ERIC MUELLER

STRUCTURAL OPTION ADVISOR – DR. LEPAGE AE 481W OCTOBER 27, 2006

555 12TH STREET OAKLAND, CALIFORNIA

Technical Report #2: Pro-Con Structural Study of Alternate Floor Systems

Executive Summary

The purpose of this report is to analyze alternate floor framing systems and determine if they are a viable alternative to the existing system. The existing floor system consists of $2\frac{1}{2}$ " concrete slab over 3" deck that act compositely with the steel frame. Beams sized as W18's, span 43.5' in the critical bay and are supported by W24-W27 girders. Alternative floor systems were compared to one another based on several criteria, and are listed below. Most important were weight of the system, ability to span long distances, ease of construction, and cost. Secondary were floor system depth, fireproofing, and vibration control.

- Concrete Pan Joist
- Precast Hollowcore
- Non-Composite Slab/Steel
- Composite Joists

After analysis, concrete and precast systems were determined to be the least efficient. While they are inherently fire resistant, and do not require fireproofing, they are inefficient in spanning long distances. This long span is needed for the column free floor plan. Also, the weight of the system is unfavorable in the high seismic region. Foundation and lateral system redesign would be required, which can be very costly. There benefits were in vibration control and relative cost. Noncomposite steel joists offer long spans, lighter weight than concrete, and ease of construction. No shear studs are required in this system which saves cost and time over the existing. The members are larger which increases foundation loads, and costs, but is worth further investigation. Lastly, were the composite joists systems which offer a light weight and efficient system, and is worth further investigation. Joists are able to span long distances and carry the floor load. These are relatively expensive compared to the other systems, because of the need for shear studs. However, reduction in overall weight of the building will reduce foundation and lateral system costs.

Table of Contents

Introduction2
Existing Structural System2,3
Design Considerations
Alternative Systems
 Concrete Pan Joists
• Composite Joists
Conclusions10
Appendices11
 A. Existing Framing Plan

Introduction

555 City Center is a 21 story office building located in the heart of downtown Oakland. It was designed using the Uniform Building Code, but I have analyzed it with the International Building Code 2003. This code references the ANSI's minimum design loads for buildings, which are provided below for live loads. The dead loads were calculated by myself, and are used for this technical assignment. Combined, these gravity loads will be used in determining alternate floor systems for a critical bay on a typical floor in the building. The entire typical floor framing is shown in appendix.

Live Loads: Taken from table 1607.1 from IBC 2003

- Office Floor: 80 psf Assume any spot could be a corridor at some point
- Partitions: 20 psf Assume 10 psf for seismic calculations

Dead Loads: (Assumed) waiting for confirmation

- Metal Deck: 2 psf
- Reinforced Concrete: 150 pcf (includes reinforcing)
- Steel Structural Members: 15 psf
- MEP: 10 psf
- Collateral: 5 psf

Design References Used:

- Nitterhouse Precast Concrete Literature
- CRSI Concrete Reinforcing Steel Institute
- LRFD Manual of Steel Construction Third Edition
- Vulcraft Steel Joist Catalogs
- RS Means Assemblies Catalog 2002

Existing Structural System

The elevated floors, starting from level 2, are composite metal deck systems. Typical floors 3-21 are 3" 18 gage composite deck with 2 ½" of normal weight concrete cover. The slabs are reinforced by either #6 @ 13" EW or WWF6x6 W1.9. The majority of the structural system is steel framing. All structural framing steel is designated as ASTM A992, Gr 50, unless otherwise noted. The building takes advantage of two lines of symmetry, one in the N-S direction, and the other in the E-W direction. The typical floors, 2-21, have the same framing, unless otherwise noted.

On a typical floor, composite steel deck spans the beams and girders. Beams are sized as W18x55 and W18x60 and span 43'-6". The girders are sized W18 – W27, and span 30 - 35', depending on location in the bay analyzed. The overall max depth of the floor system is 26.7" for a W27, plus an additional 5.5" for the composite deck, for a total of 32.2". For this report, one critical bay was looked at between column lines X4-D2 and 5-6. It is not a square bay, but it is analyzed as a 30'x 43.5' bay for simplicity. Beams are spaced 10' on center in the long span. The original and analyzed bay layout is shown below.

Existing Bay

Analyzed Bay

Design Considerations

When identifying possible alternative floor systems, several factors were taken into account

- Must be able to span long distances to keep column free spaces
- Weight of system
- Fire rating
- Depth of system
- Ease of construction
- Price

Alternative Floor Systems

Concrete Pan Joists

Concrete pan joist, also known as one-way joist floor systems, consist of evenly spaced concrete joists spanning in one direction. A reinforced concrete slab is cast integral with the joists to form a monolithic floor system. The one way joists frame into beams that span between the columns, perpendicular to the joists. These systems are effective for column layouts short span in one direction and long span in the orthogonal. It is preferable to span the joists in the short direction in rectangular bays, to achieve maximum economy.

Fire resistance is inherently provided by the concrete, so no additional fireproofing is required for the system. The joists also provide adequate stiffness over long spans and minimize structural depth of the system from 32" to 20.5". The formwork for the system is the majority of the cost at 58%. However, because of the redundancy of the system, the formwork can be reused over and over again to reduce construction costs. These costs become an issue because of the need to set up formwork, set time for bars, waiting for concrete to cure, shoring, and teardown of formwork. The increased system weight is both good and bad. While the added weight helps to reduce floor vibrations and noise, it also requires the columns to become larger, and ultimately the foundations. Seismic issues also arise because the diaphragm has changed. Also, the extra weight of the concrete will increase the base shear on the building, and require a new lateral system analysis.

The system was designed, using the CRSI Design Guide for standard one-way joists, to span the 30' distance. A 30" form with 6" ribs @ 36" c.c, with a total depth oh 20.5" was selected. The ribs are 16" deep and covered with a 4.5" top slab. Number 5 bars @ 9" on top, and (1) #6 and (1) #7 in the bottom provide the adequate reinforcing. A joist band beam was not designed, but one would be required to span perpendicular to the joists along the column line.

4,5" + -		•	•	ø	•	0	•	±5 @ 9" o,c	с.
16"	00				00	(1) 4G			
Ť	× 6" +		30"		+ 6" +				
	+		36 C.C.		+				

Pan Joist Cross Section

Pan Joist Framing

Precast Hollowcore Plank

Precast hollowcore planks were chosen for another alternative floor system from the Nitterhouse design literature. Precast concrete offers several advantages over the original floor system. They are cast in a controlled environment which increases their quality over cast in place concrete. They are also prestressed which gives them a higher capacity and span length than normal weight concrete. Also, being concrete, the system is inherently fire resistant, but the wide flange beams they rest on, are not. They must be fireproofed, or replaced with inverted tee beams as the structural support. The planks also offer superior durability, natural sound attenuation, and vibration control.

There are several disadvantages of precast, including transportation cost and lead time. Precast must be ordered in advance, and transported to site. Transportation costs can become relatively expensive if the manufacturer does not operate locally. Because the planks are very heavy, 102.5 psf for those selected, this limits the amount that can be carried to site in one load. This will also increase transportation costs and project schedule. However, once on site, the construction is extremely fast. Only a 2" topping is needed to be placed before it is complete. There is no curing time, shoring, and formwork needed which will lead to a decrease in project schedule. The weight of the system will also impact the design of the lateral system and increase foundation size, which increases project cost.

The hollowcore selected comes in 4' pieces and spans 30' in the bay. A 12" x 4' Spandeck-UL-J917 with a 2" cast in place topping, with a capacity of 187 psf was

selected. The reinforcing pattern consists of 6 - 1/2" diameter, 270 K Lo-Relaxation strands. The planks span between two girders, both sized to be W40x149. However, a W24x192 may be selected as an alternate size. It is heavier but reduced floor system depth. The overall depth of the system including the plank is 52.2" for W40 and 39.5" with the W24. Realistically, another girder, or column line should be added in order to decrease the size and weight of the beams used to carry the planks.

Precast Hollowcore Framing

Hollowcore Plank Cross Section

Non-Composite Slab and Steel

This system is just like the original, except that the beams and girders do not have composite action with the slab. This means that the beam will take all the moment, and not transfer any to the slab. The locations of the beams are every 10', and span the long direction. A 3" deck with 2 ½" concrete cover spans perpendicular to the beams. The benefit of this system is its ease of construction. Shear studs are no longer needed to help transfer load, so there is a material and labor cost savings. Welders are not needed to be on site as often, and no time is needed to install. Schedule decreases and floors go up quicker. Another benefit of steel is its reduction of dead load in the building compared to concrete.

Steel systems require spray on fireproofing or encasements to achieve necessary fire ratings. This is an expensive added cost. Also, because the beams act alone from the concrete, they will become larger to accommodate the added moment. This increased weight increases column size, which increases foundations and cost. It also affects seismic issues with the lateral system negatively. Vibration control is more of a problem with steel than concrete because of weight. Steel is more susceptible to floor vibrations and sound attenuation.

Beam sizes showed an increase in size as expected. They jumped from W18x55 to W27x84, controlled by total load deflection. The girders, however, remained relatively unchanged from a W24x55 to a W24x68. More calculations would need to be done to determine the appropriate size of the girder compared to the beam it is supporting.

Non-Composite Framing

Composite Steel Joists

This system is ideally suited for commercial construction where large column free areas are desired. This system takes advantage of the interaction between concrete slab and steel joists through shear studs like the original steel system, resulting in smaller members. Floor to floor height is reduced because mechanical systems can be routed through the open webs of the joists. However, shear stud installation is labor intensive and expensive to the project. Erection and connections are simplified due to standard end bearing seats which mean faster construction. Weight savings over large W-shapes reduces building weight, which reduces foundation size and cost. It also reduces the overall base shear and seismic reaction on the lateral system. Floor vibrations can be a problem with steel structures, but over the long spans provided by the joists, it is reduced.

Joists were designed and chosen from the Vulcraft Composite Joist and Decking Catalogs online. In the analyzed bay, the joists are spaced every 6' o.c. and span 43.5'. The existing decking, 2 ¹/₂" concrete over 3" deck, was used to determine a correct joist size. However, once picked from the chart it was given that the decking could be made smaller to a 2" deck, for a total of 4.5". The joist designation found was an 18VC 1200/600/450 with 32- ³/₄" diameter shear studs per span. This is an 18" joist with 4.5" decking, for a total of only 22.5" depth. Two rows of bridging between joists is needed to prevent movement and rotation. The loads from the joists were then used to determine a girder size to support them. A W24x55 was calculated to adequately carry the joists.

Composite Steel Joist Framing

Composite Joist with MEP through web

Comp	arison	of	Alternative	Floor	S	ystems
					_	

Framing System	Advantages	Disadvantages	Cost/ Sq. foot	System Weight	Further Investigation
Existing Composite Beams	Column free space Lightweight Beam Layout Flexible	Cost + Labor Fireproofing	\$20	Light	Y
Concrete Pan Joist	Small depth Vibration Control	Weight - Seismic Trouble spanning bay Foundation redesign	\$15-16	Heavy	N
Precast Hollowcore	Cost Quality Product	Weight - Seismic Large Depth Foundation redesign	\$10	Heaviest	N
Noncomposite Slab/Steel	Ease of Construction Beam Layout Flexible	Large Members Vibration	\$15	Medium	Y
Composite Joists	Column free space Lightweight Ease of Construction	Cost + Labor Fireproofing	\$18-19	Lightest	Y

Conclusions

After analysis, it was found that any of the alternative systems could work as floor systems in the building. However, some are far more efficient and better suited for a high rise office building in a high seismic region. The concrete pan joist system can be ruled out as an alternative and further investigation. While it does offer small system depth, it is not enough to make up for the shear weight of the system, and the foundation and lateral system redesign that comes with it. Also, it would be difficult to span a band beam 43.5' under the presented loading. An extra set of columns would need to be installed, which would go against the column free floor plan. Precast hollowcore plank can be ruled out as well. While it is relatively cheap and easy to construct compared to the other systems, its weight disqualifies it as a viable alternative. Foundation redesign and lateral system redesign would result, like with pan joists. Non-composite slab system with steel beams provides the column free spaces the building needs. Although the beams are larger than the composite system, they do not require shear studs. Shear stud installation is costly and labor intensive. Schedule of the project would be shortened, and in turn, the cost. Lastly, is the option of using composite open web steel joists. The joists are relatively lightweight compared to the existing system and still span the required 43.5'. They provide the column free space needed, and are fairly easy to construct. While vibration can be an issue in steel forms, the long span of the joist helps to minimize the effects. For these reasons, it is a viable alternative floor system.

Appendices

- A. Existing Framing Plan
- B. Composite Beams Calcs/Charts
- C. Concrete Pan Joists Calcs/Charts
- D. Precast Hollowcore Calcs/Charts
- E. Non-Composite Slab and Steel Calcs/Charts
- F. Composite Steel Joists Calcs/Charts

A. Existing Framing Plan (Bay chosen shaded)

		1	30'+4	3.5'								
61 8	BI	GI	* BAY	wits	CHE	KED	JN	TEC	H #	BEPO	18T	
		1.2	DESI	GNED								
/	DECK	02			B1:	W18,	×55	(36)	SHEAR	STUDS	3/1	(1"d)
	SPAN				61:	W24	×55	(24)	SHEAR	57005	(314	1')
			25000									
			necheck									
1-1	61	-										
BEOM B1:	DL= 100	PSF =>	· Wu=(1,2(100))+),(d	100)	0=	2,8 KZ	F=ur	>		
	100		Mu=	2.8 KLF	(43,5))² ~	101					
				8	1	= 0	62	K				
beff= 14 SPI	an = 1/4 (43,5))= 130,	5"									
= Spacin	g = 10(12) =	120	- CCN	TROLS								
INCE) OF	ANDARIA	(The	-	N. M	CON C	11.)16	WEE.					
USC LINI	Pinnel	Crass	102-14	1 11	Jane	w ie	000					
Cr:	.85(55)(120) (3))= 168:	3 1451	571	tte a	CM TRO	is				
Cc= T5=	.85(55)((14,2;n²)((20) (3) 50 Km)) = 168: = 610	3 1451 1 1451	578	tt a	CN TROI	is				
Ce: Ts=	.85(5,5)((14,2;n²)((20) (3) 50 Km))= 168: = 810	3 1551 1 1551	578	ter a	CM TROI	s				
Cc: Ts= Q=	.85(5,5)((14,2;n ²)(<u>810</u>	(20) (3) 50 Km))= 168: = 810 1.44	3 1451 1 1451 2 47	578 42=	sec a	CM TROI	4,7	8			
Cc: T5= Q=	. 85(55)((14,2;n²)(<u>E10</u> (185)(5;5)((120) (3) 50 Km) (120) =) = 168: = 810 1.44	3 1451 1 1451 2 47	578 4z=	5.5-	ON TROI	s 4,75	8			
Cc= Ts= Q= TABLE	.85(55)((14,2:n²)(<u>810</u> (185)(5.5)(5-14 00.5	(120) (3) 50 Km) (120) = -1412 =) = 168: = 810 1.44	3 151 1 151 2 4 77 = 4	42= 15 (1	5.5-	I.44	.s 4,79	8 DNA @	3		
Cc= T5= Q= TABLE	. 85(5,5)((14,2;n²)(<u>810</u> (185)(5,5)(5-14 pg 5	(20) (3) 50 Km) (120) -142 =) = 168: = 610 1.44 > @	3 1851 1 1851 2 197 172 = 4 1 1/10 = 1	972= 15 (1 6991)k	5.5- 5.5- CONSERV > 66	01 TROI	5 4,75	8 PNA C	3		
Cc: T5= 9= TABLE	.85(55)((14,2;n²)(<u>810</u> (185)(5:5)(5-14 pg 5	(20) (3) 50 Km) (120) - 142 =)= 168: = 810 1.44 ? C' Ean	3 151	978 42= 5 (C 6991k	5.5- 5.5- 769	1.44 2= 1471vE 21/c +7=	5 4,75) / /	8 DNA C C	3		
Cc= T5= Q= TABLE	. 85(5,5)((14,2;n²)(<u>810</u> (185)(5,5)(5-14 pg 5	(20) (3) 50 Km) (20) (20) (20) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)= 168: = 510 1.44 > C EQN	3 KSI KSI TZ = 4 TZ = 7 TZ	972 72= 15 (1 6991k 3 15700	5.5- 0.4500 27	CN TROI	4,79 2, 01 54 5	8 DNA @ C THEAR A	3 570D5		
Cc: T5= Q= TABLE	· 85(55)((14,2;n2)((14,2;n2)((185)(5:5)(5-14 pg 5	(20) (3) 50 (5) (20) (20) (20) (20) (20) (30) (30) (30) (30) (30) (30) (30) (3)= 168: = 810 1.44 => @ Ean &aa4	3 KSI KSI $T_2 = 4$ $T_2 = 4$ $T_3 = 5 = 3$ $T_1 = 5 = 3$ $T_2 = 4$ $T_2 = 4$ $T_2 = 4$ $T_2 = 4$ $T_2 = 4$ $T_2 = 5 = 3$ $T_2 = 5 = 3$	972 12= 15 (C 6991k 3 15700 15700	5.5- 5.5- > 69 27 74	01 TROI	5 4,75) / OK 52/5	8 DNA @ C HEAR A	3 57005		
Cc= T5= Q= TABLE OR	$\frac{.85(5.5)(}{(16,2.5)(}$ $\frac{810}{(185)(5.5)(}$ $\frac{5-14}{12} = 5.0$	(20) (3) 50 Km) (20) -142 = -142 =)= 168: = 510 1.44 = 610 = 64 = 64	3 KSI 1 KSI $1 \text$	$\begin{array}{c} 5 \\ 7_2 = 1 \\ 5 \\ 6991 \\ 8 \\ 5 \\ 5 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	5.5- 5.5- 269 27- 7420	on TROI 1.44 2= 1471VE 21/c 42= 60211	5 4,75 2, 01 52/5 c : 0,	8 DNA C HEAR 9 K	3 570D5		
Cc: T5= Q= TABLE	- 85(55)(- (14,2;n²)(- <u>810</u> (185)(5:5)(- 5-14 pg 5 - 4 pg 5 - 4 pg 5	(20) (3) 50 (5) 50 (5)) (20) (20) (30) (30) (30) (30) (30) (30) (30) (3)= 168: = 510 1.44 > @ ' Ean \$Q1 Ean	3 KSI KSI $7_2 = 4$ $1M_h = 1$ $7_2 = 4$ $27_2 = 4$ $1M_h = 1$ $27_2 = 4$ $27_2 = 4$ $1M_h = 1$ $27_2 = 4$ $27_2 = 4$ $1M_h = 1$ $27_2 = 4$ $27_2 = $	$\begin{array}{c} 5 \\ T_2 = 1 \\ 5 \\ Gqar_k \\ 3 \\ 5 \\ 5 \\ 7 \\ 5 \\ 4 \\ k \end{array}$	5.5- 5.5- 5.5- 5.5- 5.5- 5.69 27- 74>0 74>0 74>0 74>0	on TROI	5 4,75 2, 014 52/5 c : 0, 52/5	8 C C C C C C C C C C C C C C C C C C C	3 570D5 EAR 57	~DS	

B. Composite Beams (Current System)

C. Concrete Pan Joists

DESIGN FOR END SPAN - JOIST-BAND BEAM	
WU= 212P3F FIND DISTRIBUTED WEIGHT FOR JOST SYSTEM	
(TOBLE S-1 OF CRSI)	
JOIST-SLAB SYSTEM WEIGHT = 97 PSF - FROM TABLE	
1,4(97)= 135,8 PSF	
TOTAL WEIGHT = 212+135.8: 347.8 PSF	
w= 343,8PSF(30)= 10,4 K2F	
CHECK CRSI CH.12 FOR JOIST-BAND BEAM SIZE	
FOR 30' SPAN WITH LCAD= 10,4 KLF	

ST. ONE-V MULTI	ANDA VAY J PLE S	OISTS	5	3 Factor	80″ Fo RED US/)(2)	$f'_c = 4,000 \text{ psi}$ $f_y = 60,000 \text{ psi}$						
Depth		16" Deep Rib + 4.5" Top Slab = 20.5" Total Depth								1		12	
TOP BARS	Size Ø	#4 10	#4 8	#5 10.5	#5 9	#6 10.5		#4 9	#5 11.5	#5	#6	#6 9	L
BOTTOM BARS	:	15 15	#5 #6	#6 #6	#6 #7	#7 #7	Span Defl.	#4	#5 #5	#5 #6	#6 #6	#6 #7	Int. Span Defl.
Steel (psf)		.85	1.04	1.24	1.44	1.71	(3)	.93	1.15	1.42	1.70	2.01	Coeff (3)
CLEAR S	PAN		and a local	END SPA	4	-	12.0	INTERIOR SPAN					
27'-0		131 0	185 0	240 0	305 • 306	314 * 373	6.398	184 0	252 0	331 0	359 *	368 *	3.938
28'-0		112 16 0	163 0	214 0	275 0	293 * 338	7.400	161 0	225 0	299 0	338 * 373	346 * 423 *	4.554
29'-0		95 0	142 0	190 0	247 0	274 * 306	8.516	141 0	201 0	269 0	318 * 339	325 * 395 *	5.240
30'-0		80 0	124 0	169 0	222 0	256 * 277	9.752	123 0	178 0	243 0	300 * 307	306 * 370 *	6.001
31'-0		66 0	108 0	149 0	200 0	240 * 250	11.119	106 0	158 0	218 0	279 0	289 * 347 *	6.842
32'-0		54 0	93 0	132 0	179 0	226 * 227	12.625	92 0	140 0	197 0	254 0	273 * 322	7.769
33'-0		43 0	79 0	116 0	160 0	205 0	14.278	78 0	124 0	177 0	230 0	258 * 295	8.787
34 - 0			66 0	101 0	143 0	185 0	16.089	66 0	109 0	159 0	209 0	244 * 270	9.901
35'-0'		1	55 0	88 0	127 0	167 0	18.067	54 0	95 0	142 0	190 0	231 * 247	11.118

D. Precast Hollowcore

HOLLOW CORE PLANK (SPAN SHORT DIMENSION) LOADS: DEAD LOAD: 15 PSF TOTAL LOAD = 115 PSF LIVE LOAD = 100 PSF TOTAL LOAD = 115 PSF * NITTSEHOUSE PRESTRESSED HOLLOWCORE PLANK (CATALOG ONLIVE) - NEEDS TO SPAN 30' FROM GIRDER TO GIRDER 12" ×4' Sponderk-UL-J917 W/ 2" CIP TOPPING STRAND PATTERN- G- Vz" O, 270 K Lo-Relaxation ALLOWBELE SUDREIMPOSED LCAD= 187 PSF > 115 PSF (FLEXURE) CK CHECK SUPPOPTING GIRDERS FOR APPROPRIATE SIZE TOTAL FATTCRED LCAD LIVE LOOD = 100 PSF DENDLOND = 15 PSF 1,20+1,6L 1,2(15+102.5)+1,6(100) SELF WEIGHT = 102.5 PSF FROM CATALOG = 301 PSF $M_{U^{2}} = \frac{\omega l^{2}}{8} = \frac{(3011 \text{ KSF} \times 30^{2})(43.5)^{2}}{8} = 2.135.91 \text{ K}$ $Z_{reg} = \frac{M_{o}}{\Phi F_{y}} = \frac{2135!k(12)}{0.9(50 \text{ KM})} = 569.6 \text{ in}^{3}$ (HECK LAFD STEEL MANUAL - TABLE 5-3 A W40+149 w) By= 5981,3>569.61,3 75 OK - SEG DETAILS FOR CONNECTION TINFORMATION OF PLANK TO STEEL - CHERC OUT PCI 2.27 28 blocks at 25 inche

E. Non-Composite Slab and Steel

SERVICE LLAOS CHECK BEAMS FOR DEFLECTION WIL DOOPSF Wer = 100 PSF Au= 5wl4 => -43.5(12) 5(100)(43.5)4(1728)(10) 384EI 360 384(24+10) Juny LIVE LOAD : Frey= 1920in4 LBFD MANUAC +> [W24×76 w) Jy= 2100104 TOTAL (MD), ATL: 5014 > 43,5(2) 5(200) (43,5)4(1728) (10) 384(29+100) Frey Jrg= 2560 LBFD MINUTED W 27×84 W 7x=2850 # W27+84 75 SIZE NEEDED DUE TO SERVICE LONDS CHECK GIRDER FOR DEFLECTION: GNDER SERVICE LOADS PTENAE 200 PFF(10)(435) 21.8 => WTL= 21.812)= 1.45 KLF = 1450PLF WLL = 10.912 = 0,726KLF = 726 PLF PLIVE = 10,9 k ALL=> 30(12) = 5(726)(30)4/1728) => Jroz= 4/56:04 ATL > 30(2) = 5(1450)(30)"(1728) => Jrry = 607 in 4 x Z = 1214/in 4 &r in torler 240 = 384(29+105) 7 A WI8+40 FOR GIRDER ON ETTERIOR A W24155 FOR INTERNA GIEDER

F. Composite Steel Joists

21460, 010= 20	cocps; , No RMAC	l wi. course	TE- ORIGIMAT DECKING DESIGNED
A 7 1		0	
Assume Jeigts	s will be plan	red pvery 6	that spaling $43.5 \approx 44$
Dead load=	conrele = 5.5	5/12(150)=68	.8
	joist =	4,5 PSF	Drine: 90,3 (6): 542 PLF
	decle =	ZPEF	
	MEP =	10 P5F	\$ LINE LOD REDUCTIONS LET TAKEN INTO
	Collabural =	6 psf	ACCUNT
LIVE LOAD =	100 PSF (G)= 0	600 PLF	TOTAL CNFAILLED = 1142 PLF
	c -		
CHECK JOIST	CATALOGS - V	IULCHAFT - CO	MPOSITE JOISTS CATALOG
1 mar			
D A 2.5" COV	er ove 2" Deci	K, JOISTS SDA	CED S' (AN MOLD 1200 PLI-
1112.			
wy=	= 32 PLF = WA	right at Jois	στ 👳
(U300 =	= 32 PLF = WA 850 PLF = WA	right of 3015	
(W360 =)V-ds =	= 32 PLF = WH 850 PLF = WH 32-3/4" & Sh	right of Jors 1-1360 new Shuds/ spur	οτ
(W360 = N-d5 = Bridgin	= 32 PLF = WH BSO PLF = WH 32-3/4" & Sh 1g regurnel = 2	right at 3015 12/360 herr study/spor 2 Rows	η η η η η η η η η η η η η η η η η η η
(U340 = (U340 = (U-d5 = (brielgin	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 52-3/4" & Sh 52-3/4" & Sh	right at Jois 12/360 12/1360 12/1360 12/1360 12/13/13/13/13/13/13/13/13/13/13/13/13/13/	
UN G= UN ds = N-ds = Brielgin (CMROSTIE 211	= 32 PLF = W1 850 PLF = W1 32-3/4" & Sh 32-3/4" & Sh 32-7/4" & Sh 3	1-1360 1-1360 1er 5-1664/2007 2 BOWS 5F(G) = 600 PCF-0	e 850 PLF ; OK FUD DEFLECTION
Wige Wiges = N-ds = Brielgin (CMROSITE 21V	$32 \text{ PLF} = W_{1}$ $850 \text{ PLF} = W_{1}$ $32 - 3/4 \text{ "} \oplus \text{ Sh}$ $4 - 3 - 3/4 \text{ Sh}$ $32 - 3/4 \text{ "} \oplus \text{ Sh}$	1-1360 1-	2 850 PLF ; OK 7N DEFLECTION
UN GE UNSON = N-ds = Brielgin (CMROSTIE 21V (COMROSTIE DE	= 32 PLF = W1 850 PLF = W1 32-3/4" @ Sh 13 Freumd = 2 16 LCAD = 100 B 640 LCAD = 6	1-1360 1-	75.3 BSF(G)- 4522 450 PLF
Composite por	= 32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 3	1-1360 1-1360 1:47 574045/5pc1 2 BOWS 5F(G) = GOOPEF-2 56.8+2+415= 20)/GCO/2450	2 850 PLF; OK 710 DEFLECTION 75.3 MF(G)- 4522 450 PLF
Composite po USE:	= 32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 64D LOAD = G 18VC 12C 32-3/4" &	1-1360 1-1360 1:47 57404/5pcr 2 80WS 5F(G) = 600PlF- 55.8+2+415= 20/600/4150 5 5 hour 5740	2 850 PLF; OK 7N DEFLECTION 75.3 MF(G)- 4522 450 PLF 0 - JOIST DESIGNATION 8 (crap
USE:	= 32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 15 CCAD = 100 B 16 CCAD = 6 16 VC 12C 32-3/4" &	1-1360 1-1360 1-1360 2 Rows 5F(6) = 600 PCF-2 55(6) = 600 PCF-2 55(6+2+415= 0)/GC0/2150 0) 5 hear 9/100	n 2 850 PUF ; OK 7N DEFLECTION 75.3 BSF(G)- 4522 450 PUF 2 - JOIST DESIGNATION PS/Span
USE:	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 16 LCAD = 100 BS 64D LCAD = 6 16 VC 12C 32-3/4" & 30-57 WEINH	1-1360 1-1360 1-1360 2 BOWS 5F(G) = GOOPEF- 56.8+2+415= 0/GCO/450 0 Sheer 9tuo 7= 32 PLF	ат ,, 2 850 PLF ;, OK 7N DEFLECTION 75.3 BSF(G)- 4522 450 PLF 0 - JOIST DESIGNATION PS/Span
USE:	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 64D LCAD = 100 B 64D LCAD = 6 18VC 12C 32-3/4" & 30.57 WEIGHT 30.57 WEIGHT	1-1360 1-1360	ат ,, 2 850 PlF; OK 7N DEFLECTION 75.3 MF(G)- 4522 450 PlF 0 - JOIST DESIGNATION 15/ Span
USE:	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 54D LCAD = G 18VC 12C 32-3/4" & 32-3/4" & 32-	1-1360 1-1360	ат ,, 2 850 PLF ;, OK 7N DEFLECTION 75.3 MF(G)- 4522 450 PLF 0 - JOIST DESIGNATION PS/Span
USE:	$32 \text{ PLF} = W_{1}$ $850 \text{ PLF} = W_{1}$ $32 - 3/4 " \oplus 5h$ $32 - 3/4 " \oplus 5h$ $32 - 3/4 " \oplus 5h$ $16 \text{ LCAD} = 100 \text{ B}$ $16 \text{ LCAD} = 100 \text{ B}$ $16 \text{ VC} = 120$ $32 - 3/4 " \oplus 5h$ $3a \text{ ST} \text{ WE16H}$ $3a \text{ ST} \text{ WE16H}$ $3a \text{ ST} \text{ WE16H}$ $2 \text{ Rews of } \text{ OF}$	Fright of 3015 1-1360 1	ат ,, 2 850 PLF ;, OK 7N DEFLECTION 75.3 BSF(G)= 4522 450 PLF 0 - JOIST DESIGNATION PS/Span
USE:	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh E LCAD = 100 B 64D LCAD = 6 18VC 12C 32-3/4" & 30.57 WEIGH 30.57 WEIGH 2 REWS OF 2" DECK (1-1360 1-1360	at $\frac{1}{2}$ A A S50 PLF; OK 7N DEFLECTION 75.3 MF(G)- 4522 450 PLF D - JOIST DESIGNATION $\frac{1}{5}$ (span
USE:	32 PLF = WA 850 PLF = WA 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 32-3/4" & Sh 54D LOAD = G 18VC 12C 32-3/4" & 32-3/4" & 32-	right of Jos 1-1360	ar

WEIG VULC	WEIGHT TABLE AND DESIGN GUIDE Based on Allowable Tensile Stress of 30,000 psi VULCRAFT COMPOSITE STEEL JOISTS, VC SERIES														i						
Joist	Joist		Slab Design																		
Span	Depth			No	rmal	Weig	ght C	oncre	ete (145	pci)		f 'c =	3.0	ksi					
		tc (in)	2.00	2.00	2.00	2.00	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	3.00	3.00	3.00	3.00
		hr (in)	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
		Js (ft)	3.5	4.0	4.0	4.5	5.0	6.0	6.5	7.0	8.0	8.5	9.0	10.0	10.0	10.0	10.0	11.0	12.0	12.0	12.0
						Total U	Iniform	ly Dist	ributed	l Joist	Load ir	n Poun	ds Per	Linear	Foot						
		TL	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1800	2000	2200	2400	2700	3000
(ft)	(in)																				
44	18	Wtj (plf)	12	15	17	19	22	24	27	30	32	36	37	40	41	47	55	55	66	74	86
		W360 (plf)	277	350	413	461	560	614	712	796	850	968	979	1103	1111	1176	1302	1554	1796	1873	1999
		N-ds	28-1/2	30-1/2	36-1/2	40-1/2	44-1/2	30-5/8	36-5/8	42-5/8	32-3/4	38-3/4	38-3/4	42-3/4	44-3/4	52-3/4	62-3/4	62-3/4	80-3/4	84-3/4	84-3/4
-																					