Page 1

David Lee AE 481W Structural Option Advisor: Andres Lepage URS Office Building October 5, 2006

STRUCTURAL TECHNICAL REPORT 1

Structural Concepts / Structural Existing Conditions Report

INTRODUCTION

This report provides an overview of the structural system which support the URS Office Building located in Columbus, Ohio. The 5 story, 100,000 square foot building is the forerunner in design for the Arena District being developed by Nationwide Realty Investors. The curvature and the setback on the North facade of the building (facing Nationwide Boulevard) along with careful consideration for proportion gives distinction to the otherwise rectangular building. Designed as mercantile/office building, the URS Office Building provides retail area on the first floor and office area from second to fifth floor. Completed construction in January 2001, this design, bid, build project's total cost was \$7 million.

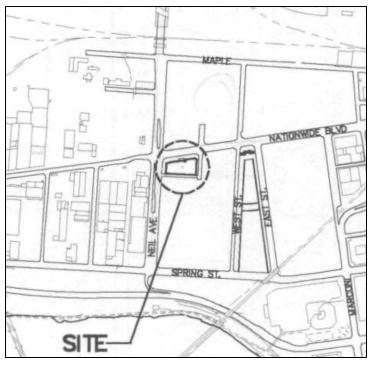


Figure 1

In the following sections are structural system description, codes applied, frame plan and elevation, design loads, and spot checks.

STRUCTURAL SYSTEM

URS Office Building is a steel frame structure surrounded by brick masonry veneer along with large punched windows which incorporate industrial glass. Structural steel used for beams, columns, and girders is ASTM A572 grade 50 wide-flange with yield strength of 50,000psi. Longest beam spans 33'4" and longest girder spans 32'. Typical bays are 30'x 30' with most bays being approximately a square. The chevron bracings resisting lateral loads are ASTM A500, Grade B tube steel with yield strength of 46,000psi.

Spread footings with minimum compressive strength at 28 days of 3000psi together with grade beams are employed as the foundation system. The size of footing varies from 4'x 4' to 14'x 14'. The grade beams also vary in width as well as depth. Both the spread footings and grade beams utilize bars #6, #7, #8, or #9 with #4 stirrups. The slab on grade is required minimum compressive strength at 28 days of 4000psi and the composite slabs are to be lightweight concrete with minimum strength of 3000psi. First floor slab

on grade is 5" concrete slab. The composite slabs on floors 2 through 5 are composed of 2" steel deck and 3-1/4" light weight concrete.

Steel roof decks are galvanized 20 gage ASTM A653 grade 33 G90 zinc coated steel. The composite steel floor decks are galvanized 20 gage ASTM A653 grade 33 G60 steel. Headed studs 3/4" $\phi x 4$ " spaced evenly across the steel members are used to achieve composite action.

<u>CODES</u>

For the URS Office Building structural design was performed under Ohio Basic Building Code 1998 (OBBC). OBBC was created by adopting BOCA National Building Code 1993. Structural standards for structural steel, cast in place concrete, pre-cast concrete, metal deck, and masonry are shown below in *Table 1*.

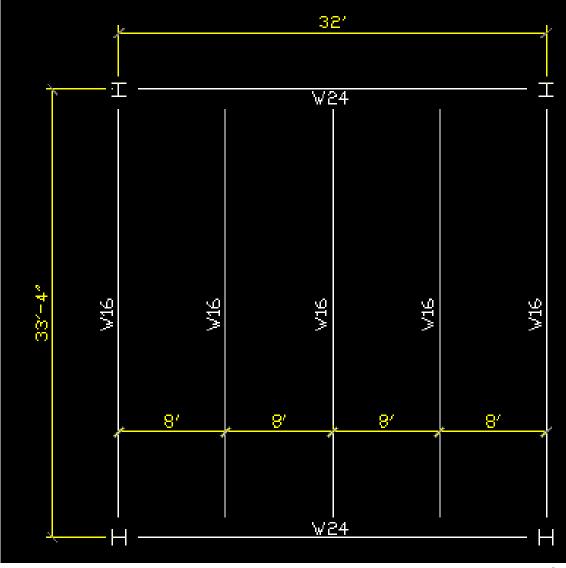
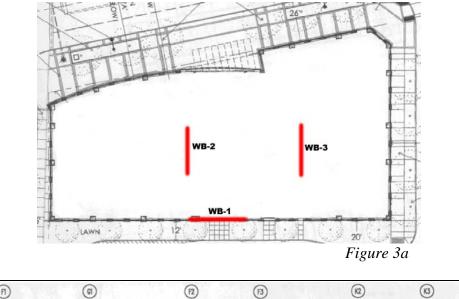
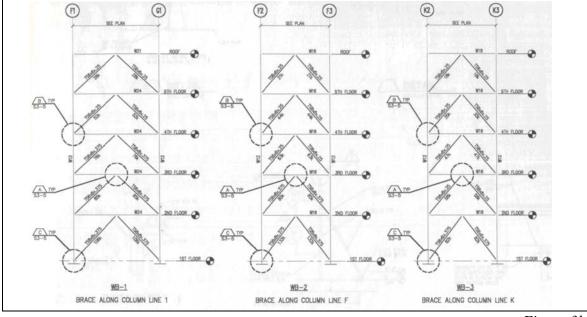

O	OHIO BASIC BUILDING CODE 1998					
STRUCTURAL STEEL	• AISC Manual of Steel Construction (ASD 91)					
CAST IN PLACE CONCRETE	 ACI 318-95 – "Building Code Requirement for Reinforced Concrete" ACI 301-89 – "Specification for Structural Concrete for Buildings" 					
PRECAST CONCRETE	 ACI 318 – "Building Code Requirement for Reinforced Concrete" PCI MNL 120 – "PCI Design Handbook Pre-cast and Pre-stressed Concrete" 					
METAL DECK	 AISI – "Specification for the Design of Cold-formed Steel Structural Members" SDI – "Design Manual for Composite Decks, Form Deck, and Roof Decks" 					
MASONRY	• ACI 530.1/ASCE 6/TMS 602					

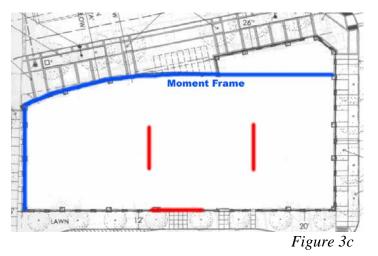
Table 1

In January 1 of 2002, State of Ohio adopted the 2000 International Building Code (IBC). Current building code in Ohio is the 2005 Ohio Building Code (OBC) based on 2003 IBC. Therefore throughout the report, 2003 IBC along with ASCE 7-05 will be used as the structural standard. Although calculations were performed using ASD 9th Edition of the steel manual, this report will be determined by LRFD 3rd Edition of the steel manual.

FRAME PLAN AND ELEVATION


Below in *Figure 2* is the largest bay which is 32'x 33'4". Typical girders are W24 and typical beams are W16. Second to fifth floor has identical framing plan. Roof frame plan varies from floors below, but bay size and location are the unchanged.




Three braced frames and moment frames along the perimeter exist to resist the lateral loads for URS Office Building (see *Figure 3a and 3c*). As shown in Figure 3b the chevron bracing is used for all three frames. The tube steel members which compose the chevron bracing have moment connections. Brace frame 1 (WB-1) resists east/west lateral loads and brace frames 2 and 3 (WB-2 and WB-3) resists north/south lateral loads.

LOADS

Loads are calculated by design parameters given in ASCE 7-05 in conjunction with 2003 IBC. Dead load will be calculated according to the actual weight of the permanent building components. Live load will be directly taken out of 2003 IBC. Snow, wind, seismic calculation will follow ASCE 7-05 procedures.

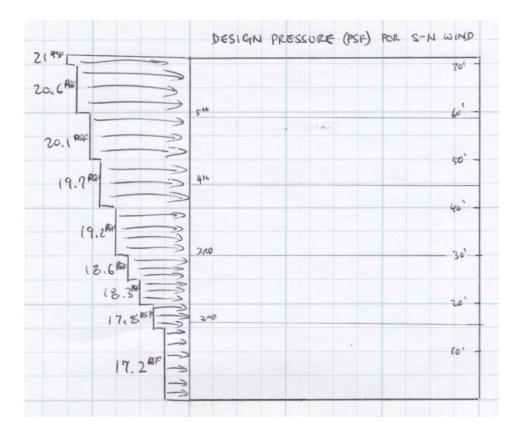
Gravity Load

Dead Loads (PSF) - actual weight of the permanent building components

- Structural Steel ----- 6.5 PSF
- Metal Deck ------ 3 PSF
- Concrete ----- 43 PSF
- MEP ----- 15 PSF
- Partition ----- 20 PSF
- Total Dead Load ----- 87.5 PSF

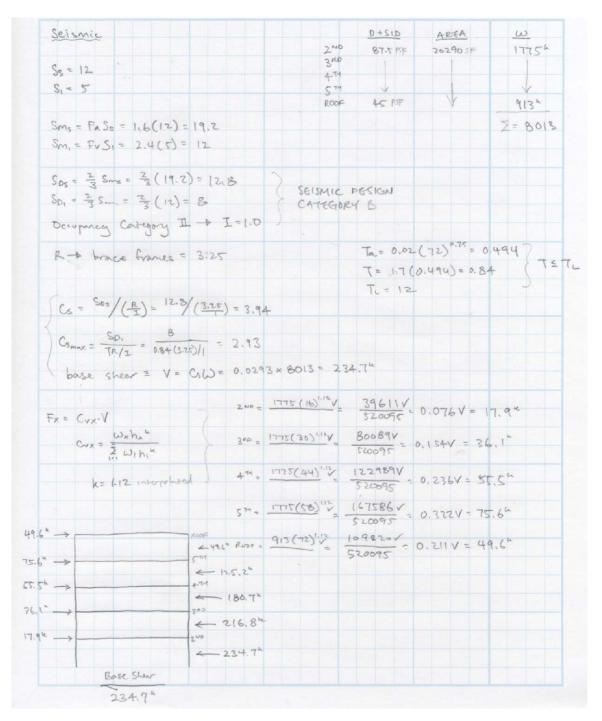
Live Loads (PSF) – from 2003 IBC: Table 1607.1

- Roof Snow ----- 25 PSF
- Office Floor ----- 50 PSF
- Corridor ----- 100 PSF
- Lobby ----- 100 PSF
- Retail ----- 100 PSF
- Penthouse Floor ----- 250 PSF
- Mechanical Unit ----- 150 PSF + weight of equipment


Snow Load (PSF) – from ASCE 7-05: Chapter 5

- Primary concern for snow load is next to the penthouse where drifting may occur. Following the guidelines in ASCE 7-05 snow load was calculated and drift was considered.
- The maximum drift calculated was 59.3 PSF

Lateral Load


Wind – from ASCE 7-05: Chapter 6

Height Above Ground (ft)	Windward plus Leeward Pressure
0-15	17.2 PSF
20	17.8 PSF
30	18.3 PSF
40	19.2 PSF
50	19.7 PSF
60	20.1 PSF
70	20.6 PSF
80	21.0 PSF
90	21.3 PSF

Story Shear and	58.99	S-N WIND	ROOF	
Base Shear	58.11			
and or and			< 58.99 h	-
	57.10 ->		5-74	
			~ 116.09h	
	55.42->		4.04	
	03.10-			
			< 171.514	
	52.33 →		320	
			< 223.84 ^m	
	56.454		2.100	
			< 280.29 [℃]	
			[st-	
		ISASE SHEAR		
		2.80.294		
30.58->		E-W WIND	KODK	
			< 30.	50 K
29.52			574	
			< 60	. 02 k
28.48->			4.74	
			- 88	.50"
26.71->			3100	
				F
			- II	5. 21~
28.65"->			2.10	
			< 1L	13.89
			157	
		Base shear 143.89m		

Seismic – from ASCE 7-05: Chapter 11

SPOT CHECKS

Beams

To spot check the beams, a typical bay on the second floor was checked. RAM model showed the beams were adequate for the load provided in this report. Also hand calculation was performed which shows adequacy of the beam used.

Girders

A girder was taken from the same bay as the beam above. Again Ram model as well as the hand calculations agreed with the construction documents.

Columns

An interior column was taken from the first floor for spot check. The column listed on the column schedule was adequate in holding the loads provided in this report. RAM analysis was performed along with quick hand checks.

Bracing

Total factored load were taken into account for the bracing member calculations. Since dead, live, and wind load combination controlled in North-South lateral load, the loads were factored and applied to bracing two and three. Bracing one was checked against dead, live, and seismic combination loads which controlled East-West lateral load. Bracing members were assumed to take 80% of the lateral loads and moment frames were assumed to resist the rest. Bracing members along with moment frames were adequate to provide lateral resistance.

CALCULATIONS

Beam

LEVEL 2 +	
- I	
	BEAMS SPACED EQUALLY
	UL - SO PSF
SEAM I	DL-+ 88 PSF
84	LL REDUCTIONS
GIRDER I	$L = L_{*} \left(0.25 + \frac{15}{\sqrt{A_{1}}} \right) = 50 \left(0.25 + \frac{15}{\sqrt{500}} \right) = 46 \text{ ps}$
10-30'-	->1 AT = 7.5' × 33.3' = 250 SF
	AI = 2AT = 500 SF
factored loads	
	1.2(88)+1.6(46)=179.2 PSF
Pu= 179.2 PS	
	7.5 = 1344 PSF = 1.344 MF
MI 1.344FKLP	이 것 이 여 라면 전 것 것 이 것 것 것 것 것 것 것 것 것 것 것 것 것 것
A 33'4"	$M_{u} = \frac{\omega l^{2}}{8} = \frac{1.344 (33.3)^{2}}{8} = 1.87^{14}$
	try LEX26
10 10 1 digit \$ 5.25"	assume a= 1.5
T	Y = 5.25" - 0.75" = 4.5" 2007 0
	assume PNA @ 7 a= ZQn. = 96 a= ass(F(2)(4) = ass(3)(90) = 0.42 < 1.50
ff = 7.5' × 12 = 90"	\$Mh= 228 "
33.3 *1 = 100"	
	W16x26 in composite action works

Girder

GIRDER I				equal land from	beans n
1 BEAUS 2 1 22.4" 2 32.5'	2.4*	Gikoer	Ar next	bay	
$M_{u} = \frac{P_2 l}{4} + \frac{1}{4}$	$\frac{P,bx}{l} + \frac{P_3bx}{l} =$	44.8(30)	44.8 (7.5)(15)	+ 44.8 (7.5)(1	s) = 672'*
The assume	24×55 = 4.5" = 4.5" = PNA@7 = 178"	ZQ== 204" a= 204 0.85(2)(90	= 0.89 < 1		
$\frac{230^{2} \times 12}{4} = 10^{4}$			action works		
. From londs	calculated	composite bee	in and girders	are adequa	te. The

Page 13

Column

		1			
	COLUMN DESIGN	0-2			
	7. 7. 7				
(in the second	+111+11+		U + 50 PSF	Roof LL -+ 25 F	SF
W12×72 KL=16'		24'	OC-+ 8B RSF	ROOF DL - 25 P	of (no conc., no partition
\$Pn = 670*					
	tintit	1	TRIP ANA -	$32\left(\frac{24}{2}+\frac{33.5}{2}\right)=0$	917 SE
		28.33			
			$A_T = 4 \times 917$	= 3668 SF	
			A1 = 4 A1 =	14672 SF	
	H	+			
	+-32' + 32'-+-				
	LL RED.				
	L= Lo (0.25 + 15/	(A1) = 50 (0.25 + 15/51467	12) = 18.7 PM=	
	0.4L = 0.4(50)	7 20 PS#	A CONTROVS		
	FACTORED LOADS				
	1.40= 1.4(88)=	122.2 Pct			
	1.20+1.66 = 1.26		= 137.6 PSF		
	Room - 1.2 (25)+ 1.				
	· · · · · · · · · · · · · · · · · · ·	e(st)= 10	rar .		
	Pu = (137.6) (4×917) +	70 (917) =	568906 11 = C	il gh	
	in astrone in the	1 class	000100700		
	DL+ 4 = 1.463 KLF	1	Duru	1.0.1.	170 000
				uls from locans -+	I IT ISF
		DL = 1.876 kur		+ × 8' = 1432 PLF + 12 (26) = 14621	(1-
		1 1 1		+ 1.2 (26) = 14631	
			1.2 × 880	F * B' = 845 PUF	
				-2 (26) - 1876 PUP	
	0, 0,	3		61 regis	
	14(2(2) 2)				
	FEM 2-1 = 1.462 (33.2)	e 135.5 14	AFENA - 1	35.5 - 42 = 93.5 "	
\frown	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	PEM22 = 0.876(24)2=	42 "	Ma = A	2 = 2 = 47	
	Peff = 589 + 24 (Mw).	569 + 24	· (47) = 6634	2 \$PA = 670 /	
		12			

Bracing

BRACING for N-S lateral	load V= 1.6	(280) = 448 K	
WB-2	3B-3		
	DITY KUE	0.74 KLF ×	24= 17.84
21/8/10	19/9		
10 million 16	10 16	V= 448 + 1-	1.8" = 466"
3		ced frame = 0.8V	
24'	24'	ced trame = 0.00	974
DL= 88	man	nent frame = 0.2V	- 15
L= 58 1.20+116L = 1.2(88).	+11/0)-185.6	REF	
		1-	
Wu= 18516 PSH x 4	TUT		- in
Leco ad the The line			Conservative
URFD 3rd Edution Table 4-6	anak)		The
KL=20' $HSS = 8 \times 8 \times 3/8 = 3$ Pn $HSS = 6 \times 6 \times 3/8 = 3$ Pn	= 212 { 413 >	373"	
(HSS GXGX 3/8 =) \$Ph	= 141" }		
			V
SRACING For E-W lateral 1.	ad V= 235k	1-23	5+ 21(3)= 2984
skaland to a second to	und v	braced Grane = 0	
WB-1	DL=88 4-50	moment Grane = 0	2V= 604
21" 21" 21" L K			
			Pru
21/2 52	L= 50 (0.25+ 15/	(466.6) = 41.2	137
at 6 16		3'= 238.3	
1 A A A A A A A A A A A A A A A A A A A	A1= 241=	466.6	
28'			
		1.267 KL	
FACTORED LODD			
1.20+1.62 = 1.2(88)+1.6(4	7.2)= 181 MSP	< 33'4" −	1
		214	Zie
Wu= 181×7'= 1267 PLF			A LA BAN
214 214 21*	LRED 30 Edit	run Taible 4-6	
	KINDAL HES	8×8×3/8 =) ¢	Pn = 250" > 238"
D D	RLºLO ISS		

Snow Load Calculation

Ground Snow Load (p _g) =	20.0 psf	(Fig. 1608.2 p. 16-12)	
Bldg. Classification Category =	III	(Table 1604.5 p. 16-5)	
Snow Importance Factor (I_S) =	1.1	(Table 1604.5 p. 16-5)	
Snow Exposure Factor (C _e) =	1.0	(Table 1608.3.1 p. 16-14)	
Snow Thermal Factor $(C_t) =$	1.0	(Table 1608.3.2 p. 16-14)	

Section 7.3)
Section 7.3)
Section 7.10)
Fig 7-2 p. 84)
Fig 7-2 p. 84)
Eq 7-4 p. 79)

Location	Length of Upper Roof, l _u (ft)	Length of Lower Roof, l _u (ft)	∆ Roof Height (ft)	Drift Width W _d (ft)	P _{max} (psf)	P _{min} = P _f (psf)	P at Edge of Roof (psf)
Intermed.	45	89	12.1	9.0	59.3	22.0	22.0

Wind Load Calculation (North – South)

Input Parameters: Basic Wind Speed (V, mph) =	80	Building Length (L, ft) = (Parallel to Wind)	114.67
Exposure Category =	В		
		Building Width (B, ft) =	204.67
Bldg. Classification Category =	III	(Normal to Wind)	
Wind Importance Factor (I _W) =	1.15	Roof Slope (θ , deg.) =	0 in per foot
		(Degrees from Horz.)	0.00 deg. from horiz.
Mean Building Height (h, ft) =	76.666666		3
		Internal Pressure Coef (GC _{pi}) =	0.18 (Pressure)
Multipilers to obtain K1 =	1	7	-0.18 (Suction)
Topographic factor: K2 =	1		· · · ·
K3 =	1		
Topographic Factor (K _{zt})=	1		
Wind Directionality Factor (K _d)=	0.85		

Calculated Parameters:			
Velocity Press. Exposure Coef at h (K _h)=	0.92	h/L =	0.669
Velocity Pressure at h (q _h) =	14.73 psf	L/B =	0.560
Gust Effect Factor (G) =	0.813	h/B =	0.375
Internal Pressure (q _h GC _{pi}) =	2.7 psf	α =	7
	-2.7 psf	z _g =	1200

MWFRS Wall Pressures												
Height Above Ground	Kz		Side Wall			Windward Wall			Leeward Wall			Windwrd
		q _z (psf)	External	External	External	External	External	External	External	External	External	+Leewrd
		4z (p5i)	Pressure	+Int. Press.	- Int. Press.	Pressure	+Int. Press.	Int. Press	Pressure	+Int. Press.	 Int. Press. 	(psf)
Cround			(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psi)
0-15	0.57	9.1	-8.4	-5.7	-11.0	5.9	8.6	3.3	-6.0	-3.3	-8.6	17.2
20	0.62	9.9	-8.4	-5.7	-11.0	6.5	9.1	3.8	-6.0	-3.3	-8.6	17.8
25	0.67	10.7	-8.4	-5.7	-11.0	7.0	9.6	4.3	-6.0	-3.3	-8.6	18.3
30	0.70	11.2	-8.4	-5.7	-11.0	7.3	9.9	4.6	-6.0	-3.3	-8.6	18.6
40	0.76	12.2	-8.4	-5.7	-11.0	7.9	10.6	5.3	-6.0	-3.3	-8.6	19.2
50	0.81	13.0	-8.4	-5.7	-11.0	8.4	11.1	5.8	-6.0	-3.3	-8.6	19.7
60	0.85	13.6	-8.4	-5.7	-11.0	8.9	11.5	6.2	-6.0	-3.3	-8.6	20.1
70	0.89	14.3	-8.4	-5.7	-11.0	9.3	11.9	6.6	-6.0	-3.3	-8.6	20.6
80	0.93	14.9	-8.4	-5.7	-11.0	9.7	12.3	7.0	-6.0	-3.3	-8.6	21.0
90	0.96	15.4	-8.4	-5.7	-11.0	10.0	12.7	7.3	-6.0	-3.3	-8.6	21.3

Wind Load Calculation (East – West)

Input Parameters: Basic Wind Speed (V, mph) =	80	Building Length (L, ft) = (Parallel to Wind)	204.67
Exposure Category =	В		
		Building Width (B, ft) =	114.67
Bldg. Classification Category =	III	(Normal to Wind)	
Wind Importance Factor (I _W) =	1.15	Roof Slope (θ, deg.) =	0 in per foot
		(Degrees from Horz.)	0.00 deg. from horiz.
Mean Building Height (h, ft) =	76.666666		5
		Internal Pressure Coef (GC _{pi}) =	0.18 (Pressure)
Multipilers to obtain K1 =	1		-0.18 (Suction)
Topographic factor: K2 =	1		. ,
К3 =	1		
Topographic Factor (K _{zt})=	1		
Wind Directionality Factor (K _d)=	0.85		

Calculated Parameters:			
Velocity Press. Exposure Coef at h (K _h)=	0.92	h/L =	0.375
Velocity Pressure at h (q _h) =	14.73 psf	L/B =	1.785
Gust Effect Factor (G) =	0.832	h/B =	0.669
Internal Pressure (q _h GC _{pi}) =	2.7 psf	α =	7
	-2.7 psf	z _g =	1200

Height		q _z (psf)	Side Wall			Windward Wall			Leeward Wall			Windwrd
Above	K _z		External	External	External	External	External	External	External	External	External	+Leewrd
Ground	152	4z (p3i)	Pressure	+Int. Press.	- Int. Press.	Pressure	+Int. Press.	Int. Press	Pressure	+Int. Press.	 Int. Press. 	(psf)
Citouna			(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psi)
0-15	0.57	9.1	-8.6	-5.9	-11.2	6.1	8.7	3.4	-4.2	-1.6	-6.9	15.6
20	0.62	9.9	-8.6	-5.9	-11.2	6.6	9.3	4.0	-4.2	-1.6	-6.9	16.1
25	0.67	10.7	-8.6	-5.9	-11.2	7.1	9.8	4.5	-4.2	-1.6	-6.9	16.7
30	0.70	11.2	-8.6	-5.9	-11.2	7.5	10.1	4.8	-4.2	-1.6	-6.9	17.0
40	0.76	12.2	-8.6	-5.9	-11.2	8.1	10.8	5.4	-4.2	-1.6	-6.9	17.6
50	0.81	13.0	-8.6	-5.9	-11.2	8.6	11.3	6.0	-4.2	-1.6	-6.9	18.1
60	0.85	13.6	-8.6	-5.9	-11.2	9.1	11.7	6.4	-4.2	-1.6	-6.9	18.6
70	0.89	14.3	-8.6	-5.9	-11.2	9.5	12.1	6.8	-4.2	-1.6	-6.9	19.0
80	0.93	14.9	-8.6	-5.9	-11.2	9.9	12.6	7.3	-4.2	-1.6	-6.9	19.4
90	0.96	15.4	-8.6	-5.9	-11.2	10.2	12.9	7.6	-4.2	-1.6	-6.9	19.7

Seismic Calculations

Input Parameters:	
Building Height (h _n , feet) =	76.666666
Max. Considered Earthquake (MCE) Short Period (S_S) =	12.0%
MCE 1 sec. Period (S ₁) =	4.6%
Site Soil Class =	D
Bldg. Classification Category =	II
Seismic Use Group =	I
Seismic Occupancy Importance Factor (I _E):	1
Response Modification Factor (R) =	3.25
Deflection Amplification Factor $(C_d) =$	4.5
C _T =	0.02
X=	0.75
Period Calculated from Analysis (T, sec.) =	0.84

Level	Story Height (ft.)	Elevation, h (ft.)	Surface DL+SDL (psf)	Floor Surface Area (sq.ft)	Additional StoryDL (kips)	Story Weight (w, kips)	w*h^k (kip-ft^2)	C _{Vx}	Story Force (kips)	Story Shear (kips)	Overturning Moment (k-ft)
L1	0	0	0	0	0	0	0	0.00000	0.0	235	11852
L2	16	16	87.5	20290	0	1775.375	45510	0.07219	17.0	235	8095
L3	14	30	87.5	20290	0	1775.375	94956	0.15061	35.4	218	5044
L4	14	44	87.5	20290	0	1775.375	148638	0.23576	55.4	183	2489
L5	14	58	87.5	20290	0	1775.375	205353	0.32572	76.5	127	709
roof	14	72	45	20290	0	913.05	136011	0.21573	50.7	51	0