TECHNICAL REPORT 2 BUILDING CODES, SPECIFICATIONS, AND LOADS

SECOND & STATE BUILDING

JADOT A MOOSMAN

HARRISBURG PA STRUCTURAL OPTION

Primary AE Faculty Consultant	Dr. Thomas E. Boothby
Date of Submission	
Revision	

TABLE OF CONTENTS

1. Executive Summary from Technical Report 1	3
2. Building Description & Location	4
3. Referenced Documents	5
4. Gravity Loads	6
5. Wind Loads	. 13
6. Seismic Loads	. 19

1. EXECUTIVE SUMMARY FROM TECHNICAL REPORT 1

The purpose of Technical Report 1 was to develop an understanding of the existing structural system of the Second & State Building, a five-story, 56,000 SF office building located in downtown Harrisburg, Pennsylvania.

The structural system consists of an ordinary, pin-connected steel superstructure supported by concrete caissons transferring building loads to bedrock. Floor and roof gravity loads are supported by a concrete slab on composite steel deck, resting on wide-flange beams and girders and transferred to the foundation by wide-flange columns. Lateral resistance is provided by a combination of perimeter moment connections and concentrically braced frames, with loads being collected and transferred via the floor diaphragm.

A typical 30' x 36' bay was analyzed in greater detail. Wide flange beams ranging from W21x44 to W24x84 span in the 36' direction. Interior beams are supported by W24x76 and W24x84 girders spanning in the 30' direction, and edge beams (and girders) are supported by W12x120 and W12x152 columns. Beam connections are pinned, with the exception of the edge beam-to-column connections, which are moment connections serving as part of the lateral load resisting system. Floor loads are transferred to the framing members through a 5" composite slab formed on 20 gage Vulcraft 1.5VLI steel deck oriented in the 30' direction.

The Second & State Building was designed under the 2009 version of the Pennsylvania Uniform Construction Code (PUCC 2009), which adopts the 2009 International Building Code (IBC 2009), and, by reference, ASCE 7-05 for design loads, AISC 350-05 for steel design, and ACI 318-08 for concrete design.

Reduced plans for a typical floor, roof, mechanical penthouse, and typical braced frames are included in the appendix to Technical Report 1.

This report (Technical Report 2) contains research and calculations identifying and quantifying building loads for use in subsequent reports.

2. BUILDING DESCRIPTION & LOCATION

Constructed in 2012 and located one block from the State Capitol Complex, the Second & State Building is a five-story, steel frame structure housing retail on the ground level with four stories of office space above, for a total leasable area of approximately 56,000 square feet.

The Second & State Building was developed and is owned by WCI Partners of Harrisburg, PA. Architectural design services were provided by Bernardon Haber Holloway of Kennett Square, PA, with Baker, Ingram & Associates of Lancaster, PA completing structural design work. Warfel Construction of East Petersburg, PA provided construction management and served as the general contractor for the project.

FIGURE 1 SATELLITE IMAGE OF BUILDING SITE (RETREIVED FROM GOOGLE MAPS 11 SEP 2013)

3. REFERENCED DOCUMENTS

Minimum Design Loads for Buildings and Other Structures (ASCE 7-05)

2006 International Building Code (IBC 2006)

Structural Load Determination Under 2006 IBC and ASCE/SEI 7-05 (Design Guide)

4. GRAVITY LOADS

4.1 Roof Dead and Live Loads	7
4.2 Roof Snow Loads	8
4.3 Floor Dead and Live Loads	11
4.4 Wall Dead Loads	12

	Roo	F LOADS	1/1
	· SKETCH OF EDOF ASSEMBLY		
	6 MIL TRO MENERANE R-25 RIGIO IN	sutton (4")	
	WiceAFT 205m 1.58 DECK		
OVENO.	O POOF DEAD LOADS		
R	60-MIL TPO REFLECTIVE MEMERANE	0.31 PSF	
	2-25 ELGIO INSULATION (4" & 1.5 PSF/IN)	6.0 PSF	
	WICENFT 20 GA 1.53 ROOF DECK	3,54 PSF	
	CEILING & MISC MEP	15 PSF	
0	BTAL	24.8 PSF	
ALL	O ROOF TYP. BAY FRAMING SELF-WEATT		
	WZ1×44 (6 5 36'-0")	9504 #	
	WZ4x84 (10 36'-0")	3024 #	
	WIZX14 (45 61 - 0")	336 #	
	WZ4 x 76 (Z I 30' - 0")	4650 #	
	A325 Basis (APPROX 150 B 0.95#)	142.5 #	
	Misc - 151AL = 179900	250 #	
	AREA = 301 × 361 = 1080 5F ->	16.5 PSF	
	P ROOF LIVE LOAD		
	ASCE 7-05 CODE MINIMUM	20 PSF	
	VALUE USED IN DESIGN	30 PSF	
	O FLAT-EOOF SNOW LOAD		
	CALOULATED USING ASCE 7-05 L MATCHES VALUE USED IN DESIGN	ZI PSF	

TECHNICAL REPORT 2 BUILDING CODES, SPECIFICATIONS, AND LOADS

		FLOO	re Loads	いん
	O SKETCH OF FLOOR ASSEMBLY			
0	- 6x6 - WZiq XWZiq WWF			
	3.5" NW CONC. TOPPUSCH	(5" toral . De	(+1793	
			2	
		1		
	WILCENET ZOGA I.SVI D	ECK		
5				
NUM	O FLOOR DEAD LOADS			
R	5" NORMAL WIT SLARS ON LISVLI DE	ex	51 PSF	
	VULCEART ZOGA 1.5VL1 FLOOR DECK		2.14 TSF	
	CARTET & PAD		210 PEP	
	CEILING & MISC MEP		15 PSF	
0	TOTAL		70.2 PSF	
	P FLOOR TYP BAT FRAMMASGE SELF US	EIGHT		
	SAME AS ROOF, PLUSS		17900 #	
	STUDS (APPEOX 200 8 0.6 #)	101000	120 #,	
	AFEA = 301 × 361 = 1080 57		-> 17.8 PSF	
	OFLOCE LIVE LOADS			
		ASCE MIN.	DESIGN	
	OFFICES (FLOOR ONLY)	50 PSF	80 PSF +1	
	OFFICES (FLOOR + PAETIMON)	65 PSF	ZO BF	
	COERIDORS ABOVE 1ST FLOOR	80 BF	NA H	
	STARS	100 PSF	100 PSF	
	STORAGE AREAS (NEAR ELEVATIONS)	250 PSF	250 PSF	
BALLIN				

t = 2	17
THAT- FOOD SHOW LOAD	ASCE 7-05
· DETERMINE GROUND SHOW LOAD (P&)	V
BY MAP, Pg = 30 PSF	(FIG 7-1)
· DETERMINE EXPOSURE FACER (CE)	
UBBAN AREA ." SUBFACE ROUGHINESS = "B"	(\$ 6.5.6.2
PARAPETS & OBSTRUCTIONS .º. PARTIALLY EXPOSED	(TABLE 7-2
00 Ce - 1.0	(TABLE 7-2
OPETERMINE THERMAL FACTOR (CL)	
DOES NOT MEET EXCEPTIONS IN TABLE 7-3	
80 Ct = 110	(TABLE 7-3
* DETERMINE SHOW LOAD IMPLETANCE FACTOR ((=)
NON-ESSENTIAL OFFICE SO CATEGORY II	(TABLE 1-1)
00 I = 1.0	(TABLE 7-4
· CALCULATE AUTERNATIVE MINIMUM SUCUS LOAD	(P4, min)
Pg = 30 PSF > 20 PSF	
00 Pf, Min = 20 I = 20 (1.0) = 20 PSF	(3 7.3)
O CALCULATE FLAT-ROOF SNOW LOAD (Pf)	
$Pf = Oif CeC_t I Pg \ge Pf, Min$	(EQ 7-1)
= 017 (110)(110)(110)(30) = 20	
21 2 20 /ox	
30 Pf = 21 PSF	
· COMPARE TO EXISTING DESIGN	
CALLULATED FUT-EOOF SHOW LOAD MATCH VALUE LISTED IN STRUCTURAL NOTES	tes

5. WIND LOADS

5.1 Wind Load Calculations	14
5.2 Wind Pressure vs Height Diagrams	19

	WIND I	-DADS	2/6
0	• DETERMINE EASIL WIND SPEED (V) BY MAP, V = 90 MPH • DETERMINE FARTANCE FARTLE (I)	(FIG. 6-1)	
	NON-ESSENTIAL OFFICE SO CATEGORY IL V = 90 MPH SO I = 110	(TASLE 1-1) (TAOLE 6-1)	
5	PETERMINE EXPOSURE CATEGORY	(8/5/2)	
Manuf	EWGHNESS "B" CONTINUES FOR MILES TO WEST, BUT RIVER IS ONE BLOCK (<2600') D THE SOUTH.	(\$6,5,6,3)	
	· SAUTH = EXPOSURE "C" WEST = EXPOSURE "B" · PETERNINE FLANDITY OF STRUCTURE		
0	APPROXIMATE FUNDAMENTAL FREQUENCY (M.)		
	METHED 1 : $n_1 = \frac{1}{100} = 0.73 \text{ Hz}$ (FLEMBLE) METHED 2 ! $n_1 = \frac{100}{4} = 1.34 \text{ Hz}$ (EIGND)	(EQ. C6-14) (EQ C6-17)	
	$M_1 = \frac{75}{H} = 1.04 H_2 (11)$	(EQ C6-18)	1
	$MENTED 3: n_1 = \frac{1}{H} = \frac{2}{108} H_2 (11)$ $MENTED 4: n_1 = \frac{164}{H} = \frac{2}{128} H_2 (11)$	(EQ C6-19) (EQ C6-21)	
	PIGID OR FLEXIBLE? THE MORE-CONSERVATIVE METHOR FROM THE COMMENTARY (CGIL-IS) YELD SPLIT RESULTS. I WILL CLASSIFY THE STRUCTURE AS "BIGID", AS DID THE PROSECT ENGINEERS	n5	
	EIGHD STRUCTURE SO G = 0.85 DETERMINE ENCLOSURE CLASSIFICATION	(86.5.8.1)	
	NO OPERABLE WINDOWS OR OTHER OPENINGS		
	SU ENCLOSED BUILDINGT	(86.2)	

SECOND & STATE BUILDING HARRISBURG, PA

TECHNICAL REPORT 2 BUILDING CODES, SPECIFICATIONS, AND LOADS

		3/6
	WIM CO	A/S 10
	& DETERMINE TOPOGRAPHIC FACTOR (K26)	
C	SITE CONDITIONS DO NOT MEET \$ 6.5.7.1	
	00 K24 = 110	(86151712)
	· DETERMINE WIND DIRECTIONALITY FACER (Kd)	HALL ALL
	BUILDINGT So Kd = 0.85	(TARLE 6-4)
	· CALCULATE VELOCITY PRESSURES (82)	
20%	WEST (EXPOSURE "B")	
Anna	x = 7.0 29 = 1200'	(-246LE 6-2)
	EXAMPLE CALCULATION AT ZNO FLOOR (2=16.5')°
	$K_{165} = 2.01 \left[\frac{2}{29} \right]^{2/2} = 2.01 \left[\frac{16.5}{1200} \right]^{2/7} = 0.1591$	(TAFLE 6-3)
	G11.5= 0100256 K2 K26 KAV2 I	(± q. 6-15)
C	* 0100256 (01591)(110)(0185)(90)2 (110)	
1991		
	South (Exposure 10")	
	$x = 9.5$ $z_{g} = 9.00'$	
	EXAMPLE CALCULATION AT ZND FLOOR (Z= 16:5	3
	$K_{45^{2}} = Z_{101} \left[\frac{2}{Z_{5}} \right]^{2/4} = Z_{101} \left[\frac{16.5}{900} \right]^{2/9.5} = 0.567$	
	Gue = 0,00256 K2 K2, K2 VZI	
	= 0:00256 (0:667) (1:0) (0:85) (90)2 (1:0)	
	= 15.3 PSF	
~	VELOCITY PERSORES FOR SUBSEQUENT LEVELS CALCULATED USING SAME METHOD & TABULA WITH OTHER RESULTS AT END	TEO

			WIND L	OADS	4/6
	O DETERMINE INTERNAL	- Pressure	COEPFICIENT	(GCP7)	
C	ENCLOSED to GEP	$i = \pm 0.1$	6 PSF	(=146-5)	
	" PETERMINE EMERNAL	- PRESSURE	CONFFICIENTS	(CP)	
		WEST	South		
	L/B	1.05	0171		
	WWWWARD WALL	0180	0.80	(F14 6-6)	
2	LEEWARD WALL	- 0,49	- 0150	(FIG+6-6)	
Anna	SIDE	- 0170	- 0170	(FIG 6-6)	
	h/L	0,67	0178		
	Roof (0 to h/z)	-1.04	-1,12	(FIG 6-6)	
	(> h z)	- 0144	- 0152	(FIG 6-6)	
	· CALCULATE DESIGN W	IND PRESSI	rees (P2)		
Q	WEST (WINDWARD)				
	ENCLOSED in Bi	= 3h (h=721).	(\$6,5,12,2)	
	K721 = 2101 172	2/7 = 0.8	99		
	872 = 0100256 (0189	9)(110)(0.65)	$(90)^{7}(10) = 15.8$	3 PSF = gi	
	EXAMPLE CALCULATION	S AT ZNO	FLOOR (2= 16.5	5')	
	$P_{i} = gGC_{p} - g_{j}($	GCpi)		(EQ 6-17)	
	= (1014)(0185)(0	15) ± (15,8)(0,18)		
	= 4,23 PSF				
	SOUTH (WINDWARD)				
	KAZ = ZIOI [72]	c/a.s = 1.18			
	872 = 0100256 (11H	6)(1.0)(0.65)	(90)2(110) = 20.	8 PSF = 9;	
	EXAMPLE CALCULAR	new At Zn	2 FLOCIE (Z=16	15'}	
	P.= (15,3)(0185)(018) ± (20.8	20118)		
	= 6.67 PSF				

						WINO	LOA	75	
	- and -								
	e DESTUS	WIND THE	ESSURES	soru	JEST FAC	ADE	-	v	4.19
		1-2	VI		TEF	7 1.5		E	M
		rift	N21	63	PE(IM)	FZ (LW)	AT		Tot
	11	01-0"	D.FTC.	10.1	971	-9.56	1162	27 12	0
	17	11 1+1-11	01545-	10.14	0 07	1.50	1000	7/ 11	11211
	12	201-1-11	01511	17.2	1.72		155+	1014	9361
	111	29-10	0.011	1210	1112		155+	401L	04018
	16	45-6	01777	10.7	14:3		1554	9.5	1272
	10	26'-6	01059	1918	147		1554	50,5	1725
	LK	71-6	0.818	1518	13.6		1530	10 1	2532
	FH	84 75	0.446	16.6	14.1	- 9,56	806		1612
								202	8416
	9 DESIGN	MIND FE	ESSARES	s on s	OUTHIFAC	SADE			T
		FT	V		PSF		SF	K	Hix
		カニモ	Kz	92	Pz (WW)	PZ(LW)	AT	F	Mor
		1 11		110					
	LI	0'-0'	01849	14,9	13.9	-12.6	2145	56.8	0
	12	16'-6	0.867	15.3	14.1		1729	46.2	7631
	13	29'-10"	0.981	17.3	15.5		1729	48.6	1450
	14	U3'-Z"	1.06	18.7	16.5		1729	5012	2169
	15	56'-6"	1.12	19,7	17.1		1729	51.4	2905
	LR	73'-6"	1.19	21.0	18,0	1	1950	59.7	4389
	PH	84'-5"	1.22	21.5	16.4	- 12.6	923	28.6	2412
Nº11								342	14090
11	DUESIGN	INIMO PIZ	ESSORE	5 010	1200F				
	MINO	FEOM 1	NEST						
Part	0	v. c.	·	h a	. 1				
	En	A 1218	rsr 1	2 = 50	>				
	0	21	1		0-1	Cital			
	0	10 26	FROM	EAVE	100-	1.04)			
		- 1 G	LE ENA	SEV.10	1)+(15.5	= lack	14	A 10	-
		14004 =	(12:0)(0	1.02 V-110	4) 1 (-10101 -	- 10	10 12	>1
	21	1 - 120	I too is	Ene	1.	~ 1111			
	20	10 1 20	TLOM	EMUE	rob	0.44)			
) - 7 5	IT alla	45/1 011	4)+115	- (au)-	- 5	71. 2	TE I
	TORE OF	12004 - 1	15.0 101	0231-014	T) - (151	510016) =	-01	+ 7 1	21
	WIND	EDOU	e umi						
		reom	300119						
	al	- 201	PEE	. h	2,1				
		1 - 2018	5 1 21	1 2 =	56				
	2	- 211	Tour	TAL	1-	1			1000
		TO DE	FROM	EANE	(CP =	- (112)			
		-	(7- CV.	ANI I	10 100	Slaves		200	
		Froof =	(10.0)(0	2.85)(-1.	12) ± (20	28)(0,18)	2	5.5 FS	3-
-	2		(Fur	1.	>			
	26	TD 10	DZ FROM	V HAVE	ICP =	-0152)			
					1	N/			
	1	Toof = 1	10.8)(0.8	95)(-0.5Z)	1 + (10.8	01(0118)	=-12	9 73	SF
-									

6. SEISMIC LOADS

6.1 Seismic Factors and Calculations	21
6.2 Seismic Force vs Height Diagram	22

TECHNICAL REPORT 2 BUILDING CODES, SPECIFICATIONS, AND LOADS

		÷	SEISMI	c LOADS 1/2					
	9 SHE CLASSIFICAT	ION & LOCA	LANTA						
C	SHE CLASS -	VEN (EOCH	, PER GROTECH FE	PORT)					
	OCCUPANCY CAT	EGORY ="I	E" (NON-ESSENTIAL	OFFICE)					
	LOCATION: 40.26 N 76.88 W								
	IMPORTANCE FA	make = 1, c	,	(TABLE 115-1)					
	O SPECTRAL RESPO	NSE ACCELER	ATTONS COEFFICIENTS						
2	(USGIS VALUES FROM USGIS US SEISMIC DESIGN MAPS)								
Man		USGES	DESIGN						
	Ss	0,1889	011905						
	51	010538	0.053 8						
	SAS = Fass	011889		Fa = 1.0					
0	SMI = FVSI	010539		Fy = 1.0					
	505 = 35 MS	011263	0,127						
	Sp1 = 2 SM1	010359	0.035						
	NOTE: USGS VALUES USED IN CALCULATIONS								
	O DETERMINE APPROXIMATE FUNDAMENTAL PERIOD (TA)								
	Ta = Gihnx			(EQ 12.8-7)					
	where Ct =	OIOZB (STEE	L MOMENT FRAME)	(TARLE 12.8-2)					
	hn =	84,41 (PENTA	HOUSE ROOF HT)						
X = 0.8 (STEEL MOMENT FRAME) (TABLE 12.8-2									
	· DETERMINE SEI	SMIC DESIG	N CATEGORY						
\sim	51 = 0.053 4	0175		(811.6)					
	CHECK Ta (0.8-	CHECK Ta < 0.8 TS : 0.973 < 0.8 0.035 = 0.278 × NO GOOD							
	SO USE TABLE	11.6-2 3	· CATEGRORY = "	'A"					
				·					

			1			SEISM	ne lo	ADS	2/2
	O DETERMI	NE DE	NO LONG	> \$ F20	CE PER	LEVEL			
		FT		SE		- Kin		PT.V	
		h	A-	A			F	M	
		ux	TTLOOR	HEOOP	MFACAUE.	Wx	TX	TOT	R. CAR
	61	0'-0"	10076		6683	1340	13.4	0	
	lZ	16'-6"	10076		5386	1217	12.2	20018	
	L3	29'10"	10076		5386	1217	12.2	363.0	
	64	4312"	10076		5366	1217	1212	525.3	
	15	56'-6"	10076		5386	1217	12.2	687.5	
	LF	7316"	4005	6071	3015	716.9	7.17	526.9	1.1.1
	PH	84'-5"		4005		99.3	0,993	83,63	
20	EASE					7023	7023	2387	
Am	Notes	FL RO WA	OF PL N DL	= 70.2 = 24.8 = 94.6	PSF PSF PSF	Prices Prevents	= 405	1	
		For	ices pe	e Asce	7-05 8	11.7.2 (3	Fx = 0101	wx)	
0	* SEISMIN	CM LAT DE C LOND	AD LOAD	BASE ST AN DESIN VALVES HEIG	HEAR (70 GUS VALUE MAY EE HT	(2 K) K = (57 K), TOO (0	SUBSTAN SUGGI	STALLY ESTING ATIVE.	
	PH			B.K.					
	Le	T		Ax ->	1				
	LS		-12,2	×					
	LU	+	- 12.2	*					
	LS		L 12.2	*					
	Lz		L-1212	×					
	L1		C-13.4	×					
		<	EASE SHE	4R = 7011	K				
0		G	Mat	= 2387	₽7.K				