Penn State AE Senior Thesis Presentation

Altoona Area Junior High School • Altoona, PA Christopher G. Conrad • Mechanical Option Faculty Advisor: James D. Freihaut, Ph.D. April 16, 2008

Introduction

- Presentation Outline
 - Thesis Goals
 - Building Information
 - Existing Mechanical Systems Summary
 - Ground Source Heat
 Pump Redesign Depth
 - Daylighting Breadth
 - Summary
 - Conclusions
 - Questions

Goals

- Reduce HVAC systems' energy consumption in the AAJHS athletic facility
- Reduce lighting system energy consumption in AAJHS gymnasiums
- Reduce energy costs for AAJHS

- Present a ground source heat pump system as a feasible, responsible design *alternative*
- Present gymnasium daylighting system as a feasible, energy-saving design *enhancement*

- Owner Altoona Area School District
- Architects L. Robert Kimball & Associates
- Replaces two older existing schools
- > 292,000 square feet
- \$48 Million
- Scheduled to open Fall 2008
- Will accommodate 1,800 students
- Grades 7–9

Two separate building sections

- Two separate building sections
 - Academic Building (239,434 sq. ft.)
 - Classrooms
 - Offices
 - Auditorium
 - Library

- Two separate building sections
 - Athletic Building (52,632 sq. ft.)
 - Gymnasiums
 - Locker Rooms
 - Athletics

(Primary thesis focus area)

- Two-pipe Hydronic
 Changeover System
 - Serves academic building
 - Central boiler/chiller
 - Two 225-ton chillers
 - Two 3,322–MBH boilers
 - Three-way mixing valve
 - Heating/cooling modes
 - Change-over valves
 - Chilled water @ 45°F
 - Hot water @ 180°F
 - Supplies unit ventilators and building AHUs

DX/Natural Gas Air Handling Units

- Serve athletic building
- Constant Air Volume (CAV)
- Single-zone
- Refrigerant cooling
- Natural gas heating
- Interior mounted units
- Traditional duct system
- Seven units considered for replacement

	Athletic Building Equipment Schedule									
Mark	Total CEM		Coc	ling (D)X)	Hea	ting (G	ias)		
ΜαΓΚ		MIII. O.A. CFM	MBH	EAT	LAT	MBH	EAT	LAT		
AHU A-1	7400	3875	306.3	82.3	55	560	35.3	100		
AHU A-2	7400	3875	306.3	82.3	55	560	35.3	100		
AHU A-3	3200	1440	122.6	81.1	55	200	40.5	100		
AHU A-4	3200	1440	122.6	81.1	55	200	40.5	100		
AHU A-5	13150	1500	378.5	76.6	55	560	63.8	100		
AHU A-6	2250	1475	102.7	84.2	55	200	27	100		
AHU A-7	3650	1040	122	79	55	200	51.5	100		

- Scope reduced to consider replacement of single-zone CAV air handling units in the athletic building
- System modeled for basis of comparison
- Design aides (HAP)

- Assumptions
- Requirements

Design Tools

Carrier's Hourly Analysis Program

Assumptions

- No loading June-August (building unoccupied)
- Reduced loading on weekends and holidays
- Each AHU modeled as its own system
- Include lights (depth study)

Requirements

- Local utility rates
 - Dominion Peoples (natural gas)
 - PENELEC (electricity)

Separate occupancy and thermostat schedules

Typical daily occupancy schedule

Typical daily thermostat schedule

Estimated Annual	Estimated Annual Energy Consumption									
HVAC C	Components									
Electric	60,490 kWh									
Natural Gas	3,190 Therms									
Non-HVAC	C Components									
Electric	88,310 kWh									
Т	otals									
Electric	148,800 kWh									
Natural Gas	3,190 Therms									

Estimated Annual Energy Costs								
HVAC Compone	ents							
Cooling	\$7,420							
Heating	\$12,970							
Subtotal	\$20,390							
Non-HVAC Compo	onents							
Lights	\$11,620							
Subtotal	\$11,620							
Totals								
Grand Total	\$32,010							

In Summary,

- Systems consume:
 - 148,800 kWh electricity
 - 3,190 Therms natural gas
- Annual Operation:
 - \$32,010/year (does not include maintenance costs)

Ground Source Heat Pump Redesign Project

Ground Source Heat Pump Redesign Project Introduction

- Ground Source Heat Pump (GSHP) system
 - Closed–loop system
 - Vertical bore holes
 - Components
- Advantages
 - Thermal comfort
 - Quiet
 - Humidity control
 - Low maintenance
- Disadvantages
 - High first cost
 - Installation

Ground Source Heat Pump Redesign Project Initial Considerations Loop Field Site Selection

- Parking lots considered why?
- Adjacent school building (RJHS) to be demolished
 - Offers 112,600 sq. ft. of unoccupied land
 - Will be replaced by new soccer field
 - Unique construction phasing challenges (not considered)

Ground Source Heat Pump Redesign Project Initial Considerations

Loading

- Use simulation values
- Keep same zone configuration
- Consider increased load from daylighting

	Athletic Building Design Loads									
Zone	Space	Area	Cooling	Heating						
1	Gym #1	11,200 ft ²	340.3 MBH	394.8 MBH						
2	Gym #1	11,200 ft ²	340.3 MBH	394.8 MBH						
3	Gym #2	7,420 ft ²	155.1 MBH							
4	Gym #2	7,420 ft ²	164.5 MBH	155.1 MBH						
5	Concourse	4,280 ft ²	249.6 MBH	144.3 MBH						
6	Locker Rooms	3,550 ft ²	37.1 MBH	23.1 MBH						
7	Fitness Rooms	7,250 ft ²	153.7 MBH	120.9 MBH						

Ground Source Heat Pump Redesign Project Initial Considerations

- Design Tools
 - GCHPCalc (for design)
 - RETScreen International (for simulation)
- Assumptions
 - Same occupancy schedule
 - Soil conductivity = $1.20 \text{ Btu/hr-ft-}^{\circ}\text{F}$
 - Program default
 - Field measurement is best cost estimated in simulation
 - New system utilizes existing ductwork and mechanical rooms
 - In reality, new configuration needed (not designed)
 - No cost difference considered
 - Buying multiple heat pumps of same size = money savings
 - Used as design parameter

Figures based off of Trane high-efficiency WSHPs

Ground Source Heat Pump Redesign Project Initial Considerations

- Selected Parameters
 - Inlet loop water cooling @ 85°F
 - Inlet loop water heating @ 45°F
 - 3 GPM/ton water loop flow
 - Undisturbed ground temp. = $54^{\circ}F$ (from USGS)

Bore Hole / Pipe Resistance			
Grout /Fill Thermal Conductivity	Main Screen	Nex	t Screen
Bore Hole Diameter 6.0 inches	\odot		\bigcirc
Grout/Fill Conductivity 0.90 Btu/hr-ft-F	œ B	° B/C	C C
HDPE U-Tube Nominal Diameter 1.00 inch	es 11.0 SD	R	
Tube Flow Regime O Turbulent O 1	ransition	O Lamina	r
Resulting Eqv. Dia. = 0.50 ft Bore Res -	stance 0.235	hr-ft-F/Btu	

Ground Source Heat Pump Redesign Project Loop Field Configuration

- 8x16 bore grid arrangement (128 total)
 - 8 bores/parallel loop
 - 20ft. separation distance between bores
- Vault placement/building entry
- Vertical depth determined by GCHPcalc program

Ground Source Heat Pump Redesign Project Required Bore Length

Design Lengths										
Design Hybrid GCHP	Save Input to File	Print Values	Next Screen							
Required BORE length with minimal groundwater movement = 35090 ft (274 ft/bore) (Design based on HEATING mode - net annual heat extraction from ground) Required BORE lengths with high rates of groundwater movement (or year 1) Cooling: L= 25110 ft (196 ft/bore), Heating: L= 35090 ft (274 ft/bore)										
*** Heat Pump Series: Trane (Standard Efficiency) ***										
Temperatures	Ma	Maximum Block Loads/Demands								
Unit Inlet (cooling) = 85.0	'F Coo	Cooling Load/Demand = 1450 MBtuh / 178 kW								
Unit Outlet (cooling) = 96.	JF Hea	Heating Load/Demand = 1388 MBtuh / 140 kW								
Unit Inlet (heating) = 45.0		ling EER (Ht Pump/Sys	s) = 8.2 / 7.9							
Unit Outlet (neating) = 39.		ning COP (Ht Pump/Sys	6J = 2.3 / 2.8							
Normal ground temp = 5	4.0 F	Loop Pump Head/Flow Rate = 60 ft / 363 gpm								
-U-bend/Bore Data		p rump rowen/Demand	1 - 7.0 iip 7 0.3 KW							
U-tube Diameter = 1.00 in	ch –									
Separation dist. = 20.0 ft		und Data	0 D. II () *C							
Grid = 8 wide by 16 dee	0 The	Thermal Conductivity = 1.20 Btu/hr-ft-*F								
Grout Conductivity = 0.90	Btu/hr-ft-*F	Cround Temperature - 54.0 *E								
Bore Diameter = 6.00 inch	es Gru	unu remperature = 54.t	J F							

Total bore length = 35,090 ft (274 ft/bore)

Ground Source Heat Pump Redesign Project Equipment Selection

Program Outputs

- Based on Trane high-efficiency GEV commercial series watersource heat pumps (WSHPs)
- Zones 1 and 2
 - Six 12.5-ton units
- Zones 3 and 4
 - Two 12.5-ton units
- Zone 5
 - Two 12.5-ton units
- Zone 6
 - One 6-ton unit
- Zone 7
 - One 12.5-ton unit

Ground Source Heat Pump Redesign Project Cost and Energy Usage

RETScreen International

- GSHP modeling software
- Estimated cooling and heating
- Local climate data used
- No natural gas figure
 - System is all electric
- No lights
 - Will be considered later in the presentation
- 153,000 kWh total
 - Basis for system comparison

Total Estimated Energy Consumption								
Cooling	87,000 kWh							
Heating	66,000 kWh							
Total	153,000 kWh							

Ground Source Heat Pump Redesign Project Cost and Energy Usage

Total Estimated Initial Costs									
Feasibility Study	\$	2,500							
Development	\$	1,935							
Engineering	\$	1,625							
Equipment	\$	114,986							
System Balance	\$	11,080							
Miscellaneous	\$	20,946							
Total	\$	153,072							

Total Estimated Annual Costs									
Operation and Maintenance	\$	5,606							
Fuel and Electricity	\$	10,457							
Total	\$	16,063							

- Initial costs estimated at \$153,072
- Annual costs estimated at \$16,063/year
- Values used for comparison

- Used to *enhance* existing lighting system in gymnasiums
 - Assumes existing system is adequate
- Reduce energy consumption and cost
- SolaTube luminaires considered
 - Too expensive
- SkyCalc software used to design/simulate skylight system
 - Weather data Albany, NY
 - Room inputs size, height, surface properties
 - Lighting inputs
 - 30fc lighting set point
 - Oft. Task height

AGI software used to visualize spaces

• Gymnasium #1 (22,400 sq. ft.)

- Thirty 6x8-ft. skylights selected
- Polycarbonate, triple-glazed

	Dome Skylight Effective Aperture = 2.43%, Skylight to Floor Ratio (SF										(SFI	R) =	7.5	8%										
							A	ver	age	day	/ligh	t fo	otca	andl	es (fc)								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	0	ſ)	0	Ŋ	0	Ð	0	4	19	41	59	72	73	62	45	22	6	(j	0	ſj	0	()	0	Ð
Feb	Û	Û	()	0	ſj	0	1		38	67	91	97	103	93	71	46	18	3	ŋ	0	ſ)	Û	Û	0
Mar	0	ſj	Ũ	Û	Û	ſj	7	30	61	90	109	117	117	112	94	62	34	ΠD	()	ſj	Ü	ſJ	Ũ	Ŋ
Apr	0	Û	Ŋ	0	ſJ	5	24	56	89	113	140	146	138	136	116	80	52	22	4	Ü	O	Ü	ſj	0
May	0	ſj	Û	Û	54	14	42	75	110	134	152	170	166	160	141	107	71	36	10	ſj	ŋ	ŋ	Û	ſj
Jun	0	Û	ŋ	0	4	20	50	87	112	149	158	169	165	159	137	108	79	46	16	3	ŋ	Û	ŋ	0
Jul	0	ſj	Û	Û	2	15	42	80	116	151	169	180	179	165	148	110	81	45	17	53	ŋ	ŋ	Ũ	ſj
Aug	0	Û	ŋ	0	ſj	7	30	68	104	131	157	167	166	152	133	98	64	32	7	Û	ſj	Ü	ŋ	Û
Sep	0	ſj	Ű	Û	()	2	17	48	80	107	130	136	141	128	101	72	37	11	!	Ŋ	()	ŋ	0	Ŋ
Oct	0	Û	ſj	0	ſj	0	6	27	54	81	103	104	100	88	65	39	19	1	fj	()	ŋ	Û	ſj	0
Nov	Û	ſj	0	Û	0	Ŋ	1	10	30	46	64	66	65	56	40	18	4	ſj	0	ſj	Û	ſj	Û	Ŋ
Dec	ŋ	0	ſj	0	ſj	0	ſj	4	19	39	54	63	60	49	32	14	2	Û	ſj	Û	ſj	0	ſj	0
	Design Illuminance = 30 fc																							

• Gymnasium #1 (22,400 sq. ft.)

- AGI visualization
- Worst-case scenario (winter solstice)

Gymnasium #2 (14,840 sq. ft)

- Twelve 6x8-ft. skylights selected
- Polycarbonate, triple-glazed

	Dome Skylight Effective Aperture = 2.50%, Skylight to Floor Ratio (SFR) = 7.78%											8												
							A	ver	age	day	/ligh	t fo	otca	andl	es (f	fc)								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	0	ſJ	0	Ŋ	0	ſj	Û	4	17	36	52	63	64	54	39	19	5	ſj	0	ſj	0	D	0	ſj
Feb	Ð	0	Ŋ	0	ſj	0	1	10	34	58	80	85	90	81	62	40	16	ţ.	ſJ	0	ſj	0	ſj	0
Mar	0	()	0	ſj	0	ſJ	7	26	53	79	95	102	102	98	83	54	30	9	0	ſj	0	Û	0	ſj
Apr	Ð	0	ŋ	0	Ŋ	4	21	49	78	99	123	128	121	119	101	70	46	19	4	0	ſj	Û	ſj	0
May	0	Û	0	ſj	2	13	37	66	97	117	133	149	145	140	123	94	62	32	Ş	ſj	0	Ð	0	Ð
Jun	Û	0	Û	0	5	18	44	76	98	131	138	148	145	139	120	94	70	40	14	2	ŋ	0	ſj	0
Jul	0	ŋ	Û	Û	2	14	37	70	102	132	148	158	156	144	130	96	71	39	1	2	Ũ	Û	Ü	ſj
Aug	Û	Û	ſJ	0	ſJ	7	26	60	91	115	138	147	145	133	116	86	56	28	£	Ũ	ſj	0	ſj	0
Sep	0	ſj	Û	Û	0	2	15	42	70	94	114	119	123	112	88	63	32	10	1	Û	Û	Û	Û	ſj
Oct	Û	Ü	Û	0	ſj	Û	6	24	47	71	90	91	88	77	57	34	12	1	ſj	Û	ŋ	0	ſ	0
Nov	0	ſj	Û	Û	Û	ſj	1	ġ	26	41	56	57	57	49	35	16	ĘĊ	ſj	Ü	ſj	Ü	Û	Ü	ſj
Dec	Û	Ü	ſj	Û	ſj	Ü	ſj	4	17	34	47	55	53	42	-28	12	54	()	ſj	Û	ſj	0	ſj	Û
	Design Illuminance = 30 fc																							

• Gymnasium #2 (14,840 sq. ft.)

- AGI visualization
- Worst-case scenario (winter solstice)

Results

- Increased thermal load (already considered)
- Estimated energy savings
 - 42,689 kWh
- Estimated cost savings
 - \$3,842/year

Increased Loading due to Daylighting									
Space	Cooling	Heating							
Gym #1	50.4 MBH	77.4 MBH							
Gym #2	21.3 MBH	29.1 MBH							

Estimated Annual Energy Savings					
Gymnasium #1					
Lights (kWh)	30,911				
Gymnasium #2					
Lights (kWh)	11,778				
Total (kWh)	42,689				

Estimated Annual Cost Savings					
Gymnasium #1					
Lights	\$2,	782			
Gymnasium #2					
Lights	\$1,	060			
Total	\$3,	842			

Project Summary

Project Summary

Estimated Annual Energy Consumption Comparison					
Original		Redesign			
Electricity	148,800 kWh	Electricity	198,620 kWh		
Natural Gas	3,190 Therms	Natural Gas	0 Therms		

Estimated Annual Energy Costs Comparison						
Original		Redesign				
Cooling	\$7,420	Energy	\$10.460			
Heating	\$12,970	Lifergy	\$10,400			
Lights	\$11,620	Lights	\$7,780			
Total	\$32,010	Total	\$18,240			

-50,000 kWh higher electricity consumption - but no natural gas! -Reduced annual costs by \$13,770

Conclusions

Conclusions

Stated Goals

- Successfully decreased annual energy consumption in AAJHS athletic facility
- Reduced gymnasium lighting energy consumption by 42,690 kWh
- Reduced annual energy costs by \$13,770
- Presented GSHP system as a feasible and responsible design alternative
- Presented gymnasium daylighting as a feasible and energy-saving design enhancement

Acknowledgements and References

- Altoona Area School District
 - Dr. George Cardone
 - Mr. Tom Bradley
- L. Robert Kimball & Associates
 - Mr. Earl Wong
 - Mr. Brad Palmisiano
- D. C. Goodman & Sons
 - Mr. David Goodman
 - Mr. Mike Humphreys
- Dr. Jim Freihaut
- Thesis course administrators

- My fellow 5th years
- My family
- My friends

- GSHP Design
 - <u>www.geokiss.com</u>
- International GSHP Assn.
 - www.igshpa.okstate.edu
- RETScreen International
 - <u>www.retscreen.net</u>
- Trane Commercial Air Sol'ns
 - <u>www.trane.com</u>
- US Dept. of Energy
 - <u>www.energy.gov</u>

Questions?