

NORTHEAST USA

Faculty Advisor | Dr. William Bahnfleth

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades

 - Latent Thermal Storage (MAE)
- Construction Breadth Thermal Storage Changes
- Electrical Breadth Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

Variable Primary Flow (MAE)

PRESENTATION OUTLINE Building Information

Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

BUILDING INFORMATION

Project Information

Size | 133,847 Square Feet Partial Basement **Construction Cost |** \$52.1 million

Architecture

- LEED Gold Certification
- ■5-Story Bio Wall
- 240-Seat Auditorium
- Laboratories & Science Classrooms
- Ground Floor Café
- Recycled Stone Exterior Cladding

- 5 Stories Above Grade
- 6th-Level Mechanical Penthouse
- **Occupancy** | Educational & Research Laboratory
- **Construction Schedule** | October 2009-July 2011
- **Delivery Method** | Design-Bid-Build

PROJECT TEAM

Owner | Information not for Publication **Architect** | Diamond + Schmitt Architects, Inc. Associate Architect | H2L2 Architects & Planners, LLC **General Contractor** | Turner Construction Company **MEP Engineer** | Crossey Engineering, Ltd. **MEP Engineer** | Spotts, Stevens, & McCoy, Inc. **Structural Engineer** | Halcrow Yolles Ltd. **Associate Structural Engineer** | Keast & Hood Co. **Civil/Landscape** | Stantec Consulting Services, Inc.

Building Information

Existing Mechanical Systems

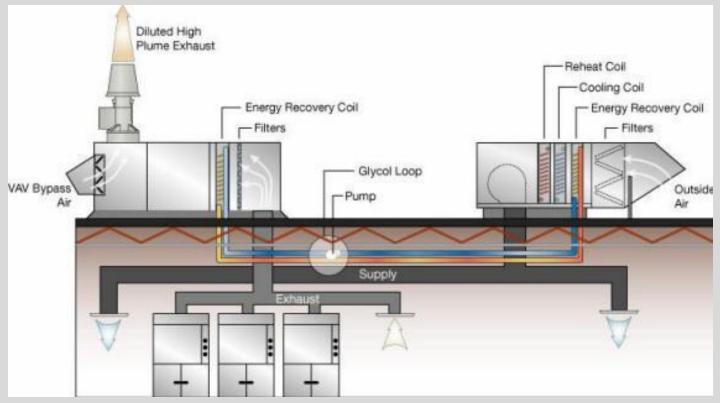
Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System


Conclusion & Summary

Acknowledgements

EXISTING MECHANICAL SYSTEMS

9 Air Systems

- VAV Systems w/ Hydronic Reheat
 - ■(4) Laboratory 100% OA w/ Runaround Heat
 - Recovery
 - (4) Offices/Classrooms/Atrium
- CAV System
 - •(1) Electrical & Data Closets

Run-Around Heat Recovery Coil Schematic

Building Information

Existing Mechanical Systems

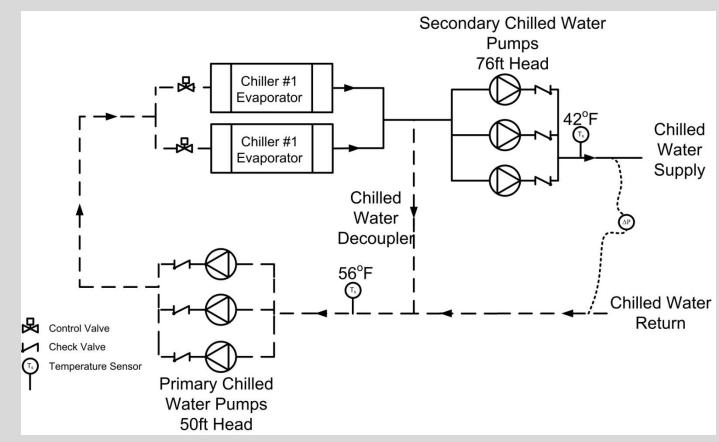
Building Energy Consumption Re-Design Goals Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System Conclusion & Summary

Acknowledgements


EXISTING MECHANICAL SYSTEMS

9 Air Systems

- VAV Systems w/ Hydronic Reheat
 - ■(4) Laboratory 100% OA w/ Runaround Heat
 - Recovery
 - (4) Offices/Classrooms/Atrium
- CAV System w/ Hydronic Reheat
 - •(1) Electrical & Data Closets

Chilled Water System

- (2) 620-ton Centrifugal Water-Cooled Chillers
- (2) 620-ton Direct, Induced Draft Cooling Towers
- Primary/Secondary Pumping System

Primary/Secondary Chilled Water System

Building Information

Existing Mechanical Systems

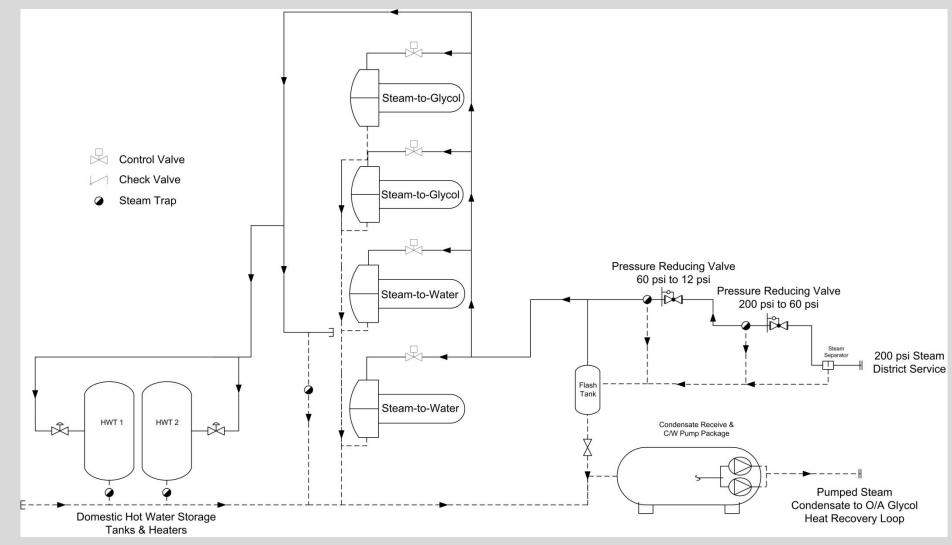
Building Energy Consumption Re-Design Goals Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary

Acknowledgements

EXISTING MECHANICAL SYSTEMS

9 Air Systems


- VAV Systems w/ Hydronic Reheat
 - ■(4) Laboratory 100% OA w/ Runaround Heat
 - Recovery
 - (4) Offices/Classrooms/Atrium
- CAV System w/ Hydronic Reheat
 - •(1) Electrical & Data Closets

Chilled Water System

- ■(2) 620-ton Centrifugal Water-Cooled Chillers
- ■(2) 620-ton Direct, Induced Draft Cooling Towers Primary/Secondary Pumping System

Hot Water System

- 200 psig District Steam Supply
- Two Pressure Reducing Stations to 12psig
- ■(2) 5105 lb/hr HXs 30% Glycol 180°F
- ■(2) 4500 lb/hr HXs Water at 180°F

Steam Distribution System

Building InformationExisting Mechanical Systems

Building Energy Consumption

Re-Design Goals

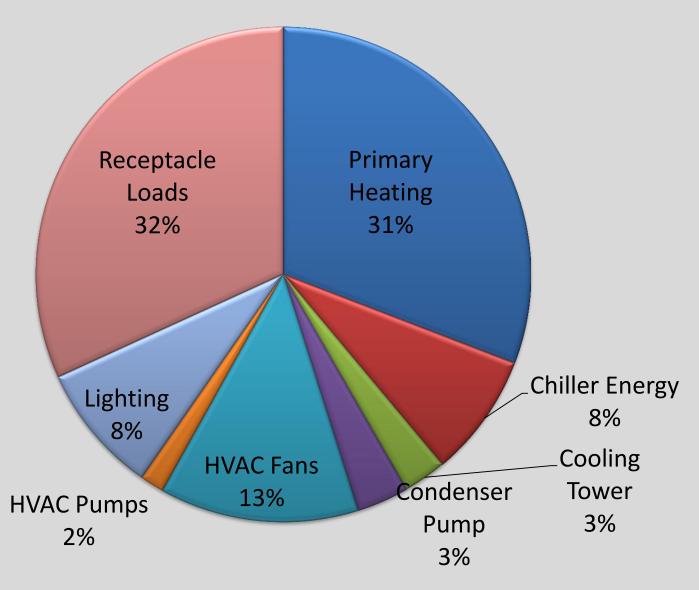
Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary


Acknowledgements

BUILDING ENERGY CONSUMPTION

Т

Annual Building Energy Consumption				
Function	Electricity (kWh)	Steam (kBtu)	kBtu/year	
Primary Heating	-	4,537,606	4548646	
Chiller Energy	349,031	-	1191243	
Cooling Tower	121,524	-	414761	
Condenser Pump	147,250	-	502564	
HVAC Fans	561366	-	1915942	
HVAC Pumps	67,930	-	231845	
Lighting	368,045	-	1256137	
Receptacle Loads	1,375,321	-	4693970	
otal Consumption	2,993,701	4,537,606	14755108	

Annual Building Energy Consumption (%)

Building Information Existing Mechanical Systems Building Energy Consumption

Re-Design Goals

Mechanical Upgrades

- Variable Primary Flow (MAE)
- Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System Conclusion & Summary

Acknowledgements

MECHANICAL RE-DESIGN GOALS

Overall Goals

Evaluation Electrical Bills Life Cycle Cost Emissions Impact

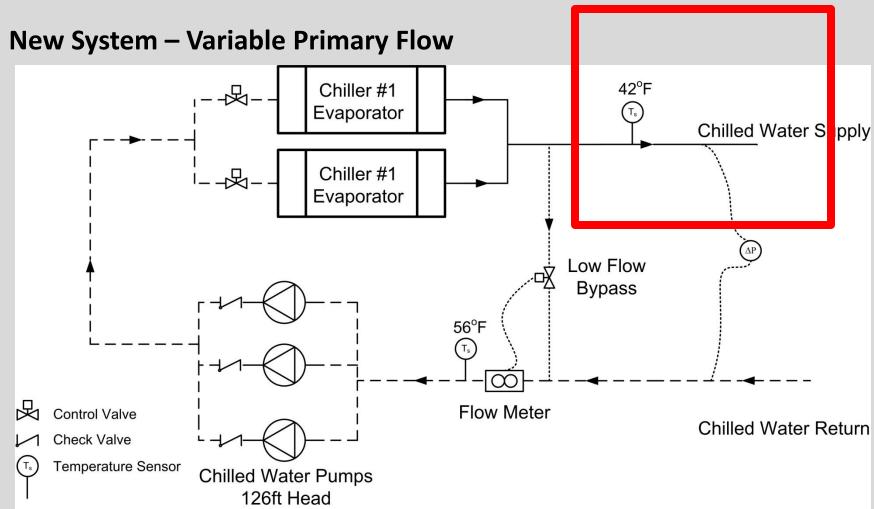
- Minimize Maintenance
- Reduce Emissions
- Reduce Costs Capital & Operating

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements


VARIABLE PRIMARY FLOW SYSTEM (MAE)

Immediate Benefits

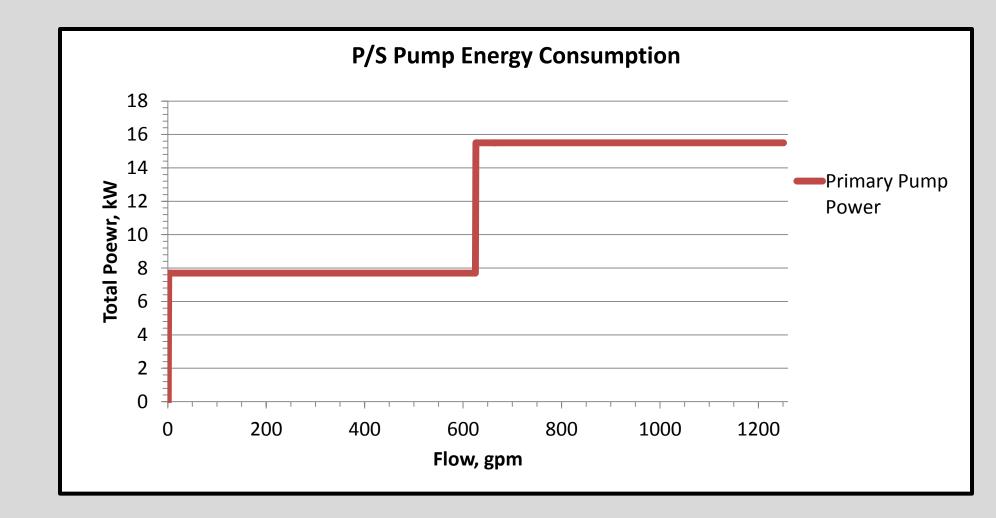
- Fewer Pumps
- Less Pumping Energy
- Reduced Annual Electrical Consumption
- ■Low **Δ**T Tolerance

Drawbacks

- Control Stability & Reliability
 - Open Loop Control Based on Inlet temperature
- Variable Flow Chiller Capability
 - New Chillers can Handle ΔV
- Typically Overhyped
 - Proven with Parametric Study

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

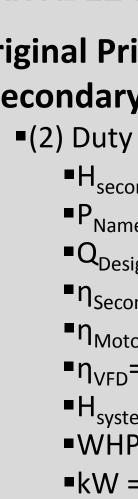

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

Original Primary/Secondary System Primary Pumps – Bell & Gossett 1510-3BC

- (2) Duty Pumps + (1) Standby Pump
 - ■50 ft Head
 - ■15 HP
 - ■625 GPM
 - $\eta_{Primary Pump} = 73\%$
 - ■η_{Motor} = 95%
 - WHP= (Q x H)/(3960 x η_{Primary})
 - • $kW = 0.746 \times WHP / (\eta_{Motor}) = 8.5 kW$

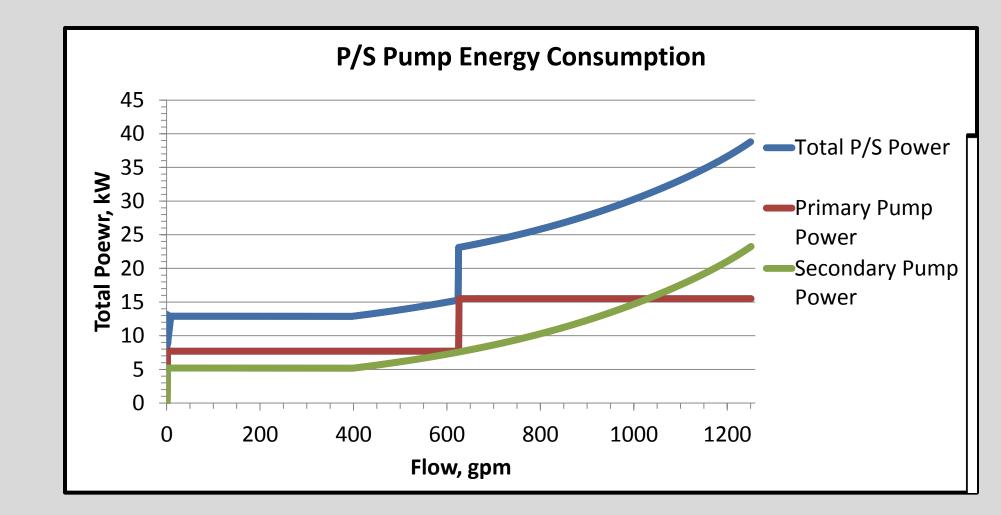
VARIABLE PRIMARY FLOW SYSTEM (MAE)



Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

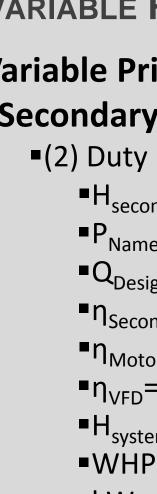
Variable Primary Flow (MAE)


Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

VARIABLE PRIMARY FLOW SYSTEM (MAE)

Original Primary/Secondary System Secondary Pumps – Bell & Gossett 1510-4BC

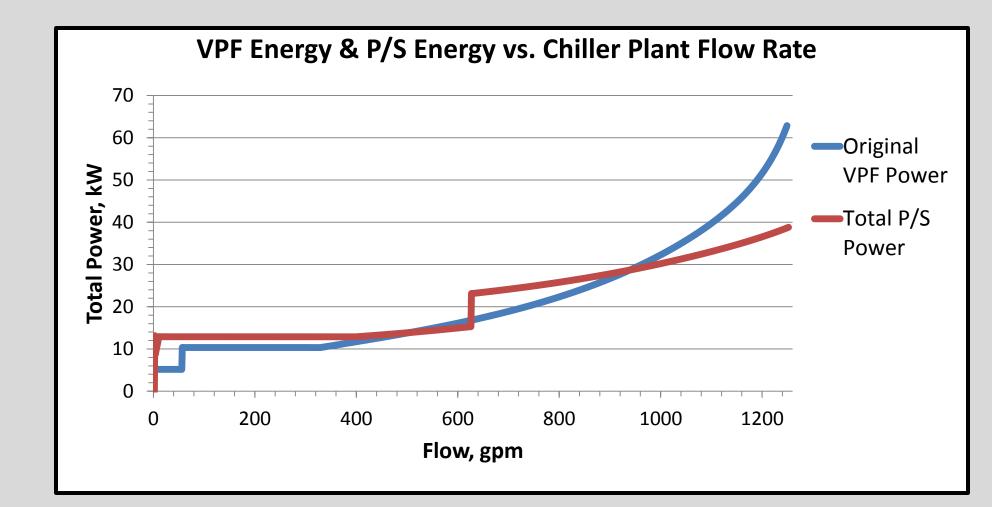
```
(2) Duty Pumps + (1) Standby Pump
     H<sub>secondary</sub> = f(Q<sub>Actual</sub>, N<sub>Actual</sub>)
     ■P<sub>Nameplate</sub> =15 HP
     ■Q<sub>Design</sub> = 625 GPM
     \Pi_{\text{Secondary Pump}} = f(Q_{\text{Actual}}, N_{\text{Actual}})
     \bullet \eta_{Motor} = f(P_{Shaft}, P_{Nameplate})
     \bullet \eta_{VFD} = f(N_{Actual}, N_{Secondary})
     = H_{system} = H_{fixed} + [H_{Design} + H_{fixed}][Q_{Actual}/Q_{Design}]
      •WHP= (Q_{Actual} \times H_{System})/(3960 \times \eta_{Secondary})
     •kW = 0.746 x WHP/ (\eta_{Motor}, \eta_{VED})
```



Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE)


Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

VARIABLE PRIMARY FLOW SYSTEM (MAE)

Variable Primary Flow System Secondary Pumps – Bell & Gossett 1510-3G

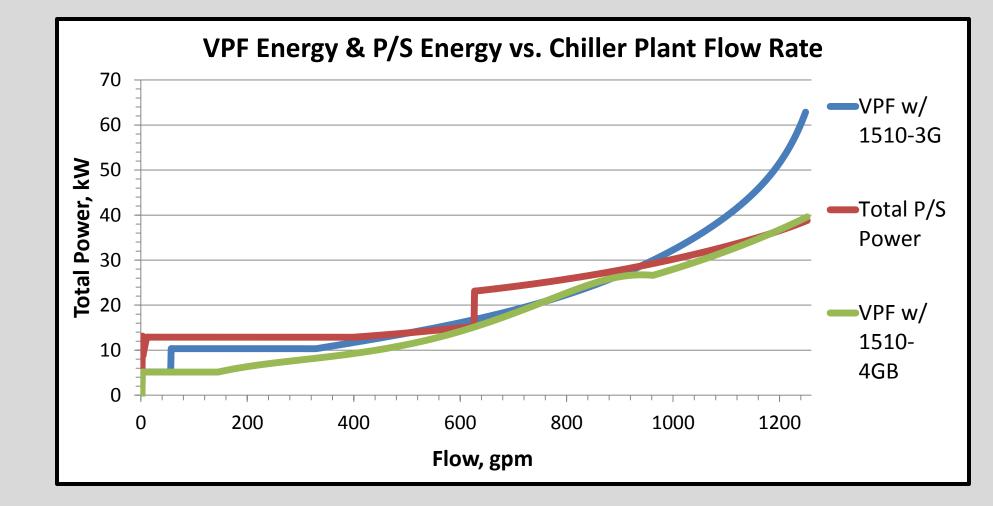
```
(2) Duty Pumps + (1) Standby Pump
     \blacksquare H_{secondary} = f(Q_{Actual}, N_{Actual})
     ■P<sub>Nameplate</sub> =30 HP
     ■Q<sub>Design</sub> = 625 GPM
     \Pi_{\text{Secondary Pump}} = f(Q_{\text{Actual}}, N_{\text{Actual}})
     \bullet \eta_{Motor} = f(P_{Shaft}, P_{Nameplate})
      = \eta_{VFD} = f(N_{Actual}, N_{Secondary}) 
     = H_{system} = H_{fixed} + [H_{Design} + H_{fixed}][Q_{Actual}/Q_{Design}]
     •WHP= (Q_{Actual} \times H_{System})/(3960 \times \eta_{Secondary})
     •kW = 0.746 x WHP/ (\eta_{Motor})
```


Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

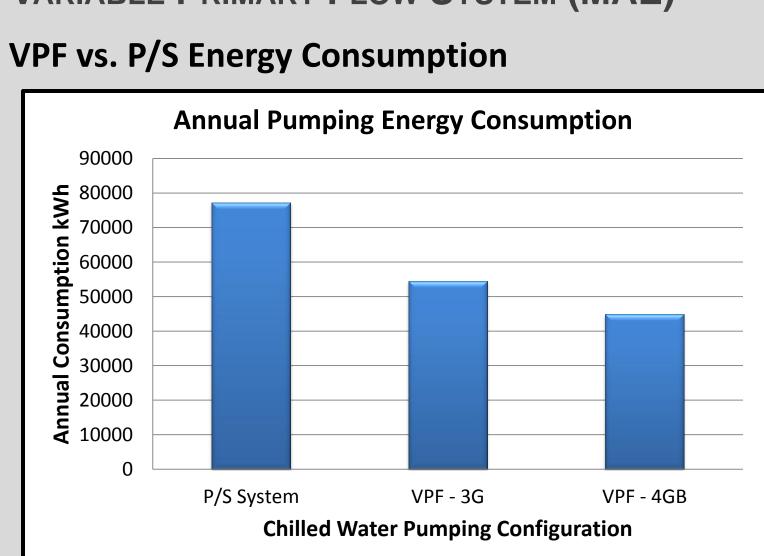

■B&G 1510-3G

■B&G 1510-4GB

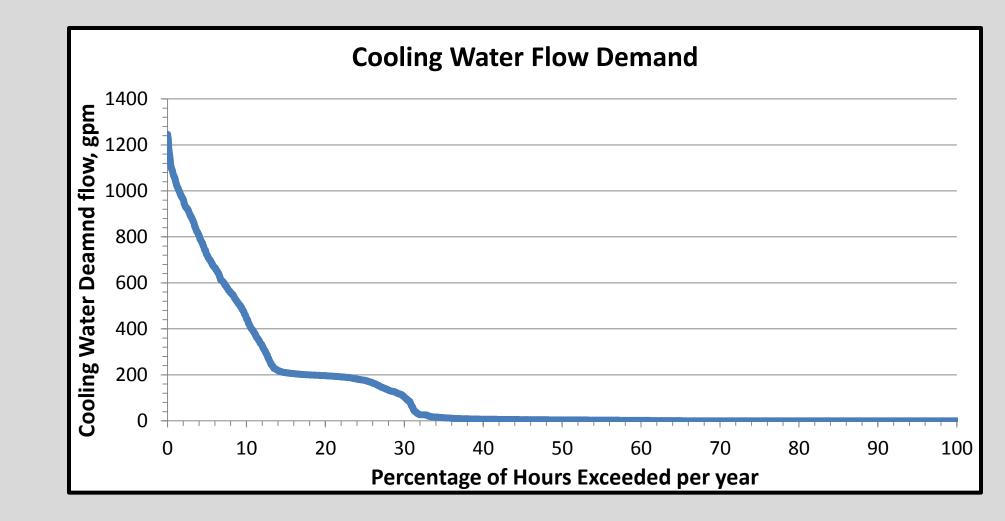
■η_{Design Flow} = 80% ■η_{150 GPM}=58%

VARIABLE PRIMARY FLOW SYSTEM (MAE)

Variable Primary Flow System Secondary Pumps – Bell & Gossett 1510-4GB ■30HP Motor $\eta_{\text{Design Flow}} = 68\%$ ■Ŋ_{150 GPM}=45% ■25HP Motor



Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals


Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

VARIABLE PRIMARY FLOW SYSTEM (MAE)

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE)

Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

VARIABLE PRIMARY FLOW SYSTEM (MAE)

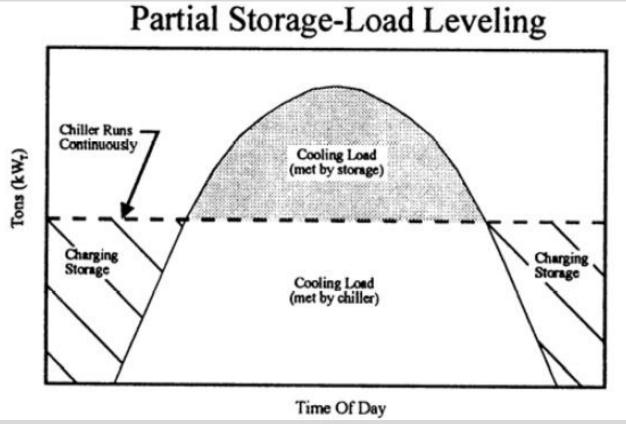
•VPF vs. P/S Cost Analysis

30-Year Life Cycle Cost Breakdown			
LCC 30-year Net Present Value Primary/Secondary VPF [1510-40			
Capital Costs \$70,725		\$51,050	
Overhauls	\$8,966	\$14,671	
Maintenance	\$20,383	\$20,383	
Electricity Consumption \$76,806		\$44,707	
Total 30-year Life Cycle Cost\$176,880		\$130,811	
	\$46,069		

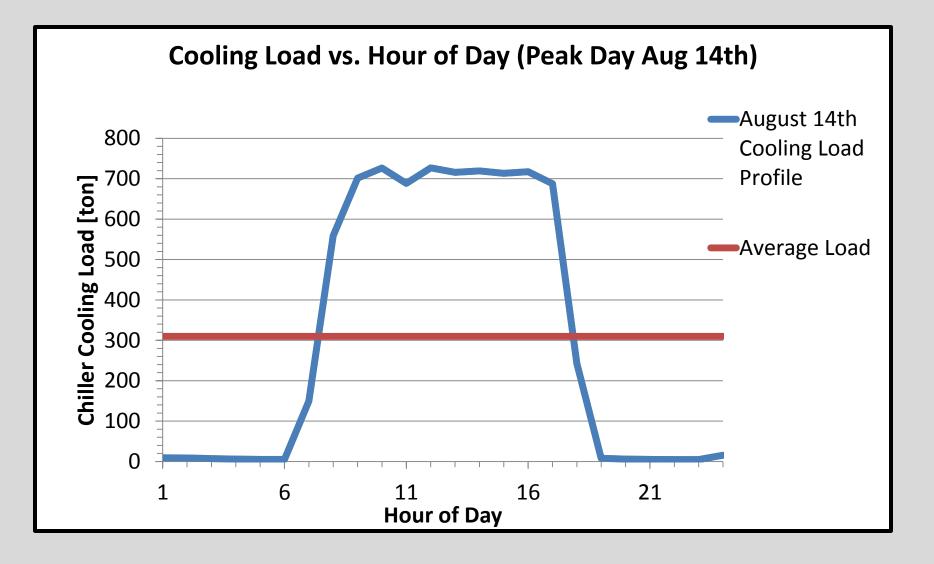
- Lower First Cost 3 Fewer Pumps
- Larger VFD Replacement costs
- Lower Electricity Costs
- **30**-Year Cost Savings of \$46,069.00

Annual Consumption Cost				
	P/S System	VPF - 3G	VPF - 4GB	
Annual Consumption (kWh)	77154.67	54529	44910	
Savings over P/S (kWh)	-	22626	32245	
Savings Over P/S	-	29%	42%	
Total Plant Savings	-	2.78%	3.97%	
Annual Consumption Cost	\$3,718.86	\$2,628.30	\$2,164.66	
Annual Dollar Savings	-	\$1,090.56	\$1,554.20	

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals


Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

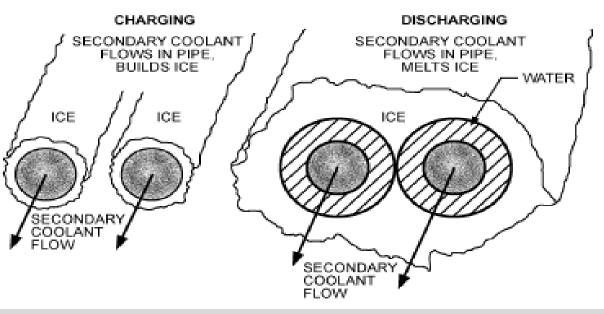

LATENT THERMAL STORAGE (MAE)

Immediate Benefits

Smaller Chillers

- Reduced Electrical Demand
- Increased Short-Term Redundancy

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals


Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

LATENT THERMAL STORAGE (MAE)

Latent (Ice) Storage

- Benefits
 - High Capacity to Volume Ratio
 - Cost Effective for Smaller Systems
- Disadvantages
 - Lower Chiller Efficiency & Capacity
 - Dynamic Heat Transfer Properties

Chiller Sizing Original System

•730-ton Peak Cooling Load

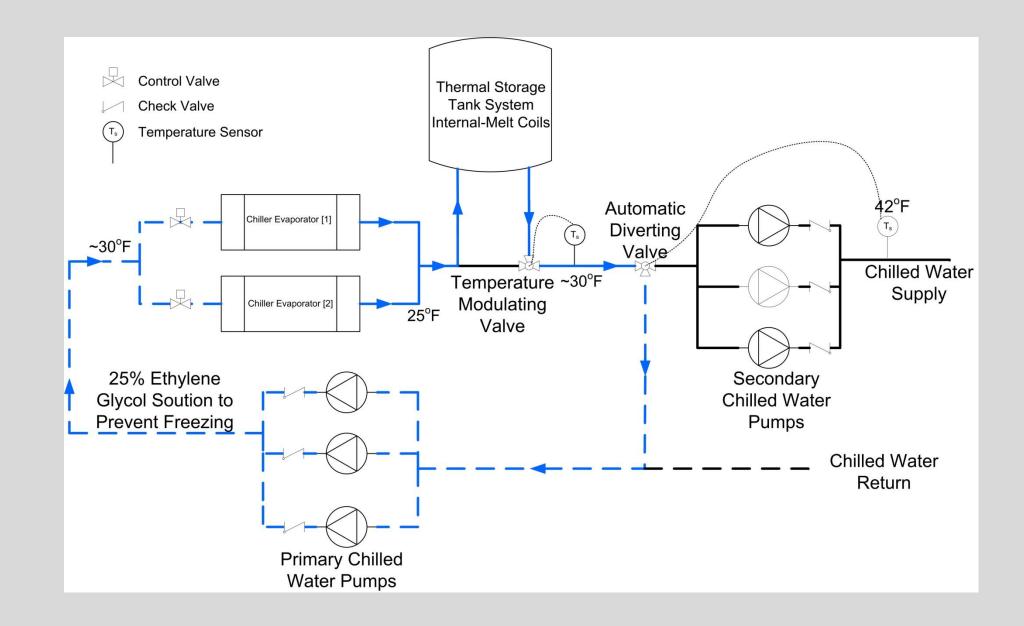
- ■(2) 370-ton "Duty" Chillers
- ■(1) 370-ton "Standby" Chiller

Ice Storage Chiller

- 400-ton Peak Cooling Load
- (2) 200-ton "Duty" Chillers [130-ton Ice Capacity]
- (1) 200-ton "Standby" Chiller [130-ton Ice Capacity]
- 2900 ton-hour Storage System

Building Information
Existing Mechanical Systems
Building Energy Consumption
Re-Design Goals

Mechanical Upgrades


Variable Primary Flow (MAE)
Latent Thermal Storage (MAE)
Electrical Breadth – Solar Photovoltaic System
Conclusion & Summary

Acknowledgements

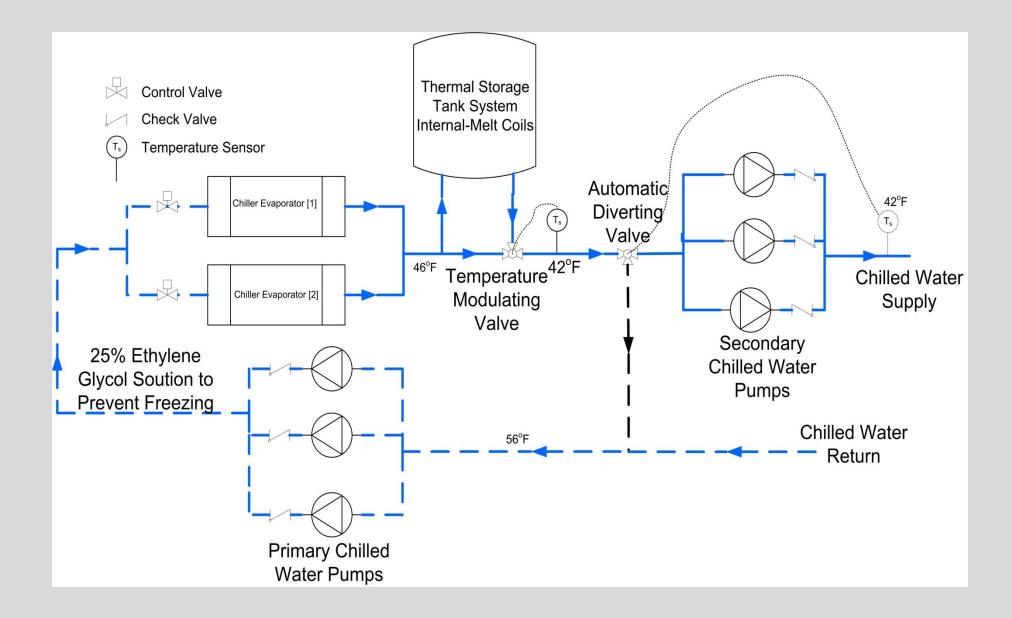
LATENT THERMAL STORAGE (MAE)

System Operation – "Charge" Mode

- Automatic Diverting Valve Sends Water to Bypass
- Chillers Operate at Low Temperature ~25°F
- 25% Glycol Solution goes to Storage Tanks
- •Water in Tanks Freezes
- ■Water Returns to Primary Loop at ~30°F

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades


Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary

Acknowledgements

LATENT THERMAL STORAGE (MAE)

System Operation – "Discharge" Mode

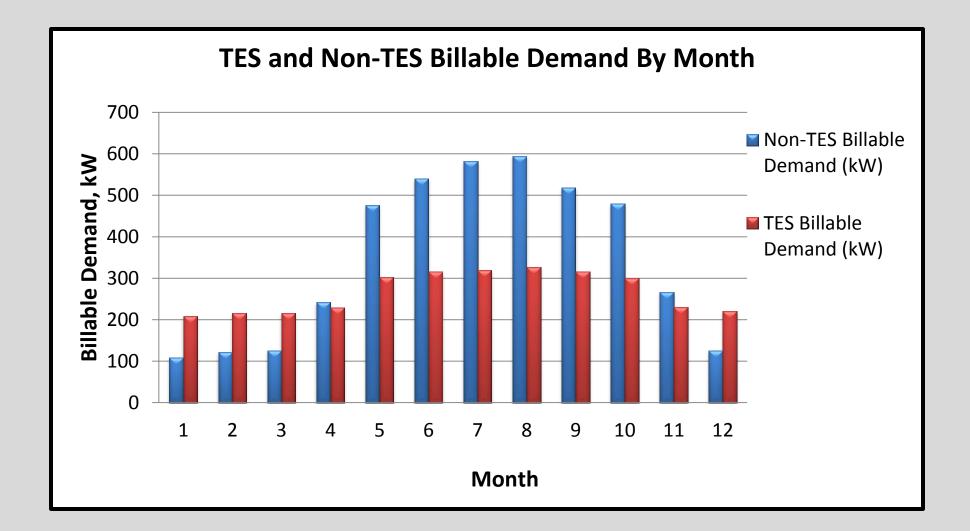
Automatic Diverting Valve Sends Water to Secondary Chillers Operate at Higher Temperature ~46°F •25% Glycol Solution goes to Storage Tanks •Mixing Valve Regulates flow from Storage based on T_{CHWS} Diverting Valve Regulates flow through to Secondary

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

LATENT THERMAL STORAGE (MAE)


Energy Analysis

- - Wet Bulb Temperature (Night vs. Day)
 - Chiller Efficiency
 - Chiller Capacity
 - Discharge Strategy

- Chiller Priority
- Peak Daily Load
- Daily ton-hours required
- Demand Reduction
- Consumption Increase

Variables Include

- Optimized
- Storage Priority

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

LATENT THERMAL STORAGE (MAE)

Energy Analysis Results Demand [kW]

- Lower Demand Charges During Cooling Months
- Higher Demand During Winter

- Annual Increase of 22%
- Ice Efficiency Penalty
- Not Offset by Lower Nighttime T_{WB}

Energy Consumption [kWh]				
Original Energy Consumption TES Electricity Consumption				
Annual Energy Consumption	685,734 kWh	875,578 kWh		
Increase Over Original -		189,844kWh		
Consumption Costs \$33,052.36		\$42,202.85		
Net L	\$9150.49			

Would not Operate Storage during Winter Consumption [kWh]

Monthly Demand	Νοι	n Storage	Storage	
Charges	kW	Demand Fee	kW	Demand Fee
January	108.4	\$972.35	208	\$1,865.76
February	121.8	\$1,092.55	216	\$1,937.52
March	125.7	\$1,127.53	216	\$1,937.52
April	242.1	\$2,171.64	229.2	\$2,055.92
May	476	\$4,269.72	302.4	\$2,712.53
June	539.6	\$4,840.21	316.4	\$2,838.11
July	582	\$5,220.54	319.4	\$2,865.02
August	594.8	\$5,335.36	326.8	\$2,931.40
September	518.4	\$4,650.05	316.4	\$2,838.11
October	479.5	\$4,301.12	299.9	\$2,690.10
November	266.5	\$2,390.51	230.8	\$2,070.28
December	125.6	\$1,126.63	22.4	\$200.93
Annual Billing Demand kW	4180.4	\$37,498.19	2795.7	\$26,943.19
Net Benefit			1384.7	\$10,555.00

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals

Mechanical Upgrades

Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System Conclusion & Summary Acknowledgements

LATENT THERMAL STORAGE (MAE)

Cost Analysis

- \$1400.00 per year Savings on Energy Bills
- Lower Initial Cost Due to Chiller Plant
- Reduced Chiller Maintenance
- Very Low Storage System Maintenance ■30-Year Savings \$448,152.00

30-Year Life Cycle Cost Breakdown				
year Net Present Value Non-Storage		Thermal Storage		
Capital Costs	\$1,642,500	\$1,427,184		
Maintenance	\$509,572	\$305,743		
Electricity Costs	\$1,457,096	\$1,428,088		
30-year Life Cycle Cost	\$3,161,016			
Total 30-year Saving	\$448,152			

First Cost					
	Original System	TES			
Chiller Plant	\$1,642,500.00	\$900,000.00			
Tanks (Includes Slab, Glycol, Controls, Local Piping	\$0.00	\$437,400.00			
3-Way Valve	\$0.00	\$3,000.00			
A/G Piping & Insulation	\$0.00	\$13,090.00			
U/G Piping & Insulation	\$0.00	\$62,400.00			
U/G Piping Excavation	\$0.00	\$936.00			
U/G Piping Fill	\$0.00	\$982.80			
Concrete Pad Excavation (4-foot tank burial)	\$0.00	\$2,755.50			
Privacy Fence	\$0.00	\$6,620.00			
Total First Cost	\$ 1,642,500.00	\$ 1,427,184.30			

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE)

Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary Acknowledgements

SOLAR PHOTOVOLTAIC SYSTEM – ELECTRICAL DEPTH

System Parameters

- ■80 kW
- ■10° Fixed Tilt

■(348) BP3230T Panels

■77% DC to AC Efficiency

1000	
17	

10 $^\circ$ Fixed Tilt NREL Data				
Month	Peak Sun Hours	Days/	kWh/	
	(kWh/m²-day)	month	month	
1	2.41	31	4604	
2	3.18	28	5488	
3	4.65	31	8884	
4	5.26	30	9725	
5	5.98	31	11425	
6	6.36	30	11759	
7	6.02	31	11502	
8	5.67	31	10833	
9	4.91	30	9078	
10	3.8	31	7260	
11	2.6	30	4807	
12	2.18	31	4165	
Year	4.42	365	99429	

Component	De-Rate Value
PV Module Nameplate DC Rating	95%
Inverter and Transformer	97%
Mismatch	98%
Diodes and Connections	100%
DC Wiring	98%
AC Wiring	99%
Soiling	95%
System Availability	98%
Shading	100%
Sun Tracking	100%
Age	95%
Overall De-Rate Factor	77%

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE)

Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary Acknowledgements

Financial Incentives MACRS (Modified Accelerated cost Recovery System) **Depreciation Tax Deductions -** \$123,885.00

MACRS (Mo System) De Depreciation

Federal Renewable Energy Production Incentive (REPI) ■\$0.013/kWh (Adjusted 1993 USD) for first 10 years Approximately \$2,500/year x 10 years = \$25,000

SOLAR PHOTOVOLTAIC SYSTEM – ELECTRICAL DEPTH

odified Accelerated Cost Recovery				
preciation Tax Deductions				
Year Net System Cost \$39		\$393,288.00		
2011	10.00%	\$13,765.08		
2012	32.00%	\$44,048.26		
2013	19.20%	\$26,428.95		
2014	11.52%	\$15,857.37		
2015	11.52%	\$15,857.37		
2016	5.76%	\$7,928.69		

Pennsylvania Sunshine Solar Rebate Program				
Pennsylvania Sunshine Solar Rebate Program				
	Rebate \$/kW Rebate Amount			
First 10kW	\$0.75 \$0.50	\$ 7,500.00		
Next 70kW	\$0.50	\$ 35,000.00		
	Total	\$ 42,500.00		

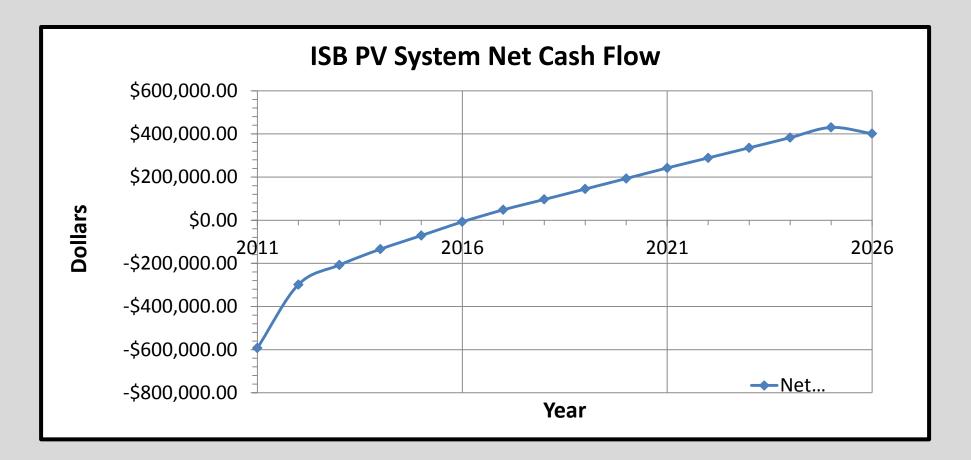
Pennsylvania Public Utilities Commission – Solar

Alternative Energy Credits (SEAC)

■Up to \$39,772.00 Annually

Federal Energy Investment Tax Credit (ITC)

- ■30% of Initial Investment
- **\$191,000.00**


Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE) Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary Acknowledgements

- System Cost Estimate
 - Panel Cost
 - ■\$680.00 per Module x 348 Modules = \$236,400.00
 - Installation Cost
 - \$5.00 per Watt x 80,000 Watts = \$400,200.00
 - Total System Cost
 - ■\$636,840.00
- Total Payback Period
 - ■5 Years
- Total 15-Year Benefit
 - ■\$401,248.71

SOLAR PHOTOVOLTAIC SYSTEM – ELECTRICAL DEPTH

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary

Acknowledgements

SUMMARY & CONCLUSION

Variable Primary Flow System

- Saves \$1,554.00 Annually
- Lower Capital Cost
- **30-Year LCC Reduction of \$46,069.00**
- Decreases Electrical Consumption & Emissions
- Latent Thermal Storage System
 - Saves \$1404.51 Annually
 - Lower Capital Cost
 - **30-Year LCC Reduction of \$448,152.00**
 - Increases Electrical Consumption & Emissions
- Solar Photovoltaic System
 - **5**-Year Payback Period
 - **15-Year LCC Return of \$401,248.00**
 - Decreases Electrical Consumption & Emissions

Annual Emissions for Electrical Consumption				
Pollutant	VPF Emissions	Solar PV Emissions	Latent Thermal Storage	
	Savings Per Year (lb)	Savings Per Year (lb)	Increase per Year (lb)	
Electric Use	32245 kWh	99429 kWh	189844 kWh	
CO _{2e}	56106	173006	330329	
CO ₂	52881	163064	311344	
CH ₄	116	357	682	
N ₂ O	1	4	7	
NO _x	97	298	570	
SO _x	276	852	1627	
СО	28	85	162	
тимос	2	7	14	
Lead	0	0	0	
Mercury	0	0	0	
PM10	3	9	18	
Solid Waste	6610	20383	38918	

Building Information Existing Mechanical Systems Building Energy Consumption Re-Design Goals Mechanical Upgrades Variable Primary Flow (MAE) Latent Thermal Storage (MAE) Electrical Breadth – Solar Photovoltaic System

Conclusion & Summary

Acknowledgements

5-Year Payback Period

- **SUMMARY & CONCLUSION**
- Variable Primary Flow System
 - Saves \$1,554.00 Annually
 - Lower Capital Cost
 - **30-Year LCC Reduction of \$46,069.00**
 - Decreases Electrical Consumption & Emissions
- Latent Thermal Storage System
 - Saves \$1404.51 Annually
 - Lower Capital Cost
 - **30-Year LCC Reduction of \$448,152.00**
 - Increases Electrical Consumption & Emissions
- Solar Photovoltaic System

- **15-Year LCC Return of \$401,248.00**
- Decreases Electrical Consumption & Emissions

Annual Emissions for Electrical Consumption				
Pollutant	VPF Emissions	Solar PV Emissions	Latent Thermal Storage	
	Savings Per Year (lb)	Savings Per Year (lb)	Increase per Year (lb)	
Electric Use	32245 kWh	99429 kWh	189844 kWh	
CO _{2e}	56106	173006	330329	
CO ₂	52881	163064	311344	
CH ₄	116	357	682	
N ₂ O	1	4	7	
NO _x	97	298	570	
SO _x	276	852	1627	
СО	28	85	162	
ТЛМОС	2	7	14	
Lead	0	0	0	
Mercury	0	0	0	
PM10	3	9	18	
Solid Waste	6610	20383	38918	

- Dr. William Bahnfleth, Faculty Advisor
- Dr. Jim Freihaut, Penn State AE Faculty
- **Dr.** Jelena Srebric, Penn State AE Faculty
- **Dr. Stephen Treado, Penn State AE Faculty**
- Earl Rudolph, CALMAC Manufacturing Corporation
- Scott Kincaid, Tozour Energy Services
- Turner Construction
- Amy Cavanaugh, Turner Construction Fellow AE Students

ACKNOWLEDGEMENTS

THANK YOU

QUESTIONS & COMMENTS

