BRIDGESIDE POINT II

"BUILDING SYSTEM OPTIMIZATION"

IMAGE COUTESY OF THE FERCHILL GROUP

THE DEPARTMENT OF ARCHITECTURAL ENGINEERING AT THE PENNSYLVANIA STATE UNIVERSITY

APRIL 14, 2008

ANTONIO DESANTIS VERNE

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRODUCTION

STRUCTURAL DEPTH

- OPTIMIZATION STUDIES
- COST SAVINGS & BENEFITS
- RECOMMENDATIONS

ARCHITECTURAL BREADTH

- INTRODUCTION
- COMPARISONS
- RECOMMENDATIONS

ACOUSTICS BREADTH

- MECHANICAL ROOM LOCATION
- CALCULATIONS
- **RECOMMENDATIONS**

RECAP & RECOMMENDATIONS

QUESTIONS

PHOTO BY ANTONIO VERNE

THESIS GOALS

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

OPTIMIZE BUILDING FEATURES

- HORIZONTALLY
- VERTICALLY

ENHANCE BUILDING AESTHETICS

REDUCE NOISE PROPAGATION

IMAGE COUTESY OF ATLANTIC ENGINEERING SERVICES

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

BUILDING INTRODUCTION

BUILDING STATISTICS

- 5 FLOORS / 160,000 SQ. FT
- SPEC OFFICE & LABORATORY
- APPROX. \$19 MILLION (GMP)

STRUCTURAL

- COMPOSITE STEEL FRAMING
- TYPICAL BAY SIZE: 30'-0"x32'-0"
- LARGE, EXPOSED BRACED FRAMES

ARCHITECTURE

- PRECAST STONE & METAL PANELS
- EXPANSIVE GLASS CURTAIN WALLS
- OPEN FLOOR PLAN
- 15'-0" FLOOR TO FLOOR HEIGHT

PROJECT TEAM

- OWNER: THE FERCHILL GROUP
- ARCHITECT: STRADA, LLC
- STRUCTURAL: ATLANTIC ENGINEERING SERVICES
- CONSTRUCTION: TURNER CONSTRUCTION
- MEP: ALLEN & SHARIFF ENGINEERING

BACKGROUND IMAGE TAKEN FROM GOOGLE EARTH

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

LATERAL OPTIMIZATION

- SOFT-STORY ELIMINATION
- BRACING CONSISTENCY
- RESULTS & RECOMMENDATIONS

VERTICAL OPTIMIZATION

- UTILIZE MAXIMUM ZONING HEIGHT
- IMPLEMENT BRACING SYSTEM FROM LATERAL OPTIMIZATION
- RESULTS & RECOMMENDATIONS

EXISTING LATERAL BRACING LOCATIONS

LATERAL OPTIMIZATION

STRUCTURAL DEPTH ARCHITECTURE BREADTH ACOUSTICS BREADTH

EXISTING LATERAL BRACING

ALTERNATE LATERAL BRACING SCHEMES

SOLUTION

- ELIMINATE KNEE BRACING
- REDUCE TWO-BAY FRAME
- PROVIDE MID-SPAN BRACING
 - MODIFIED "X-BRACE"
 - CHEVRON BRACE

EXPLORE CHEVRON BRACE

APRIL 14, 2008

ANTONIO DESANTIS VERNE

LATERAL OPTIMIZATION

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

Beams

West Columns

East Columns

West Braces

East Braces

CHEVRON LATERAL BRACING

CHEVRON BRACING

- REDUCES MEMBER SIZE
- CONSISTENT MEMBER CONTRIBUTION
- ELIMINATES SOFT-STORY EFFECT

East - West Direction

		Story Drift		Structure Drift			
	_		Actual	Allowable	Actual	Allowable	
29.61%		Roof	0.117	0.450	0.731	2.220	ОК
11.99%		5th Floor	0.121	0.443	0.615	1.770	ОК
12.02%		4th Floor	0.211	0.443	0.493	1.328	ОК
23.15%		3rd Floor	0.132	0.443	0.283	0.885	ОК
23.23%		2nd Floor	0.151	0.443	0.151	0.443	ОК

LATERAL OPTIMIZATION: RESULTS & RECOMMENDATIONS

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

CHEVRON LATERAL BRACING

- ELIMINATES SOFT-STORY
- CONSISTENT BRACING SCHEME
- REDUCES STEEL COST

Building System	Total Cost (Including MEP Alterations)	Cost Difference	Payback (Years)	Recommend
Existing Structure	\$19,126,000	\$0	8.38	-
Modified "X"-Brace	\$19,054,746	-\$71,254	8.35	Yes
*Modified Chevron Brace	\$19,040,189	-\$85,811	8.34	Yes

* SYSTEM PRESENTED

✓ RECOMMEND CHEVRON LATERAL BRACING SYSTEM

VERTICAL OPTIMIZATION

THANK YOU

QUESTIONS

MODIFIED BUILDING

SOLUTION

- INCREASE BUILDING HEIGHT TO 90'-0"
- RELOCATE PENTHOUSE TO GROUND FLOOR
- OPTIMIZE DRIFT

APRIL 14, 2008

ANTONIO DESANTIS VERNE

VERTICAL OPTIMIZATION

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

CHEVRON LATERAL BRACING

CHEVRON BRACING

- REDUCES LATERAL MEMBER SIZE
- PROVIDES UNIFORM DRIFT
- MEETS CODE ALLOWABLE DRIFT LIMITS

East - West Direction

21.91%
18.13%
18.14%
20.88%
20.94%

	Story Drift		Struct	ure Drift	
	Actual	Allowable	Actual	Allowable	
Roof	0.162	0.450	1.252	2.663	ОК
6th Floor	0.194	0.443	1.090	2.220	ОК
5th Floor	0.246	0.443	0.895	1.770	ОК
4th Floor	0.247	0.443	0.649	1.328	ОК
3rd Floor	0.212	0.443	0.403	0.885	ОК
2nd Floor	0.191	0.443	0.191	0.443	ОК

VERTICAL OPTIMIZATION: RESULTS & RECOMMENDATIONS

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

CHEVRON LATERAL BRACING

• ADDITIONAL 30,000 SQ. FT. LEASABLE SPACE

• CONSISTENT BRACING SCHEME

• FASTER PAYBACK

Building System	Total CostCost(Including MEP Alterations)Difference		Payback (Years)	Recommend	
Existing Structure	\$19,126,000	\$0	8.38	-	
Addition with "X"- Brace	\$21,496,806	\$2,370,806	7.85	Yes	
*Addition with Chevron Brace	\$21,477,402	\$2,351,402	7.84	Yes	

* SYSTEM PRESENTED

✓ RECOMMEND ADDITIONAL FLOOR

FACADE OPTIMIZATION

- PRESENTATION OUTLINE
 - THESIS GOALS
- BUILDING INTRC
- STRUCTURAL DEPTH

ARCHITECTURE BREADTH

- ACOUSTICS BREADTH
- SUMMARY & RECOMMENDATIONS
 - THANK YOU
 - QUESTIONS

- LATERAL BRACING EXPOSURE
 - GROUND FLOOR
 - NORTH ELEVATION
- COMPATIBILITY OF AN ADDITIONAL FLOOR
- RESULTS & RECOMMENDATIONS

IMAGE COURTESY OF THE FERCHILL GROUP

APRIL 14, 2008

FACADE OPTIMIZATION: LATERAL BRACING EXPOSURE

ANTONIO DESANTIS VERNE

FACADE OPTIMIZATION: LATERAL BRACING EXPOSURE

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOL

QUESTIONS

EXISTING WEST ELEVATION

MODIFIED WEST ELEVATION

APRIL 14, 2008

ANTONIO DESANTIS VERNE

FACADE OPTIMIZATION: LATERAL BRACING EXPOSURE

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOL

QUESTIONS

EXISTING NORTH ELEVATION

MODIFIED NORTH ELEVATION

ANTONIO DESANTIS VERNE

FACADE OPTIMIZATION: COMPATIBILITY OF AN ADDITIONAL FLOOR

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOL

QUESTIONS

MODIFIED WEST ELEVATION

FAÇADE OPTIMIZATION: COMPATIBILITY OF AN ADDITIONAL FLOOR

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOL

QUESTIONS

EXISTING NORTH ELEVATION

MODIFIED NORTH ELEVATION

APRIL 14, 2008

ANTONIO DESANTIS VERNE

FACADE OPTIMIZATION: RESULTS & RECOMMENDATIONS

- AESTHETIC ENHANCEMENT
- REALIZED LOAD PROGRESSION
- HOMOGENEOUS ELEVATIONS
 - CHANGES ARE RECOMMENDED
 - INTRODUCE CHANGES AT THE SCHEMATIC DESIGN PHASE

ESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

REDUCTION OF NOISE PROPAGATION: RELOCATION OF MECHANICAL ROOM

OFFICE

TAKES ADVANTAGE OF STAIRWELL MINIMAL INTRUSION TO OPEN PLAN

CONVENIENT ACCESS TO LOADING DOCK

APRIL 14, 2008

REDUCTION OF NOISE PROPAGATION: COMMON WALL DESIGN

COMMON WALL CHARACTERISTICS

- 8" CMU WALL
- FULL MORTAR BED
- SAND FILLED VOIDS
- 1" THICK PLASTER COATING

REDUCTION OF NOISE PROPAGATION: COMMON WALL DESIGN

COMMON WALL CHARACTERISTICS

- 8" CMU WALL
- FULL MORTAR BED
- SAND FILLED VOIDS
- 1" THICK PLASTER COATING

Sound Pressure Level (dB)							
	125	250	500	1000	2000	4000	
	Hz	Hz	Hz	Hz	Hz	Hz	
Sound in Source	70	72	62	EQ	E2	10	
Room	78	73	03	50	55	40	
Sound in	50	50	50	50	50	50	
Receiving Room	30	30	30	30	50	50	
Required Noise	28	22	12	Q	2	0	
Reduction	20	25	15	0	5	0	
Provided Noise	28	27	12	17	50	52	
Reduction	20	57	42	47	50	52	
Actual Sound	50	36	21	11	2	0	
Pressure Level	50	50	21	11	3	U	
Acceptable	Yes	Yes	Yes	Yes	Yes	Yes	

✓ WALL DESIGN IS ACCEPTABLE

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

REDUCTION OF NOISE PROPAGATION: RESULTS & RECOMMENDATIONS • LOCATION PROVIDES VERTICAL ACCESS TO BULDING •CONVENIENT ACCESS TO LOADING DOCK • COMMON WALL PROVIDES ACCEPTABLE NOISE REDUCTION

CHANGES ARE RECOMMENDED

INTRODUCE CHANGES AT THE SCHEMATIC DESIGN PHASE

APRIL 14, 2008

PRESENTATION OUTLINE

SUMMARY

SUMMARY & RECOMMENDATIONS

GOALS

OPTIMIZE BUILDING FEATURES

- ✓ HORIZONTALLY MORE EFFICIENT LATERAL SYSTEM
- VERTICALLY FASTER PAYBACK WITH ADDITIONAL FLOOR
- RECOMMEND IMPLEMENTION OF STRUCTURAL SOLUTIONS

ENHANCE BUILDING AESTHETICS

- HOMOGENEOUS ELEVATIONS
- **FREALIZED LOAD PATH**
- RECOMMEND IMPLEMENTION OF ARCHITECTURAL SOLUTIONS

REDUCE NOISE PROPAGATION

- ✓ MASSIVE COMMON WALL
- ✓ NON-INTRUSIVE MECHANICAL ROOM LOCATION
- ✓ RECOMMEND IMPLEMENTION OF ACOUSTICS SOLUTIONS

APRIL 14, 2008

THANK YOU

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRO

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

THE AUTHOR WISHES TO EXTEND ACKNOWLEDGMENTS AND THANKS TO THE FOLLOWING INDIVIDUALS, FACULTY, PROFESSIONALS, AND FIRMS FOR THEIR GENEROUS AIDE WITH THIS THESIS:

THE FERCHILL GROUP

STRADA, LLC

TURNER CONSTRUCTION

ATLANTIC ENGINEERING SERVICES:

ANDY VERRENGIA

THE PENNSYLVANIA STATE UNIVERSITY:

PROF. PARFITT

PROF. HOLLAND

DR. GESCHWINDER

PROF. LING

AND THE REST OF THE AE FACULTY & STAFF

A VERY SPECIAL THANKS TO MY FRIENDS AND FAMILY, ESPECIALLY MY MOM AND DAD

APRIL 14, 2008

ANTONIO DESANTIS VERNE

QUESTIONS

AT THIS TIME THE AUTHOR WILL ADDRESS ANY FACULTY QUESTIONS

PRESENTATION OUTLINE

THESIS GOALS

BUILDING INTRC

STRUCTURAL DEPTH

ARCHITECTURE BREADTH

ACOUSTICS BREADTH

SUMMARY & RECOMMENDATIONS

THANK YOU

QUESTIONS

QUESTIONS?

APRIL 14, 2008

ANTONIO DESANTIS VERNE