CASINO GOLD EAST COAST, USA

Photo Credit: Friedmutter Group

Brad Robertson

Penn State Architectural Engineering - Lighting/Electrical Option
Faculty Advisor - Shawn Good

Casino Gold
 East Coast, USA

Brad Robertson | Lighting + Electrical

http://www.engr.psu.edu/ae/thesis/portfolios/2014/jbr5104/index.html

The Team

Executive Architect: ka
Design/Interiors Architect: Friedmutter Group
Construction Manager: Whiting-Turner
Structural Engineer: Carroll Engineering, Inc.
MEPT Engineer: JBA Consulting Engineers
Lighting Design: The Lighting Practice

Casino Entrance at Night

The Building

Occupancy Type: A2 Assembly, B, S1
Type of Construction: Type 1B sprinklered, Noncombustible
Size: 309,450 GSF
Levels Above Grade/Total Levels: 3/3
Approximate Cost: \$400 Million
Dates of Construction: June 2013-September 2014

Active Outdoor Plaza

The Systems

Lighting: The lighting in Casino Gold is a mix of pendant, recessed, and strip luminaires. The majority of sources are LED and there are multiple custom chandeliers.
Mechanical: A 15,000 sq. ft. central plant adjacent to the building houses the casino's hydronic systems. Rooftop air handling units and exhaust fans service the casino. Due to the nature of the building, special attention is paid to the smoke control system.
Structural: This is a steel structure with metal framed walls and architectural concrete covering the exterior.
Electrical: 480/277V service begins in the Central Plant with Utility Owned transformers. The service is distributed throughout the casino using both 480/277V and 120/208V panels located in defined electrical rooms.

[^0]
TABLE OF CONTENTS

ABSTRACT 1
TABLE OF CONTENTS 2
EXECUTIVE SUMMARY 5
ACKNOWLEDGEMENTS 6
PROJECT OVERVIEW 7
Project Team 7
Construction and Cost 8
Codes 8
Building 8
Facade 8
Roofing 8
PROPOSAL OVERVIEW 9
LIGHTING DEPTH 9
Concept 9
Outdoor Plaza Lighting Design 9
Recommended Illuminance Values 10
Required Power Density 10
Lighting Plan and Schedule 10
Calculations 12
AGi. 32 Rendering 13
Summary 14
Pre-Function Lighting Design 14
Recommended Illuminance Values 15
Required Power Density 15
Lighting Plan and Schedule 15
Calculations 17
AGi. 32 Rendering 18
Summary 19
Poker Room Lighting Design 20
Recommended Illuminance Values 21
Required Power Density 22
Lighting Plan and Schedule. 22
Calculations 24
AGi. 32 Rendering 25
Summary 25
Player's Lounge Lighting Design 26
Recommended Illuminance Values 27
Required Power Density 27
Lighting Plan and Schedule 27
Calculations 29
AGi. 32 Rendering 30
Summary 31
ELECTRICAL DEPTH 32
Existing Electrical Information 32
Connected Building Loads 32
Power Company Rate Schedule 32
Building Utilization Voltages 32
Emergency Power Distribution System 33
Changes to Existing Panels 33
Outdoor Plaza 34
Pre-Function 35
Poker Room 36
Player's Lounge 37
Photovoltaic Array 38
Specify a Location 38
Selecting a Solar Module 39
Selecting an Inverter 40
Calculate Array Size 41
Data Output 42
Summary 42
CONSTRUCTION BREADTH 43
Cost 43
RS Means Values 43
Costs Specific to Casino Array 43
Schedule 44
Estimated Construction Times 44
Conclusion 45
STRUCTURAL BREADTH 45
Dead Loads 45
Live Loads 45
Roof Deck 45
Current Roof Joist 45
Evaluation of the Roof Joist 46
Choosing a New Roof Joist 46
Evaluation of Joist Girder 46
Evaluation of a Column 46
Conclusion 46
APPENDIX A - LUMINAIRE DATA SHEETS 47
APPENDIX B - SOLAR EQUIPMENT DATA SHEETS 48

APPENDIX C - STRUCTURAL CALCULATIONS

EXECUTIVE SUMMARY

The lighting depth covers the redesign of four spaces within the main casino building: The Outdoor Plaza, Pre-function space, Poker Room, and Player's Lounge. Each space has its own description in the lighting depth for recommended illuminance recommendations, code requirements, lighting equipment schedule, lighting plan, AGi .32 calculations and a summary. The illuminance recommendations are referenced from the IES Lighting Handbook, $10^{\text {th }}$ Edition. ASHRAE 90.1 is used for the code requirements.

The final lighting design for the Outdoor Plaza guides casino guests towards the entrance while creating a safe environment through the use of overhead string lights. The Pre-Function space, adjacent to the multi-purpose room, uses cove lighting in the recessed ceilings areas to create a psychological impression of spaciousness. In the poker room an environment similar to a workspace has been designed through a combination of recessed down lights and large pendants. Finally, in the Player's Lounge an intimate social setting is the result of custom pendant luminaires and unique indirect linear luminaires.

In the electrical depth, four panels were modified to contain the new loads that resulted from the lighting redesign. While most loads fit on one branch circuit, a couple of them were spread across all three phases. Each new load was added so that the current fuses could remain on the panel. The lighting loads were not large enough to change any of the feeder sizes for the panels. Also in the electrical depth is an analysis of a proposed solar array for the roof of the casino. The analysis includes monthly data for the electrical production of the array based on TMY weather data.

With the new solar array comes a new load on the roof of the casino. A structural breadth evaluates the roof decking, roof joists, joist girders, and columns of the casino's third level. The calculations show that the members of the third level are adequate for the new load, except the roof joists. The roof joists had to be increased in size from 39 LH09 to 39 LH 11 . The written calculations are included in Appendix C.

A construction breadth is included in the report that details the labor and material costs of installing the new solar array. A 10 day schedule was achieved with the RS Means 2014 release values. The installation is not expected to significantly impact the 18 month construction schedule of the casino.

ACKNOWLEDGEMENTS

I would like to thank each and every individual who has helped me throughout this year long project.
A special thank you:
Mr. Shawn Good - Senior Thesis Advisor
Ms. Leslie Beahm - Senior Thesis Electrical Advisor
Dr. Kevin Houser - AE Lighting Professor
Dr. Richard Mistrick - AE Lighting Professor
Professor Kevin Parfitt - Director of Senior Thesis
JBA Consulting Engineers - Las Vegas, NV
*And of course a big thank you is in order for my family and fiancé. You have helped me the entire way through five years of Architectural Engineering with your love and support.

PROJECT OVERVIEW

Casino Gold is a three level casino located in the eastern United States. The building is 309,450 sf and has three levels. The first two levels house gaming, dining, a multi-function space, a World Series of Poker Room, and even private gaming areas. The third level is mainly offices for the employees of the casino.

The project site contains three structures. They include a main casino building, a large parking garage, and a separate central services plant. The parking structure is connected to the casino with two bridges. One bridge is for the guests while the other is a smaller, service bridge. The site plan seen below shows the layout of the site.

Note: The name of the casino and the location are withheld from this report per the owner's request.

Project Team

Executive Architect: ka

Design/Interiors Architect: Friedmutter Group
Construction Manager: Whiting-Turner
Structural Engineer: Carroll Engineering, Inc.
MEPT Engineer: JBA Consulting Engineers
Lighting Design: The Lighting Practice

Construction and Cost

Approximate cost: $\$ 400$ million
Approximate dates of construction: January 2013 - July 2014
Project delivery method: Design-Bid-Build

Codes

Major national codes: International Building Code
ASHRAE 90.1
International Mechanical Code
National Electric Code
International Plumbing Code

Building

Occupancy type: A2 Assembly, B, S1
Type of construction: Type 1B sprinklered, Noncombustible, Protected Size: 309,450 sq. ft.
Levels above grade/Total levels: $3 / 3$

Facade

The building façade is a mostly prefabricated architectural concrete on top of a vapor barrier, and metal studs, with batt insulation. The main entranceways of the casino have glass curtain wall systems with metal framing.

Roofing

The majority of the roofing for the casino is type RFA1, with the construction:
Single ply TPO roof membrane
$\mathrm{R}-25$ minimum rigid insulation
Sheathing board
$11 / 2$ " Metal Decking on steel structure
The next largest area of roofing is type RFA2, with the construction:
Single ply TPO roof membrane
Protection Board
R-25 Minimum rigid insulation
Vapor Retarder
3 1/4" Concrete
3" Metal decking on steel structure

PROPOSAL OVERVIEW

The focus of my Senior Thesis Project is on the lighting and the electrical systems within the main casino. The following report will include a lighting re-design of four different spaces within the casino as well as changes to the electrical system. Breadth topics such as construction and structural will also be included. The goal of this capstone project is to provide alternative solutions to the great designs already in place, for the academic purpose of individual learning.

LIGHTING DEPTH

Concept

The atmosphere inside of a casino is very much centered on a social experience. Whether you are enjoying a night out with your friends or you end up meeting complete strangers while playing your favorite game, people are always connecting with each other. The concept for Casino Gold's lighting design will be "Connecting with People." During our daily lives we are constantly connected to others through social media, email, and messaging. With all of this technology it can be easy to forget that face-to-face interaction with others is still important. A strong design that focuses on intimacy in certain spaces, and excitement in others, will be able to bring people together.

Outdoor Plaza Lighting Design

The outdoor plaza for Casino Gold is one of the first parts of the casino that guests will encounter. It is important to create a great first impression with arriving guests. This will most likely be a meeting spot for many visitors and it will be used at all hours of the day. Due to the twenty-four hour nature of the casino, safety at night is a top priority for this space. The materials present in the Outdoor Plaza are relatively simple, as it is mostly concrete and stone work. The plaza is lined with tree planters that provide an extra element for the lighting design. The Outdoor Plaza is located between the parking garage and the casino at ground level.

PARKING GARAGE

FIGURE 1 - PLAZA LOCATION

Recommended Illuminance Values

The recommended illuminance values are referenced from the llluminating Engineering Society's The Lighting Handbook, $10^{\text {th }}$ Edition. The values for the outdoor plaza can be found in Table 34.2. For an outdoor plaza of a single commercial establishment the recommended illuminance values are taken from the low activity Plaza section.

Horizontal (E_{h}) Targets	Vertical (E_{v}) Targets	Average/Minimum Ratio
4 lux	2 lux	$5: 1$

Required Power Density

The code requirements for power density are referenced from ASHRAE 90.1. The table pertaining to exterior lighting is Table 9.4.3B. The plaza is considered a Zone 3 and the lighting power allowance is

Walkways less than 10 ft wide	No allowance	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot
Walkways 10 ft wide or greater Plaza areas Special feature areas	No allowance	$0.14 \mathrm{~W} / \mathrm{ft}^{2}$	$0.14 \mathrm{~W} / \mathrm{ft}^{2}$	$0.16 \mathrm{~W} / \mathrm{ft}^{2}$	$0.2 \mathrm{~W} / \mathrm{ft}^{2}$
Stairways	No allowance	$0.75 \mathrm{~W} / \mathrm{ft}^{2}$	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$
Pedestrian tunnels	No allowance	$0.15 \mathrm{~W} / \mathrm{ft}^{2}$	$0.15 \mathrm{~W} / \mathrm{ft}^{2}$	$0.2 \mathrm{~W} / \mathrm{ft}^{2}$	$0.3 \mathrm{~W} / \mathrm{ft}^{2}$
Landscaping	No allowance	$0.04 \mathrm{~W} / \mathrm{ft}^{2}$	$0.05 \mathrm{~W} / \mathrm{ft}^{2}$	$0.05 \mathrm{~W} / \mathrm{ft}^{2}$	$0.05 \mathrm{~W} / \mathrm{ft}^{2}$

$0.16 \mathrm{~W} / \mathrm{ft}^{2}$. The approximate area of the plaza is $17,600 \mathrm{ft}^{2}$.

Lighting Plan and Schedule

As a result of the additional criteria for safety and guidance, the lighting design for the Outdoor Plaza makes use of overhead string lights. This overhead light not only renders the faces of guests for safety, but it also creates an inviting atmosphere for people to gather under. Attracting guests to gather and socialize is a main goal of the overall lighting design for this project and ties into the concept of bringing people together quite well. Ground mounted bollard lighting is also used to line the plaza and create a pathway to the entrance of the main casino building. Manufacturer data sheets for the selected luminaires can be found in Appendix A.

| Type | Model | Description | Manufacturer | Lamp
 Type | Input
 Volts | Input
 Watts | No.
 Used |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1 | KBA8 | 3ft tall, 8" round, LED
 bollard | Lithonia | LED | 120 | 31 | 24 |
| P2 | ML2000-CA | String Light | Cali | LED | 120 | 2.5 | 128 |

FIGURE 2 - PLAZA LIGHTING PLAN
The bollards have a height of 3 ft and line the plaza. The string lights are stretched across the plaza from tree to tree using poles located in the planters. They are 12 ft above the ground level in the plaza.

Calculations

AGi. 32 was used to analyze the space and calculate the illuminance values of the final design. The following pseudo color rendering shows an even distribution of light across the plaza.

FIGURE 3 - PLAZA PLAN VIEW

Statistics
Project 1
Calc Pts
CalcPls
Illuminance $(\mathrm{Fc}$] Average A. 74 Avg/Min=4.78

The calculated illuminance average of 5 fc meets the recommendation level. The average to minimum ratio is less than $5: 1$, showing that the plaza is appropriately designed. The total consumption of power for the plaza is approximately $1,064 \mathrm{~W}$ and the area is $17,600 \mathrm{ft}^{2}$. This leads to a calculated power density of $0.06 \mathrm{~W} / \mathrm{ft}^{2}$, well below the ASHRAE 90.1 requirement of $0.16 \mathrm{~W} / \mathrm{ft}^{2}$.

AGi. 32 Rendering

FIGURE 4 - PERSPECTIVE

FIGURE 5 - GUEST VIEW

Summary

The final design for the outdoor plaza includes LED bollards as well as string lights. The lighting achieves the main criteria of safety and guidance. With the architectural lighting overhead, guests have an inviting place to meet and socialize with friends outside of the casino. The string lights also serve a functional purpose of helping to render guests faces for safety of others, and the bollards guide guests along the plaza to the main entrance of the casino. The AGi. 32 calculations show that the final design meets the IES recommendations with an average horizontal illuminance of 5 fc . Finally, the $0.06 \mathrm{~W} / \mathrm{ft}^{2}$ power density of the plaza is well below the ASHRAE 90.1 code limit of $0.16 \mathrm{~W} / \mathrm{ft}^{2}$.

Pre-Function Lighting Design

Once guests have entered the first level of the casino, they may need to attend a dinner, meeting, or event in the multi-purpose room. While waiting for these events to begin it is likely that the guests will occupy the pre-function space. The Pre-Function space is located on the first level of the casino and it is adjacent to the multi-purpose room.

FIGURE 6 PRE-FUNCTION LOCATION
The lighting design in the Pre-Function space makes use of the architectural features present such as ceiling coves and overhangs. The materials include carpet flooring, painted GWB, and dark woodwork around the two entrances into the multipurpose room. The lighting design is meant to create an impression of spaciousness for the guests that will be gathering in the space during events.

Recommended Illuminance Values

The recommended illuminance values are referenced from the llluminating Engineering Society's The Lighting Handbook, $10^{\text {th }}$ Edition. The values for the Pre-Function space can be found in Table 28.2. The recommended values for the space range from 50 lux with general circulation to 200 lux for registration tables. For this particular design the desired illuminance target is for times of high activity before and after functions in the multi-purpose room.

Horizontal (E_{h}) Targets Vertical (Ev_{v}) Targets Average/Minimum Ratio

300 lux (max)	2 lux	$4: 1$

Required Power Density

The code requirements for power density are referenced from ASHRAE 90.1. The table pertaining to space-by-space method interior lighting is Table 9.6.1. The Pre-Function space is assumed to be a common space type of Corridor/Transition for this analysis which results in a lighting power allowance of $0.66 \mathrm{~W} / \mathrm{ft}^{2}$. The approximate area of the Pre-Function space is $1,980 \mathrm{ft}^{2}$.

TABLE 9.6.1 Lighting Power Densities Using the Space-by-Space Method

Common Space Types $^{\text {a }}$	LPD, W/ft ${ }^{2}$	RCR Threshold
Corridor/Transition	0.66	Width $<8 \mathrm{ft}$

Lighting Plan and Schedule

The lighting design for the Pre-Function space makes use of the given architectural features such as the overhangs above the doorways and the coves surrounding the recessed ceilings. Wall washing luminaires are used to highlight the areas of wall that will contain artwork. Recessed downlights are located above the entrances to the multi-purpose room to create a visual point of interest. Custom pendant luminaires line the middle of the Pre-Function space and add to the overall illumination level in the space without adding glare or significant shadows. Cove luminaires are used in the areas of recessed ceiling surfaces to create a psychological impression of spaciousness for the guests.

Type	Model	Description		Manufacturer	Lamp Type	Input Volts	Input Watts	No. Used
F1	SQHZW	6" square lensed wallwash	Gotham	HID	120	86.6	4	
F2	DoM6	6" round recessed downlight	Lithonia	LED	120	15.6	4	
F3	$107-P$	Fabric covered pendant, square cylinder	Shaper	T5	120	93	4	
F4	iW Cove MX	4ft cove accent with intelligent white light controls	Philips	LED	120	20.7	22	

FIGURE 7 PRE-FUNCTION LIGHTING PLAN

Calculations

AGi. 32 was used to analyze and calculate the illuminance values of the final design. The following pseudo color rendering shows an even distribution of light across the Pre-Function space.

FIGURE 8 PRE-FUNCTION PLAN VIEW

```
Statistics
Project 1
Cale Pts
CalcPts
Illuminance (Fc)
Average=30.03 Maximum=46.6 Minimum=15.4
Avg/Min=1.95 Max/Min=3.03
```

(2)

The calculated illuminance average of 30 fc meets the selected design criteria for the Pre-Function space. The average to minimum ratio is only 1.95 , much less than the recommended $4: 1$ ratio. The total consumption of power for the Pre-Function space is approximately $1,236 \mathrm{~W}$ and the area is $1,980 \mathrm{ft}^{2}$. This leads to a calculated power density of $0.62 \mathrm{~W} / \mathrm{ft}^{2}$, which is just below the ASHRAE 90.1 requirement of $0.66 \mathrm{~W} / \mathrm{ft}^{2}$.

AGi. 32 Rendering

FIGURE 9 PRE-FUNCTION PLAN VIEW

FIGURE 10 PRE-FUNCTION GUEST VIEW

Summary

The final design for the Pre-Function space meets the design goals and criteria. This is a flexible space that can be used for many different functions taking place inside of the adjacent multi-purpose room. The cove lighting for the recessed ceiling creates the feeling of a more spacious area for guests to enjoy their social interaction before events. The pendant luminaires are a great addition to the space with their unique fabric covers and alternating suspension lengths from the ceiling. The AGi. 32 calculations show that the final design meets the IES recommendations with an average horizontal illuminance of 30 fc . Finally, the $0.62 \mathrm{~W} / \mathrm{ft}^{2}$ power density of the Pre-Function space is below the ASHRAE 90.1 code limit of 0.66 $\mathrm{W} / \mathrm{ft}^{2}$.

Poker Room Lighting Design

A poker room is about as close to a workspace as a casino will have. Players grind away at these tables for hours on end, often without leaving their seats. A space this heavily used must be visually comfortable so occupants will stick around for the long haul.

The World Series of Poker Room is located in the southeast quadrant of the second level in the casino. The floor space in the Poker Room is approximately $8,100 \mathrm{sq}$. ft . and is split into two areas. One area is for general poker games, while the other smaller area is for high-limit games or special events. The high-limit area is raised two steps above the main area and is bordered by a railing as well as an accessible ramp. The bar in the lower right corner of the plan view is not included in this design.

FIGURE 11 - POKER PLAN VIEW
The walls in the poker room use dark colored wood to border painted areas of GWB as well as artwork and televisions. Ceilings in the Poker Room are 15' tall with 16' recessed squares that are bordered with more dark wood trim.

FIGURE 12 - POKER FURNITURE LAYOUT *IMAGE COURTESY OF FRIEDMUTTER GROUP AND DESIGN TEAM
The goal of the lighting design for the Poker Room is to provide a comfortable environment for the players, especially because many players can be there for hours on end. Discipline coordination is important for the construction of this space because the proposed lighting design cannot interfere with the view of security cameras. Mechanical devices such as diffusers have to be accounted for when designing the layout of the downlights and pendants in the space.

Recommended Illuminance Values

The recommended illuminance values are referenced from the Illuminating Engineering Society's The Lighting Handbook, 10th Edition. The values for the Poker Room can be found in Table 28.2. The exact recommended values depend on the individual casino and their security specialist. With that in mind, the assumption is made that the Poker Room will follow the recommended illuminance values of lounges containing table games in Table 28.2. The average to minimum ratio is found in Table 12.6.

Horizontal (E E) Targets	Vertical (Ev) Targets	Average/Minimum Ratio
300 lux	50 lux	$5: 1$

Required Power Density

The code requirements for power density are referenced from ASHRAE 90.1. The table pertaining to space-by-space method interior lighting is Table 9.6.1. A poker room is not a very typical space so it is not listed specifically in the table. For this design it is that the Poker Room has the same power density requirements of a classroom, which results in a lighting power allowance of $1.24 \mathrm{~W} / \mathrm{ft}^{2}$. The reason why the classroom/lecture/training designation is assumed is because the tasks for the space are similar. Players need appropriate levels of light to read the faces of cards just the same as a student needs to read a book in class. The approximate area of the Poker Room is $8,100 \mathrm{ft}^{2}$.

TABLE 9.6.1 LIghting Power Densittes Using the Space-by-Space Method

Common Space Types $^{\mathbf{a}}$	LPD, W/ft ${ }^{2}$	RCR Threshold
Classroom/Lecture/Training	1.24	4

Lighting Plan and Schedule

The lighting design for the Poker Room aims to create a workspace for players. Wall washing luminaires are used to highlight the areas of wall that will contain artwork. Compact fluorescent wall washing luminaires have been chosen for their color rendering qualities of the artwork and woodwork throughout the room. Recessed downlights are located throughout the entire poker room to avoid shadowing or pools of light as best as possible. Pendant luminaires are located in each of the recessed ceiling bays and provide indirect/direct light to the poker tables. Decorative wall drum luminaires are also included on the columns in the high-limits area of the lighting design.

Type	Model	Description		Manufacłurer	Lamp Type	Input Volts	Input Watts
No. Used							
PK1	SQFW	6" Square Lensed Wallwash	Gotham	CFL	120	32.5	12
PK2	Ortwin	Decorative wall drum	Winona	CFL	120	32.2	3
PK3	DoM8	8" recessed round downlight	Lithonia	LED	120	27.5	123
PK4	Apollo	43 " diameter bowl pendant	Winona	CFL	120	186	14

FIGURE 13 - POKER ROOM LIGHTING PLAN

Calculations

AGi. 32 was used to analyze and calculate the illuminance values of the final design. The following pseudo color rendering shows an even distribution of light across the Poker Room.

FIGURE 14 - POKER ROOM PLAN VIEW

Statistics
Project 1
Calc Pts
CalcPts
Illuminance (Fc)
Average $=31.71 \quad$ Maximum=41.1 Minimum=17.1
Avg/Min=1.85 Max/Min=2.40

The calculated illuminance average of 32 fc meets the selected design value for the Poker Room. Also, the average to minimum ratio is only 1.85 , which is much less than the recommended 5:1 ratio. The total consumption of power for the Poker Room is approximately $6,473 \mathrm{~W}$ and with an area of $8,100 \mathrm{ft}^{2}$ for this design. This leads to a calculated power density of $0.80 \mathrm{~W} / \mathrm{ft}^{2}$, which is below the ASHRAE 90.1 requirement of $1.24 \mathrm{~W} / \mathrm{ft}^{2}$.

AGi. 32 Rendering

FIGURE 15 - POKER GUEST VIEW

Summary

The final lighting design for the Poker Room creates a workspace for the players. This is a room that will be used constantly by guests and the lighting will hold up to the task. With all of the wood finishes located throughout the Poker Room it was important to include fluorescent luminaires close to those surfaces to best render the wood color and texture. The LED downlights located across the entire ceiling ensure an even distribution of light to minimize shadows on the tables. This lighting design achieved that goal with a low average to minimum illuminance ratio of 1.85. The AGi. 32 calculations show that the final design meets the IES recommendations with an average horizontal illuminance of 32 fc . Finally, the 0.80
$\mathrm{W} / \mathrm{ft}^{2}$ power density of the Poker Room is well below the assumed ASHRAE 90.1 code limit of 1.24 W / ft^{2}.

Player's Lounge Lighting Design

The Player's Lounge brings the "Connecting with People" concept full circle by creating an intimate setting for the guests to visit and interact with each other. This is one of the few places in the casino that the owner can make a profit from beverage sales, so the lighting design of the bar within the Player's Lounge is used to attract guests from outside of the lounge. It is located in the southwest quadrant of the casino's second level.

FIGURE 16 - PLAYER'S LOUNGE LOCATION

The goal of the lighting design for the Player's Lounge is to provide an inviting setting that draws guests into the space and keeps them there. The bar is the main focus from outside of the space and so is the wall surrounding the entrance. It gives guests a glimpse of the interior and tempts them to enter.

Recommended Illuminance Values

The recommended illuminance values are referenced from the llluminating Engineering Society's The Lighting Handbook, $10^{\text {th }}$ Edition. The values for the Player's Lounge can be found in Table 22.2. A lounge can be found under the section of Food Service for Common Applications.

Horizontal (E E_{h}) Targets	Vertical (E_{v}) Targets	Average/Minimum Ratio
100 lux (lounge area)	50 lux	$3: 1$
50 lux (back bar)	20 lux	$3: 1$

Required Power Density

The code requirements for power density are referenced from ASHRAE 90.1. The table pertaining to space-by-space method interior lighting is Table 9.6.1. A lounge can be found under Dining Area, which results in a lighting power allowance of $1.31 \mathrm{~W} / \mathrm{ft}^{2}$. The approximate area of the Player's Lounge is $1,556 \mathrm{ft}^{2}$.

TABLE 9.6.1 Lighting Power Densitles Using the

 Space-by-Space Method| Common Space Types $^{\mathbf{a}}$ | LPD, W/ft ${ }^{\mathbf{2}}$ | RCR
 Threshold |
| :---: | :---: | :---: |
| Dining Area | 0.65 | 4 |
| For Bar Lounge/Leisure Dining | 1.31 | 4 |

Lighting Plan and Schedule

The lighting design for the Player's lounge is centered on the guest experience and social interaction. This connection with people is based directly off the casino's lighting concept. Pendant luminaires create intimate seating areas for small groups of guests in the lounge area. Cove lighting provides a soft glow while highlighting the unique architectural features of the ceiling above the guests. Suspended linear luminaires provide an indirect light about the space between the seating and the bar so that glare is not an issue. Behind the bar the coves are illuminated to draw attention to it from people just outside looking in.

Type	Model	Description	Manufacturer	Lamp Type	Input Volts	Input Watts	No. Used
L1	Ortwin	36" drum with custom finish	Winona	CF	120	94	2
L2	iW Cove MX	4 ft linear cove with intelligent white light	Philips	LED	120	20.7	8
L3	LLIMA	Indirect/direct linear suspended	Peerless	T8	120	30.5	28

FIGURE 17 - LIGHTING PLAN

Calculations

AGi. 32 was used to analyze and calculate the illuminance values of the final design. The following pseudo color rendering shows an even distribution of light across the Player's Lounge.

FIGURE 18 - LOUNGE PLAN VIEW

Statistics

```
Project 1
Calc Pts
CalcPts
Illuminance (Fc)
Average=21.34 Maximum=34.3 Minimum=7.9
Avg/Min=2.70 Max/Min=4.34
```

The calculated illuminance average of 21 fc exceeds the selected recommended value for the Player's Lounge. The average to minimum ratio is only 2.70 which is just under the ASHRAE 90.1 requirement of $3: 1$. The total consumption of power for the lounge is approximately $1,208 \mathrm{~W}$ with an area of $1,556 \mathrm{ft}^{2}$. This leads to a calculated power density of $0.78 \mathrm{~W} / \mathrm{ft}^{2}$, which is below the ASHRAE 90.1 requirement of $1.31 \mathrm{~W} / \mathrm{ft}^{2}$.

AGi. 32 Rendering

FIGURE 19 - PLAN VIEW

FIGURE 20 - FRONT VIEW

Summary

The final lighting design for the Player's Lounge creates a space for guests to interact without gambling. With all of the wood and stone finishes located throughout the lounge it was important to include fluorescent luminaires close to those surfaces to best render the wood color and stone textures. The LED cove lights used have an intelligent white control so that the color temperature can be adjusted by the user on site. The AGi. 32 calculations show that the final design meets the IES recommendations with an average horizontal illuminance of 21 fc . Finally, the $0.78 \mathrm{~W} / \mathrm{ft}^{2}$ power density of the Player's Lounge is below the ASHRAE 90.1 code requirement of $1.31 \mathrm{~W} / \mathrm{ft}^{2}$.

ELECTRICAL DEPTH

The electrical depth for Casino Gold focuses on the redesign of existing panels to meet the new lighting demands that have resulted from the Lighting Depth. The lighting loads were not a large enough change to require the resizing of any feeders.

Also included in the electrical depth is a photovoltaic array that has been added to the main roof of the casino. The evaluation of the solar resource was conducted in a software system known as SAM. SAM is a shortened version of System for Advisor Model. Monthly outputs of electricity produced by the array were calculated and a cost study is included in the Construction Breadth. The structural impacts are also evaluated in the Structural Breadth of this report.

Manufacturer's data sheets for the specified solar module and inverter are located in Appendix B.

Existing Electrical Information

Connected Building Loads

There are numerous distribution boards and panelboards throughout the casino. The distribution system can be somewhat simplified by tracing all of these connected loads back to the five main switchboards that service them. The main switchboards for Casino Gold are: MSA, MSB, MSC, MSD, and GMS1 (the generator switchboard. The loads for each of these are:

- MSA - 723 kVA
- MSB - 2226 kVA
- MSC - 1749 kVA
- MSD - 2482 kVA
- GMS1-318kVA
- Total Building Load - 7498 kVA

Power Company Rate Schedule

Schedule GL - General Service Large-Electric, 480V Service Voltage

Building Utilization Voltages

The Power Distribution for Casino Gold begins in the Central Plant building located just outside the casino. Service from Baltimore Gas and Electric enters the Central Plant into multiple 480/277V Secondary transformers. These transformers are owned by Baltimore Gas and Electric even though they are inside of casino property. Adjacent to each transformer is a switchboard that begins a branch of the distribution system. Distributions panels are separated for emergency loads, lighting loads, high voltage loads, and low voltage loads.

- Building Utilization Voltage - 480/277 V
- Lighting - 120 volt, plus low voltage LED lighting
- Receptacle - 120 volt
- Mechanical - 480 volt 3 phase
- Special Equipment
- IT Equipment - 120 volt
- Fire Pumps - 208 volt
- Elevators - 480 volt

Emergency Power Distribution System

The emergency power for Casino Gold originates at a diesel generator. This 500kVA generator has the capability to produce 400 kw of power and operates on $277 / 480 \mathrm{~V}$. Loads connected to the emergency system include:

- Fire Pump (103kVA load)
- Switchboard GMS1 (318kVA load)
- Distribution Board 'EDBHA'
- Distribution Board 'EDBHCP'
- Distribution Board 'ELEV1'

Each of the distribution boards listed above has a 4-pole automatic transfer switch connected to it that operates in the event of a power loss.

Changes to Existing Panels

Four electrical panels have been changed due to the new lighting loads. There is one modified panelboard for the Plaza, Pre-Function space, Poker Room, and Player's lounge. The lighting loads were not significant enough to change fuse size or feeder size on the panels and branch circuits.

Outdoor Plaza

		$L: L$ B: x	CC xocxox			ltage BUS MAINS ating	$\mathrm{GE}:$						0.4W	COR	$\begin{aligned} & \text { RDOR } \\ & \text { ESSED } \end{aligned}$		CRCL	T CODE blark or N: NON-CONTINL LLONE-CONTIN f. Demandable K: KTCHEN	ous ous ECEPT of EQ	$\begin{aligned} & \text { ACLES } \\ & \text { NUPME } \end{aligned}$			
CKT	CODE	TRIP	POLE	LOAD DESCRIPTION	m	\| R	L		NOTE	4	B	c	A	B	c	NOTE	1	R ${ }^{\text {m }}$	LOAD DESCRIPTION	POLE	TRIP	Code	CKT
1	$\stackrel{\sim}{\text { R }}$	20	1	FECEPTS		2			360			100					1	DDC	1	20	N	2	
3	N	20	1	UH-2	1					100			100				1	AHU-1 DDC	1	20	N	4	
5	N	20	1	UHT-1	1						100			1176			1	EF-1 (1/2-P)	1	20	N	6	
7	N	20	1	MOTORIZED DAMPER	1				100			0			-	-	-	SPARE	1	20	-	8	
9	${ }_{\sim}$	20	1	FECEPT		4				720			50				1	TERFACE HEATER	1	20	N	10	
11	N	20	1	VAV	6						300			150			3	TERFACE HEATER	1	20	N	12	
13	R	20	1	RECEPTS-POLE		1			180			540					3	REC-TERFACE	1	20	R	14	
19	R	20	1	RECEPT-POLE		1			180			720					4	RECEPTS	1	20	R	20	
21	R	20	1	RECEPT-POLE		1				130			720				4	RECEPTS	,	20	\%	22	
23	R	20	1	RECEPT - POLE		1					130			100				METERS	1	20	N	24	
25	R	20	1	RECEPT-POLE		1			130			100						METERS	1	20	N	26	
27	R	20	1	FECEPT-POLE		1				180			100				,	METERS	1	20	N	23	
29	L	20	1	SIGN			1				500			74	-	-	- - -	Plaza bolatoltg	1	20	-	30	
31	L	20	1	SGN			1		500			350			-	- 1	- - -	plazastring tte	1	20	-	32	
33	$\stackrel{1}{5}$	20	1	SIGN			1			500			0		-	-1	-1-	SPARE	1	20	-	34	
35	1	20	1	SIGN			1				500			0	-	-	- -	SPARE	1	20	-	36	
37	1	20	1	SIGN			1		500			0			-	-	- -	SPARE	1	20	-	38	
39	-	20	1	SPAFE	-	-	-	-		0			0		-	-	-	SPAFE	1	20	-	40	
41	-	20	1	SPARE	-	-	-	-			0			0	-	-	-	SPARE	1	20	-	42	
43	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPARE	1	20	-	4	
45	-	20	1	SPARE	-	- -	-	-		0			0		-	-	- -	SPARE	1	20	-	${ }^{45}$	
47	-	20	1	SPAFE	-	-	-	-			0			0	-	-	- -	SPAFE	1	20	-	43	
49	-	20	1	SPAFE	-	- -	-	-	0			0			-	-	- -	SPAEE	1	20	-	50	
51	-	20	1	SPARE	-	-	-	-		0			0		-	-	--	SPARE	1	20	-	52	
53	-	20	1	SPAFE	-	- -	-	-			0			0	-	-	- -	SPARE	1	20	-	54	
55	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPAFE	1	20	-	56	
57	-	20	1	SPAFE	-	-	-	-		0			0		-	-	- -	SPAFE	1	20	-	53	
59	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	59afe	1	20	-	60	
61	-	20	1	SPARE	-	--	-	-	0			0			-	-	- -	SPARE	1	20	-	62	
63	-	20	1	SPARE	-	-	-	-		0			0		-	-	- -	SPAFE	1	20	-	64	
65	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	66	
67	-	20	1	SPAFE	-	- -	-	-	0			0			-	-	- -	SPAFE	1	20	-	65	
69	-	20	1	Spase	-	--	-	-		0			0		-	-	- --	SPARE	1	20	-	70	
71	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	72	
73	-	20	1	SPARE	-	- -	-	-	0			0			-	-	- -	SPARE	1	20	-	74	
75	-	20	1	SPAFE	-	-	-	-		0			0		-	-	- -	SPAFE	1	20	-	76	
77	-	20	1	SPAFE	-	-	-	-			0			0	-	-	- -	SPAFE	1	20	-	73	
79	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPARE	1	20	-	\%	
31	-	20	1	SPARE	-	-	-	-		0			0		-	-	- -	SPARE	1	20	-	82	
33	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPAFE	1	20	-	84	
Phase totals									3780 VA		2090 VA		2650 VA		TOTAL CONNECTED VA				12520 VA				
PANEL NOTES:																							
																CONNECTED VA (CODE N)			2476 VA				
																CONNECTED VA (CODEL)			2500 VA				
																CONNECTED VA (CODE R)			6450 VA				
																CONNECTED VA (CODE K)			OVA				
																PANEL CONNECTED KVA			12.5 NVA				
																PAnEl demand kVa			13.1 NVA				
																panel demand amp ${ }^{\text {\| }}$			365 A				

The plaza lighting was added to branch circuits 30 and 32 of Panel LCCB. Using the power consumption data from the luminaire spreadsheets, and the quantity of luminaires from the light depth, a load for each circuit was calculated. The perimeter lighting is calculated to have a load of 733VA, while the string lights have a smaller load of 320VA. This lighting is considered to be a non-continuous load and each branch circuit will keep its 20A fuse.

Pre-Function

Three branch circuits were used on Panel LCAC for the lighting in the Pre-Function space. Existing receptacles in the Pre-Function space are already located on the left side of this panel. The perimeter lighting on branch circuit 2 includes the wallwash luminaires as well as the 6" LED downlights, both from the lighting depth report. The new cove lighting in the Pre-Function space is located on branch circuit 4 of this panel and is the largest of the three new loads at 455VA. Finally, the 4 pre-function pendants were
added to branch circuit 6 with a load of 372 VA . All three of these loads are under 1920VA, meaning that they are able to stay on the current 20A circuits.

Poker Room

The additions to Panel LAAC for the Poker Room are different from the previous two panels because some of the loads were spread across 3 phases. The first load that was added to the panel was the Poker Room perimeter lighting, which includes the wallwash luminaires and the wall drum luminaires from the lighting depth. The perimeter lighting has a total load of 457 VA . The next load is the 8 " LED downlights that are arrayed across the space. These downlights totaled a load of 3383VA so the load was spread across the 3 phases evenly with 1128 VA loads. This allows the downlights to be grouped together and stay on the current fuse of 20A. Finally, the Poker Room pendants were added to the panel in the same fashion. The pendants have their load spread across the 3 phases with 868 VA on each phase.

Player's Lounge

		: OB:		BC		TAG BU MAW ATIN	\% F :		$\begin{gathered} 20205 \mathrm{~W} \\ 225 \mathrm{~A} \\ 20 \\ 10.000 \end{gathered}$						CE BAR ssed		CIRCU	T CODE plank or N:NON-CONTINUC L: LONG-CONTINL F. Demandasue K KTTCHEN	US ous ECEPTA OF EQ	acles UPME		
CKT	CODE	TRIP	POLE	LOAD DESCRIPTION	M	R	L	NOTE	A	B	c	A	B	c	NOTE	L	R ${ }^{\text {M }}$	LOAD DESCRIPTION	POLE	TRIP	CODE	CKT
1	K	20	1	E23-002 DISPLAY CASE		1			1440			180					1	CONV OUTLET	1	20	R	2
3	K	20	1	E23-013 COFFEE GRINDER		1				1128			100				1	CONV OUTLET	1	20	R	4
5	K	20	1	E23-012 EEV CTR	1						840			1920			1	E23-023 BOD UNTT	1	20	R	6
7	K	20	1	E23-034 UQOUR GUN					1200			1803					1	E23-078 POS	1	20	R	8
9	K	20	1	E23-057 BLENDER	1	1				1920			1920				1	E23-087 CPU	1	20	R	10
11	K	20	1	E23-007 CAREONATOR		1					1800			1200			1	E23-033 CASH REGISTER	1	20	R	12
13	K	20	1	E23-091/041 CABINET/BAR TOP	2				1200			1800					1	E23-078 POS	1	20	R	14
15	K	20	1	E23-078 CAREONATOR		1				1300			1800				1	E23-033 CASH REGISTER	1	20	R	16
17	K	20	1	E23-070 REACH-N N COOLER		1					1020			1920			1	E23-043 PRINTER	1	20	R	18
19	K	20	1	E23-029 SS CABINET WTH STEPS	1				600			1920					3	E23-096 CPU	1	20	R	20
21	K	20	1	E23-031 REACH N COOLER		1				1020			1800				1	E23-083 CASH REGISTER	1	20	R	22
23	K	20	1	E23-107/1031109 BCKER STORICLR	5						941			3016			1	E23-015 COFFEE BRENER	2	40	K	24
25	K	20	1	E23-095 BAR TOP AND DE		1			1200			3016			-	-	- -	-	-	-	-	26
27	K	20	1	E23-054 UQUOR STEPS		1				1200			3600				1	E23-034 ICE MAKER	3	40	K	28
29	K	20	1	E23-007 CAREONATOR		1					1800			3600	-	-	- -	-	-	-	-	30
31	K	25	1	E23-100 ELENDER STATION	1	1			2400			3600			-	-	- -	-	-	-	-	32
33	K	20	1	E23-034 SOLENOIDS		1				1200			1560				1	E23-063 FROZEN DRENK MACH	2	20	K	34
35	K	20	1	E23-007 CAREONATOR		1					120			1560	-	-	- -	-	-	-	-	36
37	K	20	1	E23-095 BAR TOP AND DE	1				1200			1560					1	E23-063 FROZEN DRINK MACH	2	20	K	38
39	K	40	1	E23-101 GLASSWASHER	1					3228			1560		-	-	- -	-	-	-	-	40
41	R	20	1	FECEPTS - SERVICE EAR C250		3					540			1560			1	E23-083 GLASSWASHER	2	20	K	42
1	=	00	\cdots	acocomo mam motos					-n9			1560			-	-	- -	-	-	-	-	44
45	-	20	1	BAR COVELTG	-	-	-	-		165			180				1	CONV OUTLET	1	20	R	46
47	-	20	1	EAR PENDANT	-	-	-	-			188			180			1	CONV OUTLET	1	20	R	48
49	-	20	1	BAR OVERHEAD LTG	-	-	-	-	254			180					1	CONV OUTLET	1	20	R	50
91	-	20	1	SPart		-	-	-		\checkmark			180				1	CONV OUTLET	1	20	R	52
53	-	20	1	SPARE	-	-	-	-			0			120			1	CONV OUTLET	1	20	R	54
55	-	20	1	SPARE	-	-	-	-	0			180					1	E23-103 CASH REGISTER	1	20	K	56
57	-	20	1	SPARE	-	-	-	-		0			130				1	E23-103 CASH REGISTER	1	20	R	58
59	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	60
61	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPARE	1	20	-	62
63	-	20	1	SPAFE	-	-	-	-		0			0		-	-	- -	SPARE	1	20	-	64
65	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	66
67	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPAFE	1	20	-	68
69	-	20	1	SPAFE	-	-	-	-		0			0		-	-	- -	SPARE	1	20	-	70
71	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPAFE	1	20	-	72
73	-	20	1	SPAFE	-	-	-	-	0			0			-	-	- -	SPARE	1	20	-	74
75	-	20	1	SPARE	-	-	-	-		0			0		-	-	- -	SPARE	1	20	-	76
77	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	78
79	-	20	1	SPARE	-	-	-	-	0			0			-	-	- -	SPARE	1	20	-	80
81	-	20	1	SPARE	-	-	-	-		0			0		-	-	- -	SPARE	1	20	-	82
83	-	20	1	SPARE	-	-	-	-			0			0	-	-	- -	SPARE	1	20	-	34
PHASE TOTALS									26610 VA		24622 VA		22445 VA		TOTAL CONNECTED VA				73677 VA			
PANEL NOTES:																						
																CONNECTED VA (CODE N)			OVA			
																CONNECTED VA (CODE L)			OVA			
																CONNECTED VA (CODE R)			18700 VA			
																CONNECTED VA (CODE K)			53609 VA			
																PANEL CONNECTED KVA			73.7 KVA			
																PANEL DEMAND KVA			50.51 KVA			
																PANEL DEMAND AMP3			1402A			

The final panel that was modified due to the new lighting loads is Panel KLDBC. Three branch circuits were used for the new lighting in the Player's lounge. The first load, the Bar Cove Lighting on circuit 45, has a small total of 166 VA . Next, a branch circuit was used for the two pendants located in the seating area of the lounge. The pendants were placed on branch circuit 47 with a load of 168 VA . Finally, the third load that has been created is on branch circuit 49. This load is the Peerless overhead lighting in the

Player's lounge and is the largest of the three loads at 854 VA . All three of these new circuits have loads that will adequately fit on the current 20A branch circuits.

Photovoltaic Array

The proposed photovoltaic array for this project was designed using System Advisor Model, or SAM. SAM is solar design software from the National Renewable Energy Laboratory. The program takes various inputs from the user to determine weather data, size of the array, and financial details. For this electrical depth, a solar module and invertor are chosen based on a balance of cost and. Their manufacturer's data sheets can be found in Appendix B. The monthly energy produced by the array has also been calculated.

The following analysis will go through the beginning steps of setting up a simulation in SAM. This process leads to the chosen equipment and calculates the production data for the array.

Specify a Location

Selecting a Solar Module

FIGURE 22 - SAM CHOOSING A SOLAR MODULE

A Suntech STP250-20/Wd was chosen as the solar module for the casino. This is a 250 Watt , polycrystalline solar module. It has an open circuit voltage of 37.4 A and an efficiency of 15.4%. The full specifications for the panel can be found in Appendix B.

Selecting an Inverter

The SAM software has a very large database of $D C$ to $A C$ inverters to choose from. When an inverter is selected the software will notify the user of any conflicts that may arise. It will often take a few tries to find an inverter that matches with the chosen solar module and the characteristics of the array. A Growatt inverter was selected for this study and a corresponding cut sheet is located in Appendix B.

Calculate Array Size

FIGURE 24 - SAM ARRAY SIZE

The section of SAM that works with the size of the array is the most interesting. For this study, an array of 400 panels was chosen based on the dimensions of the main casino roof. A 20 row array, with 20 panels in each row, will fit on the main casino roof. This is also taking into consideration inter-array shading and row spacing across the array. With 400 panels, five inverters will be needed.

Data Output

After loading the meteorological data for the project's location, specifying a solar module, and specifying an AC to DC inverter, SAM will run an annual simulation. The simulation ran for Casino Gold produced the following values. The numbers 1-12 represent the month of the calendar year.

	Monthly Energy (kWh)	Net ac output (kWh)	Net dc output (kWh)
$\mathbf{1}$	9324.69	9324.69	9681.71
$\mathbf{2}$	10785.1	10785.1	11175.7
$\mathbf{3}$	12786	12786	13274.6
$\mathbf{4}$	13206.1	13206.1	13724.6
$\mathbf{5}$	13743.2	13743.2	14303.9
$\mathbf{6}$	13895.6	13895.6	14481.4
$\mathbf{7}$	14008.3	14008.3	14601.6
$\mathbf{8}$	13070	13070	13626.9
$\mathbf{9}$	11916.1	11916.1	12411.9
$\mathbf{1 0}$	12397.3	12397.3	12885.2
$\mathbf{1 1}$	9056.27	9056.27	9416.5
$\mathbf{1 2}$	7594.67	7594.67	7912.91

Summary

The solar resource was analyzed at the location of the project, a solar module and inverter have been selected, and the array has been sized. The specified solar module is a Suntech STP250-20/Wd. The specified AC to DC inverter is a Growatt 20000TL3-US. The proposed array will contain a total of 400 panels and produce a peak load of about $14,000 \mathrm{kWh}$ in the month of June.

CONSTRUCTION BREADTH

Adding a solar array to the roof of the casino will result in an added cost for the project as well as extra work for the crew. The following analysis provides information related to the cost and schedule impacts of the new array.

Cost

The 2014 release of RS Means was used to find the following values. The Master Format 2010 section used for Photovoltaic Collectors is 263113500 . The first table shows the values directly from RS Means, the second table shows the quantities estimated for this project.

RS Means Values

Description	Crew	Daily Output		Labor Hours	Bare Materials	Bare Labor	Bare Total
150W, 33V, PV Panel	1 Elec	8	1	645.00	53.50	698.50	Total O\&P
48V, 5500W DC to AC inverter	1 Elec	2	4	3750.00	213.00	3963.00	4445.00
PV components, combiner box	1 Elec	4	2	189.00	107.00	296.00	368.00
Fuse, 15A for combiner box	1 Elec	40	0.2	16.40	10.65	27.05	34.00
PV Rack system, on steel framing, with standoff	R1A	11.00	1.455	55.00	64.00	119.00	157.50

Costs Specific to Casino Array

The following table uses RS Means values for pricing of materials and labor, except for the Suntech 250W panels. The Suntech STP250-20/Wd panel was priced at an average of $\$ 375$ from multiple retailers. The data sheet for the Suntech panel can be found in the Appendix B. The number of crew members and corresponding daily output has been modified to finish the installation in 10 days. The breakdown of the construction time is found in the next section titled "Schedule."

Description	No. Crew	Daily Output		Labor Hours	Bare Materials	Bare Labor	Bare Total
250W, 37V, Suntech PV Panel	400	6 Elec	48	1	150,000	21,400	171,400
Growatt DC to AC inverter	5	5 Elec	10	4	18,750	1,065	19,815
PV components, combiner box	1	1 Elec	4	2	189.00	107.00	296.00
Fuse, 15A for combiner box	21	1 Elec	40	0.2	344.40	223.65	568.05
PV Rack system, on steel framing, with standoff	400	4 R1A	44	1.455	22,000	25,600	47,600

Schedule

Using the labor information gathered from the 2014 release of RS Means, an estimate for the length of time needed to install the new solar array can be calculated. The table below takes labor hours and daily output directly from the Photovoltaic Collectors section 263113500 in RS Means.

Description	No. Crew	Daily Output			Labor Hours	Total Hours
Days						
250W, 37V, Suntech PV Panel	400	1 Elec	8	1	400	50
Growatt DC to AC inverter	5	1 Elec	2	4	20	2.5
PV components, combiner box	1	1 Elec	4	2	2	0.25
Fuse, 15A for combiner box	21	1 Elec	40	0.2	4.2	0.5
PV Rack system, on steel framing, with standoff	400	R1A	11.00	1.455	582	37

The length of installation for each component calculated in the table above would have a significant impact on the schedule of the project. Assuming that the Suntech panels and the racks can be installed simultaneously, an installation of 8 to 10 days would be desirable. This much shorter installation time would not have a significant impact on the overall 18 month construction of the casino.

To achieve an 8-10 installation time for the array, the amount of workers needs to be increased. A 6 man crew, working in teams of two, will be able to handle the installation of the panels. An R1A crew consists of two workers already, so the project will need 4 of these crews totaling 8 workers. The total amount of workers assigned to the installation of the solar array will be 14.

Estimated Construction Times

Description	No. Crew	Daily Output	Labor Hours		Days
$250 \mathrm{~W}, 37 \mathrm{~V}$, Suntech PV Panel	400	6 Elec	48	1	8.3
Growatt DC to AC inverter	5	5 Elec	10	4	0.5
PV components, combiner box	1	1 Elec	4	2	0.25
Fuse, 15A for combiner box	21	1 Elec	40	0.2	0.5
PV Rack system, on steel framing, with standoff	400	4 R1A	44	1.455	9.1

The number of days calculated from the Estimated Construction Times table shows that the solar array installation can be completed in less than 10 days. All 6 of the electricians will begin by installing the Suntech panels and that will take just over 8 days. The $9^{\text {th }}$ day of installation will be for the electricians to
finish installing the panels and install the inverters. While the electricians are working, the 4 R1A crews will also be working on the installation of the PV rack system. The PV rack system will take about 9 days for the crew to install.

Conclusion

The total cost estimate for the materials of the proposed solar array is \$191,283. The total cost of labor is estimated to be $\$ 48,396$. Adding materials and labor together results in $\$ 239,680$ estimated for the entire installation. This estimation does not include profit. The installation will take a total period of 10 days and will not significantly impact the 18 month construction schedule for Casino Gold.

STRUCTURAL BREADTH

The proposed solar array on the casino roof creates a new load and it requires an evaluation of the structural members supporting it. The main roof for the casino is the top of the third level. This roof has a width of 168 feet and a length of 300 feet. The chosen Suntech 250 watt polycrystalline solar module has a width of 3.25 feet and a length of 5.4 feet. With a weight of 40 pounds, the panel exerts a load of $3 \mathrm{lbs} / \mathrm{ft}^{2}$. The dimensions of both the roof and panel can be found in Appendix C .

The calculations for the following structural analysis can also be found in Appendix C. The structural calculations analyze the roof decking, a roof joist, joist girder, and the supporting column. All of the joists, joist girders, and columns for the roof structure are consistent throughout the third level.

Dead Loads

- 3psf - Suntech panel self-weight
- 1 psf - 3-ply ready roofing (AISC Table 17-13, $14^{\text {th }}$ Edition)
- 1.5psf - Rigid insulation, R-25 (AISC Table 17-13, $14^{\text {th }}$ Edition)
- 3psf - $3 / 4$ " wood sheathing (AISC Table 17-13, $14^{\text {th }}$ Edition)
- 10psf - Superimposed dead load
- 1.78psf - Vulcraft 1.5B x 22 gauge roof decking (Vulcraft Roof Decking Table)

Live Loads

- 30psf - Snow Load

Roof Deck

The roof deck meets the requirements for a 3-span, unshored condition, determined form the Vulcraft Roof Deck table.

Current Roof Joist

- 21 plf - 32LH09 Roof Joist (Steel Joist Institute Joist Catalog, LRFD Table)
- Span of 60 ft , spacing of $5^{\prime} 8^{\prime \prime}$
- An LRFD load combination of [1.2D+1.6S] was used in evaluating the current roof joist.
- $W_{\mathrm{utl}}=445$ plf
- $W_{t \mid}=310$ plf

Evaluation of the Roof Joist

- Use Steel Joist Institute Long Span Steel Joist LRFD Table
- 32LH09 joist designation and a clear span of 60ft
- $\mathrm{W}_{\mathrm{utl}}=534$ plf (from table) >445 pIf (from calculations), OK
- W for $\mathrm{L} / 360=180$ plf (from table)
- W for L/240 = 270plf < 310plf (from calculations), current roof joist is not big enough for the new load of the solar array

Choosing a New Roof Joist

- Increase size of joist to satisfy the deflection criteria that was not met in the previous section
- Choose a new joist of 32LH1 1
- $W_{\text {utl }}=643$ plf (from table) >445 plf (from calculations), OK
- W for $L / 360=216$ plf (from table)
- W for $\mathrm{L} / 240=324$ plf > 313plf (from calculations), OK
- New 32LH11 joist is adequate
- Self-weight of 5psf

Evaluation of Joist Girder

The current joist girder for the roof is a 60G10N20K. This notation shows that the joist girder is 60 inches deep, has 10 panels, and has an unfactored point load of 20 kips. The evaluation conducted in the attached calculations shows an actual point load of less than 20 kips, proving that the joist girder is adequate. The girder has a self-weight of 93plf, or 2psf, found in the Steel Joist Institute LRFD joist girder table.

Evaluation of a Column

The casino is designed with W8X48 columns on the third level, supporting the roof structure. The columns have a height of 13 feet. When evaluating the P_{u} on the column a tributary area of $3,360 \mathrm{ft}^{2}$ is used. This leads to a P_{u} of 275 kips for the column. Using Table $4-1$ in the AISC $14^{\text {th }}$ Edition, a value of $\varnothing \mathrm{P}_{\mathrm{u}}=421 \mathrm{k}$ for a W8X48 column is much larger than the calculated 275 k . This proves that the columns in the current design are able to support the new loading condition.

Conclusion

After evaluating the structural members of the third level, the calculations determine that the current roof joists must increase in size. The roof joists must increase from 32 LH 09 to 32 LH 1 . The current roof decking, joist girders and columns of the third level are adequately designed to support the new load of the solar array.

APPENDIX A - LUMINAIRE DATA SHEETS

d BCOPatiV Project:

Qty:

Drums Series • Ortwin • 6150

1. | CATALOG \# | $6150-24$
 $6150-30$
 $6150-36$ |
| :--- | :--- |
2. | $6150-24$
 FQ $=(4)$ CFQ26W/G24Q-3
 LAMPING
 $6150-30$
 FQ $=(4)$ CFQ26W/G24Q-3
 $6150-36$
 FM |
| :--- |
| FX |
| F (4) CFTR42W/GX24Q-4 CFTR42W/GX24Q-4 |

5.

FINISH
STANDARD
BAL = BRUSHED ALUMINUM
LBP = LIGHT BRONZE PAINT WITH BRUSHED TEXTURE
CUSTOM
CPF = CUSTOM PAINTED FINISH (consult factory)
CMF = CUSTOM METAL FINISH (consult factory)

Modification
Descriptions:
(if needed)

Weight Hanging (lbs.) *

FQ / 6150-24	25 lbs.
FQ / 6150-30	35 lbs.
FM / 6150-36	54 lbs
FX / 6150-36	60 lbs.
* all pendants over 50 lbs.	

Notes:

- UL listed and cUL approved (UL) Us
- Winona Lighting products are union made.
- Custom Sizes and Finishes available upon request.
- All Fluorescent fixtures available in 120 V and 277 V .
- Winona Lighting reserves the right to make design changes without prior notice.
- Lamps not included.

Painted Finishes

AB5 • Antique Brass Paint

ABP • Antique Brass Paint

LGP • Light Gold Iridescent Paint

PGP • Pale Gold Paint

ALP • Aluminum Paint (Matte)

LSP • Light Silver Paint

MCP • Mediterranean Cherry Powdercoat Paint

SGW•Semi-Gloss White

VCP • Verdi Copper Patina Paint

Custom Paint Finishes

Whether it is matching an existing surface or creating a bold splash of color, the flexibility of the Winona Lighting wet paint system is the easiest way to customize a luminaire or your application.

Our in-house computerized mixing and matching capabilities allow us to accurately provide custom finishes without minimum order quantity, set up fees or additional lead time. There is no need to submit samples to a paint manufacturer for matching purposes causing delay to the production schedule. We can provide custom finishes in either metallic colors to match an actual metal finish or solid colors to match interior or exterior finishes.

Variations in color and luster may be present in these examples due to limitations in the printing process. For accurate color certification samples, please request a Winona Lighting finish chip from your sales representative.

AB3 • Antique Brass (will darken with time)

GAL•Ground Aluminum

BAL•Brushed Aluminum

PAL • Polished Aluminum

BB • Brushed Brass

PB• Polished Brass

BC•Brushed Chrome

PC • Polished Chrome

BN•Brushed Nickel
BSS • Brushed Stainless Steel

PN • Polished Nickel

PSS • Polished Stainless
Metal Finishes Steel

TBR • Tinted Brass Lacquer

Acrylic Lenses

FAH5 • Antique Vein Faux Alabaster

FAH8 • White Faux Linen

SA2 • Clear Acrylic w/Grid Pattern panels series

FAH6 • Gray Vein Faux Alabaster

FAH9 • Beige Faux Linen

SA3 - Clear Acrylic w/Printed Dot Pattern panels series

FAH7 • Beige Vein Faux Alabaster

FAH10 • Antique Faux Linen

[^1]
Fabric and Parchment Shades

Wood Finishes

NM • Natural Maple Wood Finish textures series
 extures series

Wood Finishes

WD • Dark Cherry Wood Finish textures series

FEATURES \& SPECIFICATIONS
INTENDED USE - Recessed downlight that provides volumetric lighting by filling the entire volume of space with light, delivering the ideal amount of light to walls, cubicles, work surfaces and people. Typical applications include corridors, lobbies, conference rooms and private offices. The system maintains 70\% lumen output at more than 50,000 hours.
CONSTRUCTION - 16-gauge galvanized steel mounting/plaster frame with torsion springs to mount open conical shape reflector.
Rugged, one-piece, die-cast housing with white interior dome reflector.
LED light source shielded from direct view.
Vertically adjustable mounting brackets that use 16-gauge flat bar hangers (included), $1 / 2$ " conduit or C channel T bar fasteners. Provides $3-3 / 4^{\prime \prime}$ total adjustment.
Post installation adjustment possible from above or below the ceiling.
Galvanized steel junction box with bottom-hinged access covers and spring latches. Two combination
 conductors, rated for $90^{\circ} \mathrm{C}$.
Fixture height of 5-3/4" allows installation in shallow plenum applications.
Secondary housing adjustment system for precise, final ceiling-to-flange alignment.
Maximum 1-1/2" ceiling thickness.
ELECTRICAL—Utilizes high-brightness LEDs mounted to a metal core circuit board, ensuring cool-running operation, $3500 \mathrm{~K}, \mathrm{CRI}>80$.
Thermal control ensures cool running LEDs.
Thermal protection provided against improper insulation use.
High-efficiency, electronic LED driver mounted in the junction box.
Luminaire should be installed in applications where ambient temperatures do not exceed 50°. Ambient temperatures that exceed $50^{\circ} \mathrm{C}$ will result in reduced lamp life and will void warranty.
Input wattage for 600 L is 15.6 W . Input wattage for 900 L is 25.0 W .
The DOM6 LED with DIM option operates with all 0-10 V dimming switches. The following dimming switches have been confirmed to dim to 10% output:
Synergy ${ }^{\oplus}$ model number: ISD BC 120/277
Leviton ${ }^{\oplus}$ model number: IP710-DLX
Lutron ${ }^{\circledR}$ model number: NTFTV-WH. For on/off control, this switch requires a power pack. Consult Lutron for more information.
LISTINGS - CSA Certified to US and Canadian safety standards. Damp location listed.
WARRANTY — Five-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CustomerResources/Terms and_conditions.aspx.
Note: Specifications subject to change without notice.

$\frac{\text { Specifications }}{\text { Aperture: } 6-3 / 4(17.1)}$
Ceiling opening: 7 (17.8)
Overlap trim: 7-1/2 (19.0)
Height: 5-3/4 (14.6)
Length: 11-1/8 (28.3)
Standard width: 13 (33.0)
All dimensions are inches (centimeters) unless otherwise specified.

ORDERING INFORMATION		Lead times will vary depending on options selected. Consult with your sales representative.						Example: D0M6 LED 900L 35K 120 D06
D0M6 LED								
Series	Lumen output ${ }^{1}$	Colo	perature	Voltage	Reflecto		Options	
DOM6 LED	$\begin{aligned} & 600 \mathrm{~L} \\ & 900 \mathrm{~L} \end{aligned}$	$35 \mathrm{~K}$ $40 \mathrm{~K}$	$\begin{aligned} & 3500 \mathrm{~K} \\ & 4000 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 120 \\ & 277 \\ & 347^{2} \end{aligned}$	D06 D06A D06AZ D06MW	White open ${ }^{3}$ Clear diffuse open Semi-specular open Matte white ${ }^{3}$	TRW TRBL DIM ELRB722 NSD	White flange with anodized reflectors Black flange with anodized reflectors 0-10V dimming driver, 10% minimum light output Bodine ${ }^{\otimes}$ emergency battery pack with remote test switch provides 86% light output or roughly 770 lumens, for up to 90 minutes (900 L only) ${ }^{4}$ Sensor Switch ${ }^{\oplus}$ nLight ${ }^{\oplus}$ one 5 A relay with one 0-10 VDC dimming output; requires bus power, such as nPP16 power pack. Refer to nSP5-D. ${ }^{5}$

Accessories: Order as separate catalog number.	
IDS BC 120/277 WH	Synergy white switch
IDS BC 120/277 IV	Synergy ivory switch NSP5 D ER KIT
Sensor Switch nLight secondary relay and dimming pack device used to switch and dim luminaires powered via an emergency circuit. Refer to NSP5 D ER KIT.	

[^2]
PHOTOMETRICS

$\left.\begin{array}{cccc}\hline \text { Distribution Curve } & \text { Distribution Data } & \text { Output Data } & \text { Coefficient of Utilization }\end{array} \begin{array}{c}\text { Illuminance Data at 30" Above Floor for } \\ \text { a Single Luminaire }\end{array}\right]$

D0M6 900L D06; 903 delivered lumens, input watts: 25.0, Test No. LTL 17007, tested in accordance with IESNA LM-79-2008

DOM6 600L D06; 603 delivered lumens, input watts: 15.6, Test No. LTL 17014, tested in accordance with IESNA LM-79-2008

Notes

- Actual performance may differ as a result of end-user environment and application.
- Actual wattage may differ by $+/-5 \%$ when operating between $120-347 \mathrm{~V}+/-10 \%$.

FEATURES \& SPECIFICATIONS

INTENDED USE - Recessed downlight that provides volumetric lighting by filling the entire volume of space with light, delivering the ideal amount of light to walls, cubicles, work surfaces and people. Typical applications include corridors, lobbies, conference rooms and private offices. The system maintains 70\% lumen output at more than 50,000 hours.
CONSTRUCTION - 16-gauge galvanized steel mounting/plaster frame with torsion springs to mount open conical shape reflector.
Rugged, one-piece, die-cast housing with white interior dome reflector.
LED light source shielded from direct view.
Vertically adjustable mounting brackets that use 16-gauge flat bar hangers (included), $1 / 2$ " conduit or C channel T bar fasteners. Provides $3-3 / 4^{\prime \prime}$ total adjustment.
Post installation adjustment possible from above or below the ceiling.
Galvanized steel junction box with bottom-hinged access covers and spring latches. Two combination $1 / 2^{"-3 / 4 " ~ a n d ~ t h r e e ~} 1 / 2^{"}$ knockouts for straight-through conduit runs. Capacity: 8 (4 in, 4 out) No. 12 AWG conductors, rated for $90^{\circ} \mathrm{C}$.
Fixture height of 5-3/4" allows installation in shallow plenum applications.
Secondary housing adjustment system for precise, final ceiling-to-flange alignment.
Maximum 1-1/2" ceiling thickness.
ELECTRICAL — Utilizes high-brightness LEDs mounted to a metal core circuit board, ensuring cool-running operation, $3500 \mathrm{~K}, \mathrm{CRI}>80$.
Thermal control ensures cool-running LEDs.
Thermal protection provided against improper insulation use.
High-efficiency, electronic LED driver mounted in the junction box.
Luminaire should be installed in applications where ambient temperatures do not exceed 50°. Ambient temperatures that exceed $50^{\circ} \mathrm{C}$ will result in reduced lamp life and will void warranty.
Input wattage for 1200 L is 27.5 W . Input wattage for 1500 L is 35.8 W .
The DOM8 LED with DIM option operates with all 0-10 V dimming switches. The following dimming switches have been confirmed to dim to 10\% output:
Synergy ${ }^{\oplus}$ model number: ISD BC 120/277
Leviton ${ }^{\oplus}$ model number: IP710-DLX
Lutron ${ }^{\circledR}$ model number: NTFTV-WH. For on/off control, this switch requires a power pack. Consult Lutron for more information.
LISTINGS - CSA Certified to US and Canadian safety standards. Damp location listed.
WARRANTY — Five-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Specifications subject to change without notice.

PHOTOMETRICS

| Distribution Curve | Distribution Data | Output Data | Coefficient of Utilization |
| :--- | :--- | :--- | :--- | | Illuminance Data at 30" Above Floor for |
| :---: |
| a Single Luminaire |

DOM8 1500L D08; 1505 delivered lumens, input watts: 35.8, Test No. LTL 17190, tested in accordance with IESNA LM-79-2008

DOM8 1200L D08; 1174 delivered lumens, input watts: 27.5, Test No. LTL 17214, tested in accordance with IESNA LM-79-2008

	Ave	Lumens
0	455	
5	452	43
15	436	123
25	406	187
35	365	228
45	301	231
55	217	194
65	126	124
75	31	39
85	5	6
90	0	

Zone	Lumens	\% Lamp
$0^{\circ}-30^{\circ}$	352.9	30.1
$0^{\circ}-40^{\circ}$	580.7	49.4
$0^{\circ}-60^{\circ}$	1005.6	85.6
$0^{\circ}-90^{\circ}$	1174.3	100.0
$90^{\circ}-120^{\circ}$	0.0	0.0
$90^{\circ}-130^{\circ}$	0.0	0.0
$90^{\circ}-150^{\circ}$	0.0	0.0
$90^{\circ}-180^{\circ}$	0.1	0.0
$0^{\circ}-180^{\circ}$	1174.4	$* 100.0$
	*Efficiency	

pf	
pc	
pw	50
0	119
1	10
2	9
3	83
4	73
5	6
6	59
7	5
8	49
9	4
10	

20\%								
$\begin{gathered} 80 \% \\ 50 \% 30 \% 10 \% \\ \hline \end{gathered}$				70\%			50\%	
			50\% 30\% 10\%			50\% 30\% 10\%		
119	119	119	116	116	116	111	111	111
106	102	99	104	100	97	99	97	94
93	87	82	91	86	81	88	83	79
83	75	69	81	74	68	78	72	67
73	65	59	72	64	58	70	63	58
66	57	51	65	57	51	63	55	50
59	51	44	58	50	44	57	49	44
54	45	39	53	45	39	51	44	39
49	41	35	48	41	35	47	40	35
45	37	32	44	37	32	43	36	31
42	34	29	41	34	29	40	33	29

		50% beam - 64.7°	10% beam - 108.1°		
Inital FC					
Mounting	Center				
Height	Beam	Diameter	FC	Diameter	FC
8.0	15.0	7.0	7.5	15.2	1.5
10.0	8.1	9.5	4.0	20.7	0.8
12.0	5.0	12.0	2.5	26.2	0.5
14.0	3.4	14.6	1.7	31.7	0.3
16.0	2.5	17.1	1.2	37.2	0.2

Notes

- Actual performance may differ as a result of end-user environment and application.
- Actual wattage may differ by $+/-5 \%$ when operating between $120-347 \mathrm{~V}+/-10 \%$.

\qquad Type: \qquad
\qquad
Project: \qquad

iW Cove MX Powercore

 $4 \mathrm{ft}(1.2 \mathrm{~m}) 110^{\circ} \times 110^{\circ}$ (wide) beam angle Premium interior linear LED cove and accent fixture with intelligent white lightiW Cove MX Powercore is a high-performance, white-light LED fixture that brilliantly illuminates alcoves and other interior spaces wherever adjustable color temperature is required. With three channels of warm, neutral, and cool LED sources, this compact, versatile fixture offers a color temperature range of 2700 K to 6500 K . With its rotating housing, flexible end-to-end locking power connectors, and wide and medium beam angles, iW Cove MX Powercore is the perfect choice for retail, exhibit, hospitality, and architectural applications.

- Superior beam quality - Available in 1 ft (305 mm) and $4 \mathrm{ft}(1.2 \mathrm{~m}$) die-cast aluminum housings with wide $\left(110^{\circ} \times 110^{\circ}\right)$ and medium $\left(50^{\circ} \times 70^{\circ}\right)$ beam angles. Delivers striationfree light within close distance from fixture placement with no visible light scalloping between fixtures.
- High-performance illumination in a wide range of color temperatures - Channels of warm, neutral, and cool white LEDs produce color temperatures ranging from 2700 K to 6500 K. Offers the greatest possible light intensity at all color temperatures. Fixture brightness can be varied while maintaining constant color temperature.
- Superior binning algorithm sets new standard for color consistency - iW Cove MX Powercore exceeds the recognized standards for color quality to guarantee uniformity and consistency of hue and color temperature across LEDs, fixtures, and manufacturing runs.
- Integrates Powercore technology Powercore technology rapidly, efficiently, and accurately controls power output to fixtures directly from line voltage. The Philips Data Enabler Pro merges line voltage with control and delivers them to the fixture over a single standard cable, dramatically simplifying installation and lowering total system cost.
- Universal power input range - Power input of 100 to 240 VAC for consistent installation anywhere in the world.
- Easy installation - By delivering line voltage directly to the fixtures, Powercore simplifies installation by reducing the number of external power supplies, allowing long product runs and eliminating the need for special wiring. Easy-to-install $4 \mathrm{ft}(1.2 \mathrm{~m})$ mounting tracks allow quick project setup in linear applications.
- Flexible mounting and positioning — With end-to-end locking power connectors that can make 180° turns, these compact cove fixtures are easy to position in even the most challenging mounting circumstances. 1 ft (305 mm) and $5 \mathrm{ft}(1.5 \mathrm{~m})$ jumper cables can add extra space between fixtures. Optional mounting tracks support vertical and overhead positioning.
For detailed product information, please refer to the iW Cove MX Powercore Product Guide at www.philipscolorkinetics.com/ls/intelliwhite/ iwcovemxpc/

Specifications

Due to continuous improvements and innovations, specifications may change without notice.

Item	Specification	$4 \mathrm{ft}(1.2 \mathrm{~m}), 110^{\circ} \times 110^{\circ}$ beam angle
	Color Temperature*	$2700 \mathrm{~K}-6500 \mathrm{~K}$
	Lumens \dagger	2471 (all channels full on)

Photometrics

$4 \mathrm{ft}(1.2 \mathrm{~m}), 110^{\circ} \times 110^{\circ}$ beam angle (all channels full on)

Center Beam fc Beam Width

Fixtures

Item	Type		Item Number	Philips 12NC
iW Cove MX Powercore 1 ft (305 mm)	$110^{\circ} \times 110^{\circ}$	UL / cUL / CE	523-000002-02	910503701230
		CCC	523-000002-04	910503701232
	$50 \times 70^{\circ}$	UL / cUl / CE	523-000002-03	910503701231
		CCC	523-000002-05	910503701992
iW Cove MX Powercore 4 ft (1.2 m)	$110^{\circ} \times 110^{\circ}$	UL / cUL / CE	523-000002-06	910503702608
		CCC	523-000002-08	910503703169
	$50 \times 70^{\circ}$	UL / cUL / CE	523-000002-07	910503702609
		CCC	523-000002-09	910503703170

Accessories

* Color temperatures conform to nominal CCTs as
defined in ANSI Chromaticity Standard C78.377A.
\dagger Lumen measurement complies with IES LM-79-08 testing procedures.
$\ddagger L 70=70 \%$ lumen maintenance (when light output drops below 70% of initial output).
$\mathrm{L}_{50}=50 \%$ lumen maintenance (when light output drops below 50% of initial output). Ambient luminaire temperatures specified. Lumen maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures Refer to www.philipscolorkinetics.com/support/appnotes/Im-80-08.pdf for more information.

Item	Type		Item Number	Philips 12NC
Mounting Track, White	1 @ 4 ft (1219 mm)		120-000124-00	910503701787
Leader Cable with terminator	10 ft (3.1 m)	UL / cUL	108-000050-00	910503701686
		CE / CCC	108-000050-01	910503701687
Jumper Cable	1 ft (305 mm)	UL / cUL	108-000049-01	910503701683
		CE / CCC	108-000049-03	910503701685
	5 ft (1.5 m)	UL / cUL	108-000049-00	910503701682
		CE / CCC	108-000049-02	910503701684
Wiring Compartment with Terminator			120-000077-02	910503701740
Data Enabler Pro	$3 / 4$ in / $1 / 2$ in NPT (U.S. trade size conduit)		106-000004-00	910503701210
	PG21 / PG13 (metric size conduit)		106-000004-01	910503701211

Use Item Number when ordering in North America.

Philips Color Kinetics
3 Burlington Woods Drive
Burlington, Massachusetts 01803 USA
Tel 888.385.5742
Tel 617.423.9999
Fax 617.423.9998
www.philipscolorkinetics.com

Ordering Information

EXAMPLE: KBA8 LED 16C 700 40K SYM MVOLT DDBXD

KBA8 LED

Series	LEDs	Drive current	Color temperature		Distribution		Voltage	Control options		Other options		Finish (required)			
KBA8 LED	Asymmetric 12C 12LEDs	$\begin{array}{ll} 350 & 350 \mathrm{~mA} \\ 530 & 530 \mathrm{~mA} \\ 700 & 700 \mathrm{~mA} \end{array}$	30 K 3000 K 40 K 4000 K 50 K 5000 K		ASY Asymmetric ${ }^{1}$ SYM Symmetric ${ }^{2}$		$\begin{aligned} & \text { MVOLT }^{5} \\ & 120^{5} \\ & 208^{5} \\ & 240^{5} \\ & 277^{5} \\ & 347^{4} \end{aligned}$	Shipped installed		Shipped installed		DWHXD DNAXD	White Natural aluminum	Striping ${ }^{\text {9 }}$	
						Photoelectric cell, button type		SF	Single fuse (120, 277, 347 V) ${ }^{4,7}$	SDDB	Dark bronze				
					DDBXD					Dark	SDWH	White			
	16 C 16/EDs ${ }^{2}$	Amber	Amber			DMG		$0-10 \mathrm{~V}$	DF	Double fuse		bronze	SDBL	Black	
		$450 \quad 450 \mathrm{~mA}^{3,4}$	AMBLW	Amber limited wavelength ${ }^{3,4}$		driver (no controls)		H24	$24^{\prime \prime}$ overall height	DBLXD DDBTXD	Black Textured	SDNA	Natural aluminum		
					ELCW	Emergency battery		H30	$30^{\prime \prime}$ overall height		dark bronze	SDTG	Tennis green		
								H36	$36^{\prime \prime}$ overall height	BLBX	Textured black	SDBR SDBUA	Bright red Dark blue		
									Ground-fault festoon outlet	DNATX	natural aluminum	SDYLB	Yellow		
								L/AB	Without anchor bolts (3 bolt base)	DWHGXD	Textured white				
								L/AB4	4 bolt retrofit base without anchor bolts ${ }^{8}$						

Accessories
 MRAB U Anchor bolts for KBA8 LED

[^3]
Performance Data

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Actual performance may differ as a result of end-user environment and application. Actual wattage may differ by $+/-8 \%$ when operating between $120-480 \mathrm{~V}+/-10 \%$.

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	1.00	0.98	0.97	0.95

Light Engines	Drive Current (mA)	System Watts	120	208	240	277	347
12C	350	16W	0.158	0.118	0.114	0.109	0.105
	530	22W	0.217	0.146	0.136	0.128	0.118
	700	31W	0.296	0.185	0.168	0.153	0.139
	Amber 450	16W	0.161	0.120	0.115	0.110	0.106
16C	350	20W	0.197	0.137	0.128	0.121	0.114
	530	28W	0.282	0.178	0.162	0.148	0.135
	700	39W	0.385	0.231	0.207	0.185	0.163
	Amber 450	20W	0.199	0.139	0.130	0.123	0.116

Photometric Diagrams To see complete photometric reports or download ies files for this product, visit Lithonia Lighting's KBA8 Bollard homepage.

FEATURES \& SPECIFICATIONS

INTENDED USE

The rugged construction and clean lines of the KBA bollard is ideal for illuminating building entryways, walking paths, and pedestrian plazas, as well as any other location requiring a low mounting height light source with fully cutoff illumination.

CONSTRUCTION

One-piece 8-inch round extruded aluminum shaft with thick side walls for extreme durability, a high-impact clear acrylic lens and welded top cap. Die-cast aluminum mounting ring allows for easy leveling even in sloped locations and a full 360 -degree rotation for precise alignment during installation. Three $1 / 2^{\prime \prime} \times 11^{\prime \prime}$ anchor bolts with double nuts and washers and $33 / 4^{\prime \prime}$ bolt circle template ensure stability. Overall height is $42^{\prime \prime}$ standard.

FINISH

Exterior parts are protected by a zinc-infused super durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering for maximum retention of gloss and luster. A tightly controlled multi-stage process ensures a minimum 3-mil thickness for a finish that can withstand the elements without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Two fully cutoff optical distributions are available: symmetrical and asymmetrical. IP66 sealed LED light engine provides smoothly graduated illumination without any uplight. Light engines are available in standard 4000K (>70 CRI) or optional 3000K ($>80 \mathrm{CRI}$) or 5000K (67 CRI). Limited-wavelength amber LEDs are also available.

ELECTRICAL

Light engines consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (L95/100,000 hours at 700 mA at $25^{\circ} \mathrm{C}$). Class 2 electronic drivers are designed for an expected life of 100,000 hours with $<1 \%$ failure rate. Electrical components are mounted on a removable power tray.

LISTINGS

CSA certified to U.S. and Canadian standards. Light engines are IP66 rated.
Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. Cold-weather emergency battery backup rated for $-20^{\circ} \mathrm{C}$ minimum ambient.

WARRANTY

Five-year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Specifications subject to change without notice.

LAMPING OPTIONS

LL1M4

SPECIFICATIONS

Construction

Housing is extruded aluminum forming a $23 / 4^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}$ rectangular profile. Die-cast end plate mechanically attaches with no exposed fasteners.

Shielding

Long window with soft white aluminum baffle.

Reflectors

Die-formed, pre-finished white reflector with hammertone specular aluminum.

Electrical

Specify $120 \mathrm{~V}, 277 \mathrm{~V}$ or 347 V . Pre-wired with 16 AWG fixture wires. For special circuiting or wire gauge, consult factory. Plug-in electrical connectors included. UL and C-UL listed.

Finish

Standard colors include satin anodized aluminum, and white white (low gloss).

Luminaire Length

8^{\prime} and 12 lengths in a single section for suspension spacing of 8^{\prime} and 12^{\prime}. For total luminaire length, add $3 / 4^{\prime \prime}$ for each end plate. Using internal joiners, $4^{\prime}, 8^{\prime}$, and 12 ' sections can be joined to form longer rows.

CATALOG NUMBER

Examples: LL1M4 132 12FT R12 120 GEB10 SCT LP835 F1/12 C100 - LL1M4 132 8FT R8 120 ADZT SCT LP841 F1/24 C041

[^4]
INTEGRATED NLIGHT MICRO SENSOR

Determine the appropriate sensor type, network type and sensor power source for your application. Enter the code in the Options section of the Catalog Number.
EXAMPLE: PDT1

Sensor Type (choose one)		Network Type \& Sensor Power Source (choose one)	
ADC nLight model nES ADCX	Daylight Dimming Specify 0-10V dimming ballast No occupancy sensing	1*	nLight-Enabled (Network-Ready) with Luminaire-Integrated Power Pack 10' Cat-5e cable and splitter provided
		2	Standalone Operation (No Networking) with Luminaire Integrated Power Pack No Cat-5e cable provided
PDT nLight model nES PDT7 ADCX	Daylight Dimming and/or Occupancy Detection Specify 0-10v dimming ballast for daylight dimming Specify fixed-output ballast for occupancy detection only (daylight dimming disabled)	3*	nLight-Enabled (Network-Ready) with Remote nLight Power Pack or nPanel 10' Cat-5e cable and splitter provided Order required remote nLight Power Pack or nPanel separately through nLight (Acuity Brands Controls)

For more information about the Integrated nLight Micro Sensor, its capabilities and options, download the PDF guide at: PeerlessLighting.com/nLight-Sensor-Guide *nLight-Enabled (network-ready) options include one RJ-45 connector on the luminaire and 10' of Cat-5e cable and a splitter to control the entire luminaire row (depending on wattage/voltage limitations). The Cat-5e cable drop is located in the same section as the sensor. For multiple zones, please contact techsupport@peerlesslighting.com.

WEIGHTS \& SUPPORT SPACING

Suspension spacing equals section length. Default location shown. Consult factory for stem mounting suspension spacing and alternate locations.

STANDARD SECTIONS

CONFIGURATIONS

Mitered " L ", " X " and " T " connectors available for suspended configurations.
Reference Pattern Connector Guide for additional details.

PHOTOMETRICS Actual performance may differ as r result of end-user environment and application.

1-LAMP T8
70.8\% efficiency

2018 delivered lumens
89.1\% up / 10.9\% down

"Sighting for the Professional Designer"

PRODUCT
 Construction

Applications: Building Exteriors and Interiors
Voltage: Line Voltage (120V) System (12V Optional)
Socket Base: Medium Base Sockets are Permanently Attached in Parallel Wiring
Lamps: Replaceable LEDs ($50,000 \mathrm{Hrs}$ Lamp Life) are protected with Shatterproof, Sealed Globes (LEDs Included). Available with Incandescent Line Voltage (120V) or Low Voltage Lamps (12V)
Spacing: $6^{\prime \prime}, 12^{\prime \prime}, 24^{\prime \prime}, 36^{\prime \prime}, 48^{\prime \prime}, 60^{\prime \prime}$ or other Custom Spacing
Length: Built to Order (Custom Lengths to Fit Application)
Lead Wire: Standard 6' lengths (Custom Lengths Available)
Mounting: Surface Mount or Suspended
Options: Mesh Canopies with Custom Finishes Canopies and Cages with Custom Finishes

ELECTRICAL
 information

MarketLite is a LINE VOLTAGE (120V) system that can carry up to 1800 Watts in a single run ($20 \mathrm{amp}-12$ gauge wire). MarketLite is available with low voltage lamps (12 V) which will require a 12 volt (secondary side) transformer. Our standard transformers' primary side voltage are 120 or 277 volts. Consult factory for other voltages.

CALIFORNIA ACCENT LIGITING, INC.
2034 E. Lincoln Ave. \#431 Anaheim, CA. 92806

Raphael Series • Apollo • 5000

5000-30

1. | | $5000-30$ |
| :--- | :--- |
| CATALOG \# | |
| $5000-42$ | |

3.

VOLTAGE	$277 \mathrm{~V}=277$ VOLT

4.

LENS OPTION
OA = OPAL ACRYLIC (etched)
FAH4 = WHITE VEIN HAND PAINTED FAUX ALABASTER
FAH5 = ANTIQUE HAND PAINTED FAUX ALABASTER (beige)
FAH6 = GRAY VEIN HAND PAINTED FAUX ALABASTER
FAH7 = BEIGE VEIN HAND PAINTED FAUX ALABASTER
STANDARD
BAL = BRUSHEDALUMINUM
LBP = LIGHT BRONZE PAINT WITH BRUSHED TEXTURE
CUSTOM
CPF = CUSTOM PAINTED FINISH (consult factory)
CMF = CUSTOM METAL FINISH (consult factory)
6. \square

Modification
Descriptions: (if needed)


```
STD = STANDARD
```

MOD = MODIFIED

Weight Hanging (lbs.) *

I, F / 5000-30	30 lbs.
I/ $5000-42$	40 lbs
F / 5000-42	45 lbs.
FX / 5000-42	46 lbs.
* all pendants over 50 lbs. require additional hanging support.	

Notes:

- UL listed and cUL approved . (U) Us
- Winona Lighting products are union made.
- Custom Sizes and Finishes available upon request.
- All Fluorescent fixtures available in 120 V and 277 V .
- Winona Lighting reserves the right to make design changes without prior notice.
- Lamps not included.

The 107-P Fabrique Square Cylinder Pendant Luminaire features 26 shade materials, 4 mounting options, 4 Metal Motifs (Patent Pending), Metal Panel Frames (Patent Pending) and 2 Shade-in-a-Shade options.

Catalog \#		Type
Project		
Comments		
Prepared by		

SPECIFICATION FEATURES

Material/Mounting

Cold-rolled steel and aluminum wirebody, painted white. Supplied with white acrylic bottom diffuser with one finial. Optional matte white acrylic top cover.

Single Stem (P1S): 5" canopy with a $1 / 2^{\prime \prime}$ stem self-aligning swivel. One $1 / 2^{\prime \prime}$ stem with a standard hang height of 40" (OA) for 28" Ht., minimum 32" (OA), 54" (OA) for 40" Ht., minimum 44" (OA), and 64" (OA) for $52^{\prime \prime} \mathrm{Ht}$., minimum 56 " (OA). Maximum overall hang height for one-piece stem assembly is 8^{\prime} (OA). 9^{\prime} to 25^{\prime} (OA) stems are supplied in multple sections. Supplied with a hang straight swivel canopy which will accommodate up to 34° (total) adjustment. Specify SCA for sloped ceiling applications from 18° to 45°. Single Stem with Aircraft Cables (P1SAC): One 1/2" stem and three $3 / 64$ " cables with a standard hang height of 40" (OA) for $288^{\prime \prime} \mathrm{Ht}$., minimum 32" (OA), 54" (OA) for 40" Ht., minimum 44" (OA), and 64" (OA) for 52" Ht., minimum 56" (OA). Maximum overall hang height is 25^{\prime} (OA). 8^{\prime} to 25 " stems are supplied in multiple sections. Contact factory for lengths above 25 ' and multi-cylinders. Supplied with a hang straight swivel canopy which will accommodate up to 34° (total) adjustment.
Three Fixture Pendant Cluster* (P3FCL): 22" Square aluminum canopy with three $1 / 2$ " stems with a hang straight swivel canopy with a standard hang height of 92" (OA) for 28" Ht., minimum 76" (OA), 122" (OA) for 40 " Ht ., minimum 108" (OA), and 152" (OA) for 52" Ht., minimum 140" (OA). Contact factory for SCA and MOD OA. Four Fixture Pendant Cluster* (P4FCL): 22" Square aluminum canopy with four $1 / 2^{\prime \prime}$ stems with a hang straight swivel canopy with a standard hang height of 112" (OA) for $28^{\prime \prime} \mathrm{Ht} .$, minimum 96 " (OA), 152" (OA) for 40" Ht., minimum 138" (OA), and 192" (OA) for 52" Ht., minimum 180" (OA). Contact factory for SCA and MOD OA.
*Shaper clusters are shown with a standard OA and with a specific quantity of fixtures. They can easily be modified to have more fixtures, a variety of fixture lengths, longer or shorter OA's and larger/different mounting plates to meet the needs of specific projects. Please contact the factory for details.

Shades

10" Square Solid cold-rolled steel construction. Material on heavy translucent white styrene. All shades are "Hand-Tucked" except for paper, vinyl and wood options. Note that Shaper's standard material selection is subject to change based on supplier availability. It is common for material manufacturers to be out of stock for long periods of time, change or discontinue materials without notice, based on market trends and/or raw material availability. We will contact the customer to provide the best alternative solution for orders in house if this situation occurs. Optional Shade-in-a-Shade (CSOSIS, or TSQSIS): Solid coldrolled steel frame construction with exposed metal painted white, silver or gold to match specified organza. Organza adhered to a heavy clear vinyl backing.
Optional Metal Motifs-[Patent Pending] (MMSQM, MMSQC, MMSQR or MMSQT): Solid aluminum or steel laser-cut construction with integral mounting tabs.
Optional Metal Panel-[Patent
Pending] (MPSQ): Solid aluminum or steel panel construction with integral mounting tabs and flat resin inserts.

Finish (Stem, Motifs, Panel, canopy and finial)
Standard: Natural Aluminum (NA) [Sustainable Design].
Premium: Matte White (MW), Aluminum Paint (ALP), Bronze Metallic Paint (BM), Gold Metallic Paint (GM), Lacquered Satin Aluminum (SAL), Satin Brass (SB), Polished Brass* (PB), Oxidized Brass (OBRS), Satin Chrome (SC), Polished Chrome* (PC), Satin Copper (SCP), Polished Copper* (PCP), Oxidized Copper (OCP), Satin Nickel (SN), Polished Nickel* (PN), Gun Metal (GNM) or Custom Color (CC).
Contact Factory for multi-finishes (i.e. MW finial with SC stems/ canopy).
*Note: Plated Polished finishes are not available with Metal Motif options.

Materials

Standard: Silk White (SIW).
Premium: Shantung White - 28" \& 40" only (SWH), Shantung Eggshell
(SEG), Chintz Chocolate (CCT), Chintz Onyx (CXH), Shantung Beige (SBG), Apex (APX), Glasgow Flax -28" \& 40" only (GFX), Paper Leaf - 28" \& 40" only (PPF), Nutmeg Shimmer (NGS), Bronze Shimmer (BZS), Linen Alabaster - 28" \& 40" only (LAT), Linen Biscuit -28" \& 40" only (LBS), Linen Chopsticks - 28" \& 40" only (LCK), Grass Cloth - 28" only (GSH), Silk Ivory (SIY), White Krinkle - 28" \& 40" only (WHK), White Corona (WCA), Heather Grey (HTG), Aluminium Shimmer (AMS), Golden Honey - Vinyl Coated - 28" \& 40" only (GHY), Natural Flax - Vinyl Coated 28" \& 40" only (NFX), Alabaster - Vinyl Coated - 28" \& 40" only (ABR), FSC** Natural Bamboo (NLB) [Sustainable Design], FSC** Variegated Bamboo (VDB) [Sustainable Design] or FSC** Amber Bamboo (ABB) [Sustainable Design] or Customer Supplied Fabric (CSCC). Note that the Bamboo is horizontal on the 106 shade.
Optional Shade-in-a-Shade (CSOSIS or TSQSIS): Earth Dust (EDT), White Mist (WMT) or Silver Moon (SMO).
Optional Metal Panel (MP): Earth Dust - Resin (EDTR), White Mist - Resin (WMTR) or Silver Moon Resin (SMOR).
*Many additional stock fabrics are available as a MOD, contact the factory for details. Shaper can accommodate "Customer Supplied Fabric" (CSCC) orders. Please contact your representative for details and minimum quantities.
**Forest Stewardship Council's (FSC) role is to bring together people, organizations and businesses of the Global South and North to develop consensus-based solutions that promote responsible stewardship of the world's forests. Visit www.fsc.org for more details. Natural materials and textiles are subject to inconsistency in color/ pattern, texture, shape and may vary from dye lots. They may also change in appearance over time. Many materials appear differently when illuminated. As an example, the wood appears to be more amber when illuminated. It is recommended to view all samples illuminated prior to making final selection. Please contact your representative for a color sample chip.

Fabriqué

Shaper now offers a wide variety of architectural fabric luminaires. All of the shades have been designed to have minimal or no visible hardware or structural trim, and are available with the latest in lamp and ballast technology (T5/CFL with dimming ballasts).

SUSTAINABLE

 DESIGNShaper has a long-standing history of offering environmentally-friendly fixtures. The copper and bronze alloys used in our exterior luminaires feature up to 98% recycled content, contribute less undesirable air emissions compared to painted aluminum and are easy to recycle.

ARRA
Shaper Lighting certifies that its products satisfy the requirements of Section 1605 of Act (also known as the ARRA Buy American Act (also known as the ARRA Buy American
provision).

SPECIFICATION FEATURES (CONT'D.)

Optics

Refer to shaperlighting.com for complete photometrics.

Ballast

Integral electronic HPF, multi-volt 120/277V (347V Canada), thermally protected with end-of-life circuitry to accommodate the specified lamp wattage 120/277V DM only. Contact factory for 347V DM.
Standard dimming ballasts: Advance-HO Mark 7 (DMA7), Mark 10 (DMA10) or Lutron (DML).
Lamp/Socket
28": Three (3) 14W or 24W HO T5 linear fluorescents lamps.
40": Three (3) 21 W or 39W HO T5 linear fluorescents lamps.
52": Three (3) 28W or 54W HO T5 linear fluorescents lamps.
Note: When specifying the Advance dimming option, only Advance Mark 7 (DMA7) or Mark 10 is available and specify the (3) 54WHO T5 (106-52WMTA) lamping. T5HO lamps are recommended for use with medium to dark materials.
Lamps furnished by others.

Installation

Supplied with a universal integral mounting strap for a standard 4" J-box or plaster ring. Integral safety cable provided. Contractor to provide appropriate structural support for fixture weight. Refer to shaperlighting.com for installation sheets.
Cleaning recommendation: Use a soft clothes brush or a vacuum brush to dust the outside of the lamp shade and a clean soft white flannel cloth for the inside of the lamp shade.

Options

FL T5 Dimming Ballast: Advance Mark 7 (DMA7) or Mark 10 (DMA10) - Available with (3) 54WHO T5 (107-52-P) only or Lutron (DML). Sloped Ceiling Adaptor (SCA), Matte White Acrylic Top Cover (TC), Remote Emergency Ballast (REM), Top Square Shade-in-a-Shade (TSQSIS) or Center Square Shade-in-a-Shade (CSOSIS) + EDT, WMT or SMO, "European Mushroom" Pleat (EMP), "Casual Box" Pleat (CBP), Metal Motif Square Mondrian (MMSQM), Metal Motif Square Curvilinear (MMSQC), Metal Motif Square Rhombus (MMSQR) or Metal Motif Square Tangent (MMSQT). Floating Frame - Metal Panel Square (MPSQ) + EDTR, WMTR or SMOR. (Contact factory for NFP701 Fire Resistent or Stain Guard fabric coating.

Labels
U.L. and C.U.L. approved for interior locations only.

Modifications

Shaper's skilled craftspeople, with their depth of experience, offer the designer the flexibility to modify standard Fabrique pendant luminaires for project-specific solutions. Contact the factory regarding scale options, unique finishes, mounting, additional materials/colors or decorative detailing.

Sample Number (Fixture): 107-40-P1SAC-T5/3/21-277V-OCP-SCA18-TC-52

MOUNTING TYPES (CONT'D.)

MOUNTING TYPES (CONT'D.)

OPTIONS

107-28-P1S-TSOSIS (TOP SQUARE SHADE-IN-SHADE)

107-40-P1S-TSOSIS (TOP SOUARE SHADE-IN-SHADE)

107-52-P1S-TSQSIS (TOP SOUARE SHADE-IN-SHADE)

107-28-P1S-CSOSIS (CENTER SQUARE SHADE-IN-SHADE)

107-40-P1S-CSOSIS (CENTER SQUARE SHADE-IN-SHADE)

$\begin{array}{ll}\text { 107-52-P1S-CSOSIS (CENTER } & \text { 107-P-SIS } \\ \text { SQUARE SHADE-IN-SHADE) }\end{array}$
shaperlighting.com

OPTIONS (CONT'D)

OPTIONS (CONT'D.)

† PATENT PENDING

107-P-TC (TOP COVER)

107-P-SCA (SLOPED CEILING ADAPTOR)

CASUAL "BOX" PLEAT (CBP)

EUROPEAN "MUSHROOM"
PLEAT (EMP)

OPTIONAL METAL MOTIFS (CLOSE-UP - PATENT PENDING)

CURVILINEAR ${ }^{\dagger}$-52"
${ }^{\dagger}$ PATENT PENDING

COMPANION PRODUCTS

MONDRIAN ${ }^{\dagger}$ - 52"

RHOMBUS ${ }^{\dagger}$-52"

TANGENT ${ }^{\dagger}$ - 52"

109-S
,

104-SRT

105
(g) gotham

Luminaire Type:
Catalog Number
(autopopulated)

Gotham Architectural Downlighting Compact Fluorescent Downlights

6" SQFW

Square Lensed Wallwash
Double Twin-Tube or Triple-Tube Iamp

OPTICAL SYSTEM

- \quad Self-flanged, matte-diffuse high-impact polymer finishing trim with a durable, proprietary vapor deposition finish.
- \quad Patented Bounding Ray ${ }^{\text {TM }}$ Optical Principle design (U.S. Patent No. 5,800,050) provides lamp before lamp image and smooth transition from top of the reflector to bottom.
- One piece trim eliminates mitered flange corners and inside corner gaps.
- Upper reflector is painted a highly reflective matte white providing diffuse, even light with high efficiency.
- Dual kicker design along with proprietary Gotham spread lens delivers a uniform distribution of light to the wall.

MECHANICAL SYSTEM

- 16-gauge painted steel mounting/plaster frame accommodates up to $1-1 / 2^{\prime \prime}$ thick ceiling materials.
- Patented adjustable aperture allows $1 / 4^{\prime \prime}$ adjustments in all directions and up to 5° of rotation allowing post-installation adjustments to ensure trim-to-trim alignment.
- $\quad 16$-gauge galvanized steel mounting bars with continuous 4 " vertical adjustments are shipped pre-installed. Post-installation adjustment possible without the use of tools from above or below ceiling.
- Secondary housing adjustment system for precise, final ceiling to flange alignment.
- Galvanized steel junction box with hinged access covers and spring latch. Three combination $1 / 2$ " $-3 / 4$ " and two $1 / 2$ " knockouts for straight-through conduit runs. Capacity: 8 ($4 \mathrm{in}, 4$ out) No. 12 AWG conductors rated for $90^{\circ} \mathrm{C}$.

ELECTRICAL SYSTEM

- Horizontally-mounted, four-pin, positive-latch, thermoplastic socket.
- Class P, thermally protected, high power factor electronic ballast mounted to the junction box.

LISTING

- Fixtures are UL Listed for thru-branch wiring, Non-IC recessed mounting and damp locations. Listed and labeled to comply with Canadian Standards.

WARRANTY

- 1-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CustomerResources/Terms and conditions.aspx

EXAMPLE: SQFW 1/32TRT 6AR MVOLT

Options			
ELR ${ }^{7}$	Emergency battery pack. Remote test switch	WLP	With 3500 K lamp (shipped separately)
ELRSD ${ }^{7}$	Emergency battery pack with self-diagnostics. Remote test switch provided	NEPP ${ }^{12}$	Interface for Sensor Switch ${ }^{\circledR}$ nLight ${ }^{\circledR}$ network provided with integral power supply.
GMF ${ }^{8}$	Single, slow-blow fuse		Refer to TN-623-01.
GLR ${ }^{8}$	Single, fast-blow fuse	RRL_	RELOC ${ }^{\circledR}$-ready luminaire connectors enable a simple and consistent factory installed
CP	Chicago plenum		option across all ABL luminaire brands. Refer to RRL for complete nomenclature.
BDP ${ }^{9}$	Ballast disconnect plug	TRW ${ }^{13}$	White painted flange
MFLG ${ }^{10}$	Microflange trim	TRBL ${ }^{14}$	Black painted flange
SQMT ${ }^{11}$	Square metal trim		

ACCESSORIES order as separate catalog numbers (shipped separately)

NSP5 D ER KIT Sensor Switch nLight secondary relay and dimming pack device used to switch and dim luminaires powered via an emergency circuit. Refer to NSP5 D ER KIT.

All dimensions are inches (centimeters) unless otherwise noted.

ORDERING NOTES

1. Requires 4-pin lamp. Ships as TRT fixture.
2. Not available with matte-diffuse finishes.
3. Available with WR and BR trim colors and SQMT metal trim option.
4. Multi-volt electronic ballast capable of operating on any line voltage from 120 V through $277 \mathrm{~V}, 50$ or 60 Hz .
5. For additional ballast types, refer to Technical Bulletins.

Available in 120 V or 277 V only.
For dimensional changes, refer to $\mathrm{TECH}-140$.
8. Not available with MVOLT. Must specify voltage.
9. Meets codes that require in-fixture disconnect.
10. Order ships as 3 components: housing, trim and microflange gypsum board.
11. Not available with stepped reflector or MFLG option.
12. For emergency generator/inverter applications order non-nLight enabled fixture and NSP5 D ER KIT as an accessory. Refer to NSP5 D ER KIT.
13. Not available with white reflector.
14. Not available with black reflector.

TECHNICAL INFORMATION
Footcandle values are initial and tables are based on minimum of six units. For fixture-to-wall distance other than those shown, use maximum of one-to-one spacing (distance between fixtures not more than distance to wall) for best results.

Fixture/Lamp	Candlepower Data			Footcandle values															
SQFW 1/32TRT 6AR CF32DT/E/IN/835 Iamp	Vertical Angle	$\begin{aligned} & \text { Plane Angle } \\ & \text { Room Side } \end{aligned}$						Wall side				3 ft from wall on 3 ft . centers				3 ft. from wall on 4 ft . centers			
		R oom	$\begin{aligned} & \text { Room Sid } \\ & 157.5^{\circ} \\ & \hline \end{aligned}$	1335°	112.5°		$90^{\circ} 6$	67.5°	$45^{\circ} \quad 22.5^{\circ}$ 638		Wall								
	0°	638	638	638	638	638	638	638			1	13	7	13	12	4	12		
	$5^{\circ}{ }^{\circ}$	612	615	623	633	645	663	678	686	684			2	23	18	23	20	11	20
2400 rated lumens	15°	569	576	576	589	616	665	718	755	752		3	23	22	23	20	15	20	
Test No. LTL16134	$35^{\circ}{ }^{\circ}$	468	492 367	516 369	488	491 315	557 363	669	741	731		4	21	21	21	17	15	17	
	45°	215	233	218	186	171	185	308	412	423		6	15	15	15	11	11	14 11	
	55°	126	125	102	80	74	95	146	270	302		7	12	12	12	9	9	9	
	65°	71	47	29	26	27	43	67	149	201		8	10	10	10	7	7	7	
	75°	4	5	5	4	6	11	22	50	74		9	8	8	8	6	6	6	
	85°	1	1	1	1	1	1		o	o		10	6	6	6	5	5	5	
	90°	o	o	o	o	o	o	o	o	o									
SQFW 1/42TRT 6AR			Boom S	Plane An ide	ngle				Wal	Side				from	wall			wall	
CF42DT/E/IN/835 lamp	Vertical Angle	Room	157.5°	135°	112.	$5^{\circ} 9$	$90^{\circ} 67$. ${ }^{\circ}$	$45^{\circ} 2$	2.5°	Wall								
3200 rated lumens	0°	718	718	718	718	718	718	718	718	718		1	14	8	14	13	4	13	
3200 rated lumens	5°	684	693	700	709	721	739	751	759	757		2	25	20	25	23	12	23	
Test No. LTL16136	15°	639	649	637	627	642	688	758	823	828		3	25	23	25	22	16	21	
	25°	534	553	538	495	488	542	660	784	808		4	23	23	23	19	16	19	
	35°	385	398	378	339	310	352	481	611	647		5	20	20	20	16	15	16	
	45°	249	248	222	189	177	186	288	395	468		6	16	16	16	13	12	13	
	55°	148	136	107	85	81	100	137	256	340		7	13	13	13	10	10	10	
	65°	83	52	33	29	30	48	71	146	232		8	11	11	11	8	8	8	
	75°	4	5	5	5	7	12	24	47	84		9	9	9	9	7	7	7	
	85°	1	1	1	1	1	1	1	0	0		10	7	7	7	5	5	5	
	90°	0	0	0	0	0	0	0	0	0									

SOFW 1/32TRT 6DSR
CF32DT/E/IN/835 lamp 2400 rated lumens

Vertical Angle	R oom	157.5°	135°	112		$90^{\circ} 67$	5°	45°	22.5°	Wall
0°	522	522	522	522	522	522	522	522	522	
5°	490	493	505	520	536	555	570	580	578	
15°	430	446	468	500	543	607	658	677	662	
25°	365	389	413	415	444	534	641	695	656	
35°	320	343	319	289	292	363	490	595	543	
45°	237	268	220	171	167	190	310	422	410	
55°	123	147	121	88	86	103	159	287	304	
65°	73	70	46	36	39	58	79	162	202	
75°	58	38	20	12	13	23	33	61	82	
85°	9	7	5	4	3	4	4	4	6	
90°	0	0	0	0	0	0	0	0	0	

	3 ft . from wall on 3 ft . centers			3 ft . from wall on 4 ft . centers		
1	14	9	14	13	5	13
2	24	20	24	21	13	21
3	24	23	24	20	16	20
4	21	21	21	17	15	17
5	18	18	18	14	13	14
6	14	14	14	11	11	11
7	11	11	11	9	9	9
8	9	9	9	7	7	7
9	7	7	7	6	6	6
10	6	6	6	5	5	5

SOFW 1/42TRT 6DSR		Plane Angle Room Side					Wall S ide					3 ft . from wall on 3 ft . centers				3 ft . from wall on 4 ft . centers		
CF42DT/E/IN/835 lamp	Vertical Angle	R oom	157.5°	135°	112	5°	${ }^{\circ} 67$	5°	$45^{\circ} 2$	$22.5{ }^{\circ}$	Wall							
	0°	608	608	608	608	608	608	608	608	608		1	16	10	16	15	6	15
0 rated lumens	5°	570	572	581	595	613	633	653	665	667		2	27	23	27	24	14	24
Test No. LTL16137	15°	504	510	521	538	569	637	707	755	758		3	27	25	27	22	17	22
Test No. LTL16137	25°	441	450	435	418	441	522	640	751	756		4	24	24	24	19	17	19
	35°	376	381	330	292	290	355	479	602	618		5	20	20	20	15	15	15
	45°	273	276	224	180	179	197	302	412	470		6	16	16	16	12	12	12
	55°	136	143	125	97	97	115	159	279	351		7	13	13	13	10	10	10
	65°	85	70	51	41	44	66	89	165	241		8	10	10	10	8	8	8
	75°	68	39	23	13	14	25	39	62	97		9	8	8	8	6	6	6
	85°	9	7	5	4	3	4	4	5	7		10	7	7	7	5	5	5
	90°	0	0	0	0	0	0	0	0	0								

PHOTOMETRY NOTES

- Tested to current IES and NEMA standards under stabilized laboratory conditions.
- Actual performance may differ as a result of end-user environment and application
- Consult factory or IES file for microgroove baffle, black cone or other photometric reports.

Luminaire Type:

Gotham Architectural Downlighting HID Downlights

6" SQHZW

Square Lensed Wallwash

ED17 Lamp

OPTICAL SYSTEM

- \quad Self-flanged, matte-diffuse high-impact polymer finishing trim with a durable, proprietary vapor deposition finish.
- \quad Patented Bounding Ray ${ }^{\text {TM }}$ Optical Principle design (U.S. Patent No. 5,800,050) provides lamp before lamp image and smooth transition from top of the reflector to bottom.
- One piece trim eliminates mitered flange corners and inside corner gaps.
- Upper reflector is painted a highly reflective matte white providing diffuse, even light with high efficiency.
- Dual kicker design along with proprietary Gotham spread lens delivers a uniform distribution of light to the wall.

MECHANICAL SYSTEM

- 16-gauge painted steel mounting/plaster frame accommodates up to 1-1/2' thick ceiling materials
- Patent pending adjustable aperture allows $1 / 4$ " adjustments in all directions and up to 5° of rotation allowing post-installation adjustments to ensure trim to trim alignment.
- 16-gauge galvanized steel mounting bars with continuous 4" vertical adjustments are shipped pre-installed.
- Post-installation adjustment possible without the use of tools from above or below ceiling.
- Secondary housing adjustment system for precise, final ceiling to flange alignment
- Galvanized steel junction box with hinged access covers and spring latch. Three combination $1 / 2^{\prime \prime}-3 / 4$ " and two $1 / 2^{\prime \prime}$ knockouts for straight-through conduit runs. Capacity: 8 (4 in, 4 out) No. 12 AWG conductors rated for $90^{\circ} \mathrm{C}$.

ELECTRICAL SYSTEM

- Medium-base porcelain socket with nickel-plated screw shell.
- Pre-wired, electronic, 120 or 277V ballast module is standard. Module can be attached before or after mounting of mounting/plaster frame.
- Thermally-activated insulation detector.

LISTING

- Fixtures are UL Listed for thru-branch wiring, Non-IC recessed mounting and damp locations. Listed and labeled to comply with Canadian Standards.
WARRANTY
- 1-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx

EXAMPLE: SQHZW 70M 6AR 120

ORDERING NOTES

1. Recommended for use with coated lamps. Open rated lamps required.
2. Not available with matte-diffuse finish.
3. Available with WR and BR trim colors and SQMT metal trim option.
4. Available with 70W \& 100W electromagnetic ballast only.
5. For compatible Reloc systems, refer to TECH-110.
6. Order ships as 3 components: housing, trim and microflange gypsum board.
7. Not available with stepped reflector or MFLG option

All dimensions are inches (centimeters) unless otherwise noted.

Aperture: $\quad 6$ (15.2)
Ceiling opening: $6-5 / 8$ (16.8)
Overlap trim: $\quad 7-3 / 16$ (18.3)

TECHNICAL INFORMATION

Footcandle values are initial and tables are based on minimum of six units. For fixture-to-wall distance other than those shown, use maximum of one-to-one spacing (distance between fixtures not more than distance to wall) for best results.

Fixture/Lamp	Candlepower Data

SQHZW 70M 6AR	R oom S ide		Plane Angle		Wall S ide	
70W MHC70/C/U lamp	Vertical Angle	90°	67.5°	45°	$22.5{ }^{\circ}$	Wall
\%0W	0°	1616	1616	1616	1616	1616
5800 rated lumens	5°	1596	1623	1647	1665	1675
	15°	1435	1517	1637	1749	1775
Test No. LTL16111	25°	1006	1127	1448	1608	1625
	35°	580	653	975	1255	1269
	45°	348	369	524	814	855
	55°	179	221	283	500	614
	65°	62	103	161	270	408
	75°	13	24	51	77	164
	85°	3	2	2	1	1
	90°	0	0	0	0	0

SOHZW 100M 6AR	R oom S ide		Plane Angle		W all S ide	
100W MHC100/C/U lamp	Vertical Angle	90°	67.5°	45°	$22.5{ }^{\circ}$	Wall
	0°	2419	2419	2419	2419	2419
8800 rated lumens	5°	2380	2421	2474	2496	2518
Test No. LTL16115	15°	2123	2247	2452	2636	2701
	25°	1483	1662	2161	2446	2504
	35°	860	973	1453	1899	1970
	45°	513	545	787	1245	1361
	55°	261	322	420	762	976
	65°	92	151	238	418	647
	75°	20	36	76	117	255
	85°	4	4	3	2	1
	90°	0	0	0	0	0

	$3 \mathrm{ft}$. from wall on 3 ft. centers			$3 \mathrm{ft}$. from wall on $4 \mathrm{ft.centers}$		
1	42	22	42	39	12	39
2	75	61	75	66	38	66
3	74	72	74	63	47	63
4	70	72	70	57	50	57
5	60	63	60	47	46	47
6	50	51	50	38	39	38
7	41	41	41	31	32	31
8	34	34	34	26	26	26
9	27	27	27	21	21	21
10	22	22	22	17	17	17

SOHZW 70M 6DSR
70W MHC70/C/U lamp 5800 rated lumens Test No. LTL16112

Plane Angle					Wall S ide
Vertical Angle Side	90°	67.5°	45°	22.5°	W all
0°	1292	1292	1292	1292	1292
5°	1294	1322	1342	1361	1369
15°	1230	1337	1443	1504	1506
25°	902	1059	1334	1482	1446
35°	546	656	941	1198	1160
45°	352	389	542	838	841
55°	211	248	317	531	624
65°	95	144	193	297	428
75°	31	55	83	109	193
85°	7	10	10	11	16
90°	0	0	0	0	0

	3 ft from wall on 3 ft centers			3 ft . from wall on 4 ft centers		
1	31	19	31	28	12	28
2	51	44	51	44	28	44
3	49	51	49	41	34	41
4	44	48	44	36	34	36
5	38	40	38	29	30	29
6	31	33	31	24	25	24
7	26	26	26	19	20	19
8	21	21	21	16	16	16
9	17	17	17	13	13	13
10	14	14	14	11	11	11

R			Pla	Angl		
		m S ide				Wall S ide
100W MHC100/C/U lamp	Vertical Angle	90°	67.5°	45°	$22.5{ }^{\circ}$	Wall
8800 rated lumens	0°	1944	1944	1944	1944	1944
	5°	1942	1991	2028	2055	2067
Test No. LTL16116	15°	1830	1998	2173	2280	2297
	25°	1331	1570	2005	2253	2226
	35°	813	975	1407	1824	1799
	45°	520	575	810	1290	1334
	55°	310	363	468	818	983
	65°	141	211	284	456	670
	75°	47	82	120	164	293
	85°	11	14	15	15	22
	90°	0	0	0	0	0

	3 ft from wall on 3 ft centers			3 ft from wall on 4 ft centers		
1	48	29	48	43	18	43
2	79	67	79	69	43	69
3	76	78	76	64	51	64
4	68	73	68	55	51	55
5	57	61	57	44	45	44
6	48	49	48	36	37	36
7	39	39	39	29	30	29
8	31	31	31	24	24	24
9	25	25	25	19	20	19
10	20	20	20	16	16	16

PHOTOMETRY NOTES

- Tested to current IES and NEMA standards under stabilized laboratory conditions.
- Actual performance may differ as a result of end-user environment and application.
- Consult factory or IES file for microgroove baffle, black cone or other photometric reports.

Drums Series • Ortwin • 6152

Weight Hanging (lbs.)

F/6152 8 lbs.

Notes:

- UL listed and cUL approved c UL us
- Winona Lighting products are union made.
- Custom Sizes and Finishes available upon request.
- All Fluorescent fixtures available in 120 V and 277 V .
- Winona Lighting reserves the right to make design changes without prior notice.
- Lamps not included.

CPF = CUSTOM PAINTED FINISH (consult factory)
CMF = CUSTOM METAL FINISH (consult factory)

6. | | STD $=$ STANDARD
 SPECIAL
 MOD$=$ MODIFIED |
| :--- | :--- |

Modification
Descriptions:
(if needed)
STD = STANDARD
MOD = MODIFIED

STANDARD
BAL = BRUSHED ALUMINUM
LBP = LIGHT BRONZE PAINT WITH BRUSHED TEXTURE
CUSTOM

5.

FINISH

$120 \mathrm{~V}=120$ VOLT
 $277 \mathrm{~V}=277$ VOLT

OA = OPAL ACRYLIC (etched)
\square

250 Watt
 POLYCRYSTALLINE SOLAR MODULE

Trust Suntech to Deliver Reliable Performance Over Time

- World-class manufacturer of crystalline silicon photovoltaic modules
- Unrivaled manufacturing capacity and world-class technology
- Rigorous quality control meeting the highest international standards: ISO 9001: 2008, ISO 14001: 2004 and ISO17025: 2005
- Tested for harsh environments (salt mist, ammonia corrosion and sand blowing testing: IEC 61701, DIN 50916:1985 T2, DIN EN 60068-2-68)***

Industry-leading Warranty based on nominal power

- 97% in the first year, thereafter, for years two (2) through twenty-five
 (25), 0.7% maximum decrease from MODULE's nominal power output per year, ending with the 80.2\% in the 25th year after the defined WARRANTY STARTING DATE.****
10-year material and workmanship

> Compact and Durable Frame Design
> Suntech's new compact frame design is light-weight (3.5 lbs lighter) and easier to handle during installation. The rigid and durable hollow chamber guarantees the same long-term and reliable performance.

[^5]

Current-Voltage \& Power-Voltage Curve(250-20)

Excellent performance under weak light conditions: at an irradiation intensity of $200 \mathrm{~W} / \mathrm{m}^{2}$ (AM $\left.1.5,25^{\circ} \mathrm{C}\right), 95.5 \%$ or higher of the STC efficiency $\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right)$ is achieved

Dealer information

Electrical Characteristics

STC	STP250-20/Wd
Maximum Power at STC (Pmax)	250 W
Optimum Operating Voltage (Vmp)	30.7 V
Optimum Operating Current (Imp)	8.15 A
Open Circuit Voltage (Voc)	37.4 V
Short Circuit Current (Isc)	8.63 A
Module Efficiency	15.4\%
Operating Module Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum System Voltage	600 V DC (UL)
Maximum Series Fuse Rating	20 A
Power Tolerance	0/+5 \%

STC: Irradiance $1000 \mathrm{~W} / \mathrm{m}^{2}$, module temperature $25^{\circ} \mathrm{C}, \mathrm{AM}=1.5$;
Best in Class AAA solar simulator (IEC 60904-9) used, power measurement uncertainty is within +/-3\%

NOCT	STP250-20/Wd
Maximum Power at NOCT (Pmax)	185 W
Optimum Operating Voltage (Vmp)	28.0 V
Optimum Operating Current (Imp)	6.59 A
Open Circuit Voltage (Voc)	34.5 V
Short Circuit Current (Isc)	7.01 A

NOCT: Irradiance $800 \mathrm{~W} / \mathrm{m}^{2}$, ambient temperature $20^{\circ} \mathrm{C}, \mathrm{AM}=1.5$, wind speed $1 \mathrm{~m} / \mathrm{s}$;
Best in Class AAA solar simulator (IEC 60904-9) used, power measurement uncertainty is within +/- 3\%

Temperature Characteristics

Nominal Operating Cell Temperature (NOCT)	$45 \pm 2^{\circ} \mathrm{C}$
Temperature Coefficient of Pmax	$-0.43 \% /{ }^{\circ} \mathrm{C}$
Temperature Coefficient of Voc	$-0.33 \% /{ }^{\circ} \mathrm{C}$
Temperature Coefficient of Isc	0.067

Mechanical Characteristics

Solar Cell	Polycrystalline silicon $156 \times 156 \mathrm{~mm}$ (6 inches)
No. of Cells	$60(6 \times 10)$
Dimensions	$1640 \times 992 \times 35 \mathrm{~mm}(64.6 \times 39.1 \times 1.4$ inches)
Weight	18.2 kgs (40.1 lbs .)
Front Glass	3.2 mm (0.13 inches) tempered glass
Frame	Anodized aluminium alloy
Junction Box	IP67 rated (3 bypass diodes)
Output Cables	UL 4703, UL44
	$4.0 \mathrm{~mm}^{2}$ (0.006 inches 2), symmetrical lengths (-) 1000 mm (39.4 inches) and (+) 1000 mm (39.4 inches)
Connectors	MC4 connectors

Packing Configuration

Container	20' GP	40' HC
Pieces per pallet	30	30
Pallets per container	6	28
Pieces per container	180	840

[^6] accordance with standard EN 50380 . Color differences of the modules relative to the figures as well as discolorations of/in the modules which do not impair their proper functioning are possible and do not constitute a deviation from the specification

Leading - edge Technology

$>$ High efficiency of 97.5\% delivery more energy
$>$ Dual independent MPP tracking lead to optimal energy harvesting

- Integrated DC disconnect switch
$>$ Consistent and stable performance across entire input voltage and output power range
- True three-phase transformerless GT topology
- Bluetooth / RF technology / Wi-Fi
$>$ Sound control, easy installation maintenance procedure
- Newest generation IGBTs and advanced MPPT algorithms
$>$ Comprehensive protection for IGBTs, overvoltage, islanding, short-circuit, overload, overheat, etc

- Flexible system design with safety fuse module and lightening proof module

GROWATT NEW ENERGY TECHNOLOGY Co.,LTD

A: Building B, Jiayu Industrial Zone, \#28 Guanghui Road, Longteng Community, Shiyan, Baoan District, Shenzhen, P.R.China.
T: + 8675527471900 F: + 8675527491460 E: info@ginverter.com

	Growatt 10000TL3-US	Growatt 12000TL3-US	Growatt 18000TL3-US	Growatt 20000TL3-US
Input Data				
Max. DC power	10500W	12500W	18750W	20850W
Max. DC voltage	600 V	600 V	600 V	600 V
Start voltage	120 V	120 V	120 V	120 V
DC nominal voltage	375 V	375 V	375 V	375 V
PV voltage range	80V-600V	80V-600V	80V-600V	80V-600V
MPP voltage range (Full load)	250V-600V	250V-600V	250V-600V	250V-600V
Max. input current of the MPP trackers A / trackers B	21A/21A	25A / 25A	38A / 38A	42A / 42A
Max. input short circuit current	32A / 32A	32A / 32A	50A / 50A	50A / 50A
Number of independent MPP trackers/strings per MPP tracker	$2 / 3$	$2 / 3$	$2 / 6$	$2 / 6$
Output (AC)				
Rated AC output power	10000W	12000W	18000W	20000W
Rated AC voltage	480 V	480 V	480 V	480 V
AC voltage range	422-528VAC	422-528VAC	422-528VAC	422-528VAC
AC grid frequency; range	$60 \mathrm{~Hz} ; 59.3-60.5 \mathrm{~Hz}$	60 Hz ;59.3-60.5 Hz	$60 \mathrm{~Hz} ; 59.3-60.5 \mathrm{~Hz}$	$60 \mathrm{~Hz} ; 59.3-60.5 \mathrm{~Hz}$
Max. output current $(\cos \varphi=1)$	12A	14.5A	21.5A	24A
Power factor $(\cos \varphi)$	>0.99(0.9Leading - 0.9Lagging)	>0.99(0.9Leading - 0.9Lagging)	>0.99(0.9Leading - 0.9Lagging)	>0.99(0.9Leading - 0.9Lagging)
Harmonics	<3\%	<3\%	<3\%	<3\%
Grid connection type	3/N/E	3/N/E	3/N/E	3/N/E
Efficiency				
Max.efficiency	97\%	97\%	97.5\%	97.5\%
CEC-Weighted Efficiency	95.5\%	95.5\%	96\%	96.5\%
MPPT efficiency	99.5\%	99.5\%	99.5\%	99.5\%
Protectopm devices				
DC switch for each MPP tracker	yes	yes	yes	yes
DC reverse-polarity protection	yes	yes	yes	yes
DC/AC over voltage protection-Varistor	yes	yes	yes	yes
DC/AC over voltage protection-DIN rail surge arrester(Option)	Class II	Class II	Class II	Class II
DC insulation measure	yes	yes	yes	yes
AC short circuit protection	yes	yes	yes	yes
General Data				
Diemensions(W/H/D)in mm	530/705/247	530/705/247	650/740/247	650/740/247
Weight	46KG	46 KG	63 KG	63 KG
Operation temperature range	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$			
Noise emission	$\leqslant 50 \mathrm{~dB}$ (A)	$\leqslant 50 \mathrm{~dB}$ (A)	$\leqslant 50 \mathrm{~dB}(\mathrm{~A})$	$\leqslant 50 \mathrm{~dB}$ (A)
Self Consumption night	< 3 W	< 3 W	< 3 W	<3W
Topology	Transformerless	Transformerless	Transformerless	Transformerless
Cooling concept	Fan Cool	Fan Cool	Fan Cool	Fan Cool
Electronics protection rating/connection area	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 3R
Altitude	2000m without derating	2000m without derating	2000 m without derating	2000 m without derating
Relative Humidity	0~95\%	0~95\%	0~95\%	0~95\%
Features				
Display	Graphic	Graphic	Graphic	Graphic
Interfaces: RS232/RS485/ Bluetooth/RF/Wi-Fi	yes / yes / opt / opt / opt	yes / yes / opt / opt / opt	yes / yes / opt / opt / opt	yes / yes / opt / opt / opt
Warranty: 10 years/15 years	yes / opt	yes/opt	yes / opt	yes / opt

Certificates and Approvals

APPENDIX C - STRUCTURAL CALCULATIONS

Panel Dimensions

Panel Weight: 40 lbs
Dead Load: $\frac{401 \mathrm{bs}}{17.55 \mathrm{ft}^{2}}=2.3 \mathrm{psf}$

Dead Loads
3 psf \rightarrow Panel
$\left.\begin{array}{l}\text { 1psf } \rightarrow 3 \text {-ply ready roofing } \\ 1.5 p s f \rightarrow R-25 \text { rigid insulation } \\ 3 \text { psf } \rightarrow 3 / 4^{\prime \prime} \text { wood sheathing }\end{array}\right\}$ AISC Table 17-3, $14^{\text {th }}$ Edition
lops \rightarrow Suer imposed dead load
$1.78 \mathrm{pst} \rightarrow 1.5 \mathrm{~B} \times 22$ gauge roof decking (Vulcraft Roof Deck Table)
Live Load
30 psf \rightarrow snow load
Total Loads
21 psf \rightarrow Dead load
30 psf \rightarrow Live load

Structural calculations Brad Robertson
Load Combination: $1.2 D+1.65$, assume no uplift or other live loads, $\angle R F D$

$$
\text { Span }=60^{\prime} \text {, Spacing }=5^{\prime} 8^{\prime \prime} \rightarrow \text { joists }
$$

Joist
32 LH $9 \rightarrow 21$ pile \rightarrow steel Joist Institute LRFD Table

$$
\begin{aligned}
& {[1.2 D+1.65] \times \text { joist self ut }=[(1.2)(21 \mathrm{psf})+(1.6)(30 \mathrm{psf})] \times 5.67 \mathrm{ft}=420 \mathrm{plf}} \\
& \omega_{\text {ut }}=420 \mathrm{plf}+(1.2 \times \text { joist weight })=420 \mathrm{plf}+(1.2 \times 21 \mathrm{plf})=445 \mathrm{plf} \\
& \omega_{\text {ti }}=(21 \mathrm{psf}+30 \mathrm{psf})(5.67 \mathrm{ft})=290 \mathrm{plf}+\text { joist wt }=290 \mathrm{pf}+21 \mathrm{plf}=310 \mathrm{plf}
\end{aligned}
$$

- Use SJI Long- Span Steel Joist LRFD Table
- 32LH09 Joist designation and a clear span of 60^{\prime}

$$
w_{u t l}=534 \text { plf }>445 \text { plf } \Rightarrow \text { OK }
$$

ω for $L / 360=180$ pit \rightarrow from table
ω for $L / 240=180$ pile $\times 1.5=270$ pf <310 elf \rightarrow Joist does not work

- 32LHO9 does not meet deflection criteria

New Joist

- Choose 32 LII from LRFD table, self weight of $\frac{24 \text { plf }}{5.67 \mathrm{ft}} \Rightarrow 5$ psf

$$
\omega_{u t 1}=643 \text { plf }>445 \text { plf } \rightarrow \text { OK }
$$

ω for $L / 360=216$ if \rightarrow LRFD table
ω for $L / 240=216 \mathrm{pf} \times 1.5=324 \mathrm{plf}>313 \mathrm{plf} \rightarrow O K$
(includes new self weight of joist)

- 32LHII works

Joist Girder: 60 GION20K

- LRTD Table: 60 ft Girder span, $10 N$ C 60", Unfactored Load $=20 \mathrm{k}$

$$
P_{u}=\frac{313 \mathrm{plf} \times 56 \mathrm{ft}}{1000}=17.5 \mathrm{k}<20 \mathrm{~K} \rightarrow 0 \mathrm{~K}
$$

- LRFD Table: 93 plf/goft $=2$ psf
- Girder 60G10 N20K works

Column

- $\omega 8 \times 48$, height 13 A
- Tributary Area of $60^{\prime} \times 56^{\prime}=3,360 \mathrm{ft}^{2}$

$$
\begin{gathered}
P_{u}=[1.20+1.65] \times \text { area }=[1.2(21 p s f+5 p s f+2 p s f)+1.6(30)] \times 3360 \mathrm{ft}^{2} \\
P_{u}=\frac{274,176}{1000}=275 \mathrm{k}
\end{gathered}
$$

- Table $4-1$ in AISC, $14^{\text {th }}$ Edition: $\varnothing P_{n}=421 k>275 k \rightarrow O K$
- Column wi 848 works

[^0]: *All images belong to Friedmutter Group and design team

[^1]: SA4 • Clear Acrylic w/Weave Pattern panels series

[^2]: Notes
 1 Total system delivered lumens; power factor >0.90.
 2 Not available with ELRB722
 3 White integral flange.
 4 ELRB722 available only with 900L.
 5 For emergency generator/inverter applications order non-nLight-enabled fixture and NSP5 D ER KIT as an accessory. Refer to NSP5 D ER KIT.

[^3]: NOTES
 1 Only available in the 12C, ASY version.
 2 Only available in the 16C, SYM version
 3 Only available with 450 AMBLW version.
 4 Not available with ELCW.
 5 MVOLT driver operates on any line voltage from 120-277V (50/60 $\mathrm{Hz})$. Specify 120, 208, 240 or 277 options only when ordering with fusing (SF, DF options), or photocontrol (PE option).
 6 Not available with 347V. Not available with fusing. Not available with 450 AMBLW
 7 Single fuse (SF) requires 120, 277, or 347 voltage option. Double fuse (DF) requires 208 or 240 voltage option
 8 MRAB U not available with L/AB4 option.
 9 Striping is available only in the colors listed.

[^4]: Notes:
 1 Not available in 347 V
 2 Emergency type is installed in last 4 ' of luminaire sections.
 Separate feed required unless ELS or ELS2 is specified
 3 Not available in 4' section

[^5]: * Please refer to Suntech Standard Module Installation Manual for details. **PV Cycle only for EU market.
 *** Please refer to Suntech Product Near-coast Installation Manual for details. $\quad{ }^{* * * *}$ Please refer to Suntech Product Warranty for details.

[^6]: Information on how to install and operate this product is available in the installation instruction. All values indicated in this data sheet are subject to change without prior announcement. The specifications may vary slightly. All specifications are in

