Erin Miller

MECHANICAL OPTION

The Pennsylvania State University Architectural Engineering Senior Thesis

April 15, 2014

THESIS GOALS

BUILDING INFORMATION

MECHANICAL ANALYSIS

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

LEMMA, MN

<u>(</u>)

WORLD-CLASS PERFORMING ARTS FACILITY

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION

MECHANICAL ANALYSIS

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION

MECHANICAL ANALYSIS

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

WORLD-CLASS PERFORMING ARTS FACILITY

PROPER FACILITIES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION

MECHANICAL ANALYSIS

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

WORLD-CLASS PERFORMING ARTS FACILITY

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION

MECHANICAL ANALYSIS

WORLD-CLASS PERFORMING ARTS FACILITY PROPER FACILITIES **ACOUSTICALLY CORRECT** ECONOMICALLY FEASIBLE N Y

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION

MECHANICAL ANALYSIS

PROPER FACILITIES ACOUSTICALLY CORRECT ECONOMICALLY FEASIBLE **CONSCIOUS CONSUMPTION**

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

WORLD-CLASS PERFORMING ARTS FACILITY

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

LOCATION: LEMMA, MINNESOTA

OWNER:

GROSS BUILDING AREA: 170,000 SF

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

THE AUDITORIUM

FRANCIS MICHAEL PERFORMING ARTS ACADEMY

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

THEATER

2,800 SEATING CAPACITY

STAGE HOUSE

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

2,800 SEATING CAPACITY STAGE HOUSE

THEATER

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

CONSCIOUS CONSUMPTION

THEATER 2,800 SEATING CAPACITY

STAGE HOUSE

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

ECONOMICALLY FEASIBLE

STAGE HOUSE

2,800 SEATING CAPACITY

THEATER

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

ECONOMICALLY FEASIBLE

STAGE HOUSE

2,800 SEATING CAPACITY

THEATER

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

STAGE HOUSE

2,800 SEATING CAPACITY

THEATER

PERFORMANCE SUPPORT SPACES

PUBLIC SPACES

STUDENT LOUNGES

ATRIUM

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

ECONOMICALLY FEASIBLE

STAGE HOUSE

2,800 SEATING CAPACITY

THEATER

PUBLIC SPACES

ATRIUM HONORS PROGRAM FACULTY OFFICES STUDENT LOUNGES

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

GENERAL INFORMATION

PROGRAM AREAS

PERFORMANCE SUPPORT SPACES

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION A OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION A OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING ENERGY IMPACT

ACOUSTIC ANALYSIS

ACTIVE CHILLED BEAMS

DESIGN CHARACTERISTICS

57 °F CHILLED WATER SUPPLY TEMPERATURE 120 °F HOT WATER SUPPLY TEMPERATURE

SIZING

MINIMUM REQUIRED VENTILATION AIR PRIMARY AIRFLOW SIZED TO ACCOMMODATE LATENT LOAD

CONSTRUCTION CONCERNS

4 PIPING CONNECTIONS PRIMARY AIR CONNECTION PRECISE PLACEMENT WITHIN SUSPENDED CEILING GRID

RECOMMENDATIONS

CLOSING

- 4 PIPE SYSTEM SUPPLY & RETURN HOT WATER AND CHILLED WATER
- INDUCED ROOM AIR RECIRCULATED/RECONDITIONED

SCHEMATIC

▲ INDUCED ROOM AIR

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION A

BASELINE

15 BASEMENT ROOMS **16** ACTIVE CHILLED BEAMS 2% BUILDING AREA

OPTION A

BASEMENT & GROUND FLOOR ROOMS **42** ACTIVE CHILLED BEAMS ADDED 4.7% BUILDING AREA CHANGED

SYSTEM ZONING - OPTION A

GROUND FLOOR CHILLED **BEAM EXPANSION**

◄ BASEMENT FLOOR CHILLED BEAM EXPANSION

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING ENERGY IMPACT OPTION B DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION A

ANNUAL ELECTRICITY CONSUMPTION

Α

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION A

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT

DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION A

COMPARISON MATRIX

OPTION A			
vs. BASELINE			
(1,591)	-9%		
(42)	-2%		
(1,447)	-15%		
(6,519)	-10%		
(163)	0%		
(383)	-2%		
86	2%		
(36)	-0.02%		
\$ (15 , 348.65)	-5%		

+ \$ 121,606.23	1%
-----------------	----

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS SYSTEM ZONING OPTION A OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

BASELINE

15 BASEMENT ROOMS **16** ACTIVE CHILLED BEAMS 2% BUILDING AREA

OPTION A

BASEMENT & GROUND FLOOR ROOMS **42** ACTIVE CHILLED BEAMS ADDED 4.7% BUILDING AREA CHANGED

OPTION B

BASEMENT, GROUND, 1st, 2nd & 3rd FLOOR ROOMS 98 ACTIVE CHILLED BEAMS ADDED **19%** BUILDING AREA CHANGED

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION B

SYSTEM ZONING - OPTION B

▲ BASEMENT FLOOR CHILLED **BEAM EXPANSION**

▲ GROUND FLOOR CHILLED **BEAM EXPANSION**

▲ FIRST FLOOR CHILLED BEAM EXPANSION

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING ENERGY IMPACT OPTION B DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION B

ANNUAL ELECTRICITY CONSUMPTION

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSISOPTION ASYSTEM ZONINGOPTION BENERGY IMPACTDEMAND CONTROL VENTILATIONFIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION B

ANNUAL ELECTRICITY CONSUMPTION

ANNUAL HEATING CONSUMPTION

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

ACTIVE CHILLED BEAMS - OPTION B

COMPARISON MATRIX

			BASELINE	OPTION A		OPTION B	
ANNUAL CO	OMPAR	ISON	MODELED	MODELED vs. BASELINE		vs. BASELINE	
ENERGY		[MBh]	17,544	(1,591)	-9%	(1,923)	-11%
ELECTRICITY		[MWh]	2,386	(42)	-2%	(58)	-2%
HEATING		[MBh]	9,408	(1,447)	-15%	(1,750)	-19%
AIRFLOW	AHU-1	[CFM]	65,906	(6,519)	-10%	(18,942)	-29%
	AHU-2	[CFM]	49,725	(163)	о%	(163)	0%
	AHU-3	[CFM]	16,599	(383)	-2%	(383)	-2%
	AHU-5	[CFM]	5,131	86	2%	3,325	65%
EMISSIONS		[lb CO2]	232,395	(36)	-0.02%	2,720	1.2%
UTILITY COSTS		[\$]	\$ 279 , 697.47	\$ (15,348.65)	-5%	\$ (18,804.99)	-7%

MECHANICAL FIRST COST [\$] \$ 8,472,706.00	+ \$ 121,606.23	1%	+ \$ 488,520.15	6%
--	-----------------	----	-----------------	----

ANNUAL ELECTRICITY CONSUMPTION

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION A OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

DEMAND CONTROL VENTILATION [DCV]

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION A SYSTEM ZONING ENERGY IMPACT OPTION B DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

DEMAND CONTROL VENTILATION [DCV]

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

DEMAND CONTROL VENTILATION [DCV]

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION ASYSTEM ZONINGOPTION BENERGY IMPACTDEMAND CONTROL VENTILATIONFIRST COST

ACOUSTIC ANALYSIS

RECOMMENDATIONS

CLOSING

DEMAND CONTROL VENTILATION [DCV]

CALCULATED RESULTS

HEATING DESIGN CONDITION

COOLING DESIGN CONDITION

BENEFITS DECREASED EQUIPMENT RUNTIME BETTER SERVES ACTUAL BUILDING LOADS IMPROVED LOAD FOLLOWING

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING

OPTION B DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

ACOUSTIC ANALYSIS

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING

OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

ACOUSTIC ANALYSIS

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS

OPTION A OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING ENERGY IMPACT

ACOUSTIC ANALYSIS INTRODUCTION REVERBERATION TIME BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

ODEON REVERBERATION TIME STUDY

▲ ORCHESTRA LEVEL SEATING **REVERBERATION TIME GRID** RESPONSE

DESIGN REQUIREMENTS T(30) = 1.6 - 2.0 seconds

RESULTS

ORCHESTRA LEVEL T(30) ~ 3.0 - 3.5 seconds

FIRST BALCONY T(30) ~ 3.2 - 3.5 seconds

SECOND BALCONY T(30) ~ 2.5 - 3.5 seconds

THIRD BALCONY T(30) ~ 2.6 - 3.3 seconds

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS SYSTEM ZONING

OPTION A OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

T(30) (s) at 500 Hz >= 4.95

▲ FIRST BALCONY SEATING REVERBERATION TIME GRID RESPONSE

ODEON REVERBERATION TIME STUDY

▲ SECOND BALCONY SEATING **REVERBERATION TIME GRID** RESPONSE

DESIGN REQUIREMENTS T(30) = 1.6 - 2.0 seconds

RESULTS

ORCHESTRA LEVEL T(30) ~ 3.0 - 3.5 seconds

FIRST BALCONY T(30) ~ 3.2 - 3.5 seconds

SECOND BALCONY T(30) ~ 2.5 - 3.5 seconds

THIRD BALCONY T(30) ~ 2.6 - 3.3 seconds

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

AHU - 1 🕨 🕇

ROOFTOP HVAC EQUIPMENT IMPACT

COOLING TOWER

COOLINGTOWER

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING

OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

▲ ORCHESTRA LEVEL SEATING SPL(A) GRID RESPONSE

ODEON BACKGROUND NOISE LEVEL STUDY

▲ ORCHESTRA LEVEL SEATING SPL(A) GRID RESPONSE [ISOMETRIC]

DESIGN REQUIREMENTS SPL(A) = 25 - 30 dBA (NC - 20)

RESULTS

ORCHESTRA LEVEL SPL(A) ~ 30 - 40 dBA (NC - 35)

FIRST BALCONY SPL(A) ~ 27 - 37 dBA (NC - 32)

SECOND BALCONY SPL(A) ~ 32 - 52 dBA (NC - 47)

THIRD BALCONY SPL(A) ~ 42 - 58 dBA (NC - 53)

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A

OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING ENERGY IMPACT

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

▲ FIRST BALCONY SEATING SPL(A) GRID RESPONSE

ODEON BACKGROUND NOISE LEVEL STUDY

SPL(A) GRID RESPONSE

DESIGN REQUIREMENTS SPL(A) = 25 - 30 dBA (NC - 20)

RESULTS

ORCHESTRA LEVEL SPL(A) ~ 30 - 40 dBA (NC - 35)

FIRST BALCONY SPL(A) ~ 27 - 37 dBA (NC - 32)

SECOND BALCONY SPL(A) ~ 32 - 52 dBA (NC - 47)

THIRD BALCONY SPL(A) ~ 42 - 58 dBA (NC - 53)

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A OPTION B

SYSTEM ZONING ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

RECOMMENDATION

CHILLED BEAM ANALYSIS **OPTION A 42** ACTIVE CHILLED BEAM \$15,348 ANNUAL ENER \$121,606 ADDED FIRST **\$97,596** TCO SAVINGS (20 YEARS)

S		
GΥ	SAV	ING
CC	DST	

OPTION B

98 ACTIVE CHILLED BEAMS **\$18,805** ANNUAL ENERGY SAVINGS \$488,620 ADDED FIRST COST

- **\$214,529** TCO SAVINGS (20 YEARS)

theAUDITORIUM LEMMA, MN

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A OPTION B

SYSTEM ZONING ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

RECOMMENDATION

CHILLED BEAM ANALYSIS **OPTION A**

42 ACTIVE CHILLED BEAM \$15,348 ANNUAL ENER \$121,606 ADDED FIRST **\$97,596** TCO SAVINGS (20 YEARS)

DEMAND CONTROL VENTILATION ANALYSIS

45% ENERGY SAVINGS (OFFICE) 20% ENERGY SAVINGS (PERFORMANCE)

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

S
GY SAVINGS
COST

OPTION B

98 ACTIVE CHILLED BEAMS **\$18,805** ANNUAL ENERGY SAVINGS \$488,620 ADDED FIRST COST - **\$214,529** TCO SAVINGS (20 YEARS)

heAUDITORUM LEMMA, MN

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS OPTION A OPTION B

SYSTEM ZONING ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

RECOMMENDATION

CHILLED BEAM ANALYSIS OPTION A

42 ACTIVE CHILLED BEAM \$15,348 ANNUAL ENER \$121,606 ADDED FIRST **\$97,596** TCO SAVINGS (20 YEARS)

45% ENERGY SAVINGS (OFFICE)

20% ENERGY SAVINGS (PERFORMANCE)

ACOUSTIC ANALYSIS ~NC - 35 BACKGROUND NOISE LEVEL

S	
GY SAVINGS	
COST	

OPTION B 98 ACTIVE CHILLED BEAMS **\$18,805** ANNUAL ENERGY SAVINGS \$488,620 ADDED FIRST COST - **\$214,529** TCO SAVINGS (20 YEARS)

DEMAND CONTROL VENTILATION ANALYSIS

heAUDITORUM LEMMA, MN

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION BUILDING LAYOUT

MECHANICAL ANALYSIS OPTION A SYSTEM ZONING OPTION B ENERGY IMPACT DEMAND CONTROL VENTILATION FIRST COST

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME** BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

ACKNOWLEDGMENTS

Ed Clements Jeff Harris Dr. Laura Miller Andrew Rhodes Dr. Steven Treado Dr. Michelle Vigeant

A E Class of 2014 Family & Friends

Project Manager - HGA Mechanical Department Leader - HGA Senior Energy Program Engineer - Penn State OPP Project Manager - Southland Industries Advisor/Associate Professor - Penn State AE Department Advisor/Assistant Professor - Penn State Acoustics & AE Department

Penn State Architectural Engineering Department Faculty & Staff

HEAUDITORUM LEMMA, MN

THESIS GOALS PROPER FACILITIES ACOUSTICALLY CORRECT

ECONOMICALLY FEASIBLE CONSCIOUS CONSUMPTION

BUILDING INFORMATION GENERAL INFORMATION **BUILDING LAYOUT**

MECHANICAL ANALYSIS

OPTION A OPTION B DEMAND CONTROL VENTILATION FIRST COST

SYSTEM ZONING ENERGY IMPACT

ACOUSTIC ANALYSIS INTRODUCTION **REVERBERATION TIME**

BACKGROUND NOISE LEVEL

RECOMMENDATIONS

CLOSING

theAUDITORUM FRANCIS MICHAEL PERFORMING ARTS ACADEMY LEMMA, MN