The School District of Philadelphia Administration Headquarters

Shell and Core Renovations

440 North Broad Street Philadelphia, PA

Jayme Antolik Architectural Engineering Mechanical Option Senior Thesis 2006

Presentation Outline

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Building Introduction

Mechanical Analysis
Structural Considerations
Constructability
Conclusions

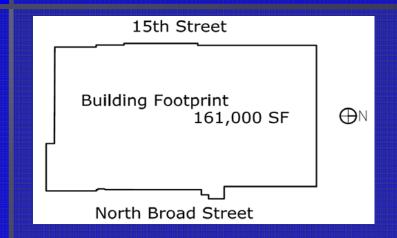
Reason for Renovations

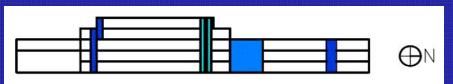
- School District Administration Relocation
 - Previous to move
 - Originally in 4 offices in different locations throughout Philadelphia
 - Working environment
 - Public accessibility
 - After move
 - One centrally located site
 - Better working environment
 - Easier public accessibility

Building Introduction
Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Building Site

- X-Axis: Broad and Market Streets
 - Nearly all of Philadelphia's commercial office space
 - 42% of center city's jobs
 - 7 colleges draw 34,000 students
 - 21% of downtown's jobs




Building Introduction

Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Building History

- Existing printing facility for the *Inquirer* and *Daily News*
- 848,000 square feet with a 161,000 SF building footprint
- 5 stories above ground
- Large floor-to-floor heights
- Large live load structural capacity

Building Introduction

Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Design Team

- Architect: Hooper Shiles Architects, Wayne, PA
- Mechanical Engineers: Cannon Design, NY, NY
- Structural Engineers: Thorton Tomasetti Group, Newark, NJ
- CM: Turner Construction Company, Philadelphia, PA

Construction Dates: December 2004 – April 2006

Building Introduction

Mechanical Analysis
Structural Considerations
Constructability
Conclusions

New Architectural Features

- 3 story atrium
- Broad Street and 15th Street entrances
- New passenger and freight elevators

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Existing Mechanical System

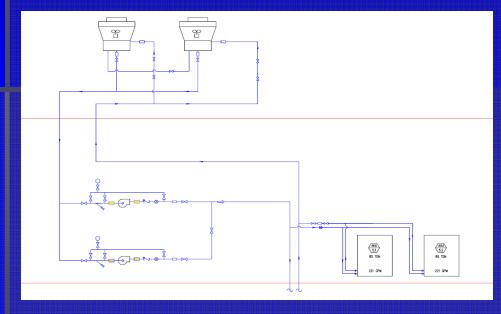
- Airside Variable Air Volume with Parallel Fan Powered Boxes
 - 17 self contained packaged direct expansion (DX) air handling

units located within the building core

- 80 to 100 tons per unit
- 25,000 to 32,000 CFM per unit
- 68 kW reheat coil per unit
- Parallel fan powered boxes utilize electric heating coils
 - 50 total at 19 kW per box
- Ducted supply/Plenum return
- Outdoor and return air mix within the core mechanical rooms

Building Introduction

Mechanical Analysis


Structural Considerations

Constructability

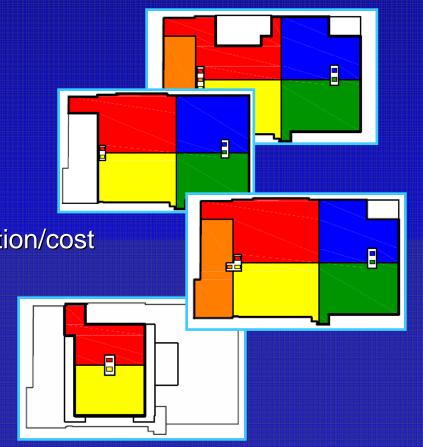
Conclusions

Existing Mechanical System

- Waterside
 - 1500 ton 2-celled cooling tower serves the DX units with condenser water
 - 2 4370 GPM 250 HP condenser water pumps (one for back-up)

Building Introduction

Mechanical Analysis


Structural Considerations

Constructability

Conclusions

Alternative Mechanical Systems

- Design focus
 - Office space
 - Floors 1, 2, 3, and 5
 - 425,000 SF
- Objectives
 - Save yearly energy consumption/cost
 - Reduce initial cost
 - Reduce emissions
 - Save lost rentable space

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Alternative Mechanical Systems

- Airside Comparison
 - Existing VAV system
 - Dedicated outdoor air system with parallel VAV system
 - Dedicated outdoor air system with parallel radiant system
- Waterside Comparison
 - Existing condenser water supply to DX units/Electric heating
 - Central Chilled Water and Central Hot Water Plant

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Dedicated Outdoor Air System (DOAS)

Purpose

- Supply ventilation requirement (Standard 62.1)
- Remove latent load from space

Heat Recovery

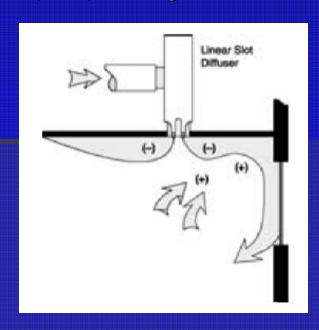
- Enthalpy wheel: Used to recover heat from the exhaust stream for conditioning of outdoor air
- Summer: Hot outdoor air is cooled and dehumidified
- Winter: Cold outdoor air is heated and humidified

Benefits

Reduces equipment load

Building Introduction

Mechanical Analysis

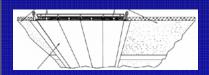

Structural Considerations

Constructability

Conclusions

DOAS/Parallel System

- 2 DOAS Air Handlers
 - Supply low temperature air (45F) via high induction diffusers
 - North DOAS
 - 76 tons
 - 16200 CFM
 - South DOAS
 - 125 tons
 - 26500 CFM
- Parallel System
 - VAV or Radiant
 - 749 tons


Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Radiant Parallel System Sterling

- Radiant Cooling Panels
 - Absorption capacity per panel: 292 Btu/hr
 - Room DBT Mean Water Temp
 - 17 panels per circuit
 - Flow per circuit: 2 GPM
 - Absorption capacity per circuit: 5000 Btu/hr
 - Flow rate
 - Assumed temperature rise
 - 23.8' PD per circuit
 - 110 circuits per space

- Radiant Baseboard Heating
 - Perimeter heating load:3241 MBH
 - 125 MBH per space

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Airside Results - VAV vs. DOAS/Parallel

	Space Load [Btu/hr]		Cooling Coil Load		Percent
Floor	Sensible	Latent	VAV	DOAS/Parallel	Reduction
1	3031029	100000	382.9	277.6	27.49%
2	2785496	80000	351.8	254.5	27.66%
3	3542547	100000	447.5	323.2	27.77%
5	1011878	40000	127.8	94.3	26.20%

- Equipment load reduction 27.5%
 - VAV system 1310 tons
 - DOAS/Parallel system 950 tons

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Central Chilled Water Plant

Purpose

- Supply chilled water to cooling coils in air handling units
- Supply chilled water to radiant cooling panels

Equipment

- 2 electric two-stage centrifugal water-cooled chillers
 - Piped in parallel
 - Variable-primary
- 2 chilled water pumps
 - 1 to head each chiller

Benefits

Reduces total cooling energy consumption

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Central Hot Water Plant

Purpose

- Supply hot water to heating coils in air handling units
- Supply hot water to heating coils in VAV boxes
- Supply hot water to radiant baseboard heaters

Equipment

1 gas-fired hot water boiler

Efficiency: 83.3%

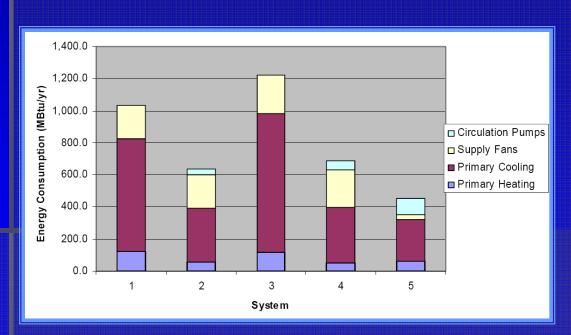
Load: 7000 MBH

Capacity: 8400 MBH

Benefits

- Reduces total heating energy consumption
- Existing gas service at Buttonwood Street

Building Introduction


Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Energy Consumption Results

- System 1: Existing VAV
 - DX & electric coils
- System 2: VAV system -
 - CHW & HW
- System 3: DOAS and parallel
 - VAV DX & electric coils
 - System 4: DOAS and parallel
 - VAV CHW & HW
- System 5: DOAS/Radiant -
 - CHW & HW

Building Introduction

Mechanical Analysis

Structural Considerations

Constructability

Conclusions

Yearly Operating Cost

	1	2	3	4	5
Electric	\$1,697,433	\$1,463,243	\$1,793,130	\$1,495,847	\$1,180,379
Gas	\$0	\$37,455	\$0	\$34,661	\$41,100
Water	\$152,379	\$140,887	\$170,704	\$145,723	\$107,851
Total	\$1,849,812	\$1,641,585	\$1,963,834	\$1,676,231	\$1,329,330

System 1: Existing VAV – DX & electric coils

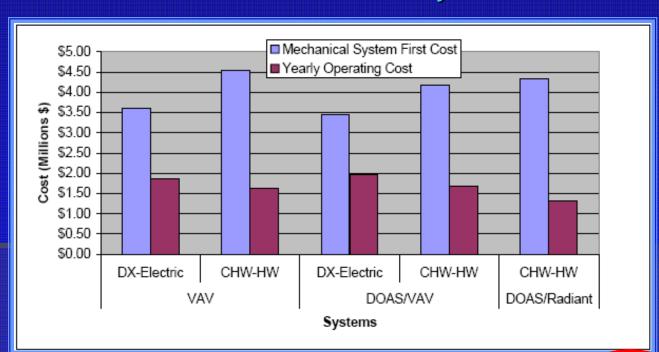
System 2: VAV system – CHW & HW

System 3: DOAS and parallel VAV – DX & electric coils

System 4: DOAS and parallel VAV – CHW & HW

System 5: DOAS/Radiant – CHW & HW

Building Introduction


Mechanical Analysis

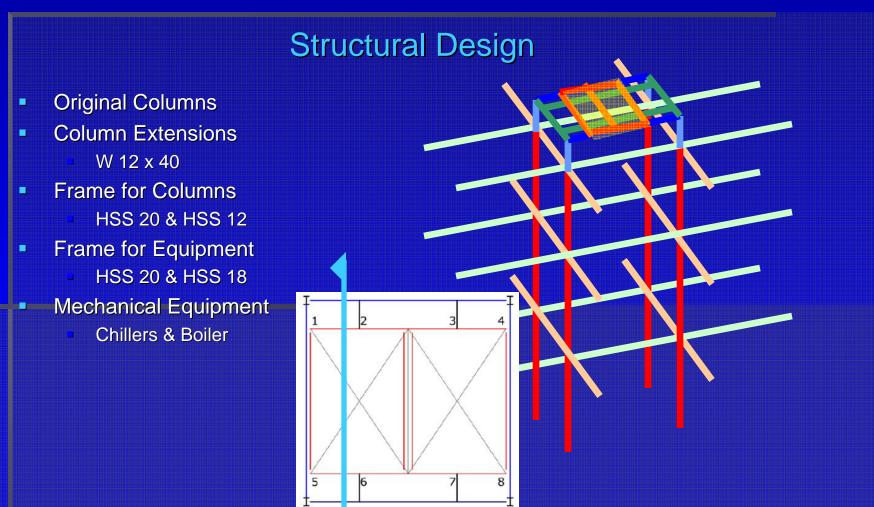
Structural Considerations

Constructability

Conclusions

Cost Summary

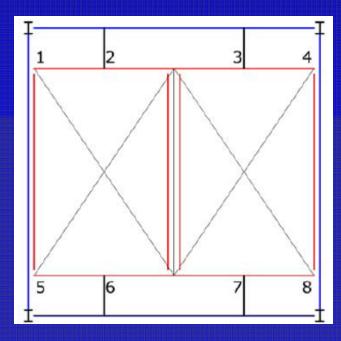
	VAV		DOAS/VAV		DOAS/Radiant
	DX-Electric	CHW-HW	DX-Electric	CHW-HW	CHW-HW
Mechanical System First Cost	\$3.61	\$4.53	\$3.46	\$4.17	\$4.33
Yearly Operating Cost	\$1.85	\$1.64	\$1.96	\$1.67	\$1.33


Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Structural Study – Central Water Plant

- Existing structural system
 - 5 inch concrete slab on metal deck
 - Steel girders and columns
 - Designed for a live load of 125 PSF
- Existing modifications
 - Column extensions to carry weight of cooling tower for existing VAV-DX system – 45,000 lbs
- New modifications
 - Column extensions to carry weight of new central water plant –
 140,000 lbs
 - Designed live load: 100 PSF (corridors)
 - Designed dead load: 75 PSF

Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions



Building Introduction
Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Structural Model

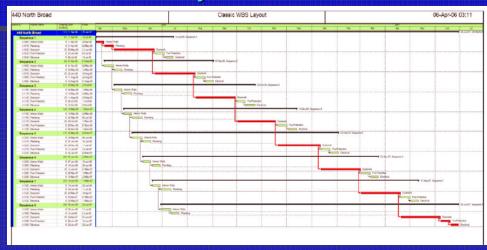
- Top Frame SAP model
 - Point loads 2, 3, 6, 7: 1 KIP
 - Point loads 1, 4, 5, 8: 136 KIP
- Bottom Frame RAM model
 - Line load: 15 KIP/LF
- Existing top column 12 x 40
 - Passes
- Existing bottom column 12 x 72
 - Passes
- → No major structural modifications

Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Constructability – Sequence Schedule Interior Equipment Installation

- Similar sized spaces 25,000 SF
 - Plenty of crew work space
- Equal amounts of material installed in each space
- Adequate laydown area
- Sufficient freight elevator capacity 20,000 lbs

8		
7		
5	6	
3	4	
1	2	

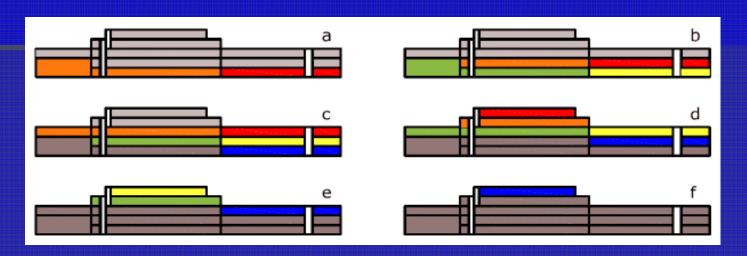

Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Constructability – Sequence Schedule Interior Equipment Installation

- VAV
 - Critical activity: Ductwork
 - Weight: 500,000 lbs
 - Daily output: 14250 lbs
 - Installation time: 35 days

DOAS/Radiant

- Critical activity: Radiant Panels
 - Pipe length: 80000 ft
 - Daily output: 5250 ft
 - Installation time: 15 days


Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Constructability – Sequence Schedule Interior Equipment Installation

5 Activities

- 1. Interior Walls
- 2. Plumbing
- 3. Ductwork/Radiant Panels

- 4. Fire Protection
- 5. Electrical

Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Constructability – Sequence Schedule Outdoor Equipment Installation

- Structural Modifications
 - New roof column extensions
- → No major construction issues

- New roof framing
- Mechanical Equipment Chillers & Boiler
 - Location: Roof
- Required ConstructionEquipment Crane
 - Location: Turner Construction parking lot
 - Neighborhood nuisance?
 - 15th Street closed for 1 2 days
 - Commuter traffic rerouted

Building Introduction
Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Conclusions

- IF an owner chooses chilled water plant
 - → Choose DOAS/Radiant System
 - Lowest energy consumption
 - Smallest operating cost
 - Lowest emissions
 - Decrease in mechanical room space
 - No major structural modifications
 - No major construction issues

Building Introduction
Mechanical Analysis
Structural Considerations
Constructability
Conclusions

Thank You

- Penn State Architectural Engineering Mechanical Faculty
 - Especially my advisor: Jae-Weon Jeong
- Classmates
 - Especially Evan, Jess, Jenny, Yulien, Lourdes, Bryan
- Mike Rush at Cannon Design
- Bill Harrington at Turner Construction

Building Introduction Mechanical Analysis Structural Considerations Constructability Conclusions

Questions?

