Table of Contents

Executive Summary2
Building Overview
Figure 1: 123 Alpha Drive Site
Mechanical System Overview
Figure 2: AHU Zoning
Load Calculation4
Figure 3: Space Type Layout5
Design Conditions
Figure 4: Pittsburgh, Pennsylvania Design Parameters6
Figure 5: Pittsburgh Design Temperatures6
Internal Loads7
Schedules
Construction7
Figure 10: Wall Assembly R-Values7
Figure 10: Roof Assembly R-Values7
Calculated Flow Versus Design Load8
Figure 8: Airflow Comparison8
Figure 9: Capacity Comparison8
Energy Consumption and Cost9
Figure 10: Monthly Energy Consumption9
Graph 1: Energy Consumption10
Cost10
Figure 11: Monthly Utility Cost11
Emissions
Table 12: Annual Emissions11
Appendix A: Systems Checksums12

Executive Summary

The purpose of technical report is to evaluate and analyze the 123 Alpha Drive Renovation in terms of its energy consumption and building load data. The analysis was conducted by using Carrier HAP 4.0, a common software tool used by smaller MEP firms across the nation. Six packaged rooftop units, which covered 6 zones collectively, were analyzed under a block load simulation. The block load procedure was selected due to time constraints, and although the process is relatively simple, the results produced are satisfactory enough to resemble an accurate energy model for the building. Carrier HAP was used to calculate annual energy costs, airflows, and peak heating and cooling coil loads for the rooftop units. An analysis of the warehouse spaces, which primarily utilize electric resistant heat, was also conducted.

The building was found to have an estimated peak heating load of 71.5 tons and a peak cooling load of 111.6 tons. These capacities were compared with the mechanical equipment designed for the building, and were found to be relatively accurate. The cooling load was found to be higher than the peak heating load, which was not surprising, although the disparity between the two was certainly a bit peculiar.

An annual energy consumption estimation was conducted using Carrier HAP. The utility rates for natural gas and electricity were found using several references for local utility rates in the Pittsburgh area. These utility costs for the HVAC system were estimated to be \$24,925, while the entire building cost per year is expected to be \$144,500. 123 Alpha Drive was found to consume 329,608 kWh of electricity for the HVAC system and 2,384 therms of Natural Gas.

Building Overview

123 Alpha Drive is an 80,000 square foot, office and warehouse building located on the campus of the Regional Industrial Development Corporation (RIDC) in Pittsburgh, PA. 123 Alpha Drive is a one story structure designed in order to manage various warehouse shipments and offer sufficient office space. Obtained by THAR Geothermal Incorporation in early 2011, the now serves as THAR's corporate headquarters and storage facility. The building is large enough to achieve adequate, storage and office space, while providing additional space purpose requirements such as laboratory areas and conference rooms. The façade of the structure is composed of primarily concrete masonry and brick sections, occasionally separated by large, retractable warehouse doors and typical 3'x5' rectangular window. The building was designed to achieve a high thermal mass within the walls of the building in order to compensate for the poor thermal resistivity properties of the large warehouse doors.

Figure 1: 123 Alpha Drive Location in RIDC Park and Allegheny County

Mechanical System Overview

Ventilation

123 Alpha Drive is ventilated using six small rooftop units (RTUs) and ten large horizontal air handling units. Figure 2, below, indicates the appropriate AHU zoning for the building. Four of the six rooftop units are existing to remain, but the newly installed RTU's have been selected in order to incorporate an outside air carbon dioxide preconditioned heating and cooling cycle, a technique utilized in the airline business. The liquid CO2 preconditioning coil will be located in the outside air stream of the two units. The goal of this preconditioning is to achieve a lower 'delta T' at the final cooling and heating coils, saving considerable energy throughout the unit's lifetime. Equipped with a full economizer each, the RTUs will provide efficient ventilation in the building, along with a considerable reduction in energy

Alexander Radkoff | Mechanical | Stephen Treado | 10/4/13

consumption. The units utilize gas heating and electric cooling. The following figure shows which air handling units and rooftop units service different areas of the building.

Lab and Contaminant Exhaust

Various warehouse and dry lab spaces within the building require lab air and contaminant exhaust. Ten small down-blast, roof-mounted exhaust fans with motorized dampers were installed to handle the exhaust air requirements. The air will be replenished by a 4-ton, existing to remain, make-up rooftop unit.

Radiant Floor Slab Cooling and Heating

In addition to the rooftop units supplying fresh air to the office and lab spaces, a hydronic radiant floor cooling and heating system has been implemented through "dry installation", in which the tubing is attached under the finished floor or subfloor. Utilizing an efficient fluid such as liquid carbon dioxide, the radiant floor slabs achieve a more efficient heating and cooling process than a ducted system, as no duct losses exist in a radiant system. A standard gas boiler is used as an energy source to heat the liquid within the tubes. Condensation is a considerable concern with radiant floor cooling, and will be explored throughout the course of this study.

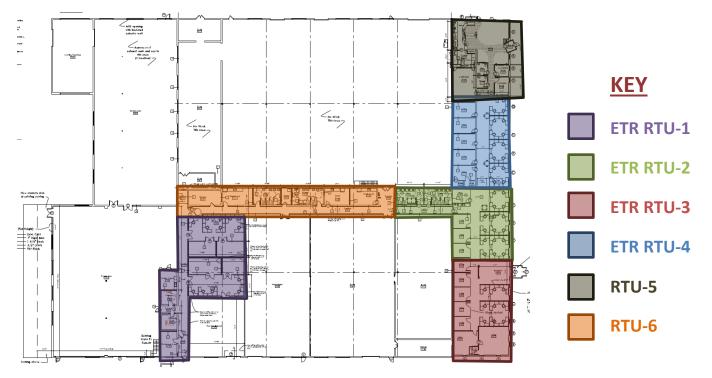
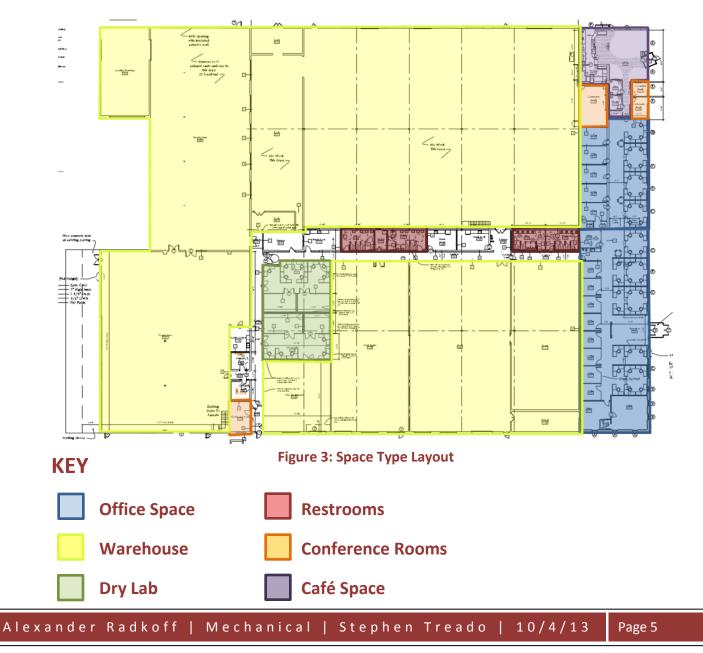



Figure 2: Rooftop Unit Zoning Maps

Load Calculation

The 123 Alpha Drive energy model and building load simulation was produced with the assistance of Carrier HAP 4.7. As previously mentioned, Carrier HAP is used by smaller MEP consulting firms in the country, and although it does not contain the most sophisticated and/or complex analysis procedure, it provides a good baseline for the design of simple building with common heating and cooling applications. Hap 4.7 produced heating and cooling loads, ventilation loads, and an annual energy cost simulation for the entirety of the building. Areas such as restrooms and stairways were accounted for in order to develop an accurate ventilation rate and load. Different spaces within the building required different load considerations. The various spaces throughout the building included office space, warehouse space, dry and wet storage rooms, break rooms, corridors, and conference rooms. A breakdown of the locations of these space types is available in figure 3 below.

23

31.8 30.7 29.9 29.2 29.0 29.4 30.5 32.4 35.2 38.1 41.4 44.5

Help

30.3 29.7 29.5 29.9 30.9 32.6 35.2 38.1

30.1 41.4 44.5

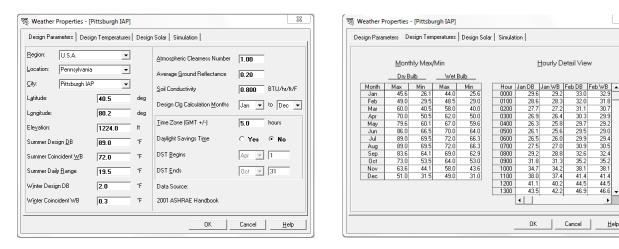
46.9 46.6

Cancel

Hourly Detail View

26.0

28.8 31.3 34.2 37.4 40.2 42.2


26.1 26.5 27.5

29.2 31.8 34.7 38.0 41.1 43.5

пκ

Design Conditions

123 Alpha Drive is located 9 miles east of Pittsburgh, Pennsylvania. Carrier HAP contains hundreds of locations that can be used to model buildings across the nation and in Canada. Conveniently, a design template for Pittsburgh is available in version 4.7 of Carrier HAP. The measurements were recorded at the Pittsburgh International Airport, which is located several miles southwest of Pittsburgh. There is a possibility that the design conditions at 123 Alpha Drive may not be perfectly modeled by the Pittsburgh IAP, but if such differences existed, they would be minimal. Figures 4 and 5, below, show the weather conditions information provided in Carrier HAP.

Internal Loads

The internal loads for the building were dependent on the type of space in question. For office space and conference rooms, the lighting power density and electrical equipment load was 2.0 W/sq. ft. and 1.0 W/sq. ft., respectively. Warehouse areas were modeled to have a lighting power density of 2.5 W/sq.ft. and an electrical equipment load of 1.0 W/sq. ft. Corridor and restroom spaces were modeled as 1.0 W/sq. ft. for both internal loads. Areas such as office spaces, conference rooms, and lab spaces were designated as spaces containing people undergoing "office work", which determined their sensible people loads. People in warehouse areas were designated as "medium work" individuals, which created a larger sensible people load.

Schedules

Thermostat schedules were designed for normal work hours, plus two extra hours in the morning for workers in the warehouse space. These occupancy schedules were responsible for modeling the lighting, electrical equipment, miscellaneous, and people loads for the building.

Construction

123 Alpha Drive was designed with the same exterior wall construction around the entire perimeter of the building. The flat roof was equipped with steel studs, asphalt layers, and a vapor retardant membrane across the roof footprint. This building was constructed with significant insulation, providing R-values that were far above the suggested R-values contained within ASHRAE 62.1 and 90.1. Figures 6 and 7 indicate a breakdown of the wall and roof construction types.

1	Wall Assembly	/	
Component	Thickness	R-value	U-value
Gypsum Board	0.625	0.56	
Air Space	0	0.91	
R-11 Batt Insulation	3.5	11.22	
8 in HW concrete block	8	1.11	
4-in face brick	4	0.4329	
		15.2509	0.0655699

Figure 6: Typical Exterior Wall Assembly

Roof Assembly					
Component	Thickness	R-value	U-value		
Steel Deck	0.034	0.00011			
R-28 Batt Insulation	8	26.55			
Built-up Roofing	0.376	0.332			
		27.90011	0.03584215		

Figure 7: Typical Roof Assembly

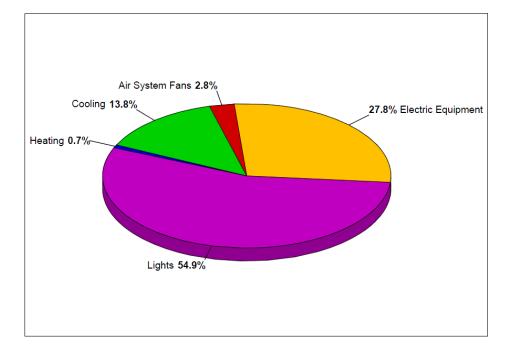
Calculated Load versus Design Load

In order to determine whether the load calculations established by Carrier HAP 4.7 were accurate, they would need to be analyzed and compared against the design load found in the construction documents of 123 Alpha Drive. Using the previously described internal loads, design conditions, construction values, and system types, a system report was created for each packaged, single zone CAV rooftop unit, which can be found in Appendix A of this report. The design and calculated loads were compared by the variable of airflow, in cubic feet per minute (CFM). A standard percentage error calculation was conducted to determine if the two sets of data contain a correlation and similarity. Figure 8, as seen below, indicates which calculations were deemed accurate and which require a further investigation as to the disparity between the two. The rooftop units that indicate a large difference between calculated and design airflows can be explained by several additional design techniques that were not able to be accounted for during the Carrier HAP design. For instance, all rooftop units modeling the café and office space areas are complimented with a radiant floor cooling and heating loops system, which would reduce a significant amount of the airflow and load needed by the air handling units. For rooftop units which condition bathrooms, the design loads for each restroom were significantly different from the calculated airflow by nearly 300%. This accounts for the high disparity between some units' design and calculated loads. Also, the internal lighting loads used may not be accurate with the actual lighting loads used in the original project, which could explain a difference in required airflow.

Design vs Calculated Airflow (CFM)						
Design CFM	Calculated CFM	Percent Error				
2600	2931	12.73076923				
3000	2507	-16.43333333				
3000	3732	24.4				
3000	2926	-2.4666666667				
2800	3094	10.5				
1800	2492	38.4444444				
	Design CFM 2600 3000 3000 3000 2800	Design CFM Calculated CFM 2600 2931 3000 2507 3000 3732 3000 2926 2800 3094				

Figure 8: Design v. Calculated Airflow for 123 Alpha Drive

	Design vs Calcu	lated Capacities	
Heati	ing	Cooli	ng
Calculated (MBH)	323.7	Calculated (MBH)	437.2
Design (MBH)	314.9	Design (MBH)	421.6
Error (%)	-2.79	Error (%)	-3.70


Figure 9: Design v. Calculated Capacities for 123 Alpha Drive

Energy Cost and Consumption

The annual energy consumption simulation was created through Carrier HAP version 4.7. The simulation created a detailed report of energy usage, energy costs, and a breakdown of which building system components contributed to the energy cost. The utility rates for natural gas and electricity were obtained from local estimates of the most current utility rates in Pittsburgh. The estimate created encompasses the entire building, and it was found that lighting contributed to the majority of the energy consumption. This is rather peculiar, however, as typical building design suggests that lighting should not represent nearly sixty percent of the annual energy consumption. An improper designation for internal lighting loads or incorrect electric utility rate could be the answer for this anamoly. Electric resistant heaters in the stairways and vestibules were not included in this analysis. An energy model was not produced for this project by lams Consulting, the MEP consulting firm for 123 Alpha Drive, and therefore a useful comparison or declaration is likely unable to be make from this data. Figure 10, below, indicates the yearly consumption of natural gas and electricity. Graph 1 illustrates the projected energy consumption for various types of sources such as heating, cooling, and lighting.

Component	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Air System Fans (kWh)	4710	4254	4710	4558	4710	4558	4710	4710	4558	4710	4558	4710
Cooling												
Electric (kWh)	10480	10489	16624	17918	27076	37491	40066	40385	27870	19561	14020	12168
Natural Gas (Therm)	0	0	0	0	0	0	0	0	0	0	0	0
Fuel Oil (na)	0	0	0	0	0	0	0	0	0	0	0	C
Propane (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote HW (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote Steam (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote CW (na)	0	0	0	0	0	0	0	0	0	0	0	0
Heating												
Electric (kWh)	0	0	0	0	0	0	0	0	0	0	0	0
Natural Gas (Therm)	633	564	255	142	16	1	0	0	3	82	237	451
Fuel Oil (na)	0	0	0	0	0	0	0	0	0	0	0	0
Propane (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote HW (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote Steam (na)	0	0	0	0	0	0	0	0	0	0	0	0
Pumps (kWh)	0	0	0	0	0	0	0	0	0	0	0	0
Heat Rej. Fans (kWh)	0	0	0	0	0	0	0	0	0	0	0	0
Lighting (kWh)	92935	83941	92935	89937	92935	89937	92935	92935	89937	92935	89937	92935
Electric Eqpt. (kWh)	47143	42580	47143	45622	47143	45622	47143	47143	45622	47143	45622	47143
Misc. Electric (kWh)	0	0	0	0	0	0	0	0	0	0	0	0
Misc. Fuel												
Natural Gas (Therm)	0	0	0	0	0	0	0	0	0	0	0	C
Propane (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote HW (na)	0	0	0	0	0	0	0	0	0	0	0	0
Remote Steam (na)	0	0	0	0	0	0	0	0	0	0	0	0

Figure 10: Monthly Energy Consumption

Graph 1: Energy Consumption

Cost

The utility rates used for this simulation are subject to change and could not be completely verified. It is assumed that they represent the average cost for electricity and natural gas in Pittsburgh, Pennsylvania. Variables such as natural gas fracking, urban price hikes, and more can severely adjust the expected utility rates for this building. Figure 11 provides a monthly analysis of energy cost for electricity and natural gas. The cost of utilities for the HVAC system was expected to be \$24,926 per year. The cost per square foot for HVAC utilities in the building is \$.39 per square foot.

1. HVAC Costs					Remote Hot		Remote Chilled
Month	Electric (\$)	Natural Gas (\$)	Fuel Oil (\$)		Water	Remote Steam (\$)	Water (\$)
January	1,101	273	0	0	0	0	0
February	1,069	244	0	0	0	0	0
March	1,547	110	0	0	0	0	0
April	1,630	62	0	0	0	0	0
May	2,305	7	0	0	0	0	0
June	3,049	0	0	0	0	0	0
July	3,246	0	0	0	0	0	0
August	3,269	0	0	0	0	0	0
September	2,351	1	0	0	0	0	0
October	1,760	36	0	0	0	0	0
November	1,347	102	0	0	0	0	0
December	1,224	195	0	0	0	0	0
Total	23,897	1,030	0	0	0	0	0

Figure 11: Monthly HVAC Energy Costs

Alexander Radkoff Mechanical Stephen Treado 10/4/13 Page	10
--	----

Emissions

Carrier HAP 4.7 produced an emissions calculation for the calendar year. No SO2 or NOX emissions were found during the simulation, but a fairly sizable amount of carbon dioxide emissions were discovered. The amount of CO2 projected is unusually high, however, and it has been determined that the correct emissions factors for electricity and natural gas may not have been obtained from the Penn State AE database. This will be investigated and corrected if necessary in the spring semester.

Component	Sample Building
CO2 Equivalent (lb)	2,414,521

References

THAR Geothermal. Construction Documents Bid Set Volume I. Pittsburgh, PA.

THAR Geothermal. Construction Documents Bid Set Volume II. Pittsburgh, PA.

Appendix A

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC		g Summary for RTU-1	01/03/20 01:38
ir System Information			
Air System NameRTU-1		Number of zones1	
Equipment Class PKG ROOF		Floor Area	ft²
Air System Type SZCAV		Location Pittsburgh IAP, Pennsylvania	
izing Calculation Information			
Zone and Space Sizing Method:			
Zone CFM Sum of space airflow rates		Calculation MonthsJan to Dec	
Space CFM Individual peak space loads		Sizing DataCalculated	
entral Cooling Coil Sizing Data			
Total coil load6.2	Tons	Load occurs at Jul 1500	
Total coil load73.8		OA DB / WB 89.0 / 72.0	°F
Sensible coil load59.9		Entering DB / WB 74.9 / 62.9	°F
Coil CFM at Jul 1500 2931		Leaving DB / WB 55.1 / 54.0	
Max block CFM 2931		Coil ADP 52.9	
Sum of peak zone CFM2931	CFM	Bypass Factor0.100	
Sensible heat ratio0.812		Resulting RH	%
ft²/Ton 561.7		Design supply temp 55.0	°F
BTU/(hr-ft ²) 21.4		Zone T-stat Check1 of 1	
Water flow @ 10.0 °F riseN/A		Max zone temperature deviation 0.0	0K
Water now @ 10.0 T rise NA			
entral Heating Coil Sizing Data			
Max coil load27.1 Coil CFM at Des Htg2931	MBH	Load occurs at Des Htg	
Coil CFM at Des Htg2931	CFM	BTU/(hr-ft ²)7.8	
Max coil CFM 2931	CFM	Ent. DB / Lvg DB65.5 / 74.5	°F
Water flow @ 20.0 °F drop N/A			
recool Coil Sizing Data			
Total coil load0.5	Tons	Load occurs at Jul 1500	
Total coil load6.0		OA DB / WB 89.0 / 72.0	°F
Sensible coil load6.0		Entering DB / WB 89.0 / 72.0	°F
Coil CFM at Jul 1500 530		Leaving DB / WB 78.0 / 68.9	°F
Max coil CFM		Bypass Factor0.100	
Sensible heat ratio 1.000	CT III	Dypuss 1 40010.100	
Water flow @ 10.0 °F riseN/A			
reheat Cail Sizing Data			
reheat Coil Sizing Data	мвн	Load occurs at Dea Him	
Max coil load23.5		Load occurs at Des Htg	°E
Coil CFM at Des Htg530		Ent. DB / Lvg DB2.0 / 45.0	F
Max coil CFM			
upply Fan Sizing Data			
Actual max CFM 2931		Fan motor BHP 0.40	
Standard CFM 2803		Fan motor kW0.32	
Actual max CFM/ft ² 0.85	CFM/ft ²	Fan static0.50	in wg
utdoor Ventilation Air Data			
Design airflow CFM530	CFM	CFM/person37.84	CFM/perso
CFM/ft ²			
0.13	or mill		

Air System Sizing Summary for RTU-2

01/03/2014 01:44PM

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC

Air System Information

Air System Name	RTU-2
Equipment Class	PKG ROOF
Air System Type	SZCAV

Sizing Calculation Information

Zone and Space Sizi	ng Method:
Zone CFM	Sum of space airflow rates
Space CFM	Individual peak space loads

Central Cooling Coil Sizing Data

Lentral Cooling Coll Sizing Data		
Total coil load	5.1	Tons
Total coil load	61.3	MBH
Sensible coil load	48.1	MBH
Coil CFM at Jul 1500	2507	CFM
Max block CFM	2507	CFM
Sum of peak zone CFM	2507	CFM
Sensible heat ratio	0.784	
ft²/Ton	569.7	
BTU/(hr-ft ²)		
Water flow @ 10.0 °F rise	N/A	

Central Heating Coil Sizing Data

BH
FM
FM

Precool Coil Sizing Data

Total coil load0.6	Tons
Total coil load6.9	MBH
Sensible coil load6.9	MBH
Coil CFM at Jul 1500 603	CFM
Max coil CFM	CFM
Sensible heat ratio 1.000	
Water flow @ 10.0 °F riseN/A	

Preheat Coil Sizing Data

Max coil load26.8	MBH
Coil CFM at Des Htg603	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop N/A	

Supply Fan Sizing Data

Actual max CFM 25	507	CFM
Standard CFM 23	398	CFM
Actual max CFM/ft ² 0.	.86	CFM/ft ²

Outdoor Ventilation Air Data	
Design airflow CFM603	CFM
CFM/ft ² 0.21	CFM/ft ²

Number of zones ____ _____.2912.0 ft²

Calculation Months ______Jan to Dec Sizing Data _____ Calculated

Load occurs at Jul 1500	
OA DB / WB 89.0 / 72.0	°F
Entering DB / WB 75.1 / 63.9	°F
Leaving DB / WB 56.5 / 55.5	°F
Coil ADP 54.5	°F
Bypass Factor0.100	
Resulting RH 51	%
Design supply temp 55.0	°F
Zone T-stat Check1 of 1	ок
Max zone temperature deviation 0.0	°F
Resulting RH51 Design supply temp55.0 Zone T-stat Check1 of 1	°F OK

Load occurs at Des Htg	
BTU/(hr-ft ²)9.3	
Ent. DB / Lvg DB64.0 / 74.5	°F

Load occurs at Jul 1500	
OA DB / WB 89.0 / 72.0	°F
Entering DB / WB 89.0 / 72.0	°F
Leaving DB / WB 78.0 / 68.9	°F
Bypass Factor0.100	

Load occurs at _____ Des Htg Ent. DB / Lvg DB _____ 2.0 / 45.0 °F

Fan motor BHP 0.34	BHP
Fan motor kW0.27	kW
Fan static 0.50	in wg

CFM/person _____.54.81 CFM/person

Air System Sizing Summary for RTU-3

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC

01/03/2014 01:47PM

Air System Information

Air System Name.	RTU-3
Equipment Class	PKG ROOF
Air System Type _	\$ZCAV

Sizing Calculation Information

Zone and Space Sizing	j Method:
Zone CFM	Sum of space airflow rates
Space CFM	_Individual peak space loads

Central Cooling Coil Sizing Data

Lentral Cooling Coll Sizing Data		
Total coil load	7.2	Tons
Total coil load	86.6	MBH
Sensible coil load	73.1	MBH
Coil CFM at Aug 1200	3732	CFM
Max block CFM	3732	CFM
Sum of peak zone CFM	3732	CFM
Sensible heat ratio	0.844	
ft²/Ton	355.0	
BTU/(hr-ft ²)		
Water flow @ 10.0 °F rise	N/A	

Central Heating Coil Sizing Data

Max coil load37.1	MBH
Coil CFM at Des Htg3732	CFM
Max coil CFM 3732	CFM
Water flow @ 20.0 °F drop N/A	

Precool Coil Sizing Data

record con bizing but	
Total coil load0.3	Tons
Total coil load3.7	MBH
Sensible coil load 3.7	MBH
Coil CFM at Jul 1500 324	CFM
Max coil CFM	CFM
Sensible heat ratio 1.000	
Water flow @ 10.0 °F riseN/A	

Preheat Coil Sizing Data

Max coil load15.0	MBH
Coil CFM at Jan 0800 921	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop N/A	

Supply Fan Sizing Data

Actual max CFM	3732	CFM
Standard CFM	3569	CFM
Actual max CFM/ft ²	1.46	CFM/ft ²

Outdoor Ventilation Air Data

-		
	Design airflow CFM324	CFM
	CFM/ft ² 0.13	CFM/ft ²

Number of zones1	
Floor Area	ft²
Location Pittsburgh IAP, Pennsylvania	

Calculation Months	 Jan to Dec
Sizing Data	 Calculated

Load occurs at Aug 1200	
OA DB / WB 84.5 / 70.7	°F
Entering DB / WB74.8 / 62.9	°F
Leaving DB / WB 55.8 / 54.7	°F
Coil ADP 53.7	°F
Bypass Factor0.100	
Resulting RH 50	%
Design supply temp 55.0	°F
Zone T-stat Check1 of 1	ок
Max zone temperature deviation 0.0	°F

Load occurs at Des Htg	
BTU/(hr-ft ²)14.5	
Ent. DB / Lvg DB67.9 / 77.5	°F

Load occurs at Jul 1500	
OA DB / WB 89.0 / 72.0	°F
Entering DB / WB 89.0 / 72.0	°F
Leaving DB / WB 78.0 / 68.9	°F
Bypass Factor0.100	

Load occurs at Jan 0800	
Ent. DB / Lvg DB29.2 / 45.0	°F

Fan motor BHP0.51	BHP
Fan motor kW0.41	kW
Fan static 0.50	in wg

CFM/person _____.9.52 CFM/person

Air System Sizing Summary for RTU-4

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC 01/03/2014 01:48PM

Air System Information

Air System Name	RTU-4
Equipment Class	PKG ROOF
Air System Type	\$ZCAV

Sizing Calculation Information

Zone and Space Sizing	Method:
Zone CFM	Sum of space airflow rates
Space CFM	Individual peak space loads

Central Cooling Coil Sizing Data

Total coil load	5.6	Tons
Total coil load	67.6	MBH
Sensible coil load	56.9	MBH
Coil CFM at Aug 1200	2926	CFM
Max block CFM	2926	CFM
Sum of peak zone CFM	2926	CFM
Sensible heat ratio	0.842	
ft²/Ton	405.2	
BTU/(hr-ft ²)	29.6	
Water flow @ 10.0 °F rise	N/A	

- - -

Central Heating Coil Sizing Data

Central fleating Con Sizing Data		
Max coil load	23.9	MBH
Coil CFM at Des Htg	_2926	CFM
Max coil CFM	2926	CFM
Water flow @ 20.0 °E drop	N/A	

Precool Coil Sizing Data

recoor con sizing bata	
Total coil load0.3	Tons
Total coil load3.0	MBH
Sensible coil load 3.0	MBH
Coil CFM at Jul 1500 267	CFM
Max coil CFM	CFM
Sensible heat ratio1.000	
Water flow @ 10.0 °F riseN/A	

Preheat Coil Sizing Data

Max coil load12.9	MBH
Coil CFM at Jan 0300 689	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop	

Supply Fan Sizing Data

Actual max CFM	2926	CFM
Standard CFM	2799	CFM
Actual max CFM/ft ²		CFM/ft ²

Outdoor Ventilation Air Data

Design airflow CFM267	CFM
CFM/ft ² 0.12	CFM/ft ²

Number of zones 1 Floor Area 2282.0 ft² Location Pittsburgh IAP, Pennsylvania

Calculation Months	Jan to Dec
Sizing Data	Calculated

Load occurs at Aug 1200	
OA DB / WB 84.5 / 70.7	°F
Entering DB / WB 74.8 / 63.0	°F
Leaving DB / WB 56.0 / 54.9	°F
Coil ADP 53.9	°F
Bypass Factor0.100	
Resulting RH 50	%
Design supply temp 55.0	°F
Zone T-stat Check1 of 1	OK
Max zone temperature deviation 0.0	°F

Load occurs at Des Htg	
BTU/(hr-ft ²)10.5	
Ent DB / Lvg DB 67.7 / 75.6	°F

Load occurs at	Jul 1500	
OA DB / WB	89.0 / 72.0	°F
Entering DB / WB	89.0 / 72.0	°F
Leaving DB / WB	78.0 / 68.9	°F
Bypass Factor	0.100	

Load occurs at Jan 0300	
Ent. DB / Lvg DB26.9 / 45.0	°F

Fan motor BHP0.40	BHP
Fan motor kW0.32	kW
Fan static0.50	in wg

CFM/person ______10.27 CFM/person

Air System Sizing Summary for RTU-5

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC

01/03/2014 01:54PM

Air System Information

Air System Name	RTU-5
Equipment Class	
Air System Type	SZCAV

Sizing Calculation Information

Zone and Space Sizing Method: Zone CFM ______ Sum of space airflow rates Space CFM ______ Individual peak space loads

Central Cooling Coil Sizing Data

Total coil load6.8	Tons
Total coil load81.1	MBH
Sensible coil load63.0	MBH
Coil CFM at Aug 12003235	CFM
Max block CFM 3235	CFM
Sum of peak zone CFM3235	CFM
Sensible heat ratio 0.777	
ft²/Ton 287.5	
BTU/(hr-ft²) 41.7	
Water flow @ 10.0 °F riseN/A	

Central Heating Coil Sizing Data

Lentral nearing Coll Sizing Data	
Max coil load34.0	MBH
Coil CFM at Des Htg3235	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop N/A	

Precool Coil Sizing Data

Teeoor con Sizing Data	
Total coil load0.4	Tons
Total coil load4.9	MBH
Sensible coil load 4.9	MBH
Coil CFM at Jul 1500 430	CFM
Max coil CFM	CFM
Sensible heat ratio1.000	
Water flow @ 10.0 °F riseN/A	

Preheat Coil Sizing Data

Max coil load19.1	MBH
Coil CFM at Des Htg430	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop	

Supply Fan Sizing Data

Actual max CFM	3235	CFM
Standard CFM	3094	CFM
Actual max CFM/ft ²	1.66	CFM/ft ²

Outdoor Ventilation Air Data airflow CEM

Satason Fonthation Fin Data	
Design airflow CFM430	CFM
CFM/ft ² 0.22	CFM/ft ²

Number of zones _____ Floor Area _____ Pittsburgh IAP, Pennsylvania Location .__

Calculation Months ______ Jan to Dec ____Calculated Sizing Data

Load occurs at Aug 1200	
OA DB / WB 84.5 / 70.7	°F
Entering DB / WB75.1 / 63.9	°F
Leaving DB / WB 56.2 / 55.2	°F
Coil ADP 54.1	°F
Bypass Factor0.100	
Resulting RH52	%
Design supply temp 55.0	°F
Zone T-stat Check0 of 1	OK
Max zone temperature deviation 0.1	°F

Load occurs at Des Htg	
BTU/(hr-ft ²)17.5	
Ent. DB / Lvg DB66.8 / 77.0	°F

Load occurs at Jul 1500	
OA DB / WB 89.0 / 72.0	°F
Entering DB / WB 89.0 / 72.0	°F
Leaving DB / WB 78.0 / 68.9	°F
Bypass Factor0.100	

Load occurs at _____ Des Htg Ent. DB / Lvg DB ______ 2.0 / 45.0 °F

Fan motor BHP 0.44	BHP
Fan motor kW0.35	kW
Fan static 0.50	in wg

CFM/person _____ ____.8.60 CFM/person

Air System Sizing Summary for RTU-6

Project Name: THAR Energy Thesis Prepared by: lams Consulting LLC

01/03/2014 01:55PM

Air System Information

Air System Name	RTU-6
Equipment Class I	PKG ROOF
Air System Type	SZCAV

Sizing Calculation Information

Zone and space sizing	metriou.
Zone CFM	Sum of space airflow rates
Space CFM	Individual peak space loads

Central Cooling Coil Sizing Data

Total coil load5.6	Tons
Total coil load66.8	MBH
Sensible coil load47.4	MBH
Coil CFM at Jul 1200 2605	CFM
Max block CFM 2605	CFM
Sum of peak zone CFM2605	CFM
Sensible heat ratio 0.709	
ft²/Ton 427.1	
BTU/(hr-ft ²) 28.1	
Water flow @ 10.0 °F riseN/A	

Central Heating Coil Sizing Data

Max coil load34.3	MBH
Coil CFM at Des Htg2605	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop N/A	

Precool Coil Sizing Data

1 otal coll load0.9	Ions
Total coil load11.0	MBH
Sensible coil load11.0	MBH
Coil CFM at Jul 1500 968	CFM
Max coil CFM	CFM
Sensible heat ratio 1.000	
Water flow @ 10.0 °F riseN/A	

Preheat Coil Sizing Data

Max coil load43.0	MBH
Coil CFM at Des Htg968	CFM
Max coil CFM	CFM
Water flow @ 20.0 °F drop	

Supply Fan Sizing Data

Actual max CFM	2605	CFM
Standard CFM	2492	CFM
Actual max CFM/ft ²	1.09	CFM/ft ²

Outdoor Ventilation Air Data

Design airflow CFM968	CFM
CFM/ft ² 0.41	CFM/ft ²

Number of zones1	
Floor Area	ft²
Location Pittsburgh IAP, Pennsylvania	

Calculation Months	Jan to Dec
Sizing Data	Calculated

Load occurs at Jul 1200	
OA DB / WB 84.5 / 70.7	°F
Entering DB / WB 75.5 / 65.6	°F
Leaving DB / WB 57.9 / 57.0	°F
Coil ADP 56.0	°F
Bypass Factor0.100	
Resulting RH 55	%
Design supply temp 55.0	°F
Zone T-stat Check1 of 1	ОК
Max zone temperature deviation 0.0	°F

Load occurs at Des Htg	
BTU/(hr-ft ²)14.4	
Ent. DB / Lvg DB60.9 / 73.6	°F

Load occurs at Jul 1500	
OA DB / WB 89.0 / 72.0	°F
Entering DB / WB 89.0 / 72.0	°F
Leaving DB / WB 78.0 / 68.9	°F
Bypass Factor0.100	

Load occurs at Des Htg	
Ent. DB / Lvg DB 2.0 / 45.0	°F

Fan motor BHP 0.36	BHP
Fan motor kW0.28	kW
Fan static 0.50	in wg

CFM/person35.84	CFM/person
-----------------	------------

Alexander Radkoff | Mechanical | Stephen Treado | 10/4/13