Construction Management 2005 Senior Thesis

Project Overview

Advanced Modeling

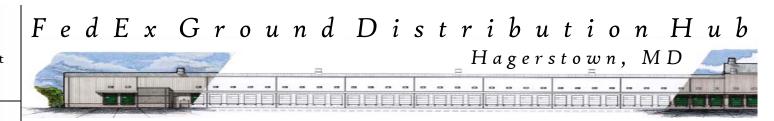
Tilt-Up Construction

Constructability

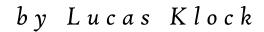
Planning

Enclosure Comparison

Pre-Engineered Steel Tilt-Up Concrete


Comparison

Panel Lift Analysis


Conclusions

Acknowledgements

Questions

Construction Management Senior Thesis Presentation 2005

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

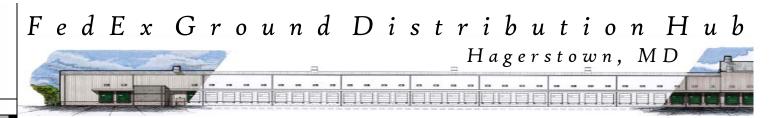
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

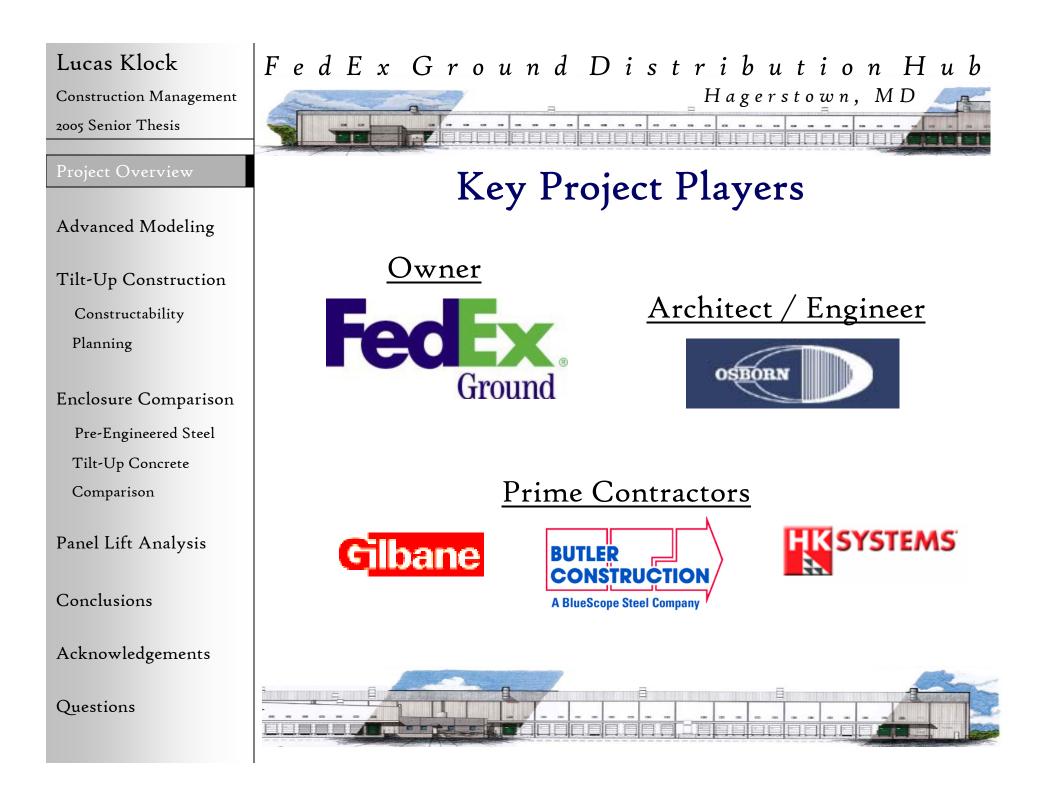
Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements


Questions

Presentation Overview

- ~ Project Background & Overview
- ~ Advanced Modeling
- ~ Tilt-Up Construction Analysis
- ~ Enclosure Comparison
- ~ Panel Lift Analysis

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

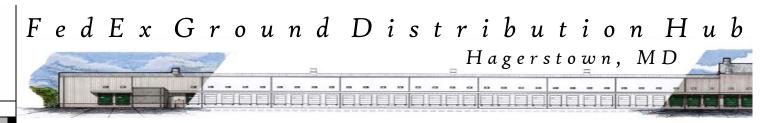
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete

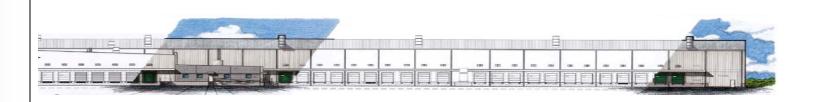

Comparison

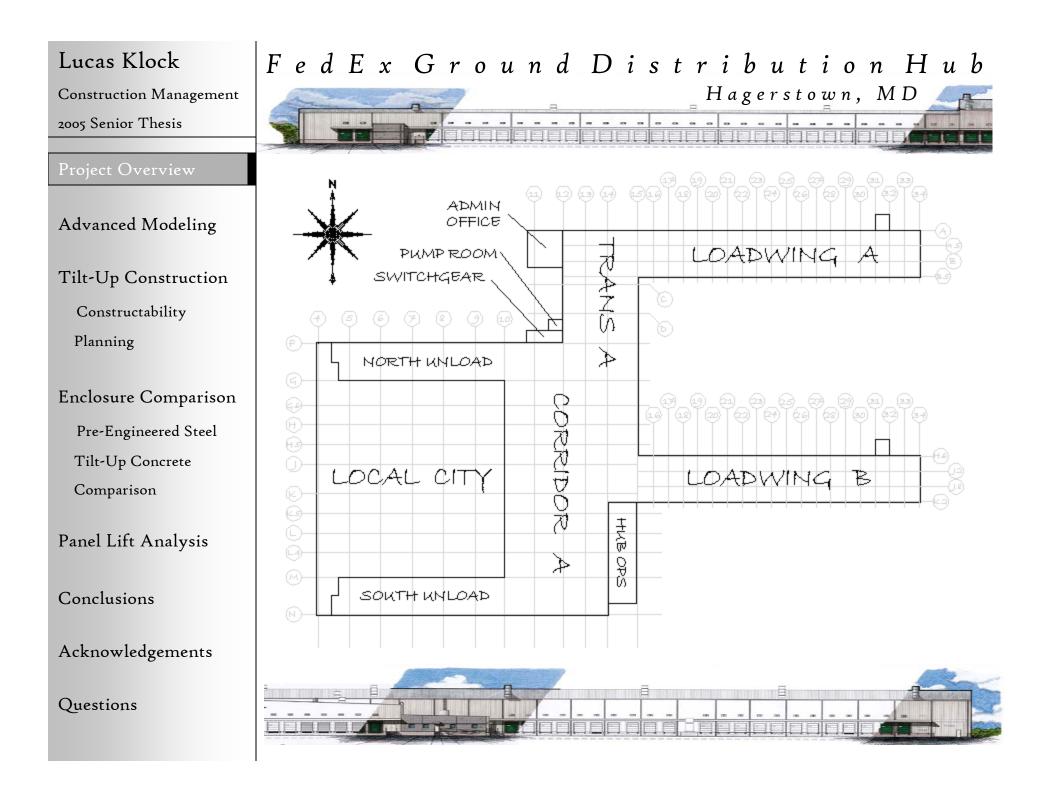
Panel Lift Analysis

Conclusions

Acknowledgements

Questions


Project Statistics


- ~ Function:
- ~ Lot Size:
- ~ Building Size: 475,000 sq. ft.
- ~ Estimated Cost: \$100,000,000
- ~ Project Start:
- October 2003

114 Acres

Distribution Facility

~ Fully Operational: 2006

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

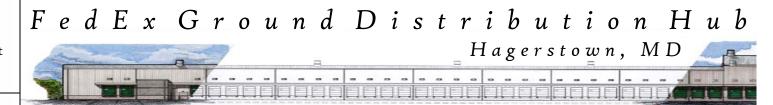
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Advanced Modeling

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

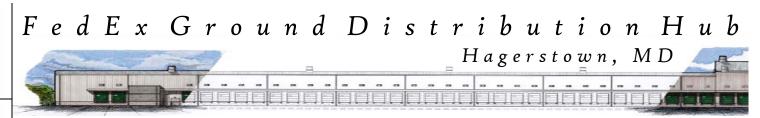
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete

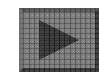

Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions


Benefits of Advanced Modeling

~ Visualize Construction Process

- ~ Increased Planning & Coordination
- ~ Improves Overall Communications

4D Model

Interior Walkthrough

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

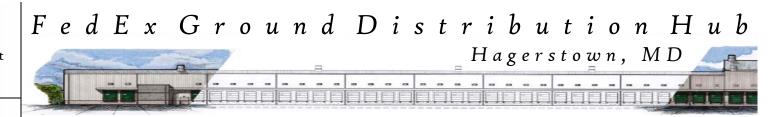
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete

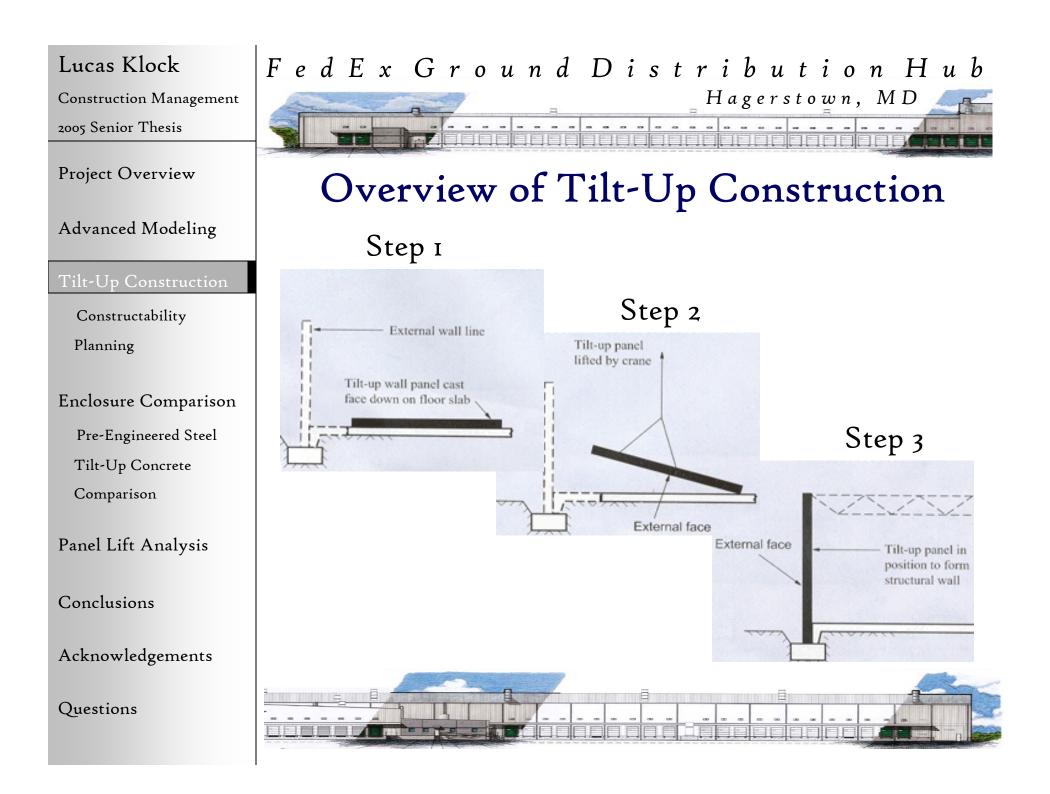

Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions



Tilt-Up

Constructability

Analysis

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

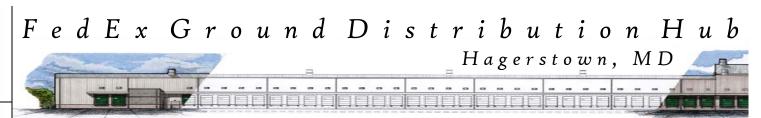
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Benefits of Tilt-Up

- ~ Cost Competitive
- ~ Quick Erection
- ~ Highly Durable
- ~ Increased Level of Security
- ~ Low Maintenance Costs
- ~ Architecturally Appealing

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

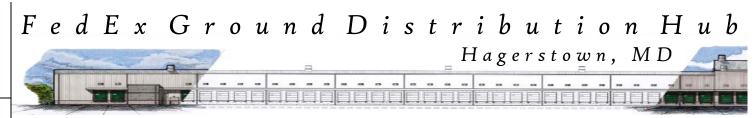
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Constructability

Yes No

Are the exterior surfaces essentially flat?	X	
Do they make up at least 50% of the total wall surface?	X	
Will most of the wall panels rest on the foundation as opposed to elevated lintel panels?	X	
Will most of the wall panels overall height be less that 30 feet?		X
Can there be highly repeatable panels, in order to improve the efficiency of panel erection?	X	
Is there enough floor area available to provide a casting surface of the panels?	X	

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

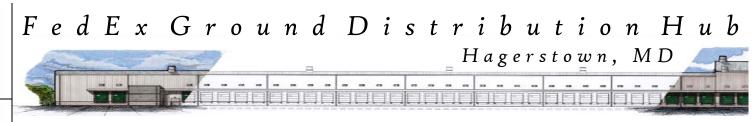
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Current Design Adaptability

Building Element	Current Design	Analysis Recommendation
Site Conditions	Available area: 100 + acres Access: 4 lane private access No overhead utility restrictions No adjacent buildings	Site is adequate
Slabs	Interior: 6" steel reinf., 4000 psi conc. Exterior: 8" fiber reinf. 4,000 psi conc. Slope: 3.5% (allowable 0.5%) LC Only	Adequate to carry imposed crane loads, Slab slope needs reduced
Subgrade	6" of graded aggregate for 6" of concrete 8" of graded aggregate for 8" of concrete Subgrade compaction min. of 100%	Subgrade is adequate

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

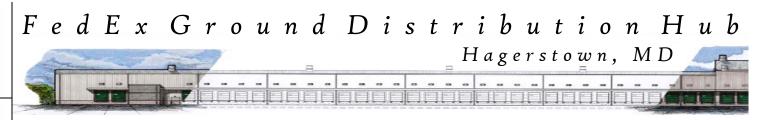
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Current Design Adaptability

Building Element	Current Design	Analysis Recommendation
Foundations	Ext. wall ftgs: 7' x 1' reinforced (typ) Fdn. walls: 1' x 5.5' reinforced (typ)	Needs additional structural analysis, Modify walls to accept panels
Lateral Bracing System	Lateral bracing provided by horizontal purlins	Panel to Column connections need to be designed
Roof Structure	MR-24 [®] Standing Seam Roof System	Roof to Panel connections need to be designed

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

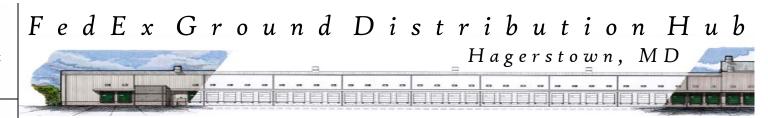
Constructability

Planning

Enclosure Comparison

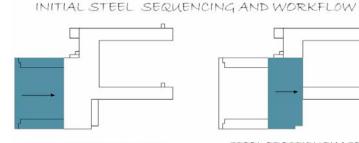
Pre-Engineered Steel

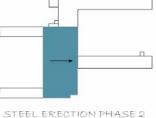
Tilt-Up Concrete


Comparison

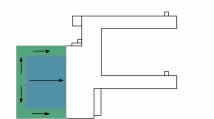
Panel Lift Analysis

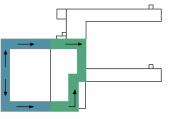
Conclusions

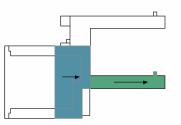

Acknowledgements


Questions

Panel Layout


- Panels should not occupy more than 75% 80% floor area
- Panel sequencing requires increased planning


STEEL ERECTION PHASE 1


MODIFIED STEEL PHASE SEQUENCING AND WORKFLOW

STEEL ERECTION PHASE 1A

TILT-UP CONSTRUCTION PHASE 1

STEEL ERECTION PHASE 2 STEEL ERECTION PHASE 1B TILT-UP CONSTRUCTION PHASE 3 TILT-UP CONSTRUCTION PHASE 2

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

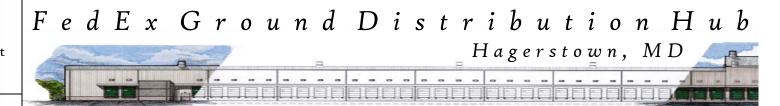
Constructability

Planning

Enclosure Comparison

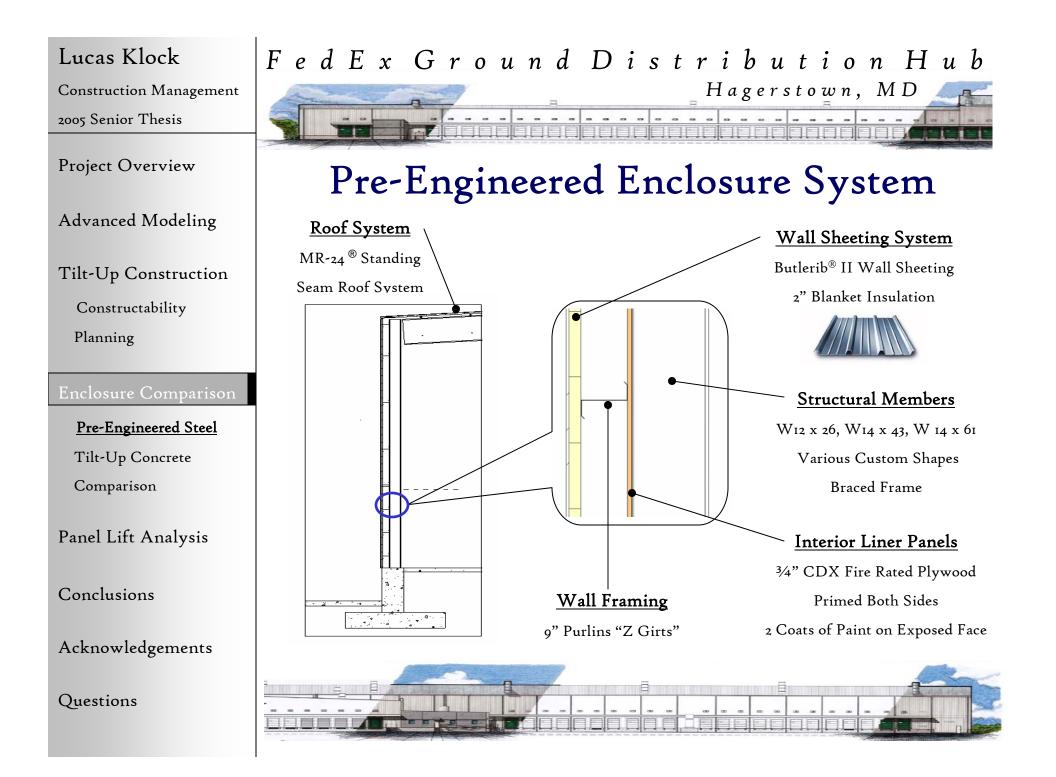
Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions


Acknowledgements

Questions

Enclosure Comparison

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

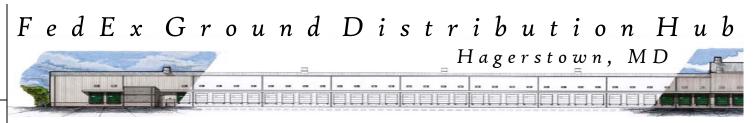
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Pre-Engineered Cost Estimate

1 1

Activity Description	Local City / Unload (4-10 / E-N)	Corridor (10-15 / E-N)	Loadwing A & Trans (15-34 / H.6-K.2)	Loadwing B (12-34 / A-E)	Loadwing Restrooms	Admin. Office	HUB O _p s	Switchgear / Pump Room	Total
Concrete Footings	359.5	228.5	214.3	208.7	6.3	8.9	23.1	5.2	1,054-4
Concrete Foundation Walls / Piers	304.0	166.4	223.5	190.2	24.0	28.6	24.0	10.6	971.3
Structural Steel	69.4	23.0	82.9	55.0					230.3
Wall Sheeting System	217.7	44.2	207.8	152.6					622.3
Plywood Liner Panels	10.9	9.7	10.9	10.9					42-4
CMU Walls & Masonry Veneer					61.5	91.1	61.5	63.4	277-4
Total	961.5	471.8	739•4	617.3	91.7	128.6	108.6	79.1	3,198.0
	* A	ll costs	are in tł	nousand	s of dol	llars			\smile

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

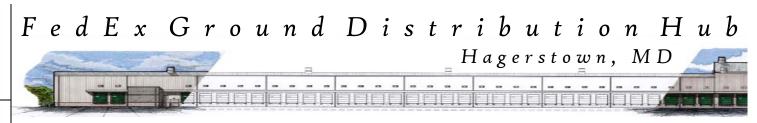
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

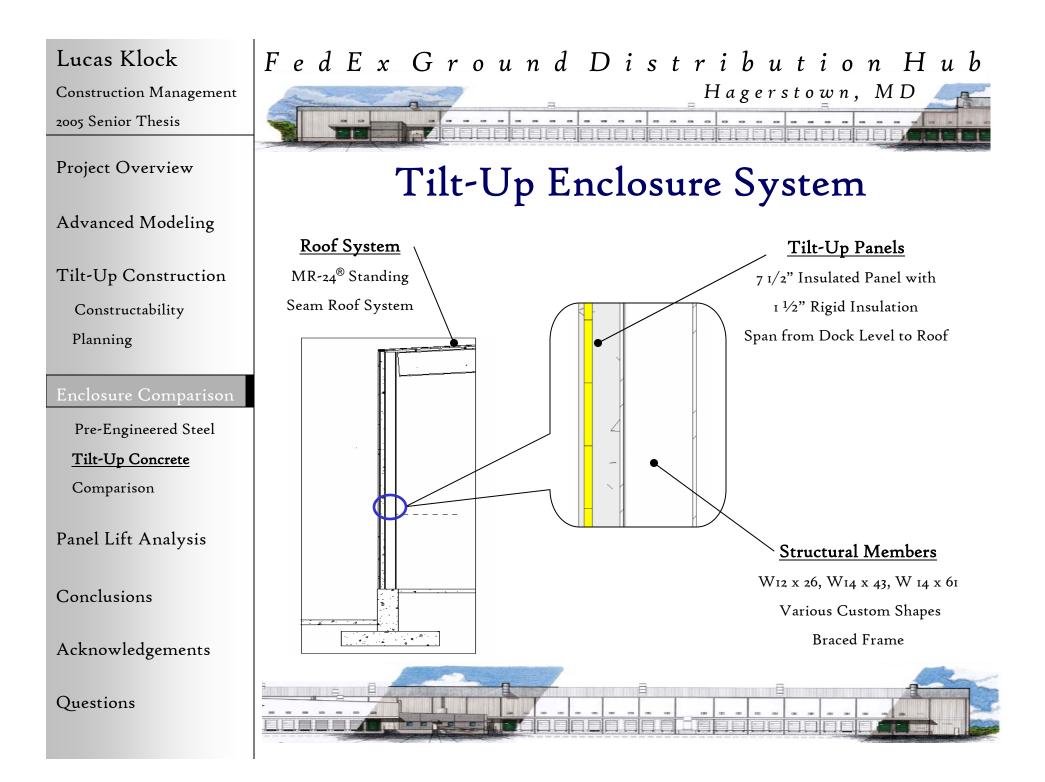
Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements


Questions

Pre-Engineered Steel Schedule

	Task Name	Duration	Start	Finish	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
I	🗄 Local City / Unload (E-N / 4-10	229 d	11/24	7/10	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							•			
15	🗄 Corridor (E-N / 10-15)	227 d	12/11	7/24		-							•			
29	🗄 Load Wing 'B'	167 d	1/29	7/14			•						-			
43	Load Wing 'A' Transition	189 d	1/29	8/5			•							•		
58	🖻 Load Wing 'A'	187 d	2/27	9/1				•						· · · ·		
59	Conc Fnds/Walls/Piers	25 d	2/27	3/22				•		Conc Fn	ds/Wa	lls/Pier	\$			
60	Backfill Foundations & Rough Grade	15 d	3/15	3/29						Backfil	Found	ations &	Rough (Grade		
бı	Underslab MEP Roughins	10 d	3/20	3/29					-	Under	slab ME	P Rougi	hins			
62	Load Wing A Ready for Butler	o d	4/1	4/1					1	★ 4/1						
63	Structural Steel Delivery & Erection	34 d	3/27	4/29					-		Structu	ural Stee	l Deliver	y & Ere	ction	
64	MR-24 Roof Installation	8 4	s/s	5/12							<mark>-</mark> MF	€~24 Roo	f Install	ation		
65	Exterior Wall Sheeting	14 d	5/11	5/24								Exterior	r Wall S	heeting		
66	Plywood Liner Panels	8 4	6/12	6/19								— P	lywood	Liner Pa	nels	
67	Final Grade for SOG	10 d	6/21	6/30								_	Final C	rade for	SOG	
68	Place & Cure SOG	18 d	6/28	7/15								•	- Pl	ice & Ci	tre SOG	
69	MEP Finish, Start-Up & Test	zo el	7/19	8/7									-	MEF	⁹ Finish,	Start-1
70	Load Wing A Complete	o đ	8/14	8/14										★ 8/	14	
71	MS VI - Load Wing 'A' Ready for HK Syst	o d	9/1	9/1										7	x 9/1	

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

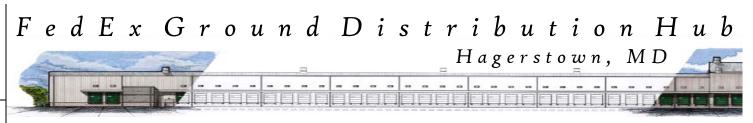
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Tilt-Up Cost Estimate

Activity Description	Local City / Unload (4-10 / E-N)	Corridor (10-15 / E-N)	Loadwing A & Trans A (15-34/H.6-K.2)	Loadwing B (12 ⁻ 34 / A ⁻ E)	Loadwing Restrooms	Admin. Office	HUB Ops	Switchgear / Pump Room	Total
Concrete Footings	359.5	228.5	214.3	208.7	6.3	8.9	23.1	5.2	1,054.4
Concrete Foundation Walls / Piers	304.0	166.4	223.5	190.2	24.0	28.6	24.0	10.6	971.3
Tilt-Up Panels	544•3	110.7	519.3	381.5	54.9	63.5	68.8	44•7	1,787.7
Structural Steel	69.4	23.0	82.9	55.0					230.3
Wall Sheeting System									
Plywood Liner Panels									
Total	1,277.2 * Δ11	52 8.6	1,040.0 e in thous	835.4	85.2	101.0	115.9	60.5	4,043.7

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

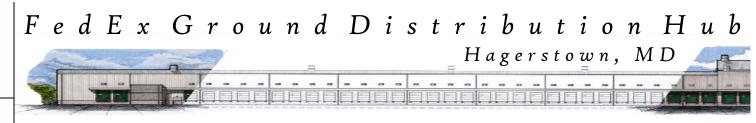
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Tilt-Up Schedule

	Task Name	Duration	Start	Finish	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sej
I	🗄 Local City / Unload (E-N / 4-10)	173 d	11/24	5/16	-						-				
13	🗉 Corridor (E-N / 10-15)	223 d	12/11	7/21		-							•		
25	🗄 Load Wing 'B'	167 d	1/29	7/14			•						•		
37	🗄 Load Wing 'A' Transition	189 d	1/29	8/5			•							•	
49	Load Wing 'A'	187 d	2/27	9/1				•							•
50	Conc Fnds/Walls/Piers	25 d	2/27	3/22						Conc F1	nds/Wa	dls/Pier	s		
51	Underslab MEP Roughins	10 d	3/20	3/29					_	Under	slab ME	P Roug	hins		
52	Prep & Grade for SOG	15 d	3/15	3/29						Prep 8	t Grade	for SO(2		
53	Place & Cure SOG	18 d	3/29	4/15						P1	lace & C	ure SO(3		
54	F/R/P Tilt-Up Panels	35 d	4/11	5/15							- F/	R/P Til	t Up Pa	nels	
55	Install Tilt-Up Panels	10 d	5/11	5/20							— I	nstall Ti	lt Up P	anels	
56	Prep & Install Closure Strip	10 d	5/17	5/26							-	Prep &	Install	Closure	Strip
57	Structural Steel Delivery & Erection	17 d	5/23	6/8							-	Stru	ictural S	teel Deli	very 8
58	Roof Installation	8 d	6/5	6/12								🗕 Ro	of Insta	llation	
59	Load Wing A Complete	o d	8/14	8/14										★ 8/	14
60	MS VI - Load Wing 'A' Ready for HK System:	o d	9/1	9/1											★ 9/

Lucas Klock Construction Management 2005 Senior Thesis Project Overview	FedExGr		· ibution Hub Hagerstown, MD
Advanced Modeling Tilt-Up Construction Constructability	Pr	e-Engineered Steel	vs Concrete
Planning Enclosure Comparison	Cost	\$3,198,000	\$4,038,700
Pre-Engineered Steel Tilt-Up Concrete <u>Comparison</u>	Schedule	12 Months	12 Months
Panel Lift Analysis Conclusions			
Acknowledgements Questions			

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete

Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Lift Analysis

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

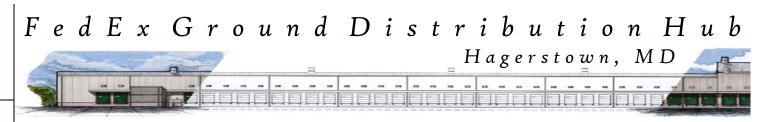
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

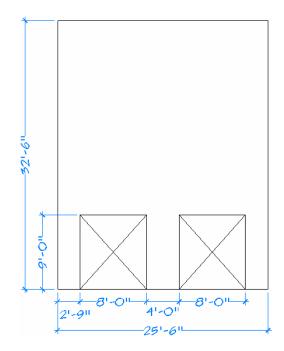
Tilt-Up Concrete

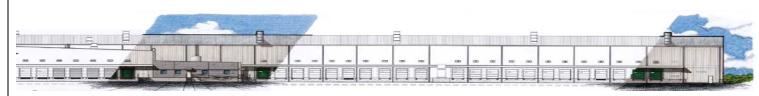

Comparison

Panel Lift Analysis

Conclusions

Acknowledgements


Questions


Initial Panel Design

Design Constraints

Panel Height32' - 6"Panel Width25' - 6"Total Panel Thickness $o' - 7 \frac{1}{2}"$ Insulation Thickness $o' - 1 \frac{1}{2}"$

Local City North & South Initial Panel Sketch

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

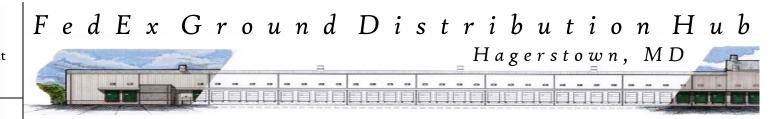
Constructability

Planning

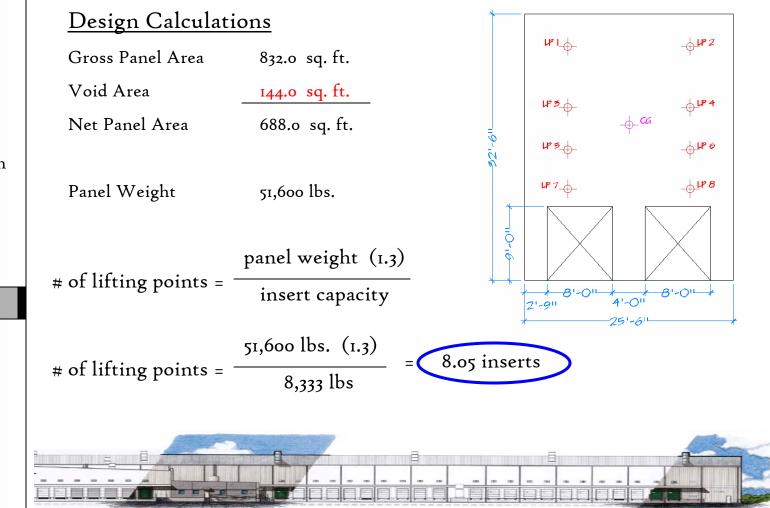
Enclosure Comparison

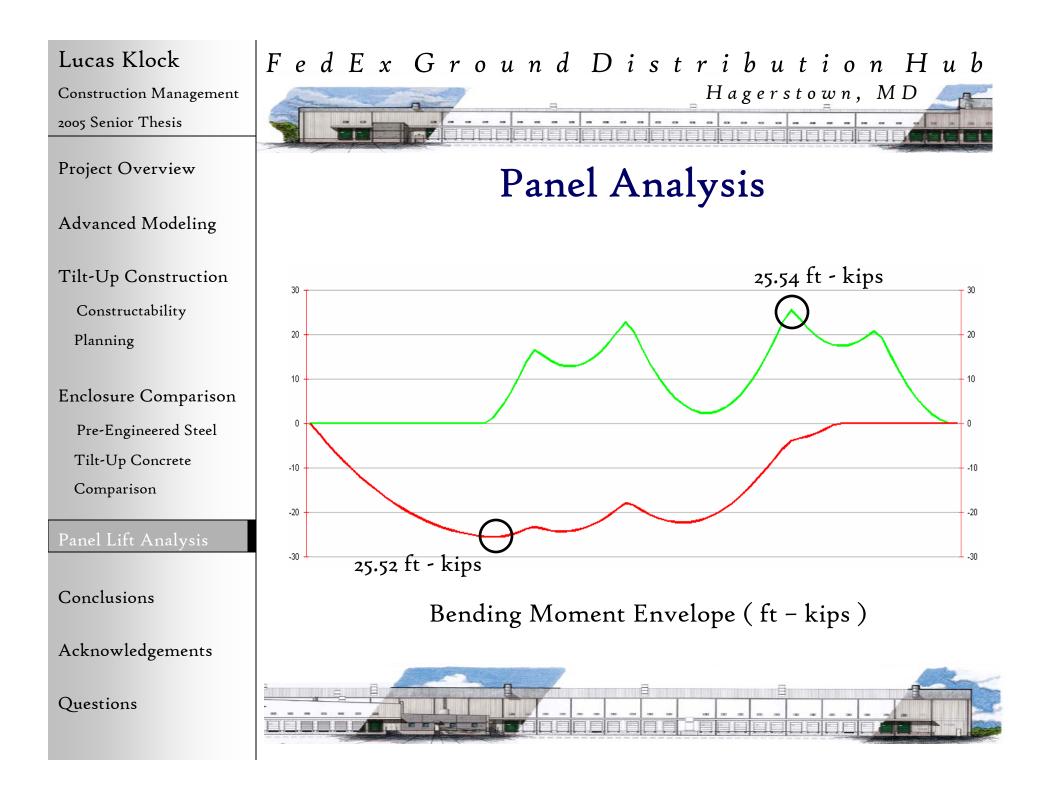
Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis


Conclusions


Acknowledgements

Questions

Panel Calculations

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

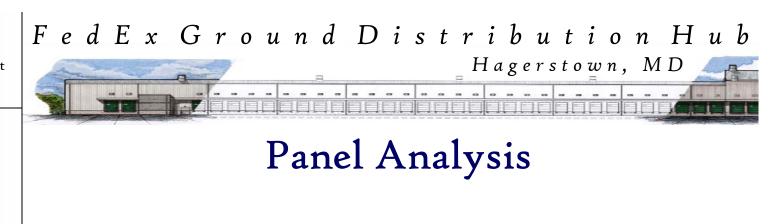
Constructability

Planning

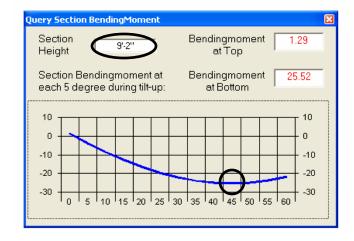
Enclosure Comparison

Pre-Engineered Steel

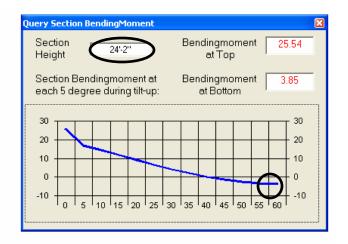
Tilt-Up Concrete


Comparison

Panel Lift Analysis


Conclusions

Acknowledgements


Questions

328 psi < 117.5 psi

8

∴ OK for Lift

Allowable Bending Stress = 328 psi Maximum Stress Imposed = 117.5 psi

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Conclusion

- Advanced models will be used as a communication tool for future projects

- Tilt-Up is feasible and compatible with FedEx Ground Distribution Facilities

- Tilt-up a viable alternative to a pre-engineered steel system

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

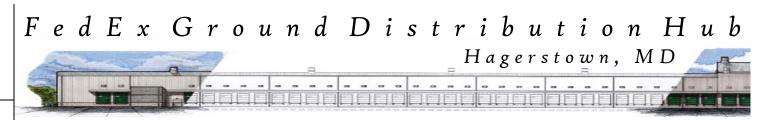
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements

Questions

Acknowledgements

<u>FedEx Ground</u>

Eric Adamczyk Tim Scherling

Gilbane Building Company

Andy Faber

John LaRow

Ernie Brewer

Penn State AE Faculty

Dr. David Riley Dr. John Messner Dr. Michael Horman

Dr. Linda Hannagan

Friends & Family

John & Rebecca Klock

Elizabeth Schaut

Fellow AE students

Construction Management 2005 Senior Thesis

Project Overview

Advanced Modeling

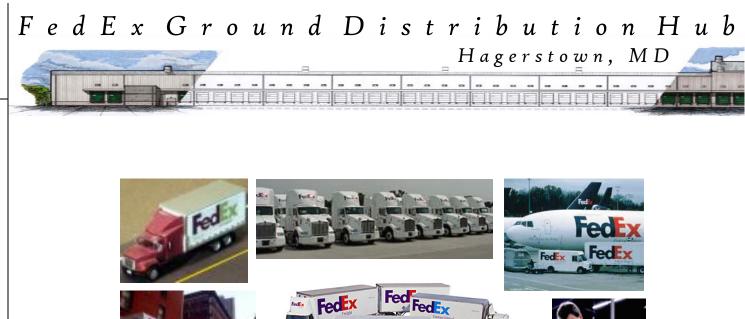
Tilt-Up Construction

Constructability

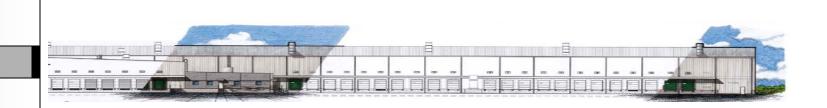
Planning

Enclosure Comparison

Pre-Engineered Steel Tilt-Up Concrete


Comparison

Panel Lift Analysis


Conclusions

Acknowledgements

Questions

Construction Management

2005 Senior Thesis

Project Overview

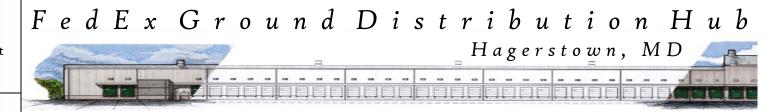
Advanced Modeling

Tilt-Up Construction

Constructability

Planning

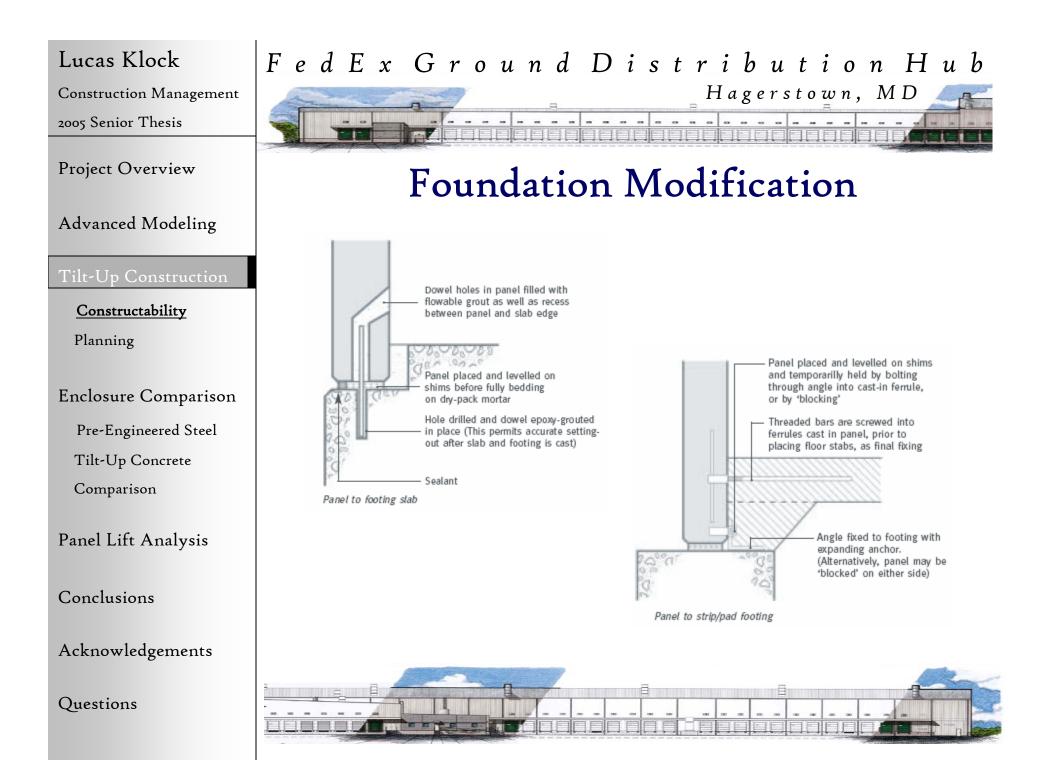
Enclosure Comparison


Pre-Engineered Steel Tilt-Up Concrete Comparison

Panel Lift Analysis

Conclusions

Acknowledgements


Questions

Virtual Prototyping

6

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

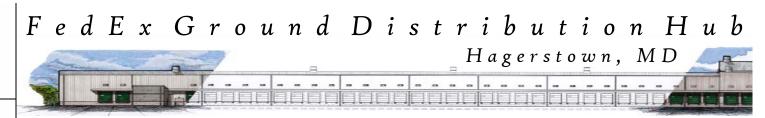
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

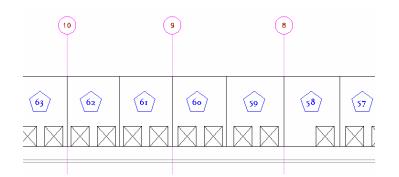
Tilt-Up Concrete


Comparison

Panel Lift Analysis

Conclusions

Acknowledgements


Questions

Panelizing the Building

Layout Constraints

- Locations where members frame into the panels
- Locations of openings
- At least 18" between openings
- Approximate panel weights

Void Area Net Area Weight (So. Ft.) (Cu. Yds. (Lbs.) 655.3 13.8 55,8+8 667.8 681.4 667.8 684.1 651.6 48.870 627-2 47,042 47,042 617.1 47,042 627.2

Local City - South Elevation (28 - 49)

Construction Management

2005 Senior Thesis

Project Overview

Advanced Modeling

Tilt-Up Construction

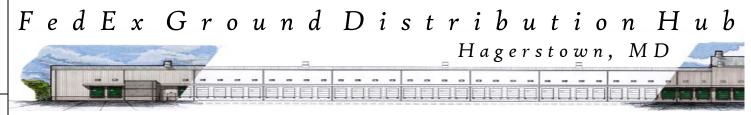
Constructability

Planning

Enclosure Comparison

Pre-Engineered Steel

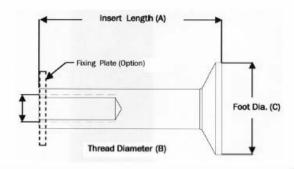
Tilt-Up Concrete


Comparison

Panel Lift Analysis

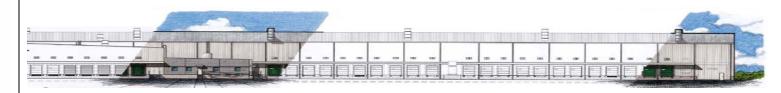
Conclusions

Acknowledgements


Questions

Panel Insert

DUCTILE FERRULE INSERT


- Designed to give additional load strength in concrete
- Anchors can be used for lifting/handling or fixing and mounting for structural purpose.
- Based of 4:1 Safety Factor, although it factor can be lowered to 3:1 (consult UFC).
- The large foot creates a large shear cone in concrete.

Bolt Diameter	Insert Length	Min. Ultimate	SWL 4:1	Foot Dia. (C)		ork Load* rete 4:1)			
(B)	(B) (A) S	Strength	Strength (Steel)		Tension	Shear	Minimum Edge Distance		
in.	in.	lbs	lbs	in.	lbs.	lbs.	in.	Part Number	
1/2	4.00	19000	4750	2.00	3750	4500	8.00	NCFFI12	
5/8	4.50	28000	7000	2.25	6250	7500	8.50	NCFFI58	
3/4	5.00	37600	9400	2.75	6000	7200	9.00	NCFFI34	
3/4	10	37600	9400	1.80	9000	10800	12.00	NCFFI3410	
3/4	12	37600	9400	1.80	9000	10800	12.00	NCFFI3412	
7/8	6.00	54000	13500	3.15	9000	10800	10.50	NCFFI78	
1	6.50	60000	15000	3.15	10000	12000	10.50	NCFFI1	

*Based on 4:1 Safety Factor and minimum capacity strength of 3500 psi with a full shear cone. Concrete Material: 1522

For connecting, the bolt or rod connection must be equal to a Grade 8 or higher.

