

# Rebecca Rubert Mechanical Option

NWI Enterprises Frazer, PA



NWI Enterprises

Corporate Office Building

Honors Senior Thesis April 16, 2003



# Rebecca Rubert Mechanical Option

NWI Enterprises Frazer, PA

#### Outline

- Existing Conditions
- DOAS/Radiant System
- Cost Analysis
- Lighting Study
- Productivity Study



## Project Team

- Owner: NWI Enterprises
- Architect/Engineer/Interior Designer: Kling
- General Contractor: Barclay White





# Existing Conditions



#### Site Conditions

- Site previously utilized by the owner
- Master Plan to include 885,000 ft<sup>2</sup>
- Two buildings:
  - Phase 1-336,000 ft<sup>2</sup>
  - Phase 2-186,000 ft<sup>2</sup>







## **Existing Conditions-Architectural**



- Red brick curtain wall enclosure
- Aluminum window system
- Mechanical penthouses

- Office space
- Dining room/Servery
- 24-space parking garage





## Existing Conditions-Building Systems

- Structural-Steel Framing
  - Lateral System-Braced Frames
  - Gravity System-Composite Beams
- Electrical/Lighting
  - Existing 4160V substation serves 480Y/277V transformers throughout the campus via underground 5 kV cables
  - Indoor lighting-fluorescent and incandescent lamps



## Existing Conditions-Central Chiller Plant

- Located in Phase 1 building
- (3) 650-ton water cooled vapor compression chillers
- (1) 650-ton gas-fired LiBr absorption chiller
- (4) Induced draft cooling towers located in sevice yard



## Existing Conditions-Air Handling System

- (4) 45,000 cfm Rooftop Air Handling Units (AHU)
- VAV air distribution system
- Cooling coils served by 44° F chilled water from chilled water plant
- Air is supplied at 55° F



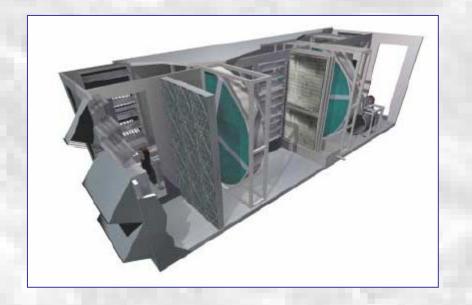
## Problems with the System

- VAV system does not adequately meet the intent of ASHRAE Standard 62-2001
  - Less than adequate quality of indoor air
  - Less than thermally comfortable

## Proposed Solution

Dedicated Outdoor Air System (DOAS) in parallel with a Radiant Cooling Panel chilled ceiling



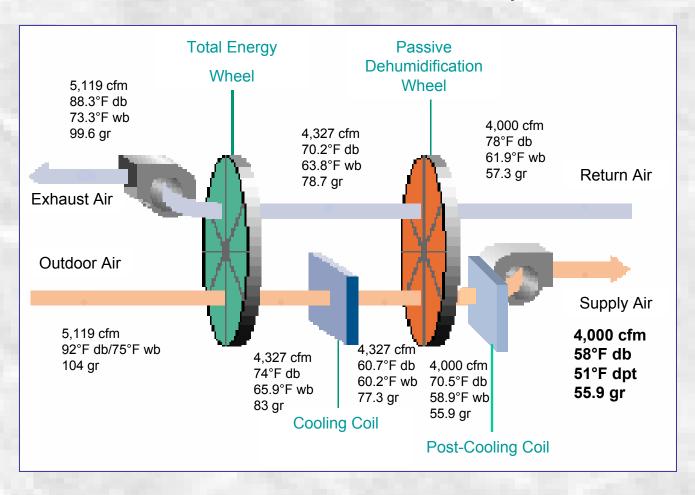



## Mechanical Study



## Dedicated Outdoor Air System

Replaced existing 45,000 cfm rooftop AHUs with SEMCO Pinnacle Ventilation Systems (PVS) that handle outdoor air exclusively




| AHU-# | CFM   |
|-------|-------|
| AHU-1 | 4,000 |
| AHU-2 | 5,600 |
| AHU-3 | 9,700 |
| AHU-4 | 6,650 |





## Pinnacle Ventilation System





# Pinnacle Ventilation System Advantages

- Completely removes latent load
- Passive dehumidification wheel (PD) produces low dew point supply temperatures no matter what the chilled water supply temperature is
- Central plant supplies both buildings at the same CHW temperature





## Magic Six Panels



- Handles sensible load not met by DOAS system
- Not more than 50% of ceiling area
- 2'×4' Panels
- Free-hanging at a height of 8'-0"



## Panel Piping

For security reasons, this picture is unavailable.



#### Radiant Panel Control Closets

- Located in duct shafts-utilizes space open by using smaller ducts
- Contain valves for each "minizone"
- Convenient to maintain and control manually

For security reasons, this picture is unavailable.





## System Energy Comparison

| System       | Chiller Load |
|--------------|--------------|
| VAV System   | 541 tons     |
| DOAS/Radiant | 324 tons     |

| Electric Usage (kWh) |           |           |  |  |  |
|----------------------|-----------|-----------|--|--|--|
| Month                | DOAS      | VAV       |  |  |  |
| Jan                  | 540,757   | 606,443   |  |  |  |
| Feb                  | 517,403   | 579,503   |  |  |  |
| Mar                  | 609,632   | 687,669   |  |  |  |
| Apr                  | 616,664   | 714,326   |  |  |  |
| Мау                  | 654,107   | 764,653   |  |  |  |
| Jun                  | 768,431   | 911,262   |  |  |  |
| Jul                  | 839,679   | 952,718   |  |  |  |
| Aug                  | 805,920   | 935,599   |  |  |  |
| Sep                  | 744,782   | 886,787   |  |  |  |
| Oct                  | 630,335   | 734,301   |  |  |  |
| Nov                  | 599,605   | 683,471   |  |  |  |
| Dec                  | 596,817   | 670,487   |  |  |  |
| Total                | 7,924,132 | 9,127,219 |  |  |  |
| 1 000 007            |           |           |  |  |  |

1,203,087 Savings kWh





## System Cost Comparison First Cost

| Item                        | Unit Cost-VAV       | Units-VAV | VAV       | Unit Cost-Parallel   | Units-Parallel        | Parallel  | Savings    |
|-----------------------------|---------------------|-----------|-----------|----------------------|-----------------------|-----------|------------|
| 650 tonAbs Chiller          | \$321,000           | 1         | \$353,100 | \$321,000            | 1                     | \$353,100 | \$0        |
| 650 ton WC Chiller          | \$229,500           | 3         | \$757,350 | \$229,500            | 2                     | \$504,900 | \$252,450  |
| 350 ton WC Chiller          | N/A                 | N/A       |           | \$132,000            | 1                     | \$145,200 | -\$145,200 |
| 650 ton CT                  | \$26,796            | 4         | \$117,902 | \$26,796             | 3                     | \$88,427  | \$29,476   |
| 350 ton CT                  | N/A                 | N/A       |           | \$16,433             | 1                     | \$18,076  | -\$18,076  |
| Ductwork <sup>1</sup>       | \$4/ft <sup>2</sup> | 186000    | \$744,000 | \$1/ft <sup>2</sup>  | 186000                | \$186,000 | \$558,000  |
| AHU-1                       | \$77,808            | 1         | \$85,589  | \$24,378             | 1                     | \$26,816  | \$58,773   |
| AHU-2                       | \$77,808            | 1         | \$85,589  | \$26,366             | 1                     | \$29,003  | \$56,586   |
| AHU-3                       | \$77,808            | 1         | \$85,589  | \$35,903             | 1                     | \$39,493  | \$46,096   |
| AHU-4                       | \$77,808            | 1         | \$85,589  | \$28,372             | 1                     | \$31,209  | \$54,380   |
| Radiant Panels <sup>1</sup> | N/A                 | N/A       | N/A       | \$13/ft <sup>2</sup> | 44528 ft <sup>2</sup> | \$636,750 | -\$636,750 |

Savings: \$255,733





# System Cost Comparison Operating Cost

| Electric Cost |           |           |  |  |  |
|---------------|-----------|-----------|--|--|--|
| Month         | DOAS      | VAV       |  |  |  |
| Jan           | \$37,569  | \$45,143  |  |  |  |
| Feb           | \$36,159  | \$41,649  |  |  |  |
| Mar           | \$41,326  | \$49,954  |  |  |  |
| Apr           | \$42,668  | \$52,720  |  |  |  |
| May           | \$45,969  | \$56,471  |  |  |  |
| Jun           | \$52,421  | \$64,663  |  |  |  |
| Jul           | \$56,219  | \$68,312  |  |  |  |
| Aug           | \$54,478  | \$67,740  |  |  |  |
| Sep           | \$51,367  | \$63,633  |  |  |  |
| Oct           | \$44,134  | \$53,844  |  |  |  |
| Nov           | \$42,248  | \$51,454  |  |  |  |
| Dec           | \$40,651  | \$48,280  |  |  |  |
| Total         | \$545,207 | \$663,860 |  |  |  |

Savings: \$118,653



#### Drawbacks

- Radiant panels take up >50% of the ceiling in some spaces
  - May not be enough room for sprinkler heads
- Hard to sell the architect on lower ceiling heights in some rooms (8'-0")
- Free-hanging panels block light from luminaires



#### Conclusions

- DOAS/Radiant System meets the intent of Standard 62-2001
- System saves on first cost and operating cost
- System reduces building electrical usage
- Cost savings and increased occupant comfort outweigh the drawbacks





# Lighting Study



## Basis of Redesign

- Free-hanging radiant panels block light from luminaires in ceiling
- Must move luminaires down to the same level as radiant panels (8'-0")
- Reselect fluorescent fixtures for correct lighting power density and illuminance





### Private Office



(2) 3-32W lamp2'×4' fluorescentfixtures

- Provides 49.7 fc
- LPD of 1.33 W/ft²







### Corner Office



(4) 2-40W 2'×4' fluorescent fixtures

- Provides 35.7 fc
- 1.46 W/ft<sup>2</sup>







#### Conference Room



- (3) 3-32W 2'×4' fluorescent fixtures
- (4) Track lighting fixtures

- 34.7 fc/46.6 fc
- 0.67 W/ft²/2.43
   W/ft²





#### Conclusions

- Necessary to move luminaires down to panel height for adequate illuminance
- Can afford to spend a little more on lighting because of the huge mechanical first cost savings





# Productivity Study



## Basis of Study

Smaller amount of ductwork in DOAS system requires less time to install

Larger clearances in plenum due to smaller ductwork leads to increased productivity of crew



#### Criteria

- Labor productivity is pounds of galvanized steel duct the crew can install in a day
- Labor productivity is a function of the weight of the steel in pounds
- 6% decrease in productivity from working above 10'-0"
- Conservative 10% increase in productivity from extra clearance in plenum





#### Results

Schedule savings with normal productivity

|                          | 3 GI VIII 1 9 3 V V III I I |              | 01001111        |
|--------------------------|-----------------------------|--------------|-----------------|
| System                   | Time (man hours)            | Time Savings | % Time<br>Saved |
| VAV                      | 1392                        |              |                 |
| DOAS-Normal productivity | 603.5                       | 33 days      | 56.7            |

## Schedule savings with 10% more productivity

| System                      | Time (man hours) | Time Savings | % Time<br>Saved |
|-----------------------------|------------------|--------------|-----------------|
| VAV                         | 1392             |              |                 |
| DOAS-Increased productivity | 517.9            | 3.5 days     | 6.1             |
| DOAS-Total productivity     |                  | 36.5 days    | 62.8            |





## System Cost Comparison First Cost

| Item                        | Unit Cost-VAV       | Units-VAV | VAV       | Unit Cost-Parallel   | Units-Parallel        | Parallel  | Savings    |
|-----------------------------|---------------------|-----------|-----------|----------------------|-----------------------|-----------|------------|
| 650 tonAbs Chiller          | \$321,000           | 1         | \$353,100 | \$321,000            | 1                     | \$353,100 | \$0        |
| 650 ton WC Chiller          | \$229,500           | 3         | \$757,350 | \$229,500            | 2                     | \$504,900 | \$252,450  |
| 350 ton WC Chiller          | N/A                 | N/A       |           | \$132,000            | 1                     | \$145,200 | -\$145,200 |
| 650 ton CT                  | \$26,796            | 4         | \$117,902 | \$26,796             | 3                     | \$88,427  | \$29,476   |
| 350 ton CT                  | N/A                 | N/A       |           | \$16,433             | 1                     | \$18,076  | -\$18,076  |
| Ductwork <sup>1</sup>       | \$4/ft <sup>2</sup> | 186000    | \$744,000 | \$1/ft <sup>2</sup>  | 186000                | \$186,000 | \$558,000  |
| AHU-1                       | \$77,808            | 1         | \$85,589  | \$24,378             | 1                     | \$26,816  | \$58,773   |
| AHU-2                       | \$77,808            | 1         | \$85,589  | \$26,366             | 1                     | \$29,003  | \$56,586   |
| AHU-3                       | \$77,808            | 1         | \$85,589  | \$35,903             | 1                     | \$39,493  | \$46,096   |
| AHU-4                       | \$77,808            | 1         | \$85,589  | \$28,372             | 1                     | \$31,209  | \$54,380   |
| Radiant Panels <sup>1</sup> | N/A                 | N/A       | N/A       | \$13/ft <sup>2</sup> | 44528 ft <sup>2</sup> | \$636,750 | -\$636,750 |



#### Rebecca Rubert Mechanical Option

NWI Enterprises Frazer, PA

## Acknowledgements

Kling

Inder Singh

Robert Khurana

Charlie Rowland

SEMCO

John Fischer

Photographer

William Rubert, Esq

Moral Support

**PSU AE Faculty** 

Dr. Stanley Mumma

Dr. Richard Mistrick

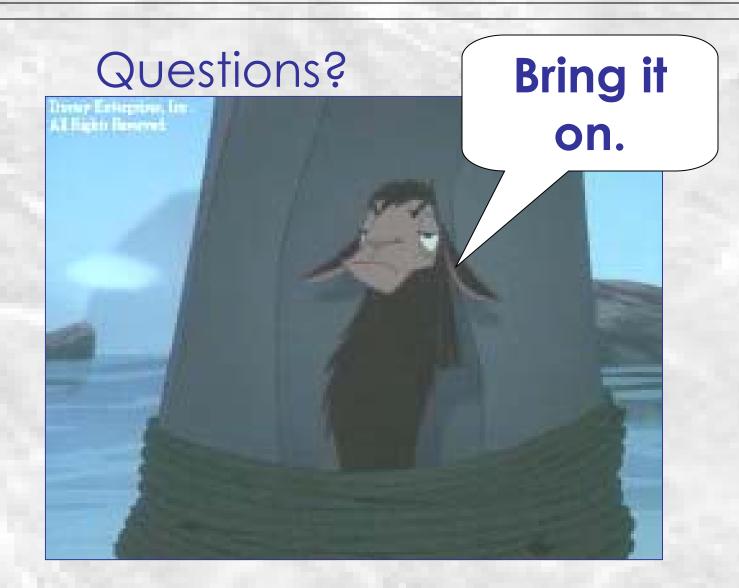
Dr. David Riley

Mr. Jonathan Dougherty

**PSU AE Students** 

Michelle Baldwin

Peter Drake


Christy Russell

Sandra Vondrak

Jeremy White

James 1:2,4









## **Existing Conditions-Architectural**



- Bridge links Phase 1 and Phase 2
- Tunnel also links buildings underground





## Magic Six Panels

| Inlet Temp              | 52° F                    | >51° SA DPT |
|-------------------------|--------------------------|-------------|
| Outlet Temp             | 60° F                    |             |
| Mean Temp<br>Difference | 22° F                    |             |
| Capacity                | 33.6 Btu/ft <sup>2</sup> |             |
| Flow                    | 0.606 gpm                |             |
| Velocity                | 85 fpm                   | <137 fpm    |
| Pressure Drop           | 2.8 psi                  | <3.0 psi    |





## Acknowledgements

Kling

Inder Singh

Robert Khurana

Charlie Rowland

SEMCO

John Fischer

**Casting Director** 

Elizabeth Young

Director of Photography

William Rubert, Esq.

Key Grip

Sara Ernst

**PSU AE Faculty** 

Dr. Stanley Mumma

Dr. Richard Mistrick

Dr David Pilav