

ELEMENTARY SCHOOL ONE TOWN, MARYLAND

Jonathan Cann

Mechanical Option

BAE/MAE Integrated Program

Advisor: Dr. Treado

Spring 2015

www.janneyschool.org

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Building Statistics

Existing Building: Built 1925
National Register of Historic Places

Gross Square Feet: 84,400
Overall Project Budget: \$25 Million
Completion Date: August 2011
3 stories above grade, 1 below
Function: Educational

s.google.com

Project Background

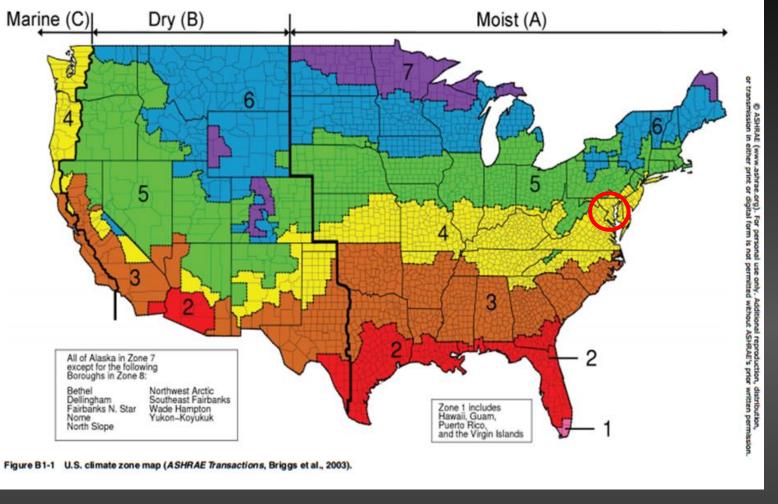
Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion


Location and Weather

Town, Maryland

Relative Humidity – 50%

	Summer	Winter
Designed Dry Bulb (°F)	91	13
Designed Wet Bulb (°F)	77	-
ndoor Air Temperature (°F)	75	72

Weather data based on Baltimore, Maryland

www.ashrae.org

Project Background

Existing Conditions

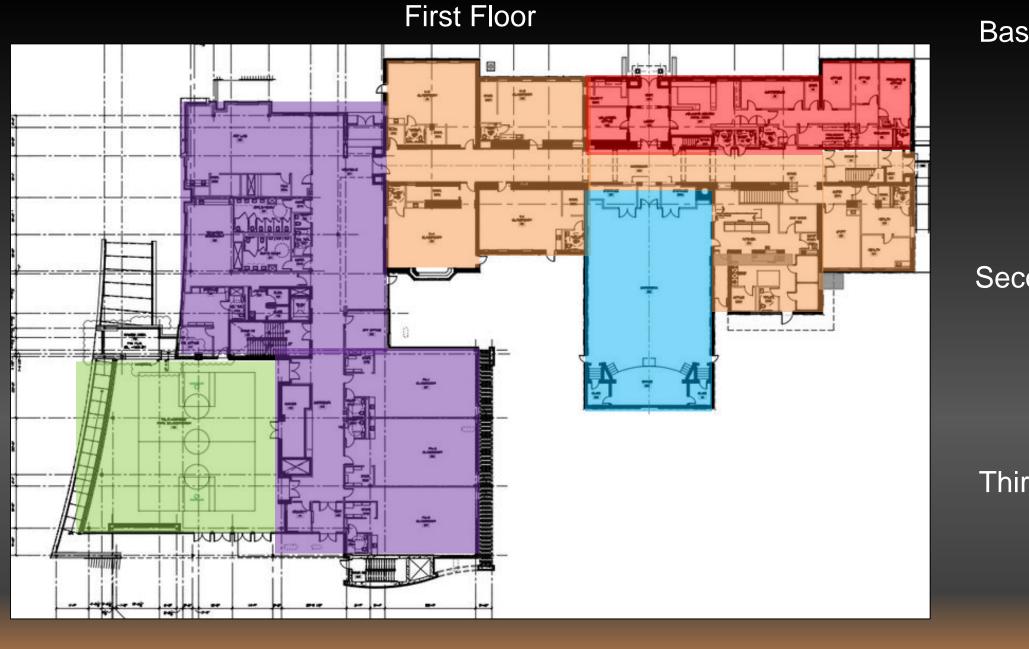
Proposal

Mechanical Depth

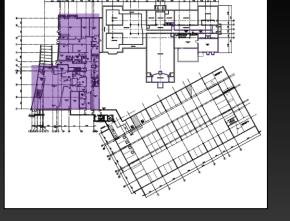
Acoustical Breadth

Conclusion

Mechanical Layout

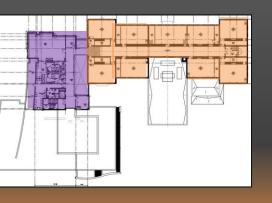

Blue: RTU-1 & 2 Cafeteria

Orange: RTU-3 &4 (DOAS) and VRF


Purple: RTU- 5 (DOAS) and VRF

Green: RTU-6 & 7 Multipurpose

Red: AHU-1 Administrative Offices


Basement

Second Floor ____

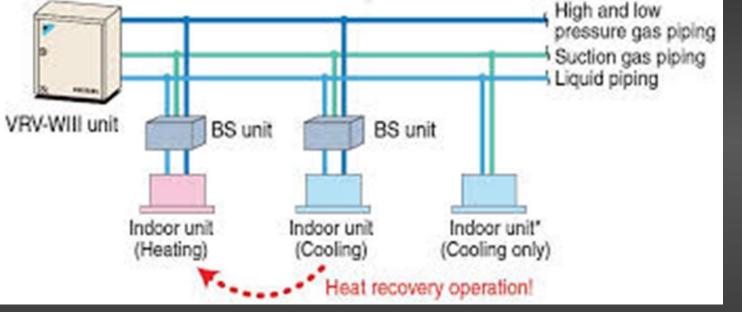
Third Floor

Project Background

Existing Conditions

Proposal

Mechanical Depth


Acoustical Breadth

Conclusion

Mechanical Schedule

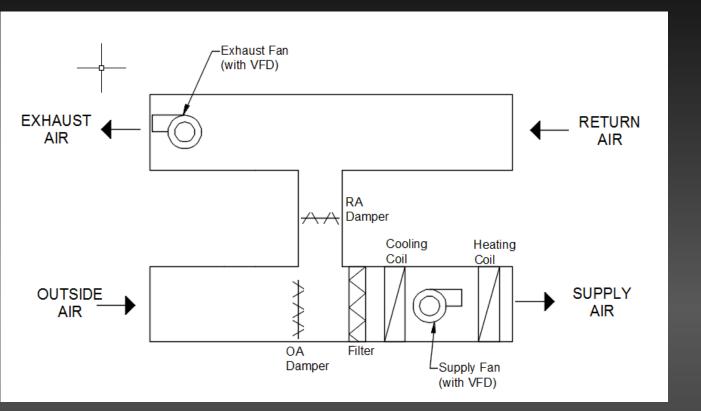
Rooftop Unit Schedule						
Jnit No.	Area Served	Supply CFM	Total Load (MBH)			
RTU-1	Cafeteria	7500	227			
RTU-2	Cafeteria	7500	227			
RTU-3	Exist. Bldg.	8300	350			
RTU-4	Exist. Bldg.	5600	236.9			
RTU-5	Addition	10650	538			
RTU-6	Multi-purpose	7500	235			
RTU-7	Multi-purpose	7500	235			

Air Cooled Condensing Units Schedules (VRF System)					
Jnit No.	Cooling (MBH)	Heating (MBH)	Condenser CFM		
CU-VRF-1	439	494	20100		
CU-VRF-2	343	386	20100		
CU-VRF-3	305	343	13400		

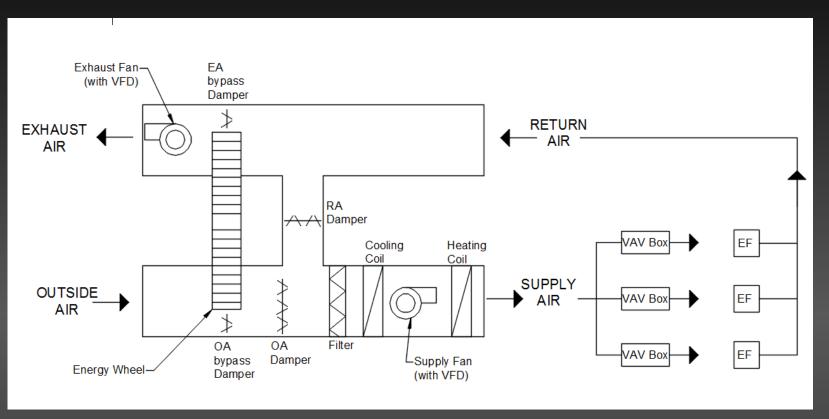
www.daikin.com

Mechanical Schematics

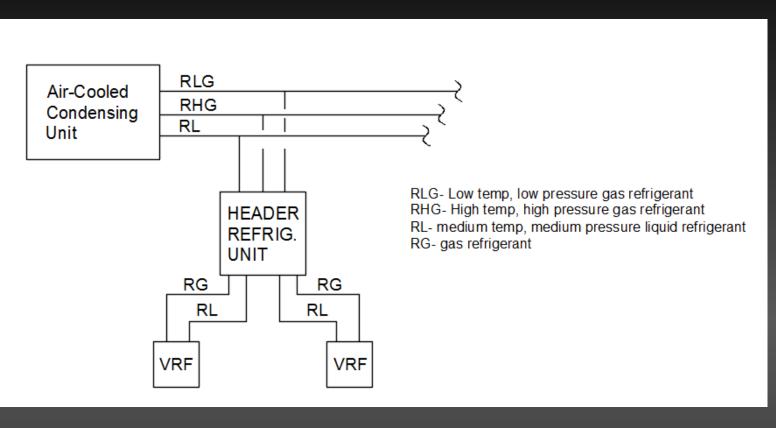
Project Background


Existing Conditions

Proposal


Mechanical Depth

Acoustical Breadth


Conclusion

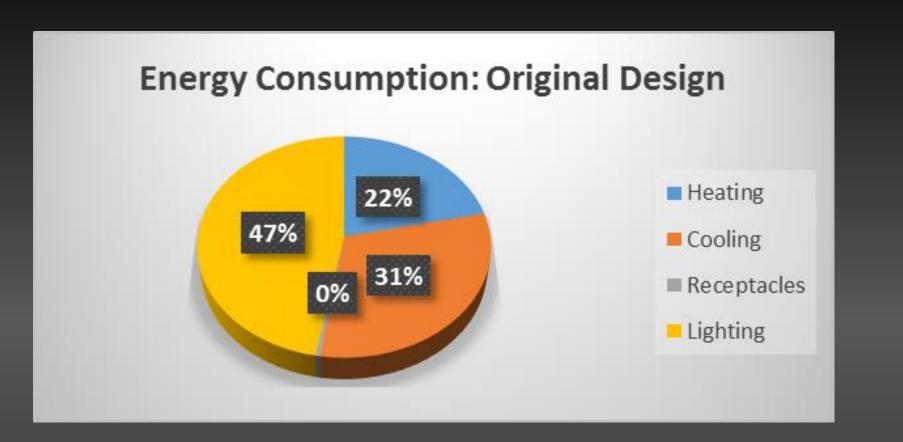
RTU- 1, 2, 6 & 7

RTU- 3, 4, & 5 DOAS

VRF System

Project Background

Existing Conditions


Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Energy Use & Emissions

	% of Total Building Energy	Total Building Energy (kBtu/yr)
Heating	21.56%	894,258
Cooling	30.80%	1,277,511
Receptacles	0.51%	21,069
Lighting	47.13%	1,954,985
Total	100%	4,147,823

	CO2 (lbm/year)	SO2 (gm/year)	NOx (gm/year)
Building Emissions	1,626,597.0	14,638.5	2,801.8

Jonathan Cann

Elementary School One

Mechanical Option

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Proposal Goals

<u>Depth</u>: Implement a geothermal system to improve the buildings energy use.

Breadth: The impact of a geothermal system on the construction management of the project.

Breadth: Perform acoustical analysis to insure the comfort of the spaces

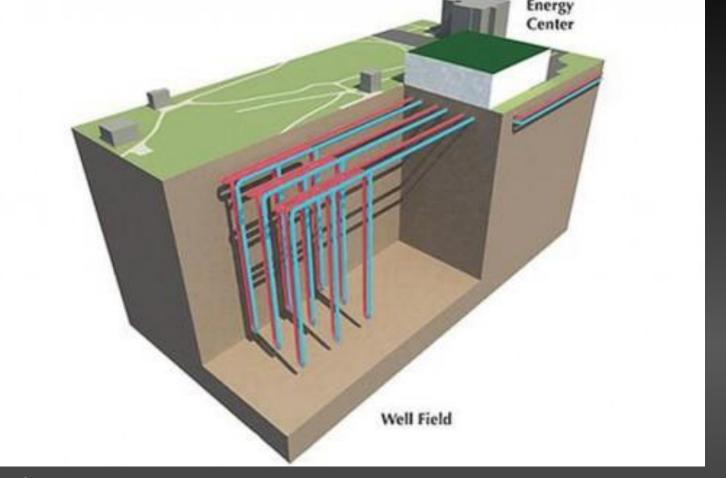
www.nps.gov/nr/

Project Background

Existing Conditions

Proposal

Mechanical Depth


Acoustical Breadth

Conclusion

Proposed System

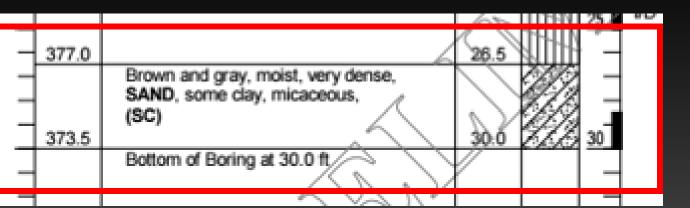
Water-cooled VRF units coupled with closed loop ground coupled heat pump

- More efficient than air-cooled condensers
- Constant thermal properties
- Reduces noise pollution
- Minimal site area loss
- High initial cost (long term owners)
- Renewable energy source (earth)
- Low maintenance

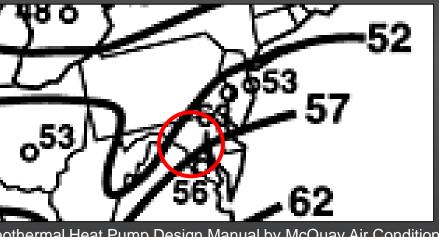
Ball State University

Project Background

Existing Conditions


Proposal

Mechanical Depth


Acoustical Breadth

Conclusion

Site & Well Properties

Annual Average Ground Temperature - 55°F

Geothermal Heat Pump Design Manual by McQuay Air Conditioning

Soil Properties	Wet dense sand
Dry Density	120 lb/ft^3
Conductivity (k)	1.63 Btu/h*ft*°F
Diffusivity (α)	0.91 ft^2/day

Well Design Details		
Radius of bore	0.42	ft
SDR 11	1.00	in
Rpipe	0.10	ft*hr*°F/Btu
Rgrout	0.05	ft*hr*°F/Btu
Rbore	0.15	ft*hr*°F/Btu

Jonathan Cann

Elementary School One

Mechanical Option

Geothermal Calculations

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Required Bore Length for Cooling (ft)

$$L_{c} = \frac{q_{a}R_{ga} + (q_{lc} - 3.41W_{c})(R_{b} + \text{PLF}_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$

Required Bore Length for Heating (ft)

$$L_{h} = \frac{q_{a}R_{ga} + (q_{lh} - 3.41W_{h})(R_{b} + \text{PLF}_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$

Equations from ASHRAE Handbook

	Symbol	Cooling	Heating	Units
Net annual average heat transfer to the ground	Qa	251,250	150,000	Btu/h
Building design cooling block load (or heating)	Qlc (or Qlh)	2,010,000	1,200,000	Btu/h
Power input at design cooling load (or heating)	Wc (or Wh)	130,000	130,000	W
Effective thermal resistance of ground annual pulse	Rga	0.2438	0.2438	ft*hr*°F/Btu
Effective thermal resistance of ground monthly pulse	Rgm	0.223	0.223	ft*hr*°F/Btu
Effective thermal resistance of ground daily pulse	Rgd	0.131	0.131	ft*hr*°F/Btu
Thermal resistance of bore	Rb	0.15	0.15	ft*hr*°F/Btu
Short circuit heat loss factor	Fsc	1.04	1.04	
Part load factor during design month	PLFm	1.00	1.00	
Undisturbed ground temperature	tg	55	55	°F
Liquid temperature at heat pump inlet	twi	74	44	°F
Liquid temperature at heat pump outlet	two	83	36	°F
Temperature penalty	tp	2.00	2.00	°F
	Length	33,689	32,454	ft
	# of wells	84.2	81.1	

Project Background

Existing Conditions

Proposal

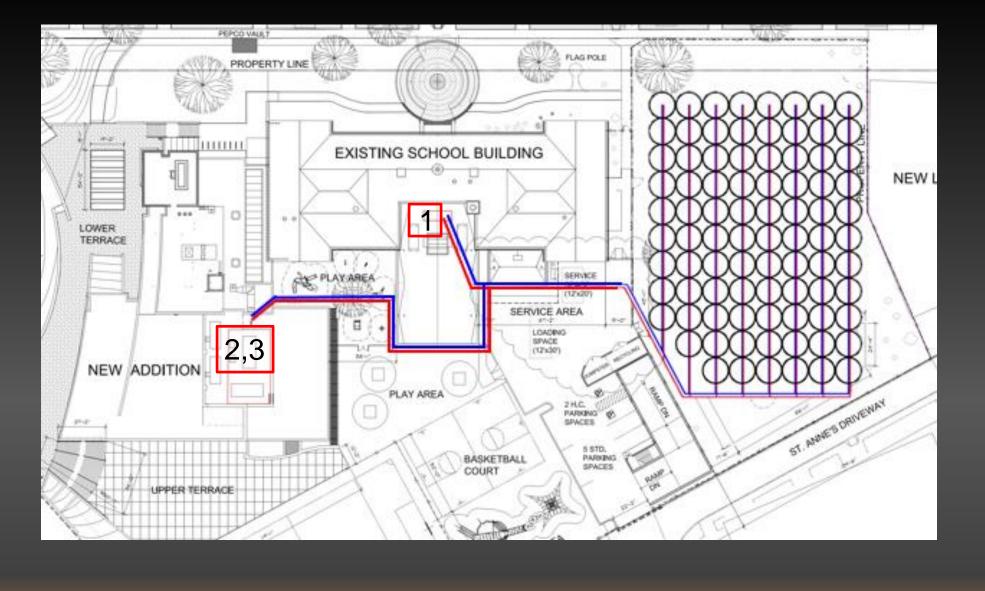
Mechanical Depth

Acoustical Breadth

Conclusion

Well Layout

85 wells


400 ft deep wells

15 ft well spacing

Area used 19,125 sq. ft.

Pump located in East Mechanical Room

Direct return piping

Project Background

Existing Conditions

Proposal

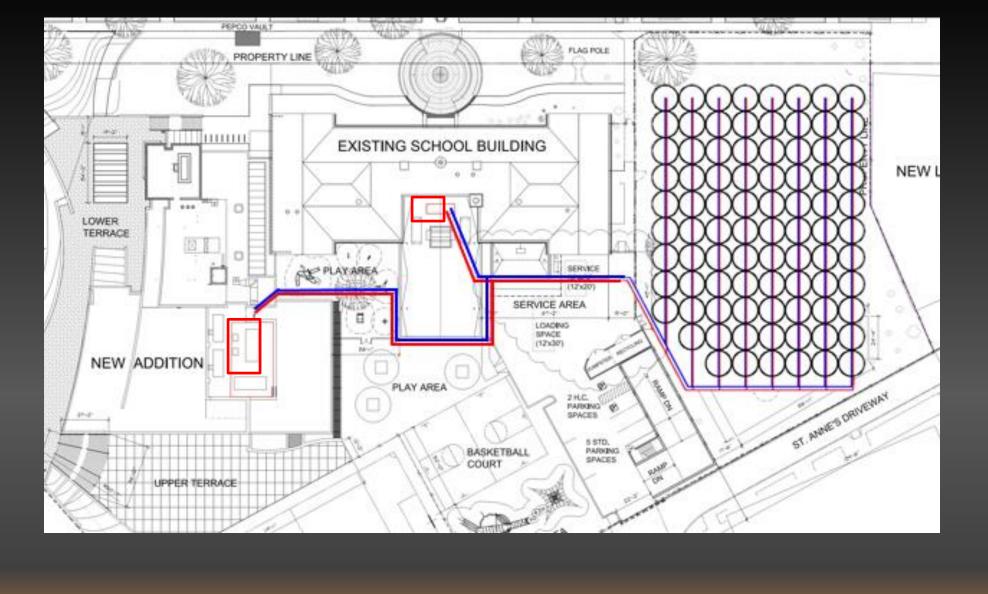
Mechanical Depth

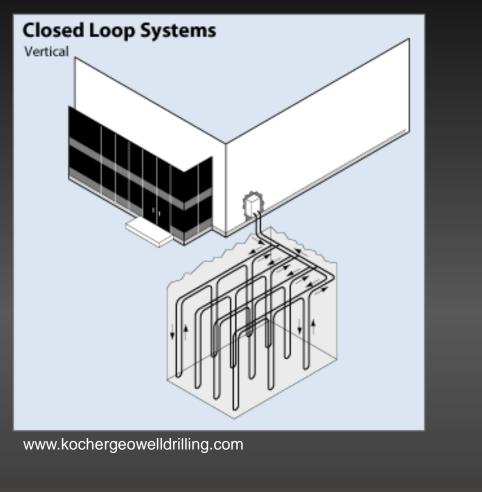
Acoustical Breadth

Conclusion

Pipe & Flow Design

480 GPM


2.9 GPM/ton design


6" header pipe

2" row pipe

1" well U-tube

5" bore diameter

Project Background

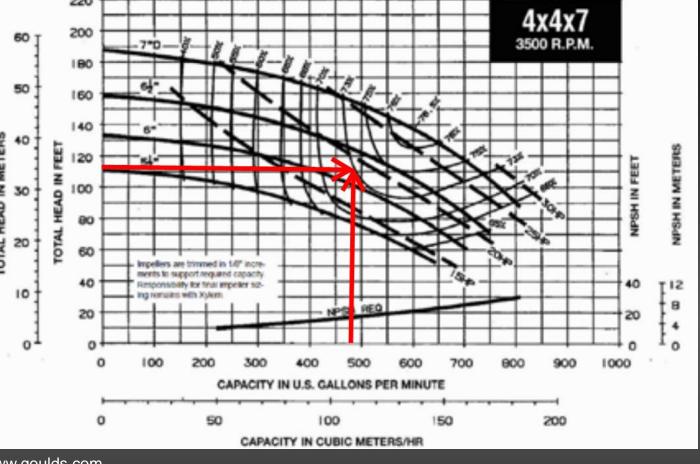
Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion


Well Pump Selection

able 22- Head Loss		
Friction Loss	6.8 ft	
Fixture Loss	109 ft	
Velocity Loss	0.4 ft	
otal head loss	116.2 ft	

www.goulds.com

Size	Head	Flow Rate	RPM	НР	Manufacturer	Model
4x4x7	116.2 ft	480 gpm	3500	20	Goulds	AC-135.3F

www.goulds.com

Project Background

Existing Conditions

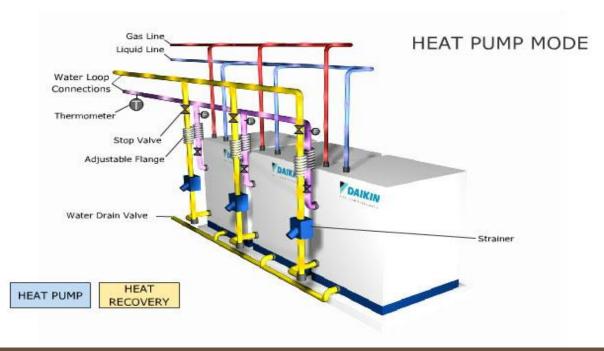
Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Water-Cooled VRF Unit Selection


Unified heat pump and heat recovery

Units in series to reach needed capacity

Self heat recovery between modules

	Daikin	VRV-WIII Series				
	Unit	21 ton	18 ton	12 ton	7 ton	6 ton
Cooling	Capacity (Btu/h)	252,000	216,000	144,000	84,000	72,000
	EER	15.0	15.3	15.3	15.0	15.3
Heating	Capacity (Btu/h)	283,500	243,000	162,000	94,000	81,000
	COP	4.7	5.3	5.3	4.7	5.3

	Units
CU-VRF-1	(3)x 21 ton + 12 ton
CU-VRF-2	(2)x 21 ton + 7 ton
CU-VRF-3	21 ton + 18 ton + 6 ton

www.daikin.com

Project Background

Existing Conditions

Proposal

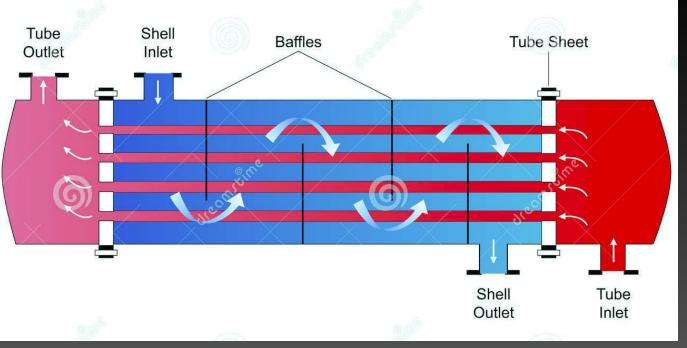
Mechanical Depth

Acoustical Breadth

Conclusion

Heat Exchanger Details

Ground Temperature 55°F


Ground Coupled Side

20% glycol / 80% water

VRF Side

• R140a

	Water		Refrigerant		Indoor Units Air			
	Tin	Tout	GPM	Tin	Tout	GPM	Supply	Return
Cooling	74°F	83°F	480	76°F	50°F	280	53-55°F	78-80°F
Heating	44°F	36°F	480	105°F	89°F	280	78-81°F	68-70°F

www.dreamstime.com

EA Credit 6

Refrigerant	Q (tons)	Refrigerant Impact per ton	Credit (<100)
R-410a	324	95.7	Yes

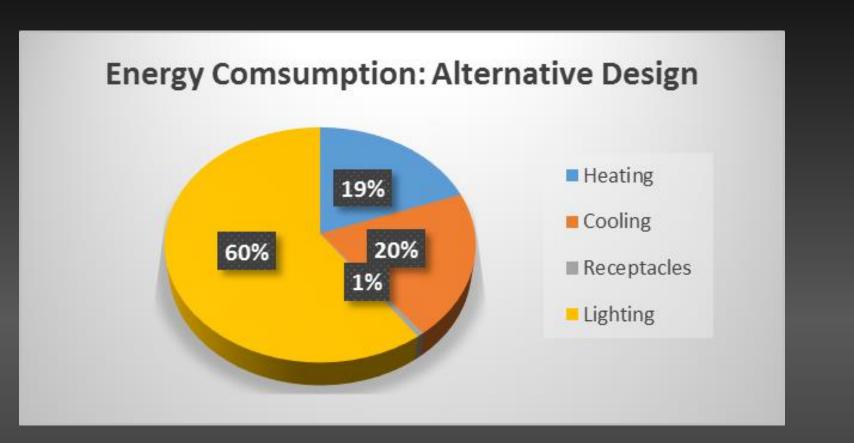
Jonathan Cann

Elementary School One

Mechanical Option

Project Background

Existing Conditions


Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Alternative System Energy Use

Table 25- Alternative Yearly Energy Consumption				
	Building	Building	Source	
	kWh	kBtu/yr	kBtu/yr	
Heating	185,431	632,320	1,896,960	
Cooling	192,269	656,215	1,968,843	
Lighting	572,805	1,954,985	5,865,541	
Receptacle	6,173	21,069	63,213	
Total	956,678	3,264,589	9,794,557	
Cost	\$131,064.90			

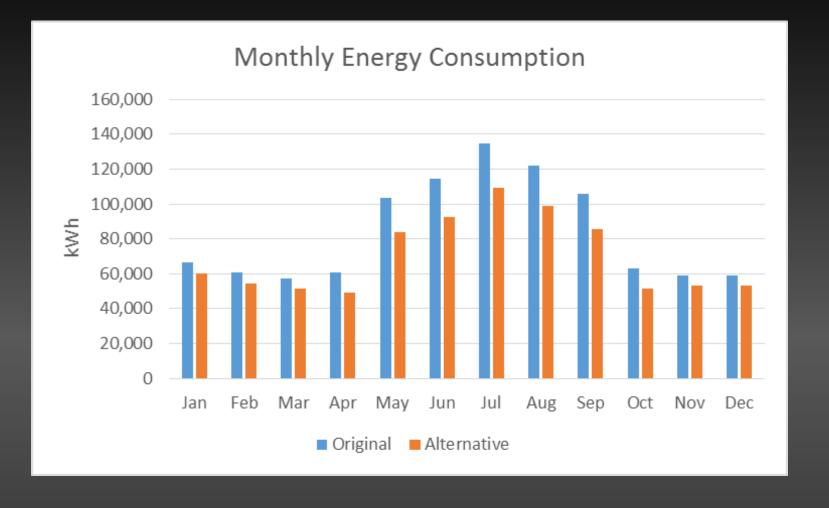
Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth


Conclusion

Energy & Emissions Comparison

Table 26- Yearly Energy Breakdown					
	Building (kWh)	Building (kBtu/yr)	Source (kBtu/yr)	Cost	
Original System	1,215,300	4,147,823	12,444,711	\$166,496.09	
Alternative System	956,678	3,264,589	9,794,557	\$131,064.90	
Yearly Savings	258,622	883,234	2,650,154	\$35,431.19	

Emissions Comparison- 21.3% less

	CO2 (lbm/year)	SO2 (gm/year)	NOx (gm/year)
riginal Design	1,626,597.0	14,638.5	2,801.8
Iternative Design	1,280,231.0	11,521.4	2,205.2

Payback Period

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

Federal Tax Rebate

- 10 % of initial material and labor cost
- EER ≥ 14.1
- COP ≥ 3.3

Without rebate Payback Period = 19.53 years

able 28- Payback Period				
	Co	st		
Original System	\$56,3	48.44		
Alternative System	\$692,0	71.26		
With 10% Rebate	\$622,5	564.13		
System Difference	\$566,2	215.69		
Yearly Energy Savings	\$35,4	31.19		
Payback Period	15.98	Years		
- Tayback Terroa	191.77	Months		

Cost Comparison

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

กลเ	ns i	വവ	ale	e.co	าทา
104	ρυ.	\mathbf{y}	291	σ . \circ	<i>-</i>

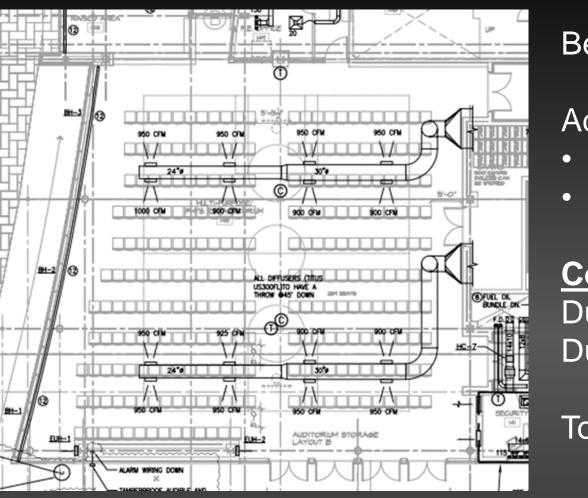
	Mechanical Cost	Total Construction Cost
Original Design	\$3,461,864	\$20,969,617
Alternative Design	\$4,028,079	\$21,535,833
Percent Increase	16.4%	2.7%

Original Building cost is based on 2015 using inflation from 2010.

Original			
Material	Condensers	\$42,377.00	
	Controls	\$823.00	
Labor	Condensers	\$11,985.00	
	Controls	\$1,163.00	
Tot	\$56,348.00		
101	al Cost	730,340.00	

lternative				
	Pump	\$19,200		
	Antifreeze	\$6,786		
	Water	\$14		
laterial	Controls	\$1,475		
	Investigation	\$915		
	Loop	\$424,521		
	Sub-total	\$452,911		
	Pump	\$1,842		
	Controls	\$2,952		
Labor	Investigation	\$3,993		
	Loop	\$230,373		
	Sub-total	\$239,160		
Tot	al Cost	\$692,071		

Project Background


Existing Conditions

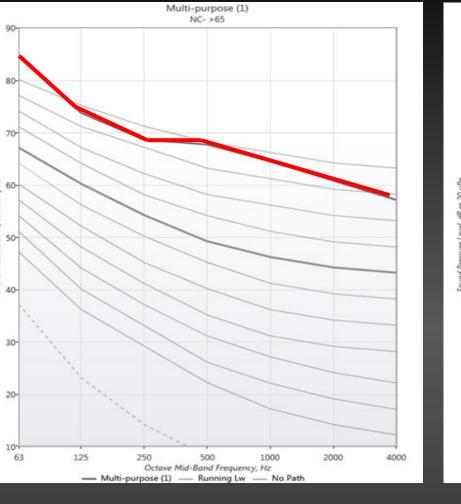
Proposal

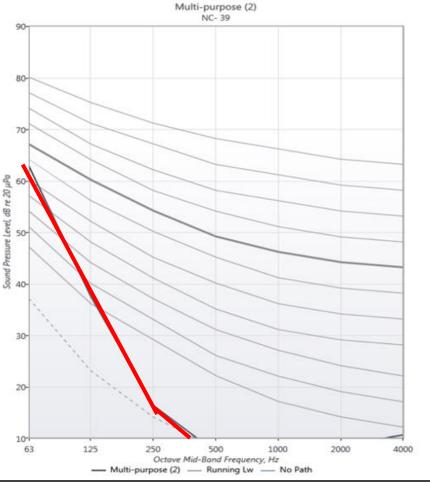
Mechanical Depth

Acoustical Breadth

Conclusion

Before: NC > 65 After: NC - 39


Added Treatment:

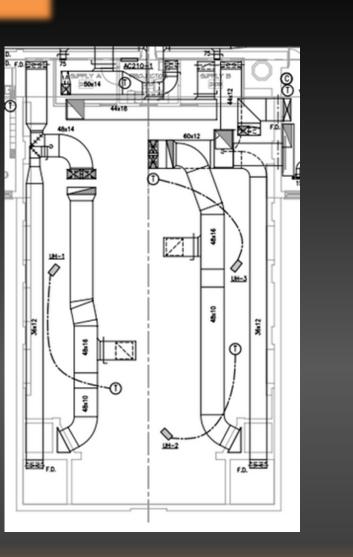

- 2" duct lining (60 ft each)
- One duct silencer each

Cost Breakdown

Duct lining = \$11,457 Duct Silencers= \$4,700

Total Cost = \$16,157

Project Background


Existing Conditions

Proposal

Mechanical Depth

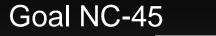
Acoustical Breadth

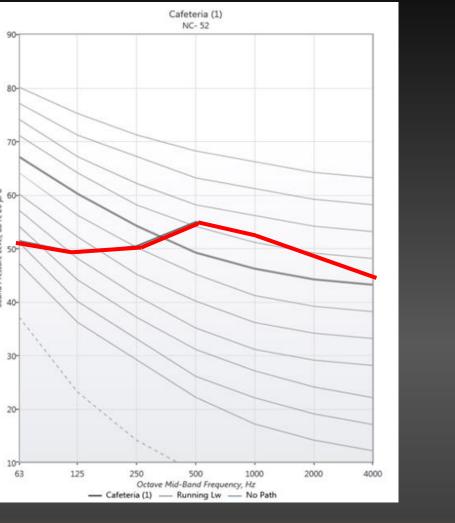
Conclusion

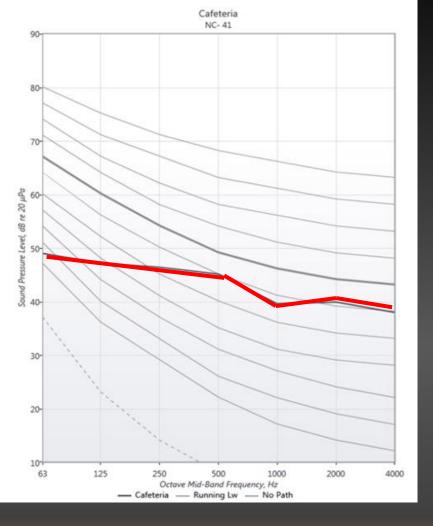
Cafeteria Acoustical Treatment

Before: NC - 52 After: NC - 41

Added Treatment:


One duct silencer each (36"x12"x50")


Cost Breakdown


Duct Silencers= \$4,000

Total Cost = \$4,000

Not recommended extra cost

Project Background

Existing Conditions

Proposal

Mechanical Depth

Acoustical Breadth

Conclusion

www.nps.gov/nr/

Conclusion

System Initial Cost - \$692,071.26

Monthly Savings - \$2952.60

Payback Period of System – 15.98 years

EUI Reduction – 21.3%

Acknowledgements

Penn State Faculty

JVP Engineers

Dr. Stephen Treado

All my peers that helped during the process

All my friends and family for their support

Questions?

