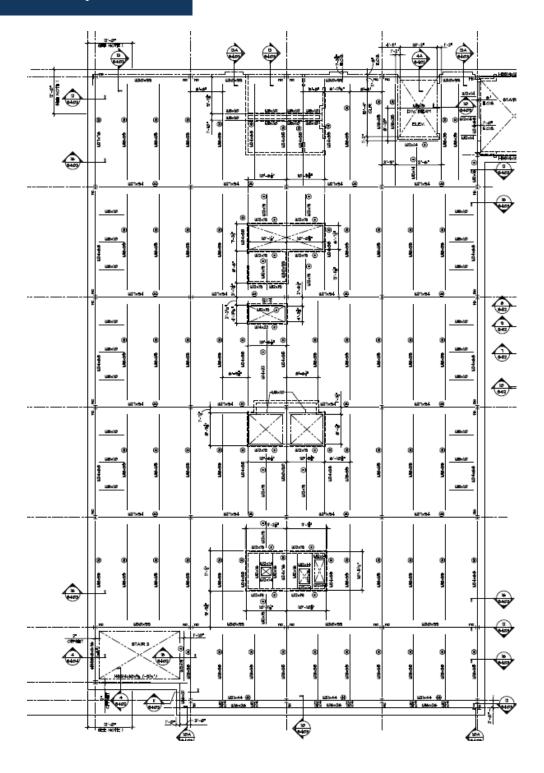
2nd Story frame, east wing (north), Courtesy of Highland Associates


2nd Story frame, Link, Courtesy of Highland Associates

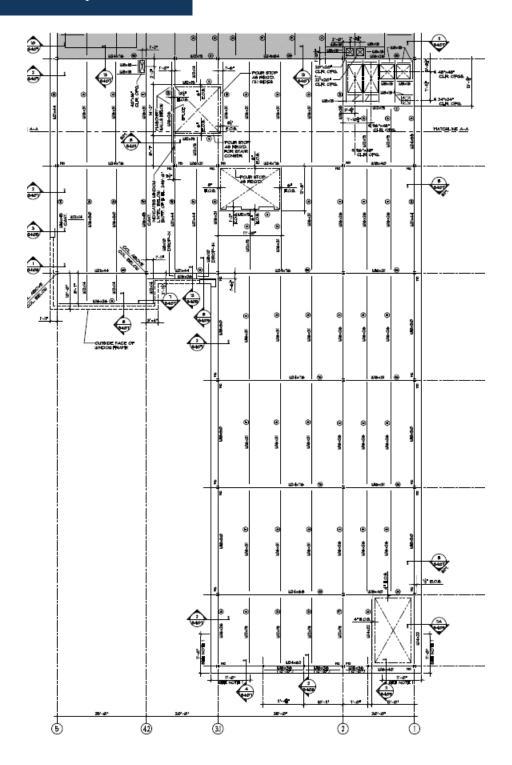

3rd Story frame, west wing, Courtesy of Highland Associates

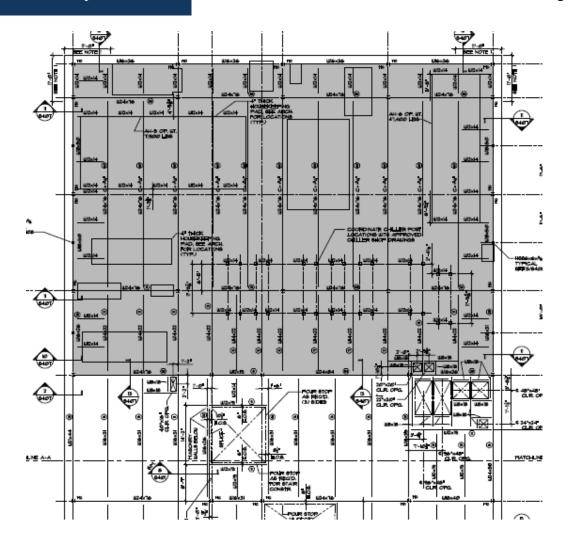


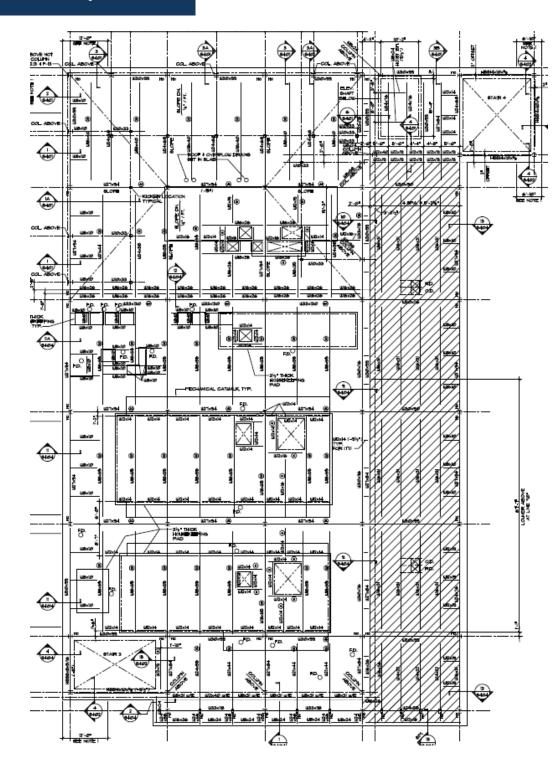
3rd Story frame, east wing (south), Courtesy of Highland Associates

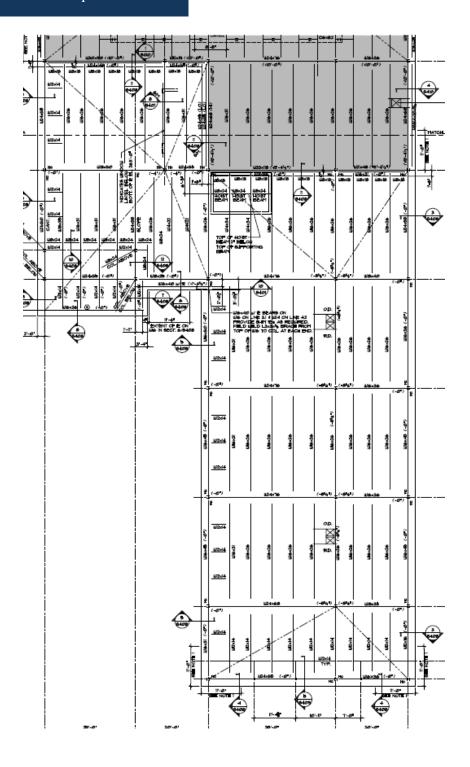


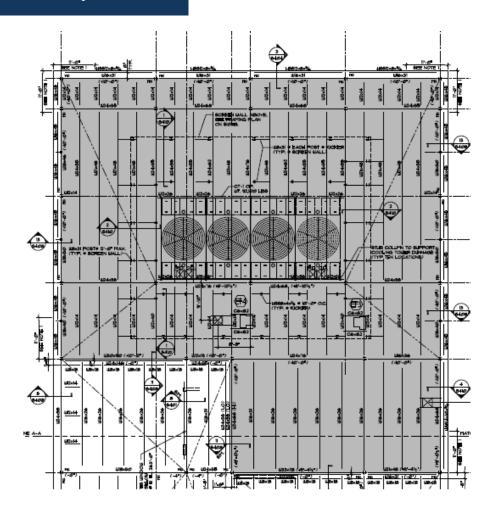
3rd Story frame, east wing (north), Courtesy of Highland Associates

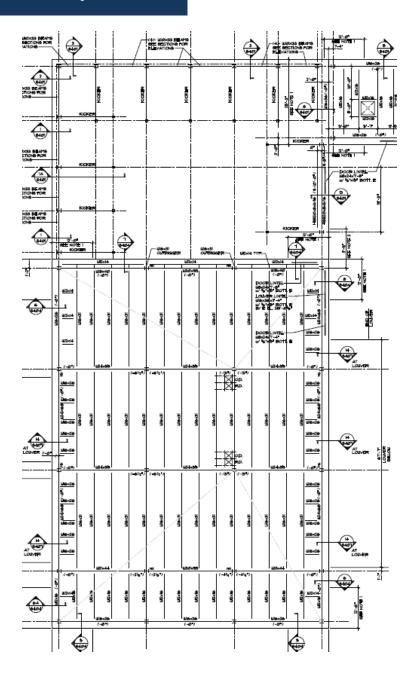

3rd Story frame, Link, Courtesy of Highland Associates


4th Story frame, west wing, Courtesy of Highland Associates

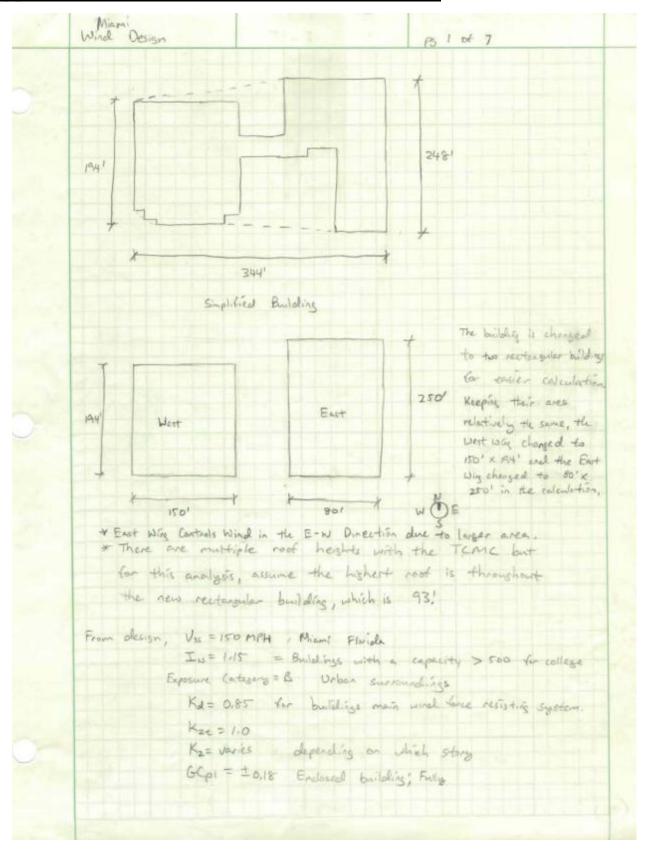

4th Story frame, east wing (south), Courtesy of Highland Associates


4th Story frame, east wing (north), Courtesy of Highland Associates


Main Roof Story frame, west wing, Courtesy of Highland Associates


Main Roof Story frame, east wing (south), Courtesy of Highland Associates

Main Roof Story frame, east wing (north), Courtesy of Highland Associates



Penthouse Roof Story frame, west wing, Courtesy of Highland Associates

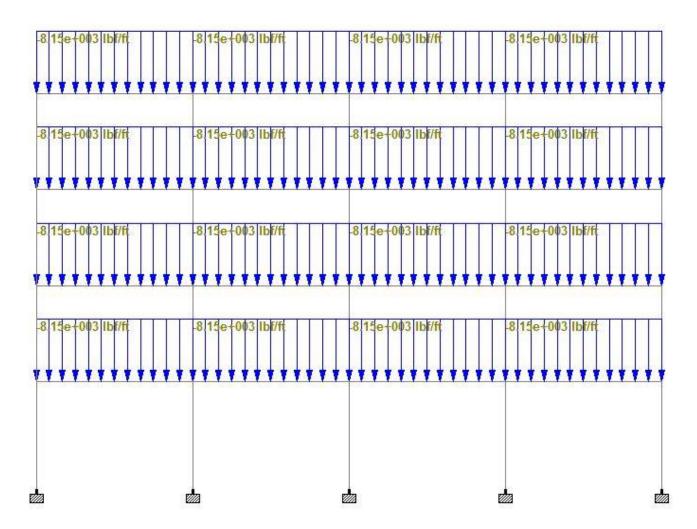
Appendix B: Miami, FL, Wind Load Calculations

	Wind Design	A STATE OF THE PARTY OF THE PAR	PS 2 of 7
1	VEIN		
	92 = 0,00256K	2KzeKdV2In	- roof 93'
	= 0.00256(95 (1.0) (.85) (150)2 (1.15)	-perthance 69.51
	927 = 55.8 psf	for roof	- 4+h 53' - 3rd 37'
		84)(1.0)(1834)(150)=(1.15)	-2nd 21'
		for perthaue floor	- ground O'
		13)(1.0)(-85)(150)=(1.15)	
	924 = 46.8 psf	for 4th story floor	
	= 0,00256(,7	14)(1.0)(.85)(150)2(1.15)	
	922 = 41.7 psf	for 3th story floor	
		70)(1.0)(185)(150)2(1.15)	
		for 2-not story floor	
		(21.1) (021) 28.) (0.15)	
	729 = 39,5 psf	for ground story than	~
	Finding Gust Effect	Factor	
	$n_4 = \frac{22.2}{h.6} = \frac{22.2}{93(6)}$	= .59 < 1 Hz So col	culote in the event
		that	building is flexible
	Gr = 0.925 (1+1.7	7I2 J9202+92R2	
	90 and 50 = 3.4		
	$n_1 = \frac{100}{H} = \frac{100}{93}$	= 1.07 average	value 626,9-6 ASCE71
			sound value C26.9-7 ASCET
		0,577	
	12 = 0 (2)	2 = 1.6(93) = 55,8 ft	
	Iz = ,30 (33)X = ,279	5 C = 0.30	

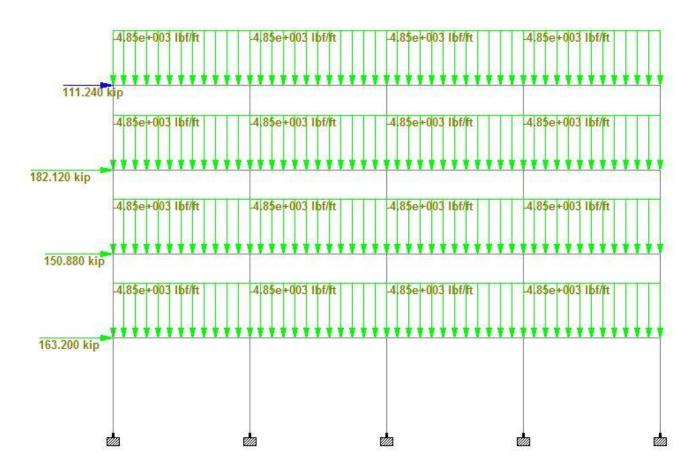
2	Wind Design	Page 3 of 7
	0= 1	
	$Q = \int \frac{1}{1 + 0.63 \left(\frac{8 + h_1}{L_2}\right)^{0.63}}$	
	(Lz)	
	R- 1 - 8 - 8 - (2 - 2 - 1 - 2)	
	R-) = RARARB(0.53+0.47 BL)	B assumed to be
	e - 7,47N,	
	Rn = (1+10,3N,) 5/3	
	$N_1 = \frac{n_1 L_2}{V_Z}$ constant are	Fron table 26.4-1 (ASCE 7-10)
	$L_{z} = \sqrt{\frac{2}{33}} = \frac{Z}{20} = \frac{1}{3}$ $\ell = 320 fe$	$V_{Z} = \overline{b} \left(\frac{\overline{z}}{33} \right)^{\overline{\alpha}} \left(\frac{89}{60} \right) V \qquad \overline{a} = 45$
	The state of the s	(35/ (60) a= 1/3
	$= 320 \left(\frac{55.8}{33}\right)^{1/3}$	$= ,45\left(\frac{51.6}{3.5}\right)^{1/3}\left(\frac{88}{60}\right)40$
	= 381,2	= 64.0
	N1 = 1.07(381.2) = 6,37	
	Rn = 7.47 (6.37) 1+103(6.37)5/3 =,044	
	1 + 10:3(6:30)*3	

	Wind Design	Page 4 of 7
0	N-S Orection N-S Orection N=9364 L=15064 B=19464	Is not required, does not control Direction h x 43 ft L = 194 ft B = 150 ft
	$\beta = 1\%$ recommended by ASCE 7 = .01 $\eta_h = \frac{4.6 \text{n.h}}{\overline{V_2}} = \frac{4.6 (1.07)(43)}{64} = 7.15$	7-05 7h = 7:15
		$n_g = \frac{4.6(1.07)(10)}{64} = 11.5$ $n_L = \frac{15.4(1.07)(194)}{64} = 49.9$
	$R_{L} = \frac{1}{\eta} - \frac{1}{2\eta^{3}} \left(1 - e^{-2\eta} \right) \text{for } \eta > 0$ $R_{h} = \frac{1}{7.15} - \frac{1}{2(7.15)^{2}} \left(1 - e^{-2(717)} \right) = .130$ $R_{g} = \frac{1}{14.9} - \frac{1}{2(14.9)^{2}} \left(1 - e^{-2(14A)} \right) = .061$	
	$R_{L} = \frac{1}{3^{\frac{1}{2} \cdot 6}} - \frac{1}{2(3^{\frac{1}{2} \cdot 6})^{\frac{1}{2}}} \left(1 - e^{-2(2^{\frac{1}{2} \cdot 6})}\right) = .026$	
	$0 = \frac{1 + 0.63 \left(\frac{381.5}{14443} \right)_{0.62}}{1} = .81$	
	$G_{\ell} = 0.825 \left(\frac{1 + 1.7(-2.7^{2})}{1 + 1.7(3 + 4)(-2.7^{2})} + (4.32)(-40)^{2} $	GE = 0.925 (1 +1.7(205)) E.49((20) +(1.20) (-1.6)2 (+1.7(24)(-205))

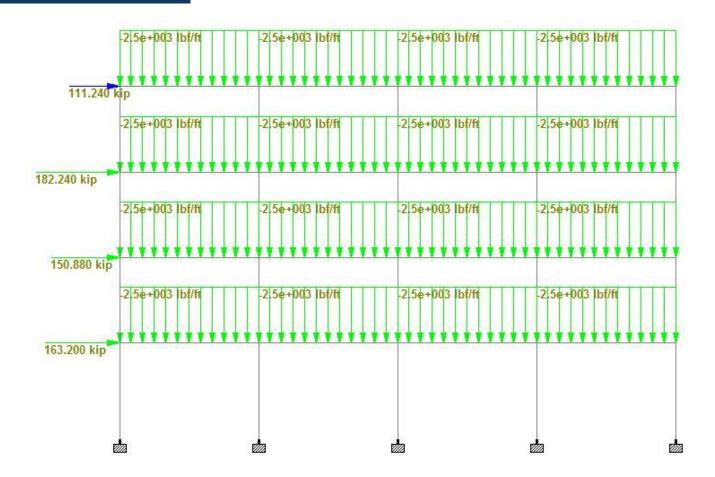
Wind Design	Page 5 of 7	
West wing Pressures		
p=q(-Cp-q;(+Cp;)		
N-s.	E-W	
Welmand Cp = 018	Cp = 0.8-	
Selevall C = -0.0	Cp = -0.7	
Leeward Cp = 4/8 = 179/4 = .77	Cp = 1/8 = 194/ = 1.29	
Cp = -0.5	Cp = -0.45 by interpolation	
Real		
Rest 8=0° h/L = 93/50 = .62	Roof	
Cp = -1.1 for 0 to 1/2 by interplation	0=0 1/2 = 93/A4 = .48	
Cp = -0.6 for >1/2 by interplation	Cp = -0.9 for 0 to 4 Cp = -0.5 for holo2h	
	Cp = -0,3 for 72h	
P= 55.8(.828)(0.8)-55.8(±.18)=		
= 37.0 ± 10.1		
= 47.1 or 26.9 psf		
at not height, windowned wall		
+ see excel for rest of calculations		


Wind Design	Page 6 of 7	
East Wing		
N-S Direction	E-w Direction	
h= 93 Cc	h=93 fe	
L= 80 ft B = 250 ft	L= 250 fe B= 80 ft	
B=1% recommended by ASCE 7-05		
= .01		
7 = 4.6(1.07)(9.3) = 705	7h = 7.15	
78 = 4.6 (107)(250) = 19.2	0 - 4 6 (107)(00)	
64 = 19,2	ng = 4, 6 (107)(50) = 6.15	
n_ = 15.4(1.07)(80) = 20.6	7 = 15,4(1.07)(250) = 64,4	
	64 = 64,4	
Rh= ,130	Kx= ,130	
$R_{R} = \frac{1}{17.2} - \frac{1}{2(9.2)^{2}} \left(1 - e^{-2(9.2)}\right) = 0.50 R_{R} = \frac{1}{6.15} - \frac{1}{2(6.17)^{2}} \left(1 - e^{-2(6.47)}\right) = 0.150$		
RL= 1 - 2(20,6)2 (1-e-2(00.0)=,047 RL= 1 - 1 (1-e-2(h+F)) =,015	
0		
R=) 1 (0044) (12) (05) (12+147(-047)) = 13 R=) 1 (0044) (15) (15) (15) (15) (15) = 21		
Q-)	1 +0.63 (\frac{80+93}{1063}) 0.63 = .850	
1 + 0.63 (250 + 43)065	1+0.63(\frac{80+93}{3812})0.63830	
C = 40.00	1 2 \ A = 10.925 / 1.1.2(215) 6 25 m ² (2.25)	
1+1.7(2.14)(275) BUDG (245)+(H	$\frac{1+1.7(.215))(3.4)^{2}(.65)^{2}+(4.72)^{2}(.215)}{(1+1.7(.215))(3.4)^{2}(.65)^{2}+(4.72)^{2}(.21)^{3}}$	
6= .917	Ge = . 863	

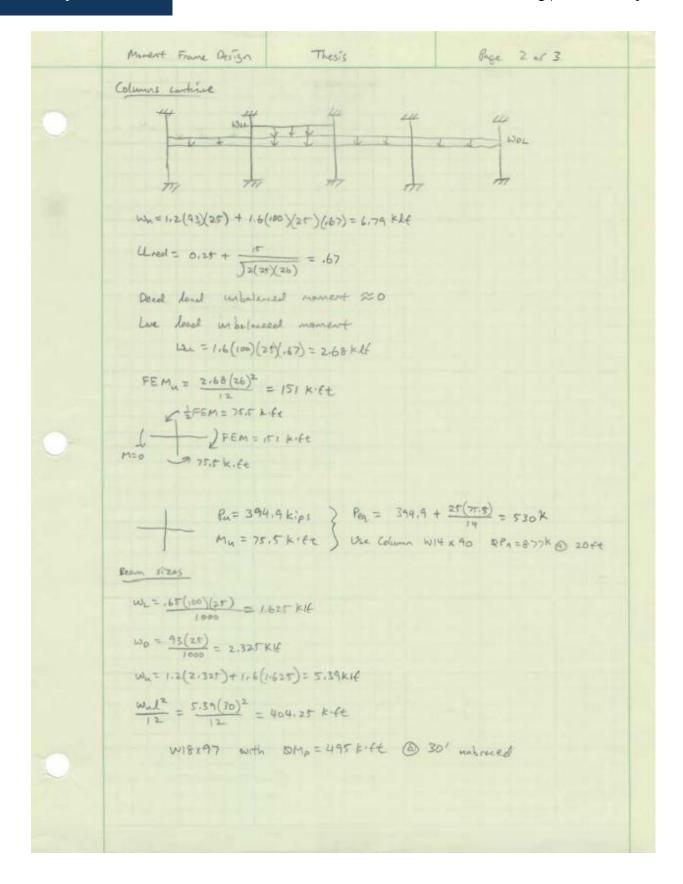
Wind Design	Page 7 of 7	
East wing Pressures P=QGCp-qi(GCpi)		
wendwood $C_p = 0.8$ Stole wall $C_p = -0.7$ Learning $C_p \Rightarrow \frac{1}{8} = \frac{80}{250} = .32$	$E - W$ $C_{p} = 0.8$ $C_{p} = -0.7$ $C_{p} = \frac{250}{60} = 2.125$	
$\frac{Root}{8 = 0^{\circ}} \frac{Root}{N_{L}} = \frac{43}{80} = 1.162$ $\frac{h}{2} = \frac{43}{2} = 46.5$	Cp = -0.25" by idexplosion N/L = 93/250 = .372	
2h = 186 Roof area >> 1000sf R.F = ,8 $Cp = -1.3$ for 0 to by:	Cp = -0.9 for 0 to h Cp = -0.5 for h to 2h Cp = -0.3 for >2h	
$ \rho = 55.8 (817)(0.9) - 55.8 (\pm .18) = 6 $ $ = 36.5 \pm 10.1 $	9.51 p= 55.8(963)(68) - 55.8(±18) = 38.6 ± 10.11	
= 46.6 or 26.4 psf = 48.7 or 28.5 psf at roof height, unadmond wall * See Excel for rest of calculations		
Wind Forces Breakdown		
93 10.5 72 - 10.5 52 - 10 36 - 2 20 - 10 10 10 10 10 10 10 10 10 10		

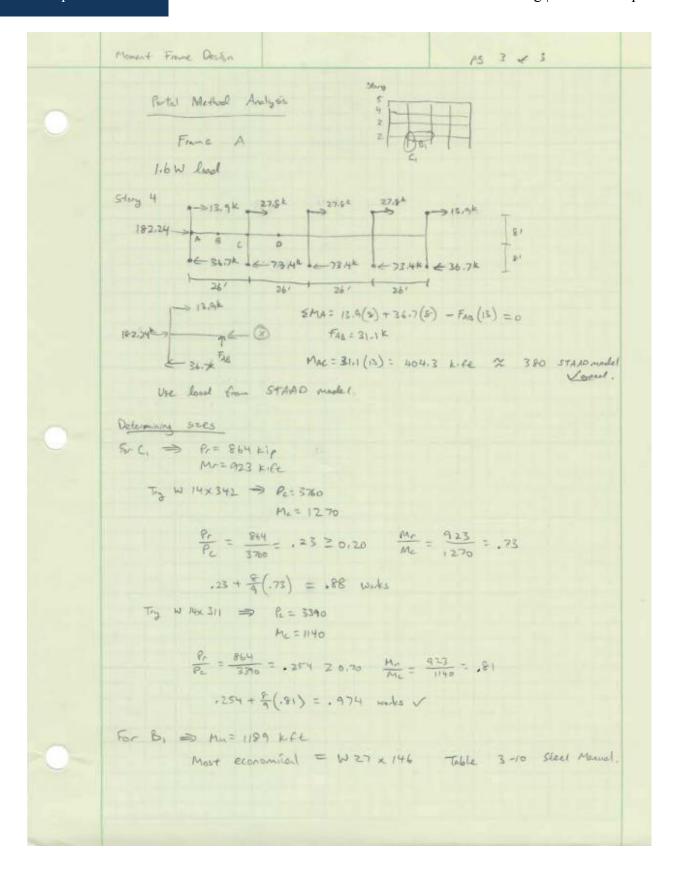

Appendix C: Miami, FL, Seismic Load Calculations

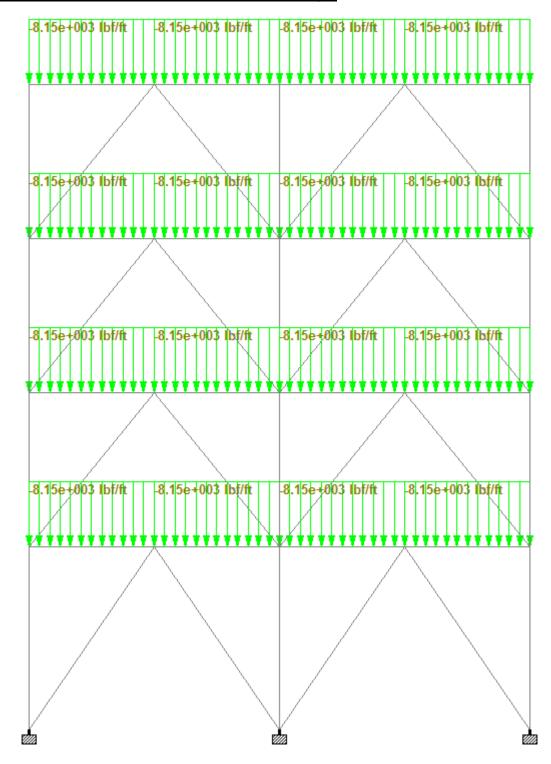
Seismic Analysis PS 1 of 1		
For Mami Florida , Site Class D		
Ss = 0.050g Sms = 0.080g Sps = 0.053g		
S = 0.019 Sm = 0.047g So1 = 0.031g		
From Table 12,2-1		
R= 3.5 for auctions steel moment Frames		
12-3 Cd=3		
R=3.25 for prolingry steel concentrucity braced frames R= 2		
Cd = 3.25		
From Table 11.6-1 ASCE 7-05		
Sps < 0.167 Occupancy Category III => 38comia Category A.		
Section 11.7 of coole V= .01(W) W=23,000 kips		
V= .01 (13,600) = 136 kip		
Fx = 0.01 Wx = 130 kpr at 1st for west wish		
Sec nest on excel		
Fx = 0.01(12,000) = 126 kgs at 14 for East Will		
See reit on excel		

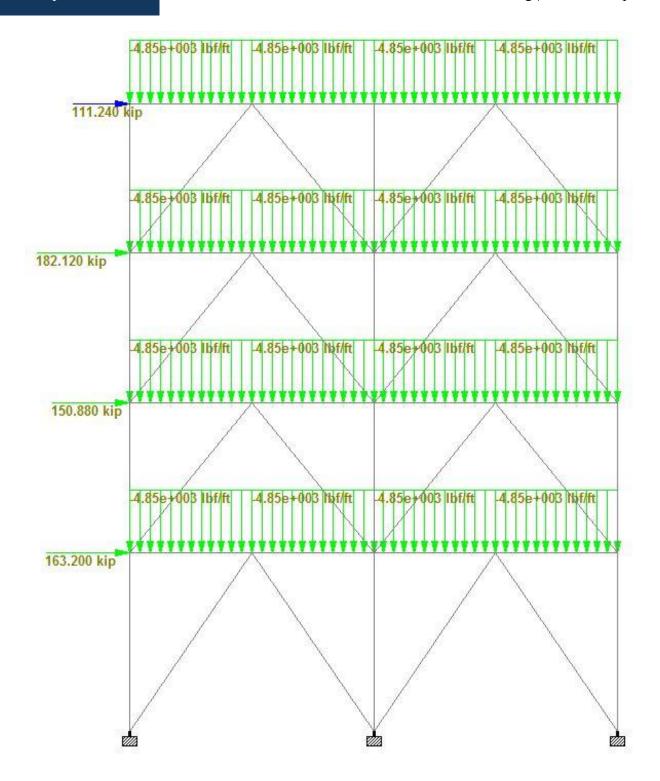

Appendix D: Moment Frame Design

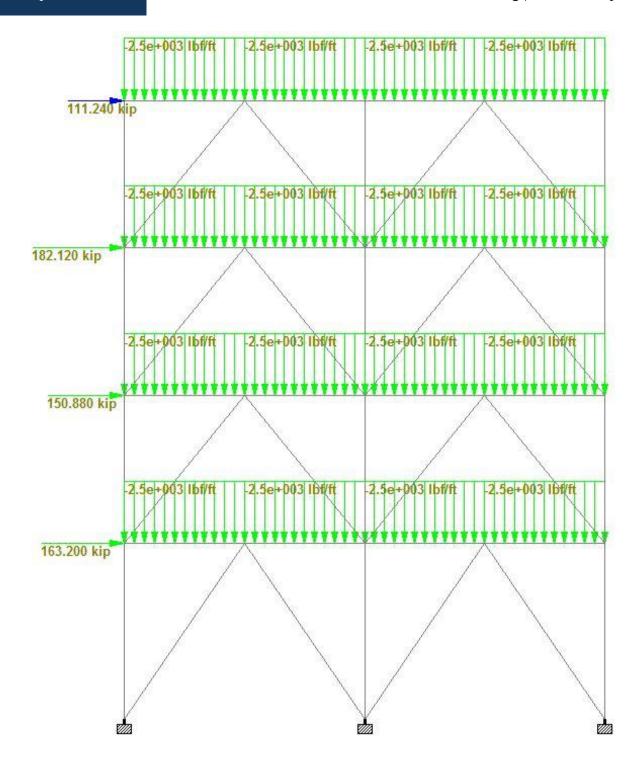

1.2D+1.6L on Frame A

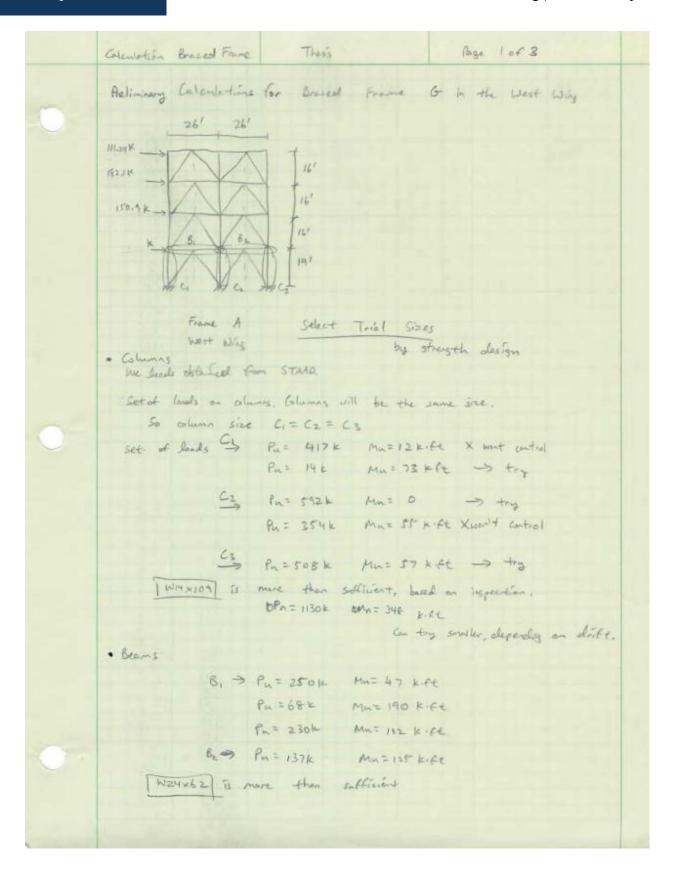


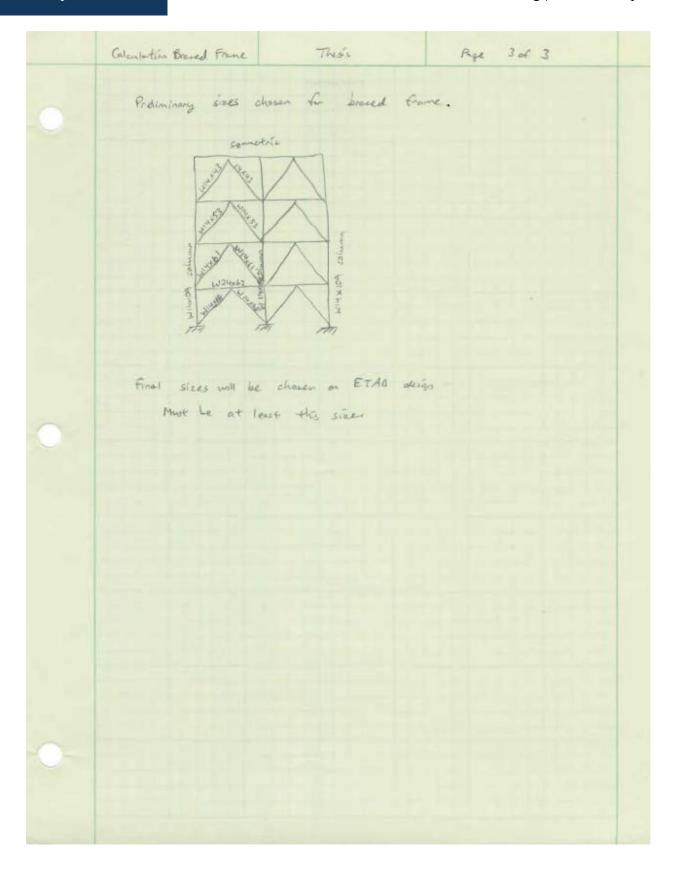

1.2D+1.6W+0.5L on Frame A

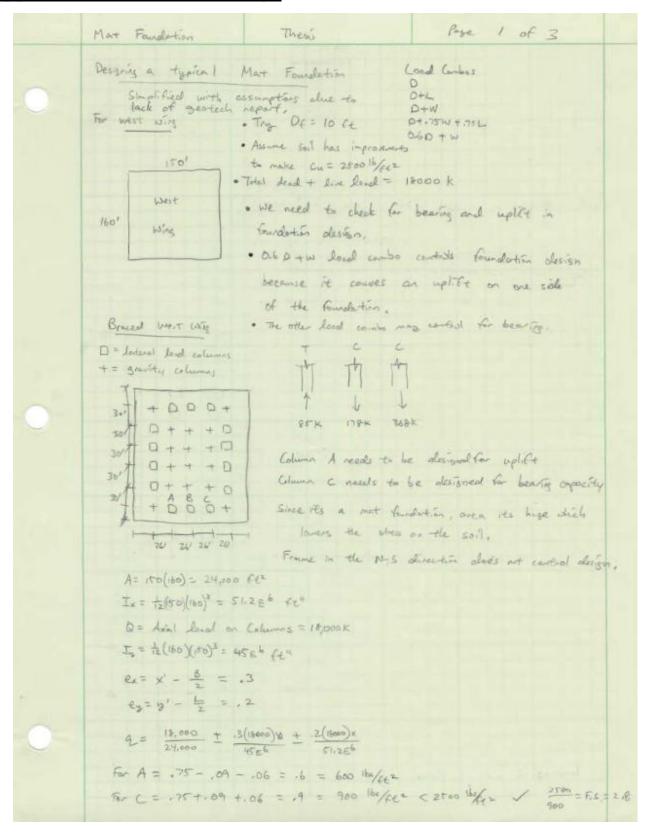

0.9D+1.6W on Frame A



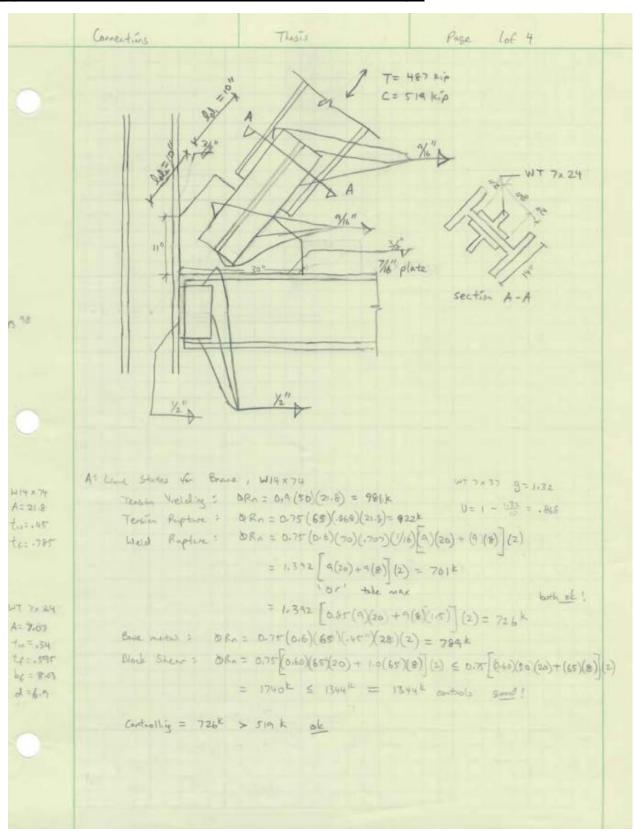

Appendix E: Chevron Braced Frame Design

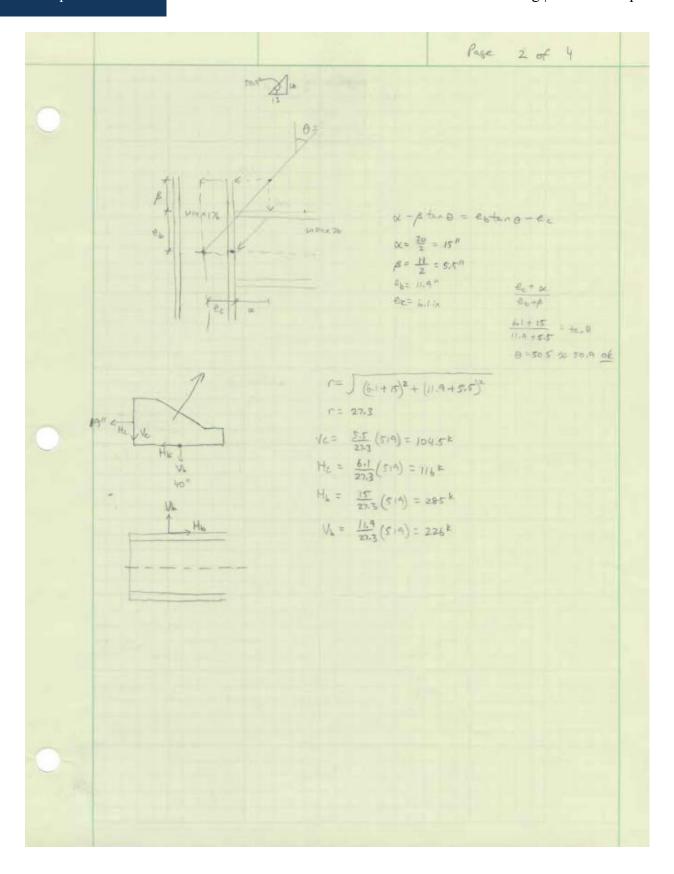

1.2D+1.6L on Frame A


1.2D+1.6W+0.5L on Frame A


0.9D+1.6W on Frame A

	Calculation braced Frame	Page 2 of 3	
	- Beins		
	Ru = 324 % on 1st Floor	Controlling leads	
	Pu = 240 K on 2nd Floor Pu = 181 K on 3nd 19loor	5	
	fin= 113 k on 4th Floor		
	check in buckling.		
	$F = \frac{\pi^2 E I}{(KL)^2}$		
0	324 = Ti2 (29,000) (Irea) => Irea = 86,3 /	14	
	240 = T = (24,000) [Tree] => Ireq = 53.3 14		
	$181 = 37^{2}(29,000)(1001) \Rightarrow Inex = 40.2$		
	$113 = \frac{\pi^{2}(10,000)(Inc_{1})}{(21.12)^{2}} \Rightarrow Inc_{1} = 25.1$,ч	
	Buckling isn't much a problem.		
		24 unbrosed length I=722 in4	
	2nd Floor => W14x61 = DPn=345 k @ 3nd Floor => W14x53 = DPn=186 k @		
	7th Floor > W 14x43 = \$Ph = 146 4 @		

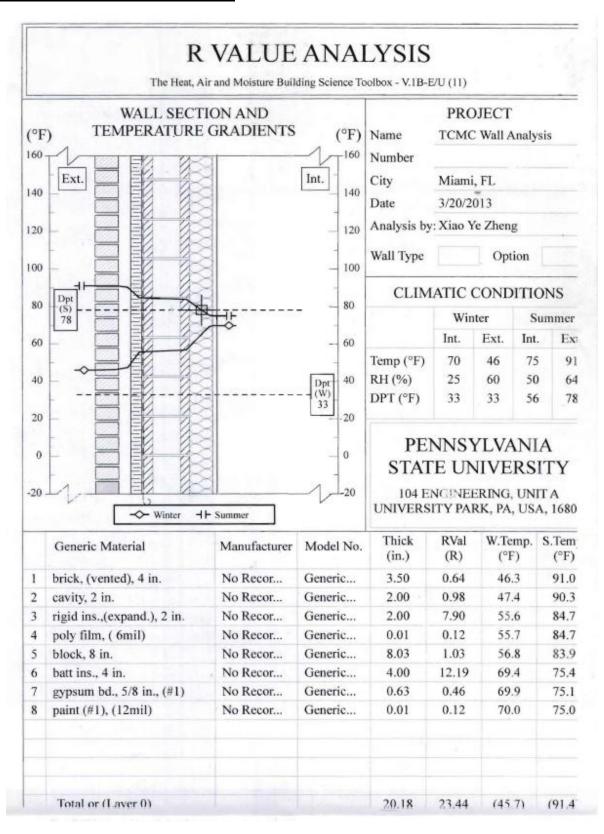

Appendix F: Foundation Design



Most Foundation	This	Apr 2 6 3
Amount of soil over	Assume Co. 41 (120)(30)	1/26) = 374 k of soil (26) = 374 k of soil 3 calumn A down, from
So bearing and uplift has been satisfied Design Consolution size and reinforcing $ q_{out} = \frac{q_{out} + q_{out}}{2} = 750 \text{ lb/e}_{2} $ $ q_{out} = 750(26)(160) = 212 \text{ Kins} $ Thickness of Mat Slab # Assume local factor of 2.5 Critical Section is for diagonal tension shear at column A. $ b_{0} = (0.5 + \frac{d}{2}) + (0.5 + \frac{d}{2}) + (0.5 + d) = 1.5 + 2.d $		
$U = 2.5 \left(\frac{3.65}{4}\right) = 2$ $230,800 = \left(1.5 + 2.d\right)$ $15724 = 1.7d + 3$	(d) [0.85 (34)]4000]	

Mut Foundation	Thesis	Page 3 of 3	
For Moment west W	Bearing is $160'$ $0\phi = 10'$ is sufficient	ess critical have since re revol out. So using a or 4' soll above MAT	
Thickness of MAT Critical section on 1 $U = (2.5 \left(\frac{284}{4}\right) : 18$ $16.2,000 = (1.5) + 2.06$	(alum E with 284) (d) (0.85 (34)) 4000		
Summary Typical Mart Foun			
F.S. for strength = P.S. for uplift = P.S. for bearing =	8-receal Francot 2.5 2.5 4.4 not an issu 2.8 2.8 11'-6" 10'	Eumot / / / 8"	

Appendix G: Welded Braced Connection Design




```
Page 3 of 4
            B: Brace - to - Gusset WT:
                     Tension Yieldin = ORn = 0.9 (50 (7.07 (2) = 636/4
                                                                                   ok
                     Terria Replace = to Rn = 0.78 (65) (7.07)(2)(1) = 780k
                      Weld Reptire = "same" = DRn= 728k
                      Base Metal = 0-75 (0.6) (65) (65) (20) = 1064E
                      Black Shear = Does not control by inspection.
                                                                              KL = dn. = 10.9 4 25
                      Compression = 08n = 0.90 (50) (7.07) 2) = 636k
                      Controlling = 63616 > 51916 OK
            Ci Gusset Plante
Gusser
                     Tension Vielding = DR= DA (36) (1916) = 645 h
A $ 19.902
                     Tersia Ryphine = DRn = 0.75 (58)(1919) = 865 K
                     weld Rupture = "serve" when WT is welded 10" on gusset plate.
                      Base Metal = ORn = 6584 "some thebrest"
                     Black Shear = ORn = 1344k
                     Compression = BRn = 0,40 (21)(14A) = 645k
                     controlling = 645th > 57th ale
            D: Gusset to Beam Connection (look at pg 2 for forces)
                    weld furture : Ohn = 1.392 ((2)(6)(30)(1.5) = 751k > 226k = Vh /
W ZYXDL
                                  : BRn= 1342 (2)(b)(30)(10)) = 501 k > 285k = Hb
 A=22.4
                      Boom web yielding
0 2219
                                  BR=1.0(5(1.18)+(30))(50)(.44)=789.8 1 O/L
 +4=44
 +6= ,68
                      Beam web originaling
                                    860 = 0.75 \left( 680 \left( 344 \right)^{2} \left[ 1 + 3 \left( \frac{30}{23} \right) \left( \frac{444}{68} \right)^{1/4} \right] \frac{29,000 \left( 50 \right) \left( 68 \right)}{44}
                                        = 521× 01
WHENTER
           E: Gusset to Column Connection
 A=51/2
              weld Rightine: DRn = 1,392 (12/6)(11)(15)) = 275k > 116k
 Koles / A)
 tu= .83
                                  = bRn = /1392 (12)(6)(11) = 183k > 105k /
 te=1,31
 d=15.2
           F: Beam to Calum Connection (Double Angle 21 4x4x1/2x16).
                     weld hiptor ohe to eccentricity shear
                                                                                K= 3.5 = .22
                                  C=2.65, C,=10, D= 7/4"
                                                                                 SE= 1033
                                   Qh = ,75(1,0)(2,65)(7)(16)(2) = 445.2 × 259 × 2= ,53"
                                                                            ok. 0= 4-153 = .216
```

	Page 4 of 4
	F: continue
	Beam Web Strength at Weld
	OUN = 0.75 (16)(65)(44)(1.0) , = 58816 > 686
	$\frac{\partial V_{N} = \frac{0.75(16)(65)(.44)(1.0)}{1,592(7)(1.0)}}{(445.2)} = 58814 > 684$
	Angle : Tention Yield ORn= 0,0(36)(16)(1/2)(2) = 518,44
	Tensian Repture BRA = .75 (\$8)(16)(16)(2)= 696 E
	Column was Rupton Storyth.
	$\Delta U_n = \frac{Z(16)^2(1,392)(8)}{(1,392)(8)} = 252^{16} > 68^{16} = 4 + \frac{83}{2} = 4.42$
	J(16)2 + 12.96 (4,42)2
-	

Appendix H: Façade Breadth

CONDENSATION ANALYSIS The Heat, Air and Moisture Building Science Toolbox - V.1B-E/U (11a) WALL SECTION AND PROJECT VAPOUR PRESSURE GRADIENTS Name (in.Hg) (in.Hg) 2.70 2.70 Number Ext. Int. City Miami, FL 2.40 2.40 Date Analysis by: 2.10 2.10 Wall Type Option 1.80 1.80 CLIMATIC CONDITIONS Vap 1.50 1.50 Sat Winter Summer Int. Ext. Int. Ext 1.20 1.20 Temp (°F) 75 91 Vap 0.90 0.90 RH (%) 50 64 Cont DPT (°F) 56 78 0.60 0.60 PENNSYLVANIA 0.30 0.30 STATE UNIVERSITY 0.00 0.00 104 ENGINEERING, UNIT A UNIVERSITY PARK, PA, USA, 1680 ** NO CONDENSATION ** VapSat VanCo Rvap Temp Model No. Material Manufacturer (1/M)(°F) (in.Hg) (in.Hg 1 brick, (vented), 4 in. No Recor... Generic... 0.191 90.6 1.449 0.935 2 cavity, 2 in. No Recor... Generic... 0.016 89.9 1.419 0.935 rigid ins.,(expand.), 2 in. Generic... 1.195 0.922 3 No Recor... 0.515 84.5 poly film, (6mil) Generic... 16.827 84.4 1.192 0.515 No Recor... block, 8 in. Generic... 0.418 0.505 No Recor... 83.7 1.166 batt ins., 4 in. No Recor... Generic... 0.040 75.4 0.887 0.504 gypsum bd., 5/8 in., (#1) Generic... 0.229 75.1 0.878 No Recor... 0.498Generic... 8 paint (#1), (12mil) No Recor... 2.488 75.0 0.876 0.438 9 10 11 12 TOTAL or (Laver 0) 20.810 (91.0)(1.469)(0.940)

CONDENSATION ANALYSIS The Heat, Air and Moisture Building Science Toolbox - V.1B-E/U (11a) PROJECT WALL SECTION AND VAPOUR PRESSURE GRADIENTS Name (in.Hg) (in.Hg) 1.35 1.35 Number Ext. Int. City Miami, FL 1.20 1.20 Date Analysis by: 1.05 1.05 Wall Type Option 0.90 0.90 CLIMATIC CONDITIONS Vap 0.75 0.75 Sat Winter Summer Int. Ext. Int. Ex 0.60 0.60 Temp (°F) 70 46 RH (%) 25 0.45 0.45 60 DPT (°F) 33 33 0.30 0.30 Vap PENNSYLVANIA Cont 0.15 0.15 STATE UNIVERSITY 0.00 0.00 104 ENGINEERING, UNIT A UNIVERSITY PARK, PA, USA, 1680 ** NO CONDENSATION ** VapSat Rvap Temp VapCo Model No. Material Manufacturer (°F) (1/M)(in.Hg) (in.Hg brick, (vented), 4 in. No Recor... Generic... 0.191 46.7 0.320 0.187 cavity, 2 in. No Recor... Generic... 0.016 47.7 0.332 0.187 3 rigid ins.,(expand.), 2 in. No Recor... Generic... 0.515 55.7 0.4480.1874 poly film, (6mil) No Recor... Generic... 16.827 55.9 0.450 0.185 block, 8 in. No Recor... Generic... 0.41856.9 0.4680.185batt ins., 4 in. No Recor... Generic... 0.040 69.4 0.7250.185 7 gypsum bd., 5/8 in., (#1) No Recor... Generic... 0.229 69.9 0.7370.185 8 paint (#1), (12mil) No Recor... Generic... 2.488 70.0 0.7400.185 9 10 11 12 TOTAL or (Laver 0) 20.810 (46.0)(0.312) (0.187

Appendix I: Solar Panel Breadth

HIT Photovoltaic Module

HIT Power 220A

HIT Delivers More Real World Performance

19.8 % cell conversion efficiency Hybrid cell produces the highest output on cloudy days

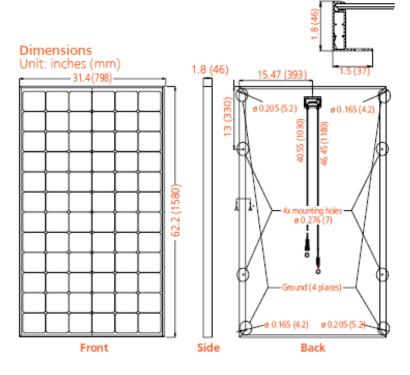
Highest warranted tolerance:

-0/+10 %

Most PTC Watts: 204.4

Photovoltaic Module

Lowest temperature coefficient:


-0.33%

Highest PTC/STC Ratio: 93%+

Section A-A'

Power

VBHN220AA01

High Efficiency

HIT® Power solar panels are leaders in sunlight conversion efficiency. Obtain maximum power within a fixed amount of space. Save money using fewer system attachments and racking materials, and reduce costs by spending less time install-ing per Watt.

Power Guarantee

The power ratings for HIT Power panels guarantee customers receive 100% of the nameplate rated power (or more) at the time of purchase, enabling owners to generate more kWh per rated Watt, quicken investments returns, and help realize complete customer satisfaction.

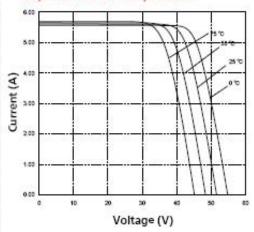
Temperature Performance

As temperatures rise, HIT Power solar panels produce 10% or more electricity (kWh) than conventional crystalline silicon solar panels at the same temperature.

Valuable Features

The packing density of the panels reduces transportation, fuel, and storage costs per installed watt.

American Made Quality


Our silicon wafers located inside HIT solar panels are made in Oregon, and the panels are assembled in an ISO 9001 (quality), 14001 (environment), and 18001 (safety) certified factory. Unique eco-packing minimizes cardboard waste at the job site. The panels have a Limited 20-Year Power Output and 10-Year Product Workmanship Warranty.

HIT® Power 220A

Flectrical Specifications

Model	HIT Power 220A or VBHN220AA01		
Rated Power (Pmax) ¹	220 W		
Maximum Power Voltage (Vpm)	42.7 V		
Maximum Power Current (Ipm)	5.17 A		
Open Circuit Voltage (Voc)	52.3 V		
Short Circuit Current (Isc)	5.65 A		
Temperature Coefficient (Pmax)	-0.336%/ °C		
Temperature Coefficient (Voc)	-0.145 V/ °C		
Temperature Coefficient (Isc)	1.98 mA/ °C		
NOCT	114.8°F (46°C)		
CEC PTC Rating	204.4 W		
Cell Efficiency	19.8%		
Module Efficiency	17.4%		
Watts per Ft.2	16.22 W		
Maximum System Voltage	600 V		
Series Fuse Rating	15 A		
Warranted Tolerance (-/+)	-0% / +10%		

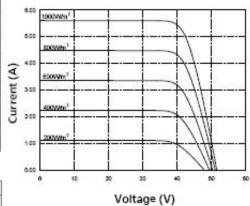
Dependence on Temperature

Mechanical Specifications

Internal Bypass Diodes	3 Bypass Diodes		
Module Area	13.56 Ft ² (1.26m ²)		
Weight	35.3 Lbs. (16kg)		
Dimensions LxWxH	62.2x31.4x1.8 in. (1580x798x46 mm)		
Cable Length +Male/-Female	46.45/40.55 in. (1180/1030 mm)		
Cable Size / Type	No. 12 AWG / PV Cable		
Connector Type ³	Multi-Contact® Type IV (MC4™)		
Static Wind / Snow Load	60PSF (2880Pa) / 39PSF (1867Pa)		
Pallet Dimensions LxWxH	63.2x32x72.8 in. (1607x815x1850 mm		
Quantity per Pallet / Pallet Weight	35 pcs./1322.7 Lbs (600 kg)		
Quantity per 53' Trailer	980 pcs.		

Operating Conditions & Safety Ratings

Ambient Operating Temperature?	-4°F to 115°F (-20°C to 46°C)		
Hail Safety Impact Velocity	1" hailstone (25mm) at 52 mph (23m/s)		
Fire Safety Classification	Class C		
Safety & Rating Certifications	UL 1703, cUL, CEC		
Limited Warranty	10 Years Workmanship, 20 Years Power Outpo		
1575 5 H. 3505 444 5 400	MINE I		


STC: Cell temp. 25°C, AM1.5, 1000W/m2

Monthly average low and high of the installation site.

Note: Specifications and information above may change without notice.

3 Safety locking clip (PV-SSH4) is not supplied with the module.

Dependence on Irradiance

"HIT" is a registered trademark of Panasonic Group. The name "HIT" comes from "Heterojunction with intrinsic Thin-layer" which is an original technology of Panasonic Group.

⚠ CAUTION! Please read the installation manual carefully before using the products.

Panasonic Eco Solutions Energy Management North America Unit of SANYO North America Corporation

10900 N. Tantau Ave., Suite 200 Cupertino, CA 95014 Phone 408-861-8424 Fax 408-861-3990 http://www.panasonic.com/solar

All Rights Reserved © 2012 COPYRIGHT SANYO North America Specifications are subject to change without notice. 04/2012

SB 3300 / 3800 / 3800/V

Powerful

- > Efficiency up to 95.6 %
- OptiCool active temperature management
- The best tracking efficiency with OptiTrac MPP tracking

Safe

- Galvanic isolation
- Integrated ESS DC loaddisconnecting unit
- Rated nominal power at temperatures up to 45 °C

Flexible

- For indoor and outdoor installation
- Suitable for generator grounding

SUNNY BOY 3300 / 3800

The generalist

It is robust, easy-to-handle, and, thanks to its galvanic isolation, used in all kinds of AC grids: the Sunny Boy 3300 / 3800. Due to its suitability for generator grounding, it can be combined with all module types. The generously-proportioned die-cast aluminum housing together with the OptiCool active cooling system guarantee the highest yields and a long service life, even under extreme conditions.

Technical Data SUNNY BOY 3300 / 3800 / 3800/V

	SB 3300	SB 3800	SB 3800/V*	
input (DC)				
Max. DC power	3820 W	4040 W	4040 W	
Max. DC voltage	500 V	500 V	500 V	
PV-voltage range, MPPT	200 V - 400 V	200 V - 400 V	200 V - 400 V	
Max. input current	20 A	20 A	20 A	
Number of MPP trockers	1	1	1	
Max. number of strings (parallel)	3	3	3	
Output (AC)				
Nominal AC ouput	3300 W	3800 W	3680 W	
Max. AC power	3600 W	3800 W	3680 W	
Max. output current	18 A	18 A	16 A	
Nominal AC voltage / range	220 V - 240 V /	220 V - 240 V /	220 V - 240 V /	
	180 V - 260 V	180 V - 260 V	180 V - 260 V	
AC grid frequency (self-adjusting) / range	50 Hz / 60 Hz / ±4.5 Hz	50 Hz / 60 Hz /± 4.5 Hz	50 Hz / 60 Hz /± 4.5 H	
Phase shift (cos p)	1	1	1	
AC connection	single-phase	single-phase	single-phase	
Efficiency				
Max. efficiency / Euro-Eta	95.2 % / 94.4 %	95.6 % / 94.7 %	95.6 % / 94.7 %	
Protection devices				
DC reverse polarity protection	•	•	•	
ESS DC load-disconnecting switch	•	•	•	
AC short-circuit protection	•	•	•	
Ground fault manitoring	•	•	•	
Grid monitoring (SMA Grid Guard)	•	•	•	
Galvanically isolated	•	•	•	
General Data				
Dimensions (W / H / D) in mm	450 / 352 / 236	450 / 352 / 236	450 / 352 / 236	
Weight	38 kg	38 kg	38 kp	
Operating temperature range	-25 °C +60 °C	-25 °C +60 °C	-25 °C +60 °C	
Naise emission (typical)	≤ 40 dB(A)	≤ 42 dB(A)	≤ 42 dB(A)	
Consumption: operating (standby) / night	<7W / 0.1 W	<7W/0.1W	<7W/0.1W	
Topology	LF transformer	LF transformer	LF transformer	
Cooling concept	OptiCool	OptiCool	OptiCool	
Mounting location: indoors / outdoors (IP65)	●/●	•/•	•/•	
Fectures	7,0			
DC connection: MC3 / MC4 / Tyco	•/O/O	•/O/O	•/O/O	
AC connection: plug connector	•	•	•	
CD	•	•	•	
interfaces: Bluetooth / RS485	0/0	0/0	0/0	
Varranty: 5 years / 10 years	•/0	•/O	•/0	
Certificates and approvals	www.SMA.de	www.SMA.de	www.SMA.de	
Certificate number (please include when ordering)	www.sittie.de	www.sincee	V0153	
centrate tember greate incide with ordering)		land annolitions. These conductors		
Standard	Data at nominal conditions - Last update: March 2009 *Version for country requirements in accordance with EN 50438 with I _{AC} = 16 A			
98 96 97 98 98 98 98 90 88 86 U _m = 200 V DC U _m = 450 V DC U _m = 450 V DC U _m = 450 V DC	465P2-NR	St 'Positive'	Bluefooth Piggy-Back Grounding-Kit "Negathe" ESHV-PNR	