HEIFER INTERNATIONAL CENTER

LITTLE ROCK, ARKANSAS

TECHNICAL REPORT III

SIKANDAR PORTER-GILL Advisor: Dr. Thomas Boothby

Image Courtesy: Timothy Hursley

SITE AND LOCATION

Image Courtesy: Google Earth

WILLIAM J CLINTON PRESIDENTIAL LIBRARY & MUSEUM

WWWW

HEIFER INTERNATIONAL CENTER

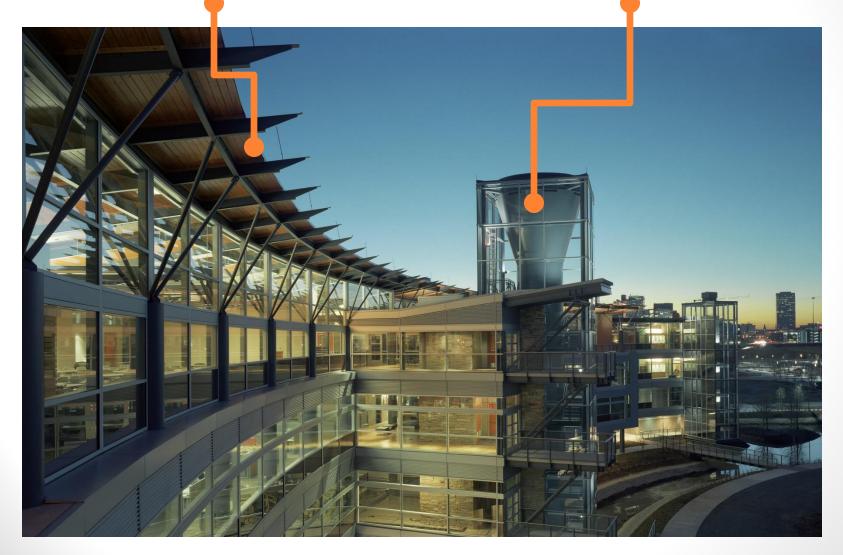
LITTLE ROCK, ARKANSAS

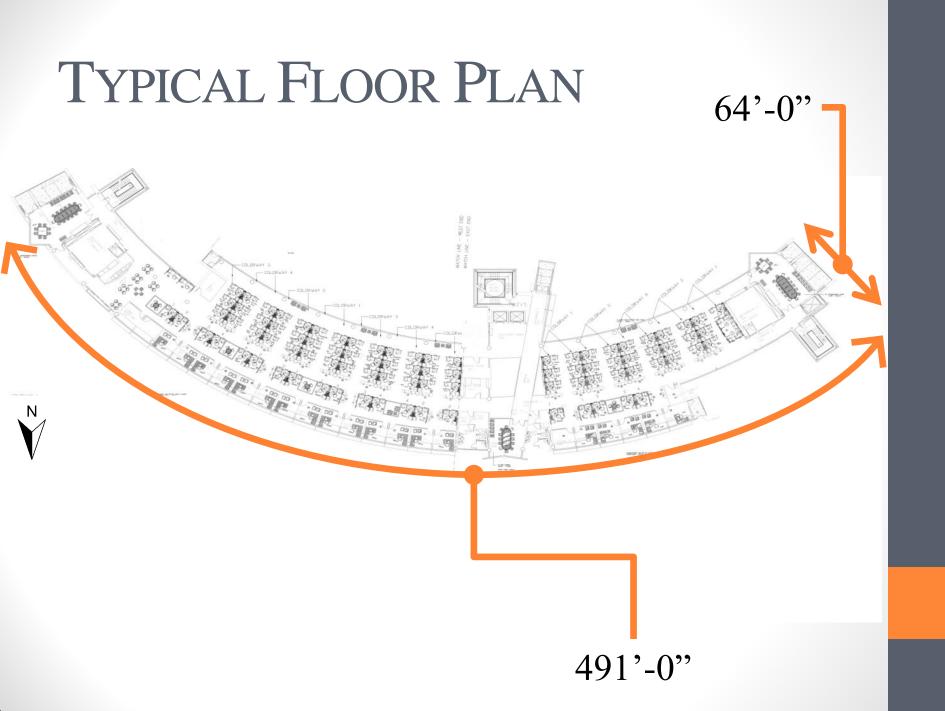
And And Arts Are

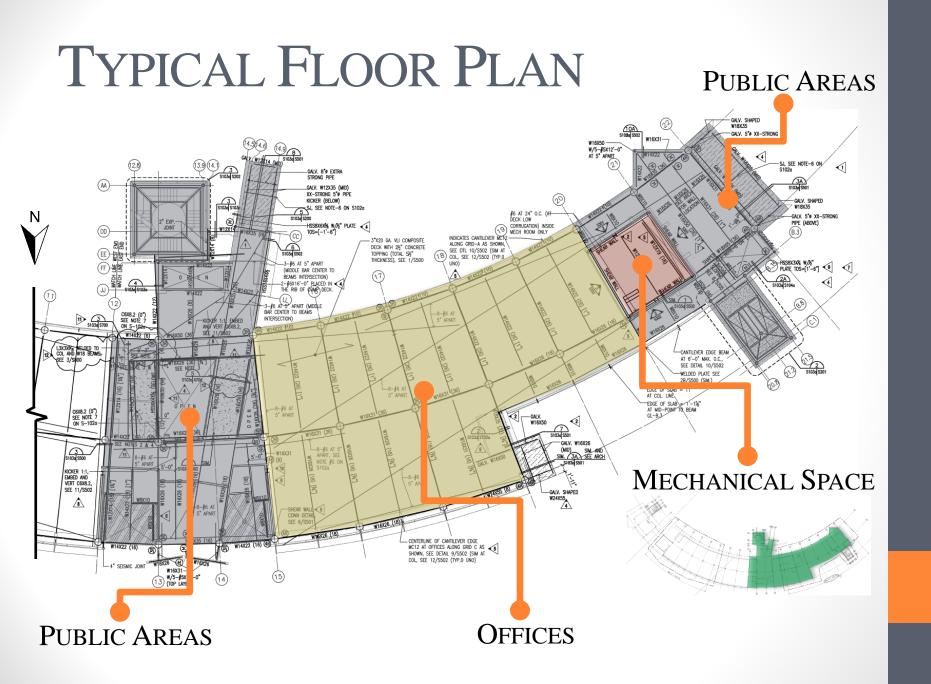
Image Courtesy: Heifer International and Meredith Parks

HEIFER INTERNATIONAL CENTER

Height Stories Square Footage Construction Dates Approximate Cost Project Delivery USGBC Rating 65'-0" 4 98,000 GSF February 2004 – January 2006 \$18 million Construction Management at Risk LEED Platinum






UNIQUE ARCHITECTURE

INVERTED ROOF

RAINWATER STORAGE

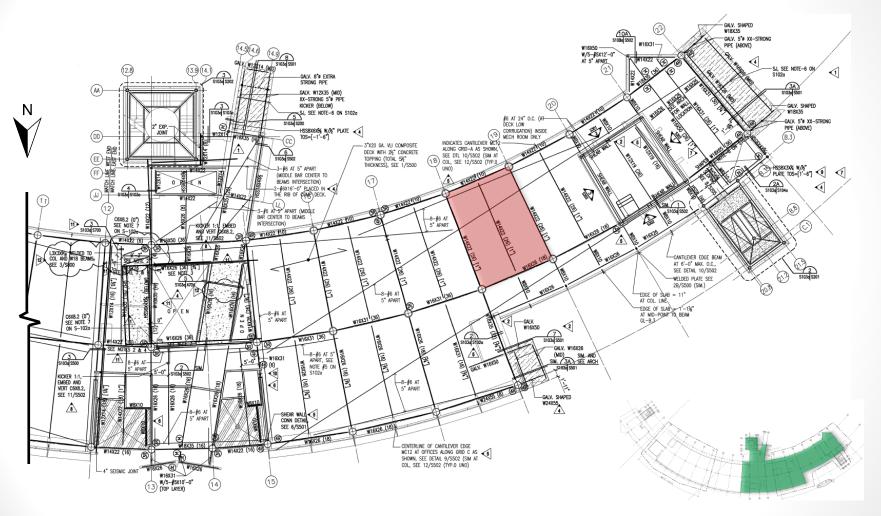
EXISTING STRUCTURAL SYSTEM

FOUNDATION

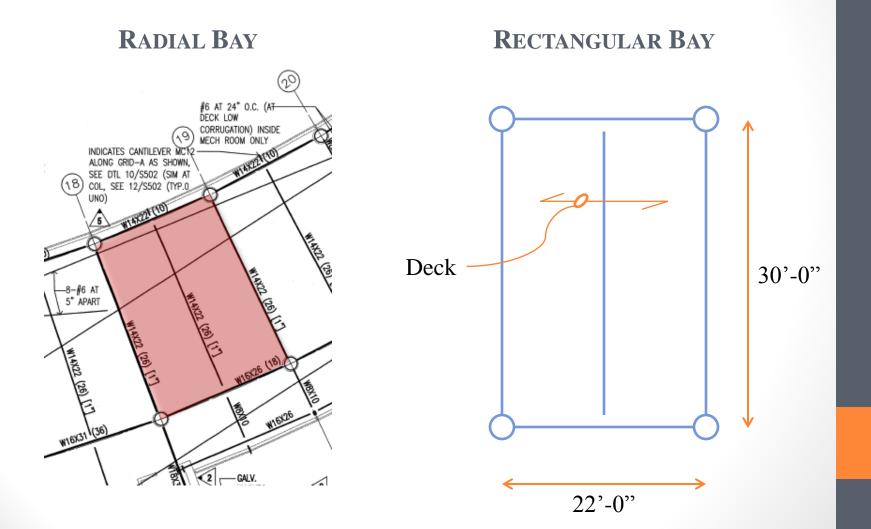
- Geopier[™] Rammed Aggregate Pier[®] System
 - Increase soil capacity to 5 to 7 ksf
- Grade Beams
- Slab On Grade

Image Courtesy: Tensar Geopier[™] Foundations

EXISTING STRUCTURAL SYSTEM


• GRAVITY SYSTEM

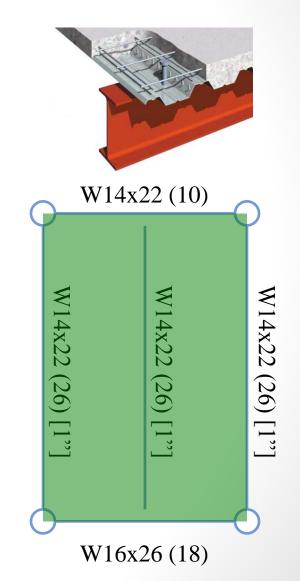
- Composite Deck, Beam and Girder System
 - 3VLI Decking with 2 ¹/₂" NWC Topping
 - Beams and Girders Cambered
- HSS COLUMNS
- LATERAL SYSTEM
 - Steel plate shear wall system



"TYPICAL" BAY

"TYPICAL" BAY

GRAVITY SPOT CHECKS | DECK


3VLI 20 Gauge, 2 ¹/₂" NWC

- CLEAR SPAN CHECK
 - 11'-0" span > 2 and 3 span condition
 Pan!
 - Failed 1 span condition

No Good!

- STRENGTH CHECK
 - $w_{LL} + w_{misc,DL} \leq$ Superimposed Live Load
 - 92 PSF \leq 106 PSF

Pass!

GRAVITY SPOT CHECKS | BEAM


W14x22 (26) [1"]

- STRENGTH CHECK
 - $\phi M_n = 265.4^{\prime k} < M_u = 273^{\prime k}$ **Pan!**
- UNSHORED STRENGTH CHECK
 - $\varphi M = 125'^k > M_u = 118.3'^k$
 - No Shoring Required
- WET CONCRETE CHECK
 - $\Delta_{wc,max} = 1.5$ " $< \Delta_{wc} = 1.84$ "
 - Beam Requires Camber
- LIVE LOAD DEFLECTION CHECK

Camber

•
$$\Delta_{LL,max} = \frac{l}{_{360}} = 1" > \Delta_{LL} = 0.850"$$

Strength check passes with modified dead loads (not used in analysis)

GRAVITY SPOT CHECKS | GIRDER

W16x26 (18)

- STRENGTH CHECK
 - $\phi M_n = 336'^k < M_u = 401'^k$
- UNSHORED STRENGTH CHECK
 - $\varphi M = 166'^k > M_u = 466'^k$
 - Shoring Required
- WET CONCRETE CHECK
 - $\Delta_{wc,max} = 1.1" > \Delta_{wc} = 0.784"$

Pass!

• LIVE LOAD DEFLECTION CHECK

•
$$\Delta_{LL,max} = l/_{360} = 0.733" > \Delta_{LL} = 0.330"$$

W 1	4x22 (10)	- Q		
W14x22 (26) [1"]	W14x22 (26) [1"]	W14x22 (26) [1"]		
W16x26 (18)				

GRAVITY SPOT CHECKS | GIRDER

W14x22 (10)

- STRENGTH CHECK
 - $\phi M_n = 229'^k < M_u = 234'^k$ **Pan**!
- UNSHORED STRENGTH CHECK
 - $\varphi M = 125'^k < M_u = 233'^k$
 - Shoring Required
- WET CONCRETE CHECK
 - $\Delta_{wc,max} = 1.1" > \Delta_{wc} = 0.6"$

Pass!

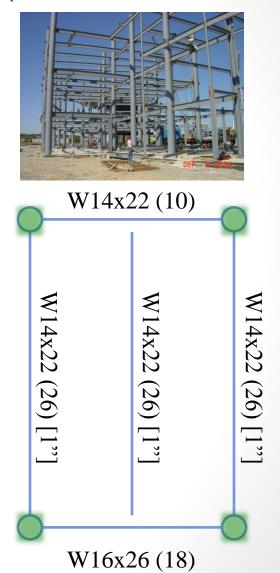
• LIVE LOAD DEFLECTION CHECK

•
$$\Delta_{LL,max} = l/_{360} = 0.733" > \Delta_{LL} = 0.614"$$

W14x22 (10)				
W14x22 (26) [1"]	W14x22 (26) [1"]	W14x22 (26) [1"]		
W16x26 (18)				

GRAVITY SPOT CHECKS | COLUMNS

HSS24x0.5*


- INTERIOR COLUMN
 - $\varphi P_n = 1080^k > P_u = 511^k$

Pass!

• EXTERIOR COLUMN

• $\varphi P_n = 1080^k > P_u = 262^k$

Pan!

*Axial compression values used for an HSS20x0.5, Steel Construction Manual (14th Edition) does not have HSS24x0.5

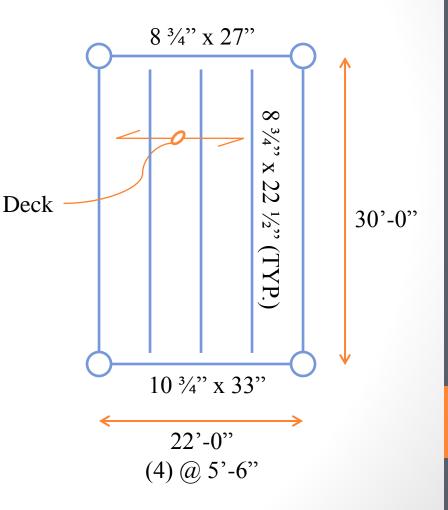
ALTERNATIVE SYSTEMS

- Glulam
- Hollow Core Plank
- Post Tension Slab

Image Courtesy: ArchiEXPO.com SEPSA Precast Solutions Corp. Kansas Department of Transportation

Alt. #1 - Glulam

Image Courtesy: Meredith Parks and Timothy Hursley


Alt. #1 - Glulam

DESIGN

- (5) 8 ³/₄" x 22 ¹/₂" 24F-V4
 - @ 5'-6" spacing
- (1) 10 ³/₄" x 33" 24F-V4
- (1) 8 ³/₄" x 27" 24F-V4

DURABILITY

 Common material for construction, currently in use Heifer International's Visitor Center

Alt. #1 - Glulam

SYSTEM DEPTH 37²⁹ > 21.2²⁹ GLULAM EXISTING

RS MEANS COST \$20.43 / SF

SYSTEM WEIGHT

18 psf

SYSTEM FIRE RATING

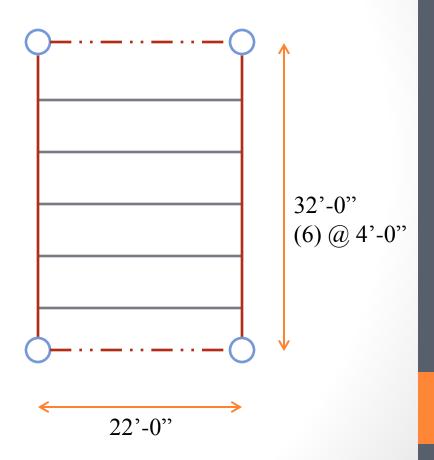
LATERAL SYSTEM

- Steel Plate Shear Walls
 - Setup in existing building at mechanical and lobby space at both ends and middle core
- Prefabricated System
 - SIMPSON Strong-Tie®
 - Steel or Wood Shear Walls
 - Moment Frames

ALT. #2 – HOLLOW CORE PLANKS

Image Courtesy:

Spiroll Precast Services, Ltd. Mabetón España, S.A.


ALT. #2 – HOLLOW CORE PLANKS

DESIGN

- (8) 6" x 4'-0" Planks
 - 7 ½" Ø Strands @ 2" Concrete Topping
- W24x84 Beam

DURABILITY

• Strong concrete system that allows more open space in a building

ALT. #2 – HOLLOW CORE PLANKS

SYSTEM DEPTH 32.7" > 21.2" PLANKS EXISTING

RS MEANS COST \$11.04 / SF

System Weight

57 psf

Image Courtesy: Nitterhouse Concrete Products, Inc.

System Fire Rating **1 HR**

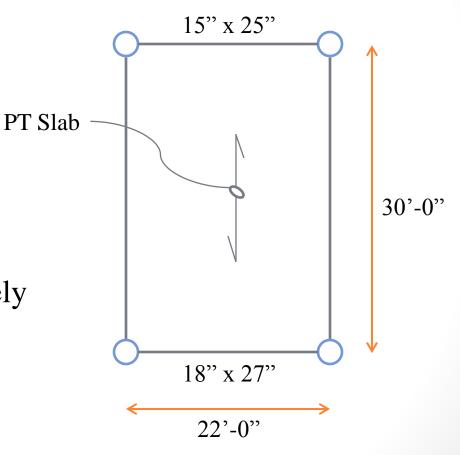
LATERAL SYSTEM

- Concrete Masonry Walls
 - Could be integrated into existing mechanical, elevator and stair towers
- Steel Plate Shear Walls
 - System not as compatible with existing lateral system

ALT. #3 – POST TENSION SLAB

Image Courtesy:

Metzger Testing & Inspection Architectoid, Learning Architecture for Life


ALT. #3 – POST TENSION SLAB

DESIGN

- 8" Slab Concrete Slab
 - 270kips @ 90% Jacking
 - 2 Strands @ 10" O.C. (N-S)
- (1) 18" x 27" NWC Beam
 - (7) #5 Longitudinal
 - (16) #3 Stirrup @ 7" (2" from ends)
- (1) 15" x 25" NWC Beam
 - (5) #8 Longitudinal
 - (10) #3 Stirrup @ 11" (2" from ends)

DURABILITY

 Post tension is extremely durable and is a established system for use in offices and garages

ALT. #3 – POST TENSION SLAB

SYSTEM DEPTH 35²² > 21.2²² POST TENSION EXISTING

RS MEANS COST \$18.92 / SF

SYSTEM WEIGHT

132 psf

SYSTEM FIRE RATING

LATERAL SYSTEM

- Moment Frame
 - Redesign of office layout will be required, may complicate this system
- Concrete Shear Wall
 - Could be integrated into existing mechanical, elevator and stair towers

Image Courtesy: SPX

STRUCTURAL CONSIDERATIONS & FUTURE INVESTIGATION

Considerations		Graivty Systems				
		Composite Deck and Beam	Glulam	Prefabricated Hollow Plank	Post Tension Slab	
Alterations	Gravity System	Composite deck and composite beams	Engineered glulam beams and girders, supporting 4" T&G floor decking	Prefabricated 4' hollow core planks supported by steel beams	Post tensioned 8" slab, supported by interior and exterior concrete girders	
	Lateral System	Steel plate shear wall (SPSW)	SPSW or Prefabricated Wood Shear Wall	Concrete or masonry shear walls, SPSW not viable	Moment Frame or Concrete Shear Wall	
	Impact	-	Minor adjustments	Minor adjustments to bay sizes	Increased weight will impact existing foundation system	
Potential Future Investigation						
		-	Yes, Hybrid Steel and Wood System	No, semicircular building not viable in prefabricated rectangular sections	Yes, research viability on semi-circular building	

ARCHITECTURAL CONSIDERATIONS

Considerations		Graivty Systems			
		Composite Deck and Beam	Glulam	Prefabricate d Hollow Plank	Post Tension Slab
	Size of Bay	22' x 30'	22' x 30'	22' x 32'	22' x 30'
	Fire Protection	None*	None	None	None
	Fire Rating	1 HR	1 HR @ Char of 1.5" / HR	1 HR	2 HR ACHIEVED
	MEP Coordination	Underfloor Air Distribution (UFAD) System	No concealed spaces allowed, UFAD not possible	No impact	No impact
	Impact	Framing members not protected from fire	Decrease in floor to floor height	Decrease in floor to floor height	Decrease in floor to floor height

System Statistics

Considerations		Graivty Systems			
		Composite Deck and Beam	Glulam	Prefabricated Hollow Plank	Post Tension Slab
	System Weight	57 psf	18 psf	57 psf	132 psf
	Slab Depth	5.5"	4"	8"	8"
	System Depth	21.2"	37"	32.7"	35"
	Constructability	Easy	Easy	Easy	Challenge
	Durability	Acceptable	Acceptable	Acceptable	Acceptable
	Cost	\$17.93 / SF	\$20.43 / SF	\$11.04 / SF	\$18.92 / SF

THANK YOU

