



# Northeastern Illinois University's **El Centro Building**

Chicago, Illinois

Michael Gramarossa, BAE/MAE Mechanical Option

Advisor: Dr. James Freihaut





- Building Summary
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation and Conclusion





- > Overview
- Existing Mechanical System
  - Cooling and Ventilation
  - > Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
  - Evaluation & Conclusion

Site and Location

- Chicago Illinois

# Summer: **91.9°F** (0.4%) Winter -4.0°F (99.6%)



Northeastern Illinois University's El Centro



- **Building Summary** 
  - > Overview
  - **Existing Mechanical System** 
    - Cooling and Ventilation
    - ➢ Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
  - Evaluation & Conclusion

Site and Location

- Chicago Illinois Summer: **91.9°F** (0.4%) Winter -4.0°F (99.6%)
- Located along Kennedy Expressway





- **Building Summary** 
  - > Overview
  - **Existing Mechanical System** 
    - Cooling and Ventilation
    - ➢ Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
  - Evaluation & Conclusion

Site and Location

- Chicago Illinois Summer: **91.9°F** (0.4%) Winter -4.0°F (99.6%)
- Located along Kennedy Expressway
- Passed by 400,000 vehicles each day





- **Building Summary** 
  - > Overview
  - **Existing Mechanical System**  $\succ$ 
    - Cooling and Ventilation
    - Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation & Conclusion

- Recently completed in September 2014
- 3 stories (no basement)
- 55,000 ft<sup>2</sup>
- Classrooms, offices, labs, lounges, etc.

Architecture and Façade





- **Building Summary** 
  - > Overview
  - **Existing Mechanical System**  $\succ$ 
    - Cooling and Ventilation
    - Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation & Conclusion

- Recently completed in September 2014
- 3 stories (no basement)
- 55,000 ft<sup>2</sup>
- Classrooms, offices, labs, lounges, etc.
- Curtain Wall Façade with solar fins
- Blue and Gold Fins

Michael Gramarossa

Architecture and Façade









- > Overview
- **Existing Mechanical System**  $\succ$ **Cooling and Ventilation** 
  - ➤ Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation & Conclusion

### Existing Mechanical System **Cooling and Ventilation**

[2] 100 ton air handling roof top units (RTUs)

The RTUs supply 55°F air year round





- > Overview
- **Existing Mechanical System**  $\succ$ **Cooling and Ventilation** 
  - ➤ Heating
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation & Conclusion

- [2] 100 ton air handling roof top units (RTUs)
- The RTUs supply 55°F air year round
- RTU-1 & RTU-2
- Separate Air Cooled Condensing Units (CU-1 & CU-2)

Existing Mechanical System **Cooling and Ventilation** 



| Unit  | Area Served<br>(ft <sup>2</sup> ) | Supply Capacity<br>(CFM) | Ventilation<br>(CFM) | Cooling<br>(Ton) | Heating<br>(MBh) |
|-------|-----------------------------------|--------------------------|----------------------|------------------|------------------|
| RTU-1 | 24,000                            | 38,000                   | 12,000               | 100              | 1250             |
| RTU-2 | 27,800                            | 38,000                   | 12,000               | 100              | 1250             |



- > Overview
- **Existing Mechanical System**  $\succ$ 
  - **Cooling and Ventilation** >
  - Heating  $\succ$
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- Evaluation & Conclusion

Heating

|     |              | Rating (MBH) |        | Water Temperature (°F) |         | Flow          | Min.                         |  |
|-----|--------------|--------------|--------|------------------------|---------|---------------|------------------------------|--|
| Тад | Fuel<br>Type | Input        | Output | Entering               | Leaving | Rate<br>(GPM) | Thermal<br>Efficiency<br>(%) |  |
| B-1 | NG           | 750          | 657    | 130                    | 150     | 66            | 90                           |  |
| B-2 | NG           | 750          | 657    | 130                    | 150     | 66            | 90                           |  |

#### Existing Mechanical System

#### [2] 750 MBh Boilers

#### Boilers serve 71 VAV reheat coils and hot water radiant finned tubes



#### Northeastern Illinois University's El Centro



- > Overview
- **Existing Mechanical System**  $\succ$ 
  - **Cooling and Ventilation** >
  - Heating  $\geq$
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
  - Evaluation & Conclusion

Heating

|     |              | Rating (MBH) |        | Water Temperature (°F) |         | Flow          | Min.                         |  |
|-----|--------------|--------------|--------|------------------------|---------|---------------|------------------------------|--|
| Tag | Fuel<br>Type | Input        | Output | Entering               | Leaving | Rate<br>(GPM) | Thermal<br>Efficiency<br>(%) |  |
| B-1 | NG           | 750          | 657    | 130                    | 150     | 66            | 90                           |  |
| B-2 | NG           | 750          | 657    | 130                    | 150     | 66            | 90                           |  |

#### Existing Mechanical System

#### [2] 750 MBh Boilers

#### Boilers serve 71 VAV reheat coils and hot water radiant finned tubes



#### Second Floor Plan Hot Water Schematic

Northeastern Illinois University's El Centro



- **Thesis Objective**
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation and Conclusion** >

#### Thesis Objective

The Chicago Building Code (CBC) requires a certain amount of airflow be supplied to a space regardless of the load





- **Thesis Objective**
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation and Conclusion** >

- Thesis Objective
- The Chicago Building Code (CBC) requires a certain amount of airflow be supplied to a space regardless of the load
- Redesign the current mechanical system according to the International Building Code (IBC)









- **Thesis Objective**
- Mechanical Depth
- Structural Breadth
- ➢ Electrical Breadth
- **Evaluation and Conclusion**  $\geq$

### Thesis Objective

- The Chicago Building Code (CBC) requires a certain amount of airflow be supplied to a space regardless of the load
- Redesign the current mechanical system according to the International Building Code (IBC)
- What are the greater implications if all mechanical systems for commercial buildings in Chicago were designed to the IBC rather than CBC.









#### Thesis Objective

#### Mechanical Depth RTU Resize

- Energy Savings
- Emission Savings
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

#### **RTU** Resize

|        | C                 | ВС                  | IBC/IMC           |                     |  |
|--------|-------------------|---------------------|-------------------|---------------------|--|
| System | Cooling<br>(Tons) | Supply Air<br>(CFM) | Cooling<br>(Tons) | Supply Air<br>(CFM) |  |
| RTU-1  | 93                | 20,700              | 84                | 20,700              |  |
| RTU-2  | 97                | 22,100              | 89                | 22,100              |  |
| Total  | 190               | 42,800              | 173               | 42,800              |  |
|        |                   | % Saved             | -9.10%            | 0%                  |  |

| System       | CBC<br>Req'd OA (CFM) | IBC/IMC<br>Req'd OA (CFM) | % Saved |
|--------------|-----------------------|---------------------------|---------|
| RTU-1 Total  | 9260                  | 5761                      | 37.79%  |
| RTU-2 Total  | 10890                 | 8292                      | 23.86%  |
| System Total | 20150                 | 14053                     | 30.26%  |
|              |                       |                           |         |

#### Ventilation Requirements

#### Load Requirements



#### > Thesis Objective

#### **Mechanical Depth** RTU Resize

- Energy Savings
- **Emission Savings**
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

#### **RTU** Resize

|        | C                 | BC                  | IBC/IMC           |                     |  |
|--------|-------------------|---------------------|-------------------|---------------------|--|
| System | Cooling<br>(Tons) | Supply Air<br>(CFM) | Cooling<br>(Tons) | Supply Air<br>(CFM) |  |
| RTU-1  | 93                | 20,700              | 84                | 20,700              |  |
| RTU-2  | 97                | 22,100              | 89                | 22,100              |  |
| Total  | 190               | 42,800              | 173               | 42,800              |  |
|        |                   | % Saved             | -9.10%            | 0%                  |  |



#### Load Requirements

System

RTU-1 Total

RTU-2 Total

System Total



#### Northeastern Illinois University's El Centro

Ventilation Requirements

CBC

Req'd OA (CFM)

9260

10890

20150

**IBC/IMC** 

Req'd OA (CFM)

5761

8292

14053

% Saved

37.79%

23.86%

30.26%

Heat



#### > Thesis Objective

#### **Mechanical Depth RTU Resize**

- Energy Savings
- **Emission Savings**
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion**

#### **RTU** Resize

|        | C                 | ВС                  | IBC/IMC           |                     |  |
|--------|-------------------|---------------------|-------------------|---------------------|--|
| System | Cooling<br>(Tons) | Supply Air<br>(CFM) | Cooling<br>(Tons) | Supply Air<br>(CFM) |  |
| RTU-1  | 93                | 20,700              | 84                | 20,700              |  |
| RTU-2  | 97                | 22,100              | 89                | 22,100              |  |
| Total  | 190               | 42,800              | 173               | 42,800              |  |
|        |                   | % Saved             | -9.10%            | 0%                  |  |



#### Ventilation Requirements

| Suctor       | CBC            | IBC/IMC        | % Saved |
|--------------|----------------|----------------|---------|
| System       | Req'd OA (CFM) | Req'd OA (CFM) | / Javeu |
| RTU-1 Total  | 9260           | 5761           | 37.79%  |
| RTU-2 Total  | 10890          | 8292           | 23.86%  |
| System Total | 20150          | 14053          | 30.26%  |
|              |                |                |         |

#### Load Requirements

- where  $\Delta T = T_s T_{ma} = 0.3(-10^{\circ}\text{F}) + 0.7(70^{\circ}\text{F}) = 9^{\circ}\text{F}$
- $q = 1.10 * (34,000 \ CFM) * (9^{\circ}F) = 336,600 \frac{BTU}{hr}$ 
  - $q = 337 MBH \leq 527 MBH \checkmark$



#### Thesis Objective

#### Mechanical Depth RTU Resize

- Energy Savings
- Emission Savings
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

### **RTU Resize**



#### Fan Selection





Thesis Objective

#### > Mechanical Depth RTU Resize

- Energy Savings
- Emission Savings
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion**  $\succ$

### **RTU Resize**





#### Fan Selection

| be | Total Supply<br>(CFM) | Input Power<br>(BHP) | Speed<br>(rpm) |
|----|-----------------------|----------------------|----------------|
| FC | 34,000                | 42.9                 | 592            |
| AF | 34,000                | 36.7                 | 1432           |

#### Northeastern Illinois University's El Centro



> Thesis Objective

#### > Mechanical Depth RTU Resize

- Energy Savings
- Emission Savings
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

#### **RTU** Resize





Michael Gramarossa

#### **RTU Schematic**

Northeastern Illinois University's El Centro



Thesis Objective

#### Mechanical Depth RTU Resize

- Energy Savings
- **Emission Savings**
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

#### **RTU** Resize





Michael Gramarossa

| Code    | RTU Size | Cost<br>(incl. O&P) | Location<br>Factor | Adjusted<br>Cost | Qty. of<br>RTUs | Total Cost |
|---------|----------|---------------------|--------------------|------------------|-----------------|------------|
| CBC     | 105 tons | \$252,000           | 113.6%             | \$286,272        | 2               | \$572,544  |
| IBC/IMC | 90 tons  | \$225,500           | 113.6%             | \$256,168        | 2               | \$512,336  |

**Potential Savings** 10.5% \$60,000

Northeastern Illinois University's El Centro



- Thesis Objective
- **Mechanical Depth** 
  - RTU Resize
  - **Energy Savings**
  - **Emission Savings**
- Structural Breadth
- Electrical Breadth  $\geq$
- **Evaluation and Conclusion**

Elec L (kWl

727,0

#### Annual Utility Usage

|            | CBC                 |                       |                    | IBC/IMC             |                       |
|------------|---------------------|-----------------------|--------------------|---------------------|-----------------------|
| lsed<br>h) | NG Used<br>(therms) | Total Utility<br>Cost | Elec Used<br>(kWh) | NG Used<br>(therms) | Total Utility<br>Cost |
| 000        | 9,600               | \$65,500              | 723,000            | 7,400               | \$63,700              |
|            |                     | Savings               | 0.5%               | 29.5%               | 2.9%                  |

- Electricity Cost Savings: 0.5%
- Natural Gas Cost Savings: 29.5%
- Total Utility Cost Savings: 2.9%
- Electric & NG Cost Savings: \$1800



- Thesis Objective
- **Mechanical Depth** 
  - RTU Resize
  - **Energy Savings**  $\succ$
  - **Emission Savings**
- Structural Breadth
- Electrical Breadth  $\geq$
- **Evaluation and Conclusion**

Elec Use (kWh

727,00



#### Annual Utility Usage

| CBC                 |                                     | IBC/IMC                                                         |                                                                                              |                                                                                                                                  |  |
|---------------------|-------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| NG Used<br>(therms) | Total Utility<br>Cost               | Elec Used<br>(kWh)                                              | NG Used<br>(therms)                                                                          | Total Utility<br>Cost                                                                                                            |  |
| 9,600               | \$65,500                            | 723,000                                                         | 7,400                                                                                        | \$63,700                                                                                                                         |  |
|                     | Savings                             | 0.5%                                                            | 29.5%                                                                                        | 2.9%                                                                                                                             |  |
|                     | CBC<br>NG Used<br>(therms)<br>9,600 | CBCNG Used<br>(therms)Total Utility<br>Cost9,600\$65,500Savings | CBCNG Used<br>(therms)Total Utility<br>CostElec Used<br>(kWh)9,600\$65,500723,000Savings0.5% | CBCIBC/IMCNG Used<br>(therms)Total Utility<br>CostElec Used<br>(kWh)NG Used<br>(therms)9,600\$65,500723,0007,400Savings0.5%29.5% |  |

CBC IBC/IMC Receptacle Receptacle 9.8% 10.5% Heating Heating 23.5% 28.2% Lighting Cooling 41.1% 13.4% Cooling **13.0**% Auxiliary Auxiliary 11.5% 10.7%

#### Why are there more energy savings in the heating system than the cooling system?

Northeastern Illinois University's El Centro



- Thesis Objective
- > Mechanical Depth
  - > RTU Resize
  - Energy Savings
  - Emission Savings
- Structural Breadth
- Electrical Breadth
- Evaluation and Conclusion

Elec Us (kWł

727,0





#### Annual Utility Usage

| СВС         |                     |                       | IBC/IMC            |                     |                       |  |
|-------------|---------------------|-----------------------|--------------------|---------------------|-----------------------|--|
| Jsed<br>/h) | NG Used<br>(therms) | Total Utility<br>Cost | Elec Used<br>(kWh) | NG Used<br>(therms) | Total Utility<br>Cost |  |
| 000         | 9,600               | \$65,500              | 723,000            | 7,400               | \$63,700              |  |
|             |                     | Savings               | 0.5%               | 29.5%               | 2.9%                  |  |

# Why are there more energy savings in the heating system than the cooling system?



**Heating Degree** 

$$\Delta T = |T_{RA} - T_{OA}|$$

$$\Delta T_{cooling} = |75^{\circ}$$

$$\Delta T_{heating} = |70^{\circ}$$

| Days | 842  |  |  |  |
|------|------|--|--|--|
| Days | 6311 |  |  |  |

- $|F 85^{\circ}F| = 10^{\circ}F$
- $|F 25^{\circ}F| = 45^{\circ}F$



- Thesis Objective
- > Mechanical Depth
  - RTU Resize
  - **Energy Savings**
  - **Emission Savings** >
- Structural Breadth
- Electrical Breadth  $\geq$
- **Evaluation and Conclusion** >

Elec l (kW

727,0



#### Annual Utility Usage

|             | CBC                 |                       | IBC/IMC            |                     |                       |  |
|-------------|---------------------|-----------------------|--------------------|---------------------|-----------------------|--|
| Jsed<br>′h) | NG Used<br>(therms) | Total Utility<br>Cost | Elec Used<br>(kWh) | NG Used<br>(therms) | Total Utility<br>Cost |  |
| 000         | 9,600               | \$65,500              | \$65,500 723,000   |                     | \$63,700              |  |
|             |                     | Savings               | 0.5%               | 29.5%               | 2.9%                  |  |

CBC IBC/IMC Receptacle Receptacle 9.8% 10.5% Heating Heating 23.5% 28.2% Lighting 41.1% Cooling 13.4% Cooling **13.0%** Auxiliary Auxiliary 11.5% 10.7%





#### Northeastern Illinois University's El Centro





- Thesis Objective
- > Mechanical Depth
  - RTU Resize
  - **Energy Savings**
  - **Emission Savings** >
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

Elec l (kW

727,0



#### Annual Utility Usage

|             | CBC                 |                       | IBC/IMC            |                     |                       |  |
|-------------|---------------------|-----------------------|--------------------|---------------------|-----------------------|--|
| Jsed<br>′h) | NG Used<br>(therms) | Total Utility<br>Cost | Elec Used<br>(kWh) | NG Used<br>(therms) | Total Utility<br>Cost |  |
| 000         | 9,600               | \$65,500              | 723,000            | 7,400               | \$63,700              |  |
|             |                     | Savings               | 0.5%               | 29.5%               | 2.9%                  |  |

CBC IBC/IMC Receptacle Receptacle 9.8% 10.5% Heating Heating 23.5% 28.2% Lighting 41.1% Cooling 13.4% Cooling 13.0% Auxiliary Auxiliary 11.5% 10.7%



#### Northeastern Illinois University's El Centro



- Thesis Objective
- Mechanical Depth
  - RTU Resize
  - Energy Savings
  - **Emission Savings** >
- Structural Breadth
- **Electrical Breadth**  $\geq$
- **Evaluation and Conclusion** >

### **Emission Savings**

| Codo | Pollutant        | Electricity         |           | Natural Gas |          | Total                |  |
|------|------------------|---------------------|-----------|-------------|----------|----------------------|--|
| Code | Pollutant        | lb/kWh              | lbs.      | lb/MCF      | lbs.     | (lbs pollutant/year) |  |
|      | CO <sub>2e</sub> | 1.74                | 1,273,668 | 123         | 118,080  | 1,391,748            |  |
| CBC  | CO <sub>2</sub>  | 1.64                | 1,200,469 | 122         | 117,120  | 1,317,589            |  |
|      | NO <sub>x</sub>  | 0.003               | 2,196     | 0.111       | 107      | 2,303                |  |
|      | CO <sub>2e</sub> | 1.74                | 1,266,904 | 123         | 91,229   | 1,358,134            |  |
| IBC  | CO <sub>2</sub>  | 1.64                | 1,194,094 | 122         | 90,487   | 1,284,581            |  |
|      | NO <sub>x</sub>  | 0.003               | 2,184     | 0.111       | 82       | 2,267                |  |
|      |                  | % Saved             | 0 52%     |             | 22 2/10/ | 2 120/               |  |
|      |                  | (CO <sub>2e</sub> ) | 0.55%     | 22.74%      |          | 2.4270               |  |

Emission Savings ~37,000 lbs. CO<sub>2e</sub> per year



- Thesis Objective
- Mechanical Depth

### Structural Breadth

Will smaller RTU's designed according to the IBC lead to a reduction in structural steel?

#### **Structural Breadth** $\succ$

- ► RTU-2
- ► RTU-1
- Conclusion
- **Electrical Breadth**
- Evaluation & Conclusion



- Thesis Objective
- Mechanical Depth

#### Structural Breadth

- ► RTU-2
- ► RTU-1
- Conclusion
- Electrical Breadth
- Evaluation & Conclusion

### Structural Breadth



| Load Type    | Material                             | Weight<br>(psf) |
|--------------|--------------------------------------|-----------------|
|              | PVC Roof                             | 10              |
|              | 1/2" Cover Board                     | 2               |
| Dead Load    | R-30 Insulation Board                | 2               |
|              | Galvanized Metal Deck                | 2               |
|              | Misc. (lights, duct, PV array, etc.) | 10              |
| Live Load or | Live Load                            | 20              |
| Snow Load    | Snow Load                            | 25              |
|              |                                      |                 |
| Total        | Dead Load                            | 26              |
| 10101        | Snow Load                            | 25              |

#### Northeastern Illinois University's El Centro

#### $1.2(26 \, psf) + 1.6(25 \, psf) = 71 \, psf \, factored \, load$



- Building Summary
- Thesis Objective
- Mechanical Depth
- Structural Breadth ➢ RTU-2
  - ► RTU-1
  - Conclusion
- Electrical Breadth
- Evaluation & Conclusion

### RTU-2 Analysis



#### Michael Gramarossa



- Building Summary
- Thesis Objective
- Mechanical Depth
- Structural Breadth ➢ RTU-2
  - ► RTU-1
  - Conclusion
- Electrical Breadth
- Evaluation & Conclusion



#### Michael Gramarossa



- Building Summary
- > Thesis Objective
- Mechanical Depth
- **Structural Breadth** ➢ RTU-2
  - ► RTU-1
  - Conclusion
- Electrical Breadth
- Evaluation & Conclusion

### **RTU-2** Analysis



#### Michael Gramarossa



- Building Summary
- Thesis Objective
- Mechanical Depth
- **Structural Breadth** ➢ RTU-2
  - ► RTU-1
  - Conclusion
- Electrical Breadth
- Evaluation & Conclusion

### **RTU-2** Analysis



#### Michael Gramarossa



- Thesis Objective
- Mechanical Depth
- Structural Breadth
  - ► RTU-2
  - > RTU-1
  - Conclusion
- Electrical Breadth
- Evaluation & Conclusion

### **RTU-1** Analysis



#### Michael Gramarossa

These beams are not reduced in size because the structural engineer did not use a smaller beam than W12x26.



- Thesis Objective
- Mechanical Depth
- **Structural Breadth**  $\succ$ 
  - ► RTU-2
  - ► RTU-1
  - Conclusion

Electrical Breadth

Evaluation & Conclusion

### Structural Breadth Conclusion

**Beam Size** C8x11.5 W21x44

W21x48

Total Cost

| 9 | Existing Design<br>Length (ft) | New Design<br>Length (ft) | Cost<br>(\$/LF) |
|---|--------------------------------|---------------------------|-----------------|
|   | 151                            | 124                       | \$83.68         |
|   | 0                              | 51                        | \$84.21         |
|   | 51                             | 0                         | \$94.34         |
| - | \$17,447                       | \$14,671                  |                 |

### New design leads to \$2,800 in savings



- > Thesis Objective
- Mechanical Depth
- **Structural Breadth** 
  - ► RTU-2
  - ➢ RTU-1
  - Conclusion

Electrical Breadth

Evaluation & Conclusion

### Structural Breadth Conclusion

**Beam Size** C8x11.5 W21x44

W21x48

Total Cost

| _        | Existing Design | New Design  | Cost    |  |
|----------|-----------------|-------------|---------|--|
| 9        | Length (ft)     | Length (ft) | (\$/LF) |  |
|          | 151             | 124         | \$83.68 |  |
|          | 0               | 51          | \$84.21 |  |
|          | 51              | 0           | \$94.34 |  |
| <b>-</b> | \$17,447        | \$14,671    |         |  |

New design leads to \$2,800 in savings

- Structural steel savings are a result of a different design approach.
- There would be negligible structural steel savings associated with designing to the IBC rather than the CBC with regards to the mechanical system.



- Thesis Objective
- Mechanical Depth
- Structural Breadth

#### **Electrical Breadth**

**Evaluation & Conclusion** >

#### Electrical Breadth

Will smaller RTU's designed according to the IBC lead to a reduction in electrical wiring?



- > Thesis Objective
- Mechanical Depth
- Structural Breadth

#### **Electrical Breadth** $\succ$

**Evaluation & Conclusion**  $\geq$ 

#### Electrical Breadth

#### Michael Gramarossa



#### Northeastern Illinois University's El Centro



- Thesis Objective
- Mechanical Depth
- Structural Breadth
- **Electrical Breadth**  $\succ$
- **Evaluation & Conclusion**  $\geq$

#### Electrical Breadth

- The same as structural, using the IBC in lieu of the CBC will lead to minimal to no electrical cost savings
- The savings associated were a result of a different design strategy





- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion**  $\succ$ City of Chicago Study
  - Overall Evaluation
  - > Acknowledgements

#### City of Chicago Study



Northeastern Illinois University's El Centro



- > Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion** City of Chicago Study
  - Overall Evaluation
  - > Acknowledgements

### City of Chicago Study



Reduce Chicago's greenhouse gas emissions by 80% below 1990 levels by 2050

Michael Gramarossa

# CHICAGO CLIMATE ACTION PLAN

#### **Energy Efficient Buildings (30%)**

Clean & Renewable Energy Sources (34%) Improved Transportation Options (23%) Reduction Waste & Industrial Pollution (13%) Adaptation





- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion** > City of Chicago Study
  - Overall Evaluation
  - > Acknowledgements

City of Chicago Study

**Potential Savings 2.9% \$87 million per year** 

## **Chicago Building Energy** \$3 billion per year



Northeastern Illinois University's El Centro



- > Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion** City of Chicago Study
  - > Overall Evaluation
  - > Acknowledgements

City of Chicago Study

**Potential Savings 2.9% \$87 million per year** 

## **Chicago Building Energy** \$3 billion per year

**Chicago Building Emissions** 63 billion lbs.  $CO_{2e}$  per year

**Potential Savings 2.42%** 1.5 billion lbs. CO<sub>2e</sub> per year

**Equivalent to taking 184,000** cars off of the road



- Building Summary
- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion**  $\succ$ 
  - City of Chicago Study
  - > Overall Evaluation
  - > Acknowledgements

#### **Overall Evaluation**



- Possible Mechanical First Cost Savings
- No Structural or Electrical Cost Savings
- Energy Cost Savings 2.9%
- Emission Savings 2.42%



- Thesis Objective
- Mechanical Depth
- Structural Breadth
- ➢ Electrical Breadth
- **Evaluation & Conclusion**  $\succ$ 
  - City of Chicago Study
  - > Overall Evaluation
  - > Acknowledgements

#### **Overall Evaluation**



Michael Gramarossa



- Possible Mechanical First Cost Savings
- No Structural or Electrical Cost Savings •
- Energy Cost Savings 2.9%
- Emission Savings 2.42%
- Minimal Impact on a small scale
- Big impact on a large scale



- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion**  $\succ$ 
  - City of Chicago Study
  - Overall Evaluation
  - > Acknowledgements

#### Acknowledgements

Primera Engineers

**Professor Freihaut** 

Penn State AE Faculty and Staff

Friends and Family

And of course,

# **Brimera**





- Thesis Objective
- Mechanical Depth
- Structural Breadth
- Electrical Breadth
- **Evaluation & Conclusion**  $\succ$ 
  - City of Chicago Study
  - Overall Evaluation
  - Acknowledgements

#### Acknowledgements

Primera Engineers

**Professor Freihaut** 

Penn State AE Faculty and Staff

Friends and Family

And of course, President Obama

# **Primera**









#### Michael Gramarossa

# Questions?



| Summary            | Energy Savings |              | Annual Co | st Savings   | Emission Savings |                           |
|--------------------|----------------|--------------|-----------|--------------|------------------|---------------------------|
| of Savings         | %              | kBtu/year    | %         | \$/year      | %                | lbs. CO <sub>2e</sub> /yr |
| NEIU El<br>Centro  | 6.70%          | 232,000      | 2.90%     | \$1,850      | 2.42%            | 33,600                    |
| City of<br>Chicago | 6.70%          | 10.4 billion | 2.90%     | \$87 million | 2.42%            | 1.5 billion               |

| System   | Equipment | V/PH/Hz  | FLA | МОСР  | kVA               | Wire (Copper)<br>(THWN) | Ground<br>(Copper) | Conduit<br>(EMT) |
|----------|-----------|----------|-----|-------|-------------------|-------------------------|--------------------|------------------|
|          | RTU-1     | 460/3/60 | 149 | 150 A | 124               | (4) #2/0                | #6                 | 2"               |
| Eviating | RTU-2     | 460/3/60 | 149 | 150 A | 124               | (4) #2/0                | #6                 | 2"               |
| Existing | CU-1      | 460/3/60 | 227 | 250 A | 189               | (4) 350 kcmil           | #4                 | 3 1/2"           |
|          | CU-2      | 460/3/60 | 227 | 250 A | 189               | (4) 350 kcmil           | #4                 | 3 1/2"           |
| New      | RTU-1     | 460/3/60 | 257 | 300 A | 214 (4) 300 kcmil |                         | #4                 | 2 1/2"           |
|          | RTU-2     | 460/3/60 | 257 | 300 A | 214               | (4) 300 kcmil           | #4                 | 2 1/2"           |

| System   | Panel<br>Label | Equipment<br>Served | Voltage | FLA | kVA | МОСР  | Feeder Size<br>(Copper, THWN, EMT)                |
|----------|----------------|---------------------|---------|-----|-----|-------|---------------------------------------------------|
| Existing | DPM3-1         | RTU-1 & RTU-2       | 480/277 | 298 | 248 | 600 A | (2) sets: 4-350 kcmil,<br>#1/0 Grd, 3 1/2" C      |
| New      | DPM3-1         | RTU-1 & RTU-2       | 480/277 | 514 | 428 | 800 A | (3) sets: 4-300 kcmil,<br>#2 Grd, <b>2 1/2" C</b> |

[300 *kcmil*] [#2]

Table 26 – Existing and New Branch Wire Sizing for RTUs

[300 kcmil]  $0.4608 in^2 * 4 = 1.8432 in^2$  $0.0824 in^2 * 1 = 0.0824 in^2$ [#4] 1.9256 in<sup>2</sup> ∴ use **2 ½" Conduit** PENNSTATE

1 8 5 5

## Electrical Appendix

Table 27 – Existing and New Feeder Sizing for RTUs

$$0.4608 in2 * 4 = 1.8432 in2 0.1158 in2 * 1 = 0.1158 in2 1.959 in2 ∴ use 2 1⁄2" Conduit$$

| Total Amount Chicago | Potential | Potential    |
|----------------------|-----------|--------------|
| Spends on            | Savings   | Savings      |
| Building Energy (\$) | (%)       | (\$)         |
| \$3 billion          | 2.90%     | \$87 million |

| Total Amount<br>of Energy Used by<br>Chicago Buildings<br>(kBtu/year) | Potential<br>Savings<br>(%) | Potential<br>Savings<br>(\$/year) |
|-----------------------------------------------------------------------|-----------------------------|-----------------------------------|
| 155 billion kBtu                                                      | 6.70%                       | 10.4 billion kBtu                 |





lbs. C

tons C

Equivaler the Roa



#### Michael Gramarossa

## City of Chicago Appendix

| Unit                             | it<br>Chicago Buildings<br>(CO <sub>2e</sub> /year) |       | Potential<br>Savings<br>(CO <sub>2e</sub> /year) |  |
|----------------------------------|-----------------------------------------------------|-------|--------------------------------------------------|--|
| CO <sub>2e</sub> /year           | 63 billion lbs.                                     | 2.42% | 6 <b>1.5 billion lbs.</b>                        |  |
| CO <sub>2e</sub> /year           | 31.6 million tons                                   | 2.42% | 765,000 tons                                     |  |
| t of Cars on<br>7.6 million cars |                                                     | 2.42% | 184,000 cars                                     |  |

| Rank | City          | Country              | No. of<br>Skyscrapers |
|------|---------------|----------------------|-----------------------|
| 1    | Hong Kong     | China                | 302                   |
| 2    | New York City | United States        | 235                   |
| 3    | Dubai         | United Arab Emirates | 148                   |
| 4    | Shanghai      | China                | 126                   |
| 5    | Chicago       | United States        | 115                   |
| 6    | Tokyo         | Japan                | 112                   |
| 7    | Chongqing     | China                | 94                    |
| 8    | Guangzhou     | China                | 93                    |
| 9    | Shenzhen      | China                | 83                    |
| 10   | Singapore     | Singapore            | 79                    |

| Building Type            | kBTU/ft²/yr |
|--------------------------|-------------|
| Large Office             | 43          |
| Medium Office            | 48          |
| Small Office             | 51          |
| Warehouse                | 24          |
| Stand-alone Retail       | 81          |
| Strip Mall               | 85          |
| Primary School           | 65          |
| Secondary School         | 76          |
| Supermarket              | 195         |
| Quick Service Restaurant | 657         |
| Hospital                 | 148         |
| Outpatient Facility      | 271         |
| Small Hotel              | 80          |
| Large Hotel              | 138         |
| Mid-Rise Apartment       | 47          |
| NEIU El Centro*          | 62          |