TECHNICAL ASSIGNMENT 2 PRO-CON STRUCTURAL STUDY OF ALTERNATE FLOOR SYSTEMS

GATEWAY COMMONS ITHACA, NEW YORK

GARY NEWMAN STRUCTURAL OPTION OCTOBER 10, 2006 AE 481W DR. HANAGAN

Table of Contents

Executive Summary	3
Introduction	4
Loads	8
Codes and References	9
Alternative Systems	10
Existing System	
Hollow Core Planks on Steel Beams	14
Two Way Slab with Edge Beams	16
Composite Steel	18
Non-Composite Steel	20
Comparison	22
Conclusion	23
Appendix A	24
Appendix B	28
Appendix C	42
Appendix D	46

Executive Summary

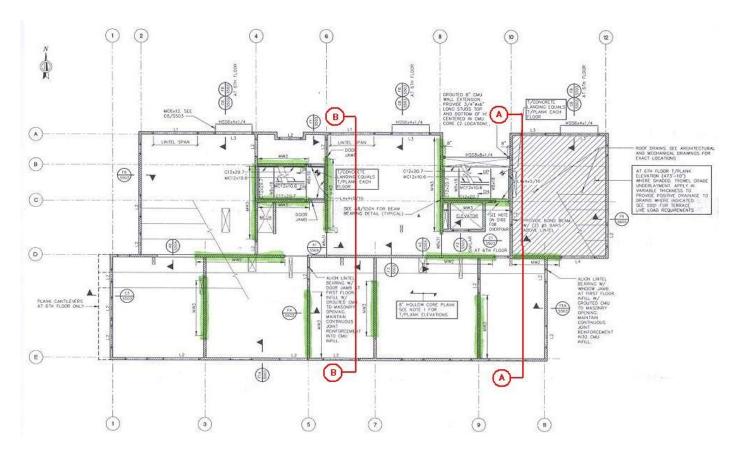
The Gateway Commons building in Ithaca, New York is a mixed-use development building being used for retail and residential apartments. It has a basement floor below grade and six floors above grade at a height of 62 feet. CMU walls supporting precast concrete hollow core planks make up the building structure. The building façade uses a combination of brick, an Exterior Insulation Finish System (EIFS), and metal panels.

The objective of this report is to explore alternative floor framing systems for the Gateway Commons building and analyze their feasibility. The feasibility of each system was based on cost, constructability, floor depth, fire resistance, and the impact on the lateral system and foundation. A framing plan for each alternative was developed and representative bays were designed and compared against the other alternatives. The four alternatives that were analyzed are:

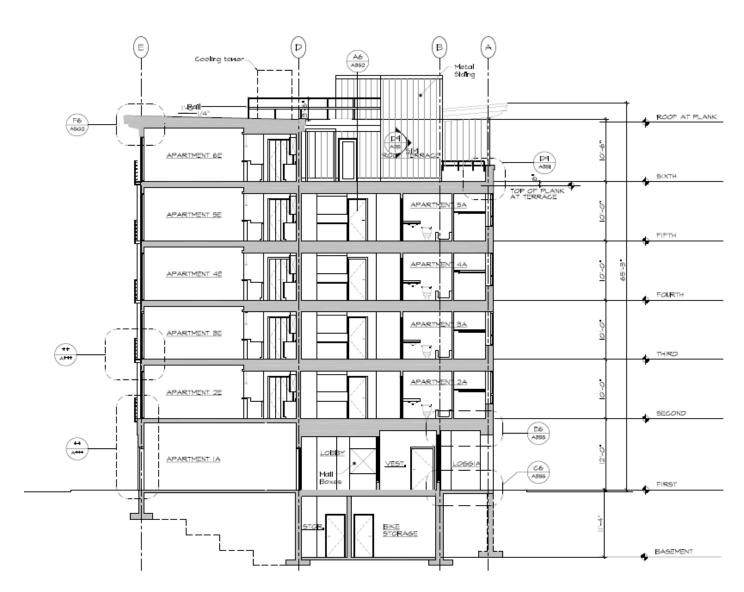
- Hollow Core Planks on Steel Beams
- Two Way Slab with Edge Beams
- Composite Steel
- Non-Composite Steel

Based on the findings of this report the hollow core planks on steel beams system and the noncomposite system were discarded as possibilities. The two way slab with edge beams and the composite design were both considered as possible alternatives to the existing hollow core planks on CMU walls system. Due a lower cost and a shallower floor depth than the composite steel design, the two way slab with edge beams was chosen as the best alternative to the existing system.

Introduction


Gateway Commons located in Ithaca, New York is a mixed use project containing retail and residential spaces. It has a basement floor below grade and six floors above grade at a height of 62 feet. The basement has a floor to floor height of 11'-4" and the floors above grade have height of 10' except for the first floor which has a height of 12'. The total building area is 43,000 square feet. The ground floor is retail spaces and the others contain residential apartments. Construction for this project was completed in April of 2007. A typical floor plan of the building is shown in Figure 1.

The building has a basement space between grid lines A and D. The floor for this space is a 5" thick slab on grade. Between grid lines D and E there is a compacted structural fill instead of basement space. The slab on grade that lies on that compacted structural fill is the first floor's floor system between grid lines D and E. Between grid lines A and D hollow core planks are supported by concrete foundation walls that transfer the loads from above onto strip footings.


Located above the concrete foundations walls are CMU walls. Some of the walls are part of the gravity framing system and only support the gravity loads bearing on them. Other walls are part of the lateral system and are designed to resist lateral forces from wind and seismic.

The walls that are part of the lateral system are considered intermediate reinforced masonry shear walls. These walls span in both the N-S and E-W directions. These shear walls are classified as wall types MW2 and MW3. These shear walls are highlighted in green on the plan in Figure 1.

The walls that are part of the gravity framing system are considered wall type MW1. These are all of the other walls on the plan that are not highlighted in green. These walls support the precast concrete hollow core floor planks that act as the flooring system. The roof is constructed out of the same hollow core planks and is also supported by CMU walls as well as two different steel shapes that support the roof planks at their 2'-8" overhang. The building sections in Figures 2 and 3 should also help describe the structure of the Gateway Commons building.

Figure 1 – Typical Framing Plan

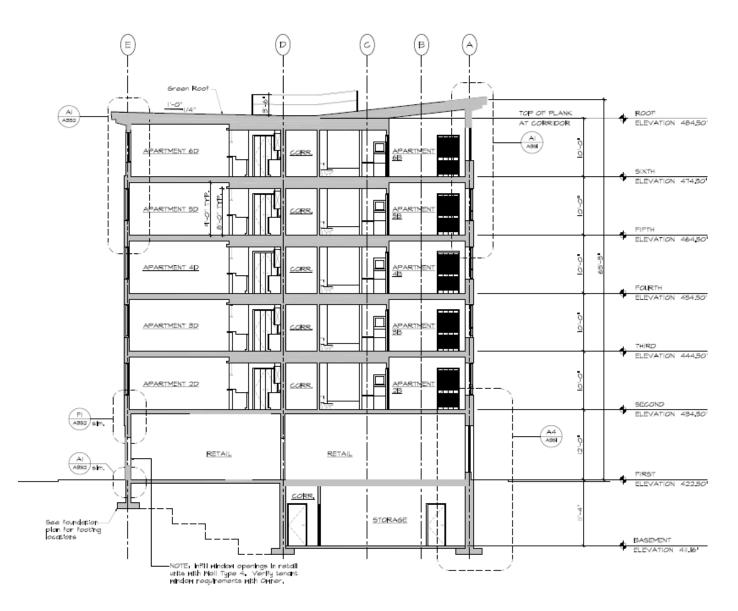


Figure 3 – Section B

Loads

This gravity load information was obtained from the general notes page of the building plans. These loads were used by the engineer to design the gravity load bearing walls. For this report these loads will be used to size members for the alternative systems.

Live Loads

First Floor	100 psf
Second – Sixth Floor	40 psf
Sixth Floor Terrace	100 psf

Dead Loads

First Floor	100 psf
Second – Sixth Floor	70 psf
CMU Walls	. 55 psf
Brick Façade	.40 psf
Green Roof or Roof Top Pavers	95 psf
Other Roof Areas	75 psf
Mechanical Equipment	.5 psf
Partition walls	10 psf

Snow Loads

Ground Snow load (Pg)	45 psf
Flat Roof Snow Load (Pf)	32 psf

Codes and References

This section lists the codes and reference material used to design the Gateway Commons building by the original engineer. The codes and reference material used to design the alternative systems in this report are also listed below. Tables listing the material properties of the existing system's structural components are also shown below.

Applicable Codes and References-Original Design

- 2002 Building Code of New York State (BCNYS)
- ASTM Standards
- NCMA Tek Notes
- ACI Standards
- ASCE 7-98

Applicable Codes and References-This Report

- AISC steel manual
- PCA slab
- The Nitterhouse Concrete Products website
- RAM Structural Systems
- The United Steel Deck design manual

Cast in Pla	ce Concrete
Member	28 Day Compressive Strength (f'c)
Columns and Beams	4,000 psi
Interior Slabs on Grade	3,500 psi
Footings, Foundations Walls, Piers, Misc.	3,000 psi
Retaining Walls, Basement Walls, Exterior Slabs	4,000 psi

Structural and Miscellaneous Steel								
Material	ASTM Standard	Fy (ksi)						
Rolled Steel W Shapes	A 992	50						
Rolled Steel C and MC Shapes	A 36	36						
Rolled Steel Plates, Bars, and Angles	A 36	36						
Hollow Structural Sections (HSS)	A 500, Grade B or C	46 or 50						
Pipe	A 53, Type E or S, Grade B	35						
Reinforcing Bars	A 615, Grade 60	60						

Alternative Systems

In this report I will evaluate four alternate floor systems and compare them against the existing masonry bearing walls and precast hollow core concrete plank system. The impact that each proposed system will have on the buildings foundation will be discussed. New lateral systems will also have to be proposed for the alternative systems. All of the new systems use columns instead of walls as their vertical supports. Columns should be placed in areas where walls were originally in order to maintain the same floor plan. Light gauge steel framing will be used to create interior partitions where the masonry walls use to be. The four systems evaluated in this report include:

- Hollow Core Planks on Steel Beams
- Two Way Slab with Edge Beams
- Composite Steel
- Non-Composite Steel

Existing Floor System

Between grid lines A and D, the basement floor slab-on-grade and loads from the concrete foundations walls are transferred onto strip footings with a 28-day strength of f'c = 3,000 psi. These strip footings sit on undisturbed indigenous soils composed of sand and gravel with an allowable bearing capacity of 5,000 psf. The footings will have a concrete strength of f'c = 3,000 psi. The foundations walls will have a concrete strength of f'c = 3,000 psi or 4,000 psi depending on the type of wall. Between grid lines D and E the footings sit on a compacted structural fill that has an allowable bearing capacity of 5,000 psf.

A plan of a typical floor for the existing system is shown in Figure 4. The walls that are part of the gravity framing system are considered wall type MW1. These are all of the other walls on the plan that are not highlighted in green. Unlike the concrete foundations walls these walls are constructed out of 8" thick concrete masonry units (CMU). These walls support the precast concrete hollow core floor planks that act as the flooring system. A wall schedule describing how these walls are reinforced can be found in Figure 5.

The primary flooring system for the elevated floors of the building is precast concrete hollow core planks. The planks span in the east/west direction. On the first floor the planks have a thickness of 10", but on floors two through six the plank thickness is 8". The planks on the first floor have a 2" thick concrete topping. All planks have a maximum width of 4' and are allowed to have a minimum width of 1'-6". Planks located at interior bearing partitions must be connected with a 6' long #3 bar or 5/16" diameter strand grouted into the keyway, as shown in Figure 6. Planks are often connected to exterior CMU walls with #4 dowels that are bent into the keyways, as shown in Figure 7.

The structure is laterally supported by intermediate reinforced masonry shear walls in the N-S and E-W directions. Like the load bearing walls for the gravity framing system the shear walls are also 8" thick CMU walls. However, the shear walls are designed to resist the lateral loads due to seismic and wind forces. There are two different shear wall types, MW2 and MW3. The shear walls are highlighted in green on the floor plan in Figure 4. The wall schedule in Figure 5 describes the reinforcing for both shear wall types.

Advantages

- Does not need to be fireproofed
- Less expensive
- Small floor depth
- Planks can be installed quickly and are quality insured due to being manufactured off site **Disadvantages**
 - CMU walls take longer to construct than steel framing
 - Assembly of the planks requires a high level of skill
 - CMU is a heavy building material
 - The amount of load bearing walls in the building leaves less flexibility for future modification of the floor plan

Technical Assignment 2

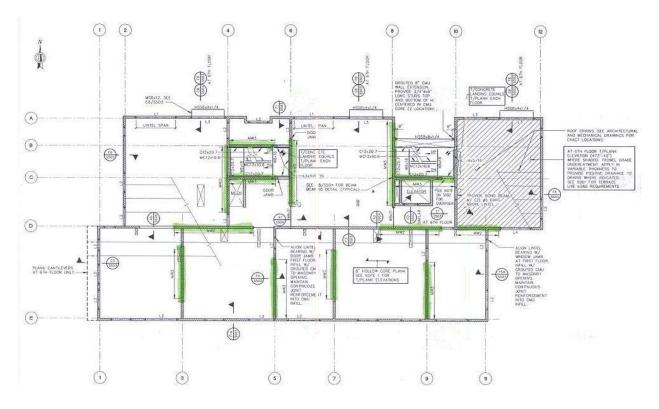


Figure 4 – Typical Framing Plan

MARK	VERTICAL REINFORCING	HORIZONTAL REINFORCING	REMARKS
MW1	MW1 #5 AT 4'-0"0C		GROUT WALL SOLID 1ST-2ND FLOORS GROUT WALL AT 2'-0"OC 2ND-3RD FLOORS
MW2	#5 AT 4'-0"OC (TYPICAL) (6)#6 EACH END (1ST-2ND) (4)#6 EACH END (2ND-4TH) (2)#5 EACH END (4TH-ROOF)	STANDARD JOINT REINFORCING 1ST-2ND AND 6TH-ROOF, HEAVY DUTY JOINT REINFORCING AT 8"OC 2ND-6TH	GROUT WALL SOLID IST-2ND FLOORS
MW3	∯5 AT 4'−0"OC (TYPICAL) (2)#5 EACH END	STANDARD JOINT REINFORCING 1ST-2ND AND 6TH-ROOF, HEAVY DUTY JOINT REINFORCING AT 8"OC 2ND-6TH	GROUT WALL SOLID IST-2ND FLOOR

NOTES: 1. UNLESS NOTED OTHERWISE ON PLAN, ALL WALLS ARE TYPE MW1. 2. MINIMUM REINFORCING REQUIREMENTS SHOWN ON A3/S506 APPLY TO ALL WALLS. 3. SEE F6/S506 FOR PLACEMENT OF VERTICAL BARS AT ENDS OF WALLS.

Figure 5 – Wall Schedule

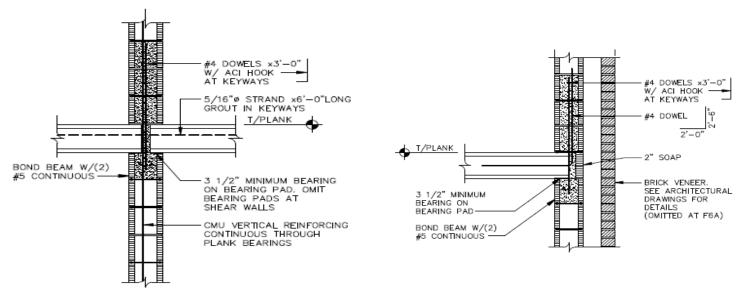


Figure 6 – Floor Planks at Interior Walls

Figure 7 – Floor Planks at Exterior Walls

Hollow Core Planks on Steel Beams

The steel framing plan for a typical floor is shown in Figure 9 with the bay that was chosen to be designed for this system highlighted in red. Specifications and load tables provided by the Nitterhouse Concrete Products website were used to design the hollow core floor system that spans in the east-west direction across the steel framing. Load tables were used to select a plank size based on a live load a 100 psf, a superimposed dead load of 15 psf, and 68 psf due to the self weight of the planks. It was determined that untopped 10 inch thick planks reinforced with ½" diameter steel strands will support the given loads at a span of 28 feet. After the hollow core planks were designed the beams that supported them were designed. The representative bay that was chosen to be designed for this system is shown in Figure 8 with beams sizes labeled. In this bay W12x19 span 27'-6". The W12x19 beams support a brick façade on the exterior and at the interior they only act as lateral support for the columns. The hollow core planks are supported by W24x76 that span 31'-5". The beams were designed by simple hand calculations and the AISC Handbook was referenced to aid in the design. The designs were based on moment capacity and deflection. These calculations can be found in the Appendix A along with the load table for the hollow core planks.

Some additional concerns due to changing the building structure are the lateral system, foundation, and fireproofing. Concrete or masonry shear walls are an option for this structure's lateral force resisting system. This design will not call for as many shear walls as the original design due to the new layout and reduction in weight. Also, due to this reduction in weight the wind may become the controlling lateral force acting on this building. Steel moment frames are also another option for the structure's lateral system. The foundation should be able to support the loads generated by this framing system since this is a lighter system than masonry. The way this system is connected to the foundation will be different due to different materials. Fireproofing for the steel beams will be necessary but the hollow core planks are concrete and have a 2 hour fire resistance rating.

Advantages

- Longer spans with higher load capacities
- This system can be constructed quickly
- This system weights less than the existing masonry system

- Long lead time
- Assembly of the planks requires a high level of skill
- Fireproofing for the steel

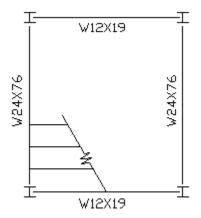
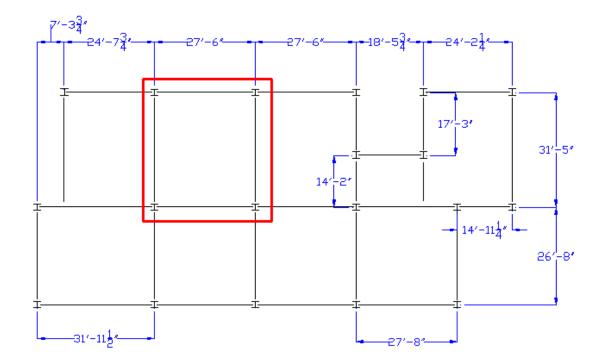



Figure 8 – Hollow Core Planks on Steel Beams

Figure 9 – Steel Framing Plan

Two Way Slab With Edge Beams

The framing plan for a typical floor redesigned as a two way slab with edge beams is shown below in Figure 10. Two design strips were analyzed. Design strip one runs in the north-south direction and design strip two runs east-west along the edge. A live load of 100 psf and a superimposed dead load of 15 psf were used to design this system. Both design strips are labeled on the plan in Figure 10. The PCA-Slab computer program was used to design both of these strips. Normal weight concrete with a compressive strength of 5,000 psi was used for the design. A 10" slab and 14"x20" edge beams around the whole perimeter were needed for the design. Both are reinforced with number 6 bars. All columns are 16"x16". Instead of using costly shear reinforcement to resist punching shear around the columns, drop panels with a depth of 3" below the slab were designed for this function. The design results from the PCA program can be found in Appendix B along with a slab deflection diagram and a diagram showing the reinforcing in the column strip, middle strip, and the edge beam.

The slab in this design is thicker and heavier than the hollow core planks used in the existing system; however a significant amount of weight is lost by switching from CMU walls to concrete columns. Concrete or CMU shear walls are a good option for the lateral resisting system of this building. Less shear walls should be used in this design and they should be located in a way that the center of rigidity and the center of mass are close to each other so that the lateral forces create less of a torsion effect. The same strip footings and foundation walls should be able to support this new structure. Fireproofing will not be necessary because the entire structure is concrete.

Advantages

- Fireproofing is not required
- The use of columns instead of walls allows for more flexibility with the floor plan.
- Least expensive alternative

- Precautions will need to be taken for holes made in the slab for running mechanical and electrical equipment.
- Concrete requires curing time before the additional stories can be constructed.

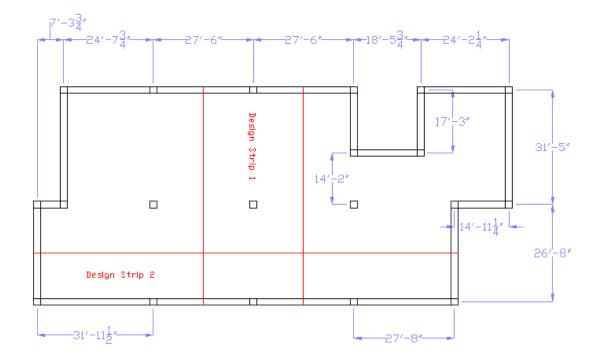


Figure 10 – Framing Plan for Two Way Slab with Edge Beams

Composite Steel

The steel framing plan for a typical floor is the same as the framing for the hollow core planks design and is shown in Figure 9. The bay that is being designed is highlighted in red. A live load of 100 psf and a superimposed dead load of 15 psf were used to design this system. The slab is made of 2" steel deck with 3-1/2" light weight concrete topping. To give the slab a composite action with the beam, $\frac{3}{4}$ " diameter 4-1/2 in" long shear studs are used. Joists are framed in between the girders in order to meet span requirements for the 19 gauge steel deck. The unshored span length of 9.2' falls within the 10.01' maximum required span length for a 2" deep 19 gauge steel deck with a 5.5" deep light weight concrete slab. The section in the United Steel Deck design manual used to design the slab and determine the maximum span length can be found in Appendix C. After the slab was designed and the number of joists needed to support it was determined, the beams were designed using RAM Structural System. W16x26 joists with a camber of either 1" or 1-1/4" were chosen to support the deck. The joists are supported by W18x35 and W21x48 girders that span 27'-6". The W18x35 girder also supports a brick facade on the exterior of the building. Columns are oriented so that the girders are framed into the column flanges for a simpler connection. A design of the representative bay is shown in Figure 11. Beam sizes are labeled with camber if they have any, the numbers of shear studs on each span are in parenthesis, and reactions are given in kips. Appendix C also contains summaries of the beam designs and beam deflections.

Since this structure is much lighter than the existing one wind will more than likely be the controlling lateral load on the building. Moment frames and eccentrically braced frames are good option for the lateral resisting systems. The foundations should be able to support the loads generated by this framing system because it is much lighter than the existing masonry structure. The way this system is connected to the foundation will be different due to different materials. A 3-1/2" thick concrete slab will automatically provide the two hour fire protection required for the floor. The steel beams and columns will have to be fireproofed.

Advantages

- Fast construction time
- Lighter weight system
- High strength to weight ratio

- Increases floor to floor height
- Cost of labor for installing shear studs
- Fireproofing needed for beams and columns

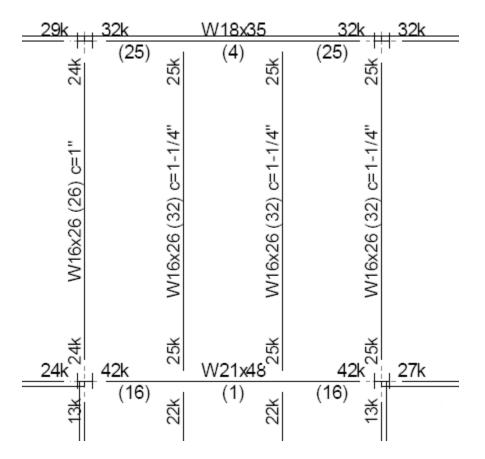


Figure 11 –Composite Steel

Non-Composite Steel

The steel framing plan for a typical floor is the same as the framing for the hollow core planks design and is shown in Figure 9. The bay that is being designed is highlighted in red. A live load of 100 psf and a superimposed dead load of 15 psf were used to design this system. The United Steel Deck design manual was used to design the non-composite slab. A 6.5" deep slab using light weight concrete with a 19 gauge 3" deck was chosen. The slab weights 42 psf. A 5.5" deep slab would have fulfilled the maximum span length requirements but it would not have been thick enough to provide adequate fire protection. With the slab designed RAM Structural Systems was then used to design the beams. W18x35 joists with a camber of ³/₄" span 31'-5". W24x55 and W24X68 girders span 27'-6". A design of the representative bay is shown in Figure 12. Beam sizes are labeled with camber if they have any and reactions are given in kips. Appendix D contains the United Steel Deck design manual section used to design the slab, summaries of the beam designs, and beam deflections.

This design uses the same framing plan as the composite design but the beams in this design are larger due to the non-composite nature. Moment frames and eccentrically braced frames are good option for the lateral resisting systems. The foundations should be able to support the loads generated by this framing system because it is much lighter than the existing masonry structure. The way this system is connected to the foundation will be different due to different materials. A 3-1/2" thick concrete slab will automatically provide the two hour fire protection required for the floor. The steel beams and columns will have to be fireproofed.

Advantages

• Faster erection time due to lack of shear studs

- Not as efficient as a composite steel design
- Heavier and deeper beams compare to composite design
- Fireproofing needed for beams and columns
- Most expensive

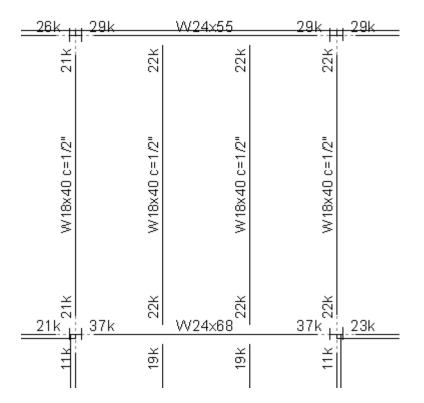


Figure 12 –Non-Composite Steel

Comparison

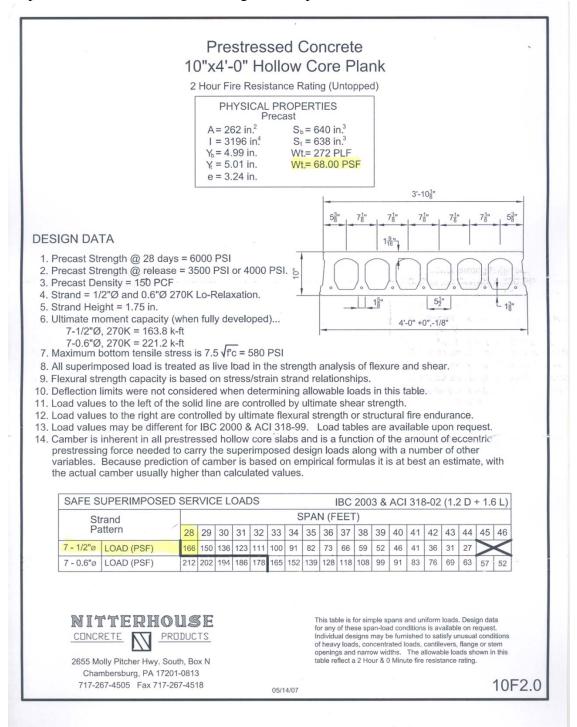
The results of the comparison study are shown in the table below. Cost was determined by using RSMeans Assemblies Cost Data 2007. All of the systems were analyzed for cost based on a 30x30 bay. The non-composite design is ruled out because the composite is more efficient and because it is the most expensive. The hollow core planks on steel beams system is ruled out because it is a bit more expensive than systems 2 and 3 and it is also the deepest floor system. Systems 2 and 3 are the cheapest of the alternatives and both seem to be possible solutions. The 2 way slab with edge beams appears to be the most feasible because it is cheaper, thinner, and does not require fireproofing.

	Existing	System 1	System 2	System 3	System 4
Floor Framing System	hollow core planks on CMU walls	hollow core planks on steel beams	2 way slab with edge beams	composite steel	non- composite steel
Total Depth	8"	34"	13"	26.5"	30.5"
Slab Depth	8"	10"	13"	5.5	6.5
Fireproofing	no	yes	no	yes	yes
Lead Time	long	longest	shortest	long	long
Weight	heaviest	lightest	heavy	light	light
Constructability	labor intensive	no formwork, fastest to construct	formwork, curing time required, longest to build	no formwork, shear studs	no formwork
Cost (\$/SF)	17.65	23.65	21.89	22.55	28.36
Possible Solution	-	no	yes	yes	no

Conclusion

Four alternative floor systems were designed and compared to each other to determine which will be the best alternative to the existing hollow core planks on CMU walls structural system. The four alternatives are hollow core planks on steel beams, a two way slab with edge beams, composite steel, and non-composite steel.

The two way slab with edge beams and the composite steel design both appear to be viable solutions. The hollow core planks on steel beams and the non-composite steel systems were both discarded as possible options. The non-composite steel system is the most expensive and proves to be less efficient than the composite design. Although the hollow core planks on steel beams is the fastest to construct its materials have the longest lead time of all of the systems. It also has the deepest floor system and costs more than the two way slab with edge beams and the composite steel design.


The two way slab with edge beams proves to have advantages over the composite design. It is cheaper although not by much. The two way system has 20" deep beams but they are located on the building perimeter and do not affect the floor depth. The composite system has a floor depth of 26.5" due to the beams; this will cause an increase in the floor to floor height. The existing system proves to be the cheapest and have the shallowest floor system when compared to the alternatives. The two way system however proves to be the best choice out of the four alternatives.

Appendix A:

Hollow Core Planks on Steel Beams

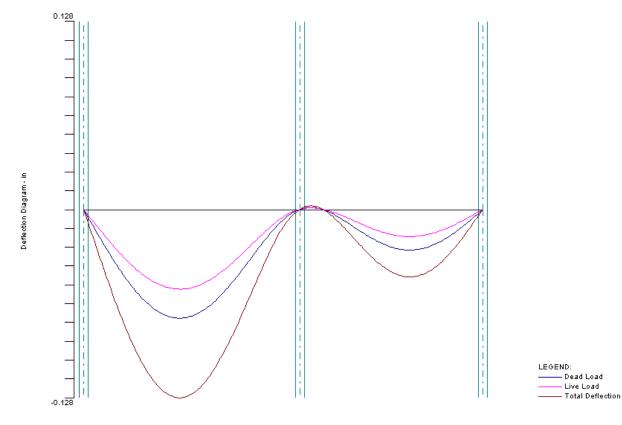
<u>Planks</u>

This load table from the Nitterhouse Concrete Products website shows that this plank is able to span 27'-6" while loaded with 164 psf. This is the factored loading due to the live load, superimposed dead load, and the self weight of the planks.

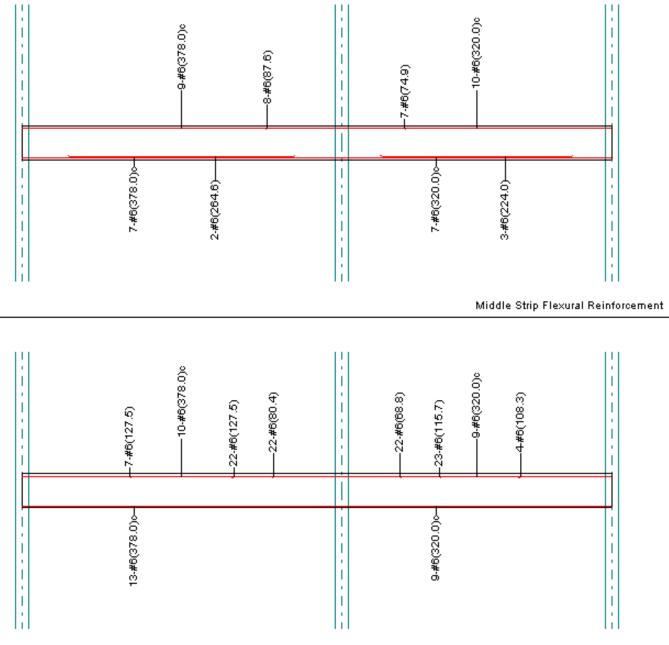
Beam Design

CALCULATED BY	an engineering collaborative
CALE DATE	an engineering collaborative
	700000
27.5'	11 - Un and weiter wills
TI	LL - TO PSF Superimpoted - Portificat
BI	LL = 40 psf DL = 68 + 15 = 83 psf DL = 68 + 15 = 83 psf
WIZX19	
1	51.5' 1.2(83)+1.6(40)=164PSF
91.0	bared on Load tobler use a 10" deep
9Lxh2M	hallow core plank with a sole weight
M N N	of esist
B3	
VIZXI9	
BZ	
Trib Width = 27.5	
W= 0.164 (27.5) = 4,51 PLF	
$M_{\rm W} = \frac{W(z)}{8} = \frac{4.51(31.5)^2}{8}$	= 559
W24X62 => QMn=	5747559,
UV ET A	· · · · · · · · · · · · · · · · · · ·
1 21,5(12) - 1,58	
$\Delta_{r} = \frac{L}{240} = \frac{31.5}{240} (12) = 1.58$ $\Delta_{L} = \frac{L}{360} = \frac{31.5}{360} (12) = 1.05$	
n=== 31.5(12)=1.05	
SL 360 360	
0 - 5(4,51)(31.5)4(1728)	
D= 5(4.51)(31.5)4(1723) 324 (29000) (1550) = 3.0	71,58 not good
Q1 = 5 (1.76)(31.5) (1728)	
$\Delta_L = 5 (1.76)(31.5)^4 (1728) = 0,$ 384 (29000)(1550) = 0,	47
284 (2000)(1>>02	

Gary Newman


EET NO. OF JOB NO.			C	stru	CTI	ra
CULATED BY						
LE DATE			ar	engineerii	ng collabo	rative
						1.1.1
5 (4,51)(31,5) (1728) 1.58(384)(2900)	- 7100	2100	close to	7.180		
= 1.58(794)(7900)	180	6100	0107 C 10	, ok		
1.2 - (3 5 1) (2 1 - 40)		750	> 559 .	1		
1 - August 20 10						
USEW24×76 (From tab	(e 3-5)					
I=2100						
- Tocal (1/10 Z-7						
$M_{\rm D} = 1060 (\text{from table } 3-2)$						
b						
Bi						
Supports exterior brick f	ade Us					
Supports exterior or the	rainan 10 pst					
DL= 40 (10) = 400 PLF						
40 (10) = 400 PLF						
$(110)(275)^{2}$						
$\frac{M_{W}=(400)(27.5)^{2}}{8} = \frac{8}{2} \frac{1}{2} \frac{1}{2$	38 K- Ft		17-			
8						
[117, x19] DMA= 9	2.6K-F+ >3	8 /01			-	_
		V OIC				
A - 77.5(12) 129						
$\Delta_T = \frac{27.5(12)}{7.40} = 1.38$		1.387	37			
		1.20	Jok			
$\Delta T = \frac{5(.4)(27.5)^{4}(172)}{384(29000)(130)}$	8) = 1.37					
41 - 384 (29000) (130	>					
Б						
B ₃						
1 0			1			
beam B3 carries no		/				1-2
Columns. A beam siz	e of WIT	111W PIXS	be used	for Bz		
				2		
						T301 987 92

Appendix B:


Two Way Slab with Edge Beams

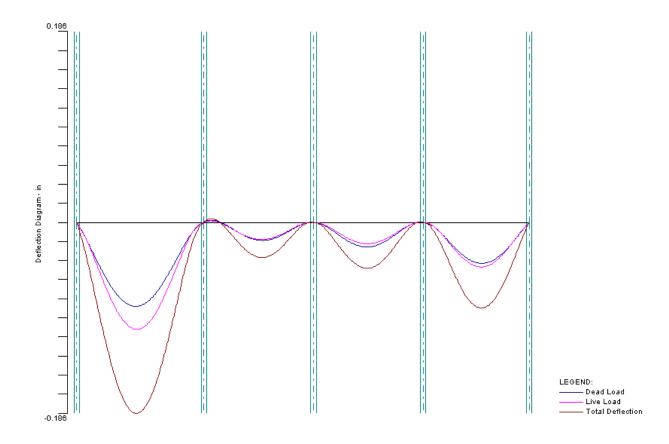
<u>Design Strip 1</u>

This is a deflection diagram for the slab. The largest deflection in the slab is 0.129".

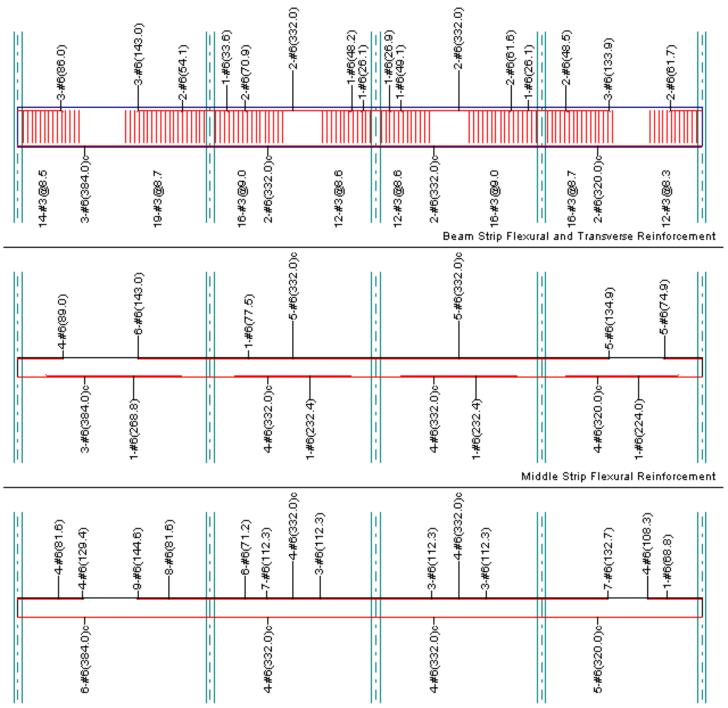
This is a diagram of the top and bottom reinforcing that PCA Slab designed for the column strip and middle strip.

Column Strip Flexural Reinforcement

Licensed E:\Thesi	1S \tech2												Page
			00 00 00 00		00	000000 00 0 00000							
			0000 000000 0000	00 00 00 00 00 00	0 000 00 00	000 00 00 00 00 00 00	0 00 00 0000000 00 00 00 00 00 00 00000						
			ter Progra	pcaSla	ab v1.5	1 (TM)							
=:		Reinf	orced Cond	crete Sla	ab and (Continuou	s Beam S	ystems					
		сору	right © 20			eserved	IT ASSOCI	ation					
	expres prepar produc infall engine	red by t ce pcaSl lible. eering d	implied whe pcaSla ab error The final ocuments :	ab proc free the and only is the li	gram. / e progr / respon icensees	Although ram is no nsibility s. Accord	PCA has t and cas for ana lingly, P	s endeav nnot be c lysis, de CA discla	ored to ertified sign and ims all				
[2] DES:	expres prepar produc infall engine respon design the po	ssed nor red by t be pcash lible. eering d nsibilit n or en cashab j	implied whe pcaSla ab error The final ocuments : y in conta gineering	ab prog free the and only is the li ract, neg document	gram. // e progu / respon icensee: gligence is prepa	Although ram is no nsibility s. Accord e or othe ared in c	PCA has t and cas for ana ingly, P r tort f	s endeave nnot be c lysis, de CA discla or any a	ored to ertified sign and ims all nalysis,				
[2] DES	expres prepai produ infall engine respon design the po SIGN RESU	ssed nor red by t ce pcasl lible. eering d hsibilit h or en caslab p ULTS	<pre>implied ne pcaSli ab error The final ocuments : y in cont gineering program.</pre>	ab proc free the and only is the li cact, neo document	gram. / e progi / respoi icensee: gligenco ts prepo	Although ram is no nsibility s. Accord e or othe ared in c	PCA ha: ot and can for ana lingly, Pu r tort fr connection	s endeav. nnot be c: lysis, de CA discla or any a n with th	ored to ertified sign and ims all nalysis, e use of				
[2] DES: Top Rein Units Span	express production infall engine respon design the po- BIGN RESI INFORCEMENT INFORCEMENT SIGN STOP	ssed nor red by ti- re pcasl. hible. ' bering d hsibilit h or en caslab p JLTS ent: ent: ent: a (ft), 1 Zone	<pre>implied ne pcaSla ab error The final couments y in conty gineering program. Mmax (k-fi Width</pre>	ab proof free the and only is the li ract, neo document	(ft), //max	Although ram is no nsibility s. Accord e or othe ared in c 	PCA ha: t and cai for ana. lingly, P r tort f: connection , Sp (in AsMin	s endeav. nnot be c lysis, de CA discla or any a n with th	ored to ertified sign and ims all nalysis, e use of SpReq		Bars		
[2] DES: Top Rein Units Span	express production infall engine respon design the po- BIGN RESI INFORCEMENT INFORCEMENT SIGN STOP	ssed nor red by ti- re pcasl. hible. ' bering d hsibilit h or en caslab p JLTS ent: ent: ent: a (ft), 1 Zone	<pre>implied ne pcaSla ab error The final ocuments y in conty gineering program. Mmax (k-ff Width</pre>	ab proof free the and only is the li ract, neo document	(ft), //max	Although ram is no nsibility s. Accord e or othe ared in c 	PCA ha: t and cai for ana. lingly, P r tort f: connection , Sp (in AsMin	s endeav. nnot be c lysis, de CA discla or any a n with th	ored to ertified sign and ims all nalysis, e use of SpReq	AsReq		*5	-
[2] DES: Top Rein Units Span	express produce infall engine responde design the per- second sec	<pre>ssed nor red by ti ep cas1. lible. earing d msibilit h or en cas1ab j </pre>	<pre>implied ne pcaSla ab error The final couments y in conty gineering program. Mmax (k-fi Width</pre>	ab proc free the and only is the lift ract, neg document to), Xmax b 274 (826 44 ((ft), //max	Although ram is no nsibility s. Accord e or othe ared in c ared in c Xmax 0.667 20.275 30.833 0.667 20.275	PCA ha: t and cai for ana. lingly, P r tort f: connection , Sp (in AsMin	s endeav nnot be c lysis, de CA discla or any a n with th AsMax 33.381 33.381 33.381 33.381 30.179 28.855	ored to ertified sign and ins all nalysis, e use of SpReq 10.412 17.700 2.963 17.000	AsReq		* *5	-
[2] DES Top Rein Units Span 1	express produce infall engine responde design the per- second sec	<pre>ssed nor red by t; ep cas1; lible. earing d ssibilit h or en cas1ab ; </pre>	<pre>implied implied ab error The final ocuments y in contr gineering program. Mmax (k-fr Width 14.75 14.75 13.34 12.75 14.16</pre>	ab prog free the and only is the li ract, neg document c), Xmax N 27, (82, 44 (27, 77, 81 81 81 82, 44 (27, 81 81 81 81 81 81 81 81 81 81 81 81 81	(ft), // (ft), // (ft), // (max 	Although ram is no nsibility s. Accord e or othe ared in c ared in c Xmax 0.667 20.275 30.833 0.667 20.275	PCA ha: t and car for ana. ingly, Pr t cort f. sonnection , Sp (in AsMin 3.186 3.186 2.880 2.754 2.754	s endeav not be c lysis, de CA discla or any a n with th AsMax 33.381 33.381 30.179 28.855 28.855	ored to ertified sign and ims all nalysis, e use of SpReq 10.412 17.700 2.963 17.000 17.000 9.999	AsReq 7.093 0.009 23.432 1.122 0.003	17-#6 10-#6 54-#6 9-#6 9-#6	*5 *5	· · · · · · · · · · · · · · · · · · ·
[2] DES: Top Rein Unit: Span 1 2 2	expre: produce infall enginn respon design the po- sign RESI inforcement s: Width Strip Column Middle S:	<pre>ssed nor red by t; red by t; rep cas1; lible. earing d sibilit n or en cas1ab ; </pre>	<pre>implied implied ab error The final ocuments y in contr gineering program. Mmax (k-fr Width 14.75 14.75 13.34 12.75 14.16 13.34 13.34 14.16 14.16</pre>	b prog free the and only is the li ract, neg document t), Xmax b 274 (826 44 (275 24 (275 256 26 24 (24 (24 (275) 256 26 24 (24) 256 26 26 26 26 26 26 26 26 26 26 26 26 26	(ft), / max (ft),	Although ram is no nsibility s. Accord e or othe ared in c ared in c xmax 0.667 20.275 30.833 0.667 20.275 30.833 0.667 9.534 26.003	PCA ha: t and car f for ana. lingly, P r tort f sonnection , Sp (in AsMin 3.186 2.880 2.754 2.754 3.060 2.880 5.688 3.060 3.060 3.060	s endeav. not be c lysis, de CA discla or any a with th AsMax 33.381 30.179 28.855 28.855 32.057 30.179 30.179 30.179 30.179 30.179 30.257	ored to ertified sign and ims all nalysis, e use of SpReq 10.412 17.700 2.963 17.780 17.000 17.000 9.999 2.963 17.780 12.309 9.999 16.998	AsReq 7.093 0.009 23.432 1.122 0.003 7.140 21.624 2.195 1.237 6.640	17-#6 10-#6 54-#6 9-#6 17-#6 54-#6 9-#6 13-#6 13-#6 17-#6 10-#6	*5 *5 *5	-
[2] DES: Top Rein Unit: Span 1 2 2 NOTE: *5 - Top Bar	expre: produce infall enginn respon design the po- sign RESI inforcement s: Width Strip Column Middle S:	<pre>ssed nor red by t; ee pcaSL lible. desibilit h or en caSlab ; utts ent: ent: ent: ent: left Middle Right Left Middle Right Left Middle Right Left Middle Right sight S: ent: ent: ent: ent: ent: ent: ent: ent</pre>	<pre>implied implied ab error The final ocuments y in cont; gineering program. Mmax (k-fi Width 14.75 14.75 13.34 12.75 14.16 13.34 13.34 13.34 13.34 13.34 14.16</pre>	ab proc free the and only is the lif ract, neg document c), Xmax b 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274) 275 274 (275 274) 275 274 275 274 275 274 275 275 275 275 275 275 275 275 275 275	(ft), / / (ft), / / (ft), / / (ft), / / (max 	Although ram is no nsibility s. Accord e or othe ared in c ared in c xmax 0.667 20.275 30.833 0.667 9.534 26.003 0.667 9.534 26.003 owable sp	PCA ha. t and car ingly, Pr r tort f. sonnection , Sp (in AsMin 3.186 2.880 2.754 2.754 2.754 3.060 2.880 5.688 3.060 3.060 3.060 3.060 accing.	s endeav. not be classified of the classified o	Dred to ertified sign and ims all nalysis, e use of SpReq 10.412 17.700 2.963 17.780 17.000 9.999 2.963 17.780 12.309 16.998 16.998	AsReq 7.093 0.009 23.432 1.122 0.003 7.140 21.624 2.195 1.237 6.640 0.726 1.017	17-#6 10-#6 54-#6 9-#6 9-#6 17-#6 3-#6 13-#6 13-#6 13-#6 10-#6	*5 *5 *5	
[2] DES: Top Rein Unit: Span 1 2 2 NOTE: *5 - Top Bar Unit: Span	expre: produce infall engine respoid design the per- sign RESE inforcement s: Width Strip Column Middle 2 Column Middle S: Number : Detail:	<pre>ssed nor red by t; ee pcaSL lible. desibilit h or en caSlab ; utts ent: ent: ent: ent: left Middle Right Left Middle Right Left Middle Right Left Middle Right sight S: ent: ent: ent: ent: ent: ent: ent: ent</pre>	<pre>implied implied ab error The final ocuments y in contriguering program. Mmax (k-fi Width 14.75 14.75 14.75 14.75 14.75 14.16 13.34 13.34 13.34 13.34 14.16 14.16 14.16 14.16 14.16 14.16</pre>	ab proc free the and only is the lif ract, neg document c), Xmax b 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274 (275 274) 275 274 (275 274) 275 274 275 274 275 274 275 275 275 275 275 275 275 275 275 275	(ft), / (ft), / (ft), / (ft), / (max 	Although ram is no nsibility s. Accord e or othe ared in c 	PCA ha: t and car for ana. ingly, Pr r tort f sonnection , Sp (in AsMin 3.186 3.186 2.880 2.754 3.060 2.880 2.880 2.880 3.060 3.060 3.060 a.060 a.060	s endeav. not be c lysis, de CA discla or any a n with th AsMax 	ored to ertified sign and malysis, e use of 	AsReq 7.093 0.009 23.432 1.122 0.003 7.140 21.624 2.195 1.237 6.640 0.726 1.017	17-#6 10-#6 54-#6 9-#6 17-#6 54-#6 9-#6 13-#6 13-#6 17-#6 10-#6	*5 *5 *5	
[2] DES: Top Rein Unit: Span 1 2 NOTE: *5 - Top Bar Unit: Span	expression production infallent engine respondent sign frespondent inforcement s: width strip 	ssed nor red by ti- ce pcaSL lible. evering d ssibilit h or en- caSlab ; 	<pre>implied implied ab error The final ocuments y in contry incering program. Mmax (k-fi Width 14.75 14.75 13.34 12.75 14.16 13.34 13.34 14.16 14.16 14.16 14.16 14.16</pre>	ab prog free the and only is the li ract, neg document c), Xmax 274 (824 (275 770 824 (275 256 225 256 26 26 26 27 256 26 26 27 256 26 26 27 256 26 26 27 256 26 26 27 256 26 26 27 256 26 26 27 27 256 26 26 27 27 26 26 27 27 26 26 27 27 26 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	(ft), / (ft), / (ft), / (ft), / (max 	Although ram is no nsibility s. Accord e or othe ared in c 	PCA ha: t and car for ana. ingly, Pr r tort f. ana. , Sp (in AsMin 3.186 3.186 3.186 2.880 2.754 3.060 2.880 2.754 3.060 3.060 3.060 3.060 3.060 acing.	s endeav not be c lysis, de CA discla a with th AsMax 33.381 32.057 32.057 32.057 32.057 32.057 32.057	Deed to ertified sign and ims all nallysis, e use of SpReq 10.412 17.700 2.963 17.700 12.309 9.999 2.963 17.780 12.309 9.999 16.998 16.998 16.998	AsReq 7.093 0.009 23.432 1.122 0.003 7.140 21.624 2.195 1.237 6.640 0.726 1.017 	17-#6 10-#6 54-#6 9-#6 17-#6 54-#6 13-#6 17-#6 10-#6 10-#6	*5 *5 *5	


Gary Newman

E:\Thesi			iversity, Li	cense iD:	52410-10	10277-4-2	2040-2014	D				Page 2
Units Span	Strip	(ft), Mmax Width	(k-ft), Xma: Mmax	Xmax	AsMin	AsMax		AsReq	Bars			
. 1	Column Middle	14.75 12.75	222.18	12.750	3.186	33.381	13.615 17.000	5.710	13-#6 9-#6			
	Middle	13.34 14.16	144.67 96.44	16.196 16.196	2.880 3.060	30.179 32.057	17.780 16.998	3.690 2.443	9-#6 10-#6	*5		
*5 -		of bars gov	verned by max	imum allow	able spa	cing.						
Bottom B												
		(ft), Leng	th (ft)	Sh	ant Dans							
Span	Strip	Bars	Start Lengt	h Bars	Start	Length						
1	Column	13-#6	0.00 31.5	0								
	Column Middle		0.00 26.6		4.00	18.67						
Flexural												
Units	: From,	To (ft), 2	As (in^2), Ph To AsT			.Mn-	PhiMn+					
1	Column	0.000	To AsT 0.667 7. 8.610 7. 10.622 4. 11.225 4. 15.750 4. 20.275 4. 20.275 4. 20.878 4. 22.970 4. 24.799 14. 26.891 14. 30.833 12. 31.500 23. 6.752 3. 6.752 3. 15.750 3. 20.275 3. 24.196 3. 24.748 3. 26.775 7. 30.833 7. 31.500 7. 31.500 7. 31.500 7. 31.500 7. 32.500 7. 32.500 7. 33.500 7. 33.500 7. 33.500 7. 34.500 7. 35.500 7. 35.500 7. 35.500 7. 35.500 7. 35.500 7. 30.601 7. 30.501 7. 30.	48 5.72 48 5.72	-288	3.69 3.69	222.57					
		8.610	10.622 4.	40 5.72	-172	2.25	222.57					
		11.225	15.750 4.	40 5.72	-172	.25	222.57					
		15.750 20.275	20.275 4.	40 5.72 40 5.72	-172	2.25	222.57 222.57					
		20.878	22.970 4.	40 5.72	-171	.88	222.57					
		24.799	26.891 14.	08 5.72	-522	2.97	222.57					
		30.833	31.500 23.	76 5.72	-836	5.85	222.57					
	Middle	0.000 0.667	0.667 3. 4.725 3.	96 3.08 96 3.08	-154	1.90	121.04 121.04					
		4.725	6.752 3.	96 3.08	-154	1.90	121.04					
		11.225	15.750 3.	96 3.96	-154	1.90	154.90					
		15.750 20.275	20.275 3. 24.196 3.	96 3.96 96 3.96	-15	5.22	154.90					
		24.196 24.748	24.748 3.	96 3.96 96 3.08	-155	5.22	154.90 121.04					
		26.221	26.775 7. 30.833 7.	48 3.08	-281	3.28	121.04			nadar san	. •	
		00.000	02.000 / .	10 0100								
2	Column	0.000	0.667 23. 3.804 23. 5.735 14. 7.715 14. 9.645 3. 13.335 3. 17.136 3. 17.642 3. 18.642 3.	76 3.96 76 3.96	-83	5.85	155.04					
		3.804 5.735	5.735 14. 7.715 14.	08 3.96	-52	2.97	155.04					
		7.715 9.534	9.534 3. 9.645 3.	96 3.96 96 3.96	-15	5.04	155.04					
		9.645 13.335	13.335 3.	96 3.96	-15	5.04	155.04					
		17.136	17.642 3.	96 3.96	-15	5.04	155.04					
		17.642 18.642	21.670 5.	72 3.96	-22	1.95	155.04					
		21.670 26.003	26.003 5. 26.670 5.	72 3.96 72 3.96		1.40	155.04 155.04					
	Middle	0.000	0.667 7. 4.000 7.	48 3.08		8.28	121.23					
		4.000	4.358 7.	48 3.08	-28	3.28	121.23 121.23					
		4.358 5.178	5.178 4. 6.241 4.	40 4.40	-17	2.11	172.11					
		6.241 9.534	9.534 4. 13.335 4.	40 4.40		2.11	172.11					
		13.335 17.136	17.136 4. 21.492 4.			2.11	172.11					
		21.492	22.670 4.	40 3.08	-17	2.11	121.23					
		26.003	26.003 4. 26.670 4.			2.11 2.11	121.23 121.23					
Slab She												
Units	s: b, d	(in), Xu (ft), PhiVc, V Vratio			Vu	Xu					


	1.51 © P	ortrand .	Jement As	sociatio	n						12-2	2-2007,	
	to: Penn	State Un				5241	6-101027	77-4-22545	5-28F4D				Page 3
													y - ·
1 2	330.00 330.00	8.88			10.64		162.32		30.09 1.41				
Flexural													
Units:	Width (in), Munh	o (k-ft),	As (in^	2)								
Supp			funb Comb					ditional					
1	85.00		1.48 U2				3.592	9-#6					
2	85.00		3.29 U2	Odd									
3	85.00	150	0.73 U2	Even	1.54	0	3.038						
Punching													
), Munb	(k-ft), v										
Supp		Vu		Munb				vu	Phi*vc				
1	125	.43	77.4	250.04	U2	All	0.320	127.0	212.1				
2		.23 10		-82.62									
	Shear Ar Vu (kip), vu (p:	os: === si), Phi*										
Units: Supp	Shear Ar Vu (kip	ound Drop), vu (p: Vu Comb	ps: == si), Phi* Pat	vu	Phi*v	-							
Units: Supp 	Shear Ar Vu (kip 108	ound Drop), vu (p: Vu Comb	ps: si), Phi* Pat 	vu 46.5	Phi*v	1 .							
Units: Supp	Shear Ar Vu (kip 108 305	ound Drop), vu (p: Vu Comb	ps: si), Phi* Pat All All	vu 46.5	142. 142.	- 1 · 1							
Units: Supp 1 2 3	Shear Ar Vu (kip 108 305 84	ound Drop Vu Comb .12 U2 .72 U2 .74 U2	ps: si), Phi* Pat All All	vu 46.5 67.8	142. 142.	- 1 · 1							
Units: Supp 1 2	Shear Ar Vu (kip 108 305 84 Deflectio	ound Drop Vu Comb .12 U2 .72 U2 .74 U2 ns:	ps: si), Phi* Pat All All	vu 46.5 67.8	142. 142.	- 1 · 1							
Units: Supp 1 2 3 Maximum D	Shear Ar Vu (kip 108 305 84 Deflectio	ound Drop), vu (p: Vu Comb .12 U2 .72 U2 .74 U2 ns:	ps: si), Phi* Pat All All	vu 46.5 67.8 36.5	Phi*vo 142. 142. 142.	- 1 1 1							
Units: Supp 1 2 3 Maximum D Units:	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in)	ound Drop), vu (p: Vu Comb 2 U2 .72 U2 .74 U2 ns: Frame_	ps: si), Phi* Pat All S3	vu 46.5 67.8 36.5	Phi*vo 142. 142. 142.	- 1 1 1 umn S			Midd				
Units: Supp 1 2 3 Maximum D Units: Span D	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in) Dz (in)	ound Droy Vu Comb .12 U2 .72 U2 .74 U2 ns: 	Ds: si), Phi* Pat All All S3 Dz(TOTAL	Vu 46.5 67.8 36.5	2011 142. 142. 142. 142.	- 1 1 umn S z(LIV	E) Dz (T0	DTAL) Dz	(DEAD) Dz (LIVE) D	z(TOTAL)		
Units: Supp 1 2 3 Maximum D Units: Span D 1	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in) z (DEAD) -0.074	ound Droy Vu Comb 	ps: si), Phi* Pat All All S3 Dz(TOTAL	Vu 46.5 67.8 36.5 .) Dz (DE 	Phi*vo 142. 142. 142. 142. 097	- 1 1 1 2 (LIV 	E) Dz (TO 71 -(DTAL) Dz	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 1 2 3 Maximum D Units: Span D 1	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in) z (DEAD) -0.074	ound Droy Vu Comb 	Ds: si), Phi* Pat All All S3 Dz(TOTAL	Vu 46.5 67.8 36.5 .) Dz (DE 	Phi*vo 142. 142. 142. 142. 097	- 1 1 1 2 (LIV 	E) Dz (TO 71 -(DTAL) Dz	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 305 84 Peflectio Dz (in) 12(DEAD) -0.074 -0.027 Takeoff:	ound Drop), vu (p: Vu Comb 	ps: si), Phi* Pat All All S3 Dz(TOTAL	Vu 46.5 67.8 36.5 .) Dz (DE 	Phi*vo 142. 142. 142. 142. 097	- 1 1 1 2 (LIV 	E) Dz (TO 71 -(DTAL) Dz	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 308 84 Dz (in) Dz (in) 12 (DEAD) -0.074 -0.027 Takeoff: rccment	ound Drop), vu (p: Vu Comb .12 U2 .72 U2 .74 U2 ms: 	Dz: Pat Pat All S3 Dz(TOTAL -0.12 -0.04 irection	46.5 67.8 36.5 .) Dz (DE .8 -0. 6 -0. of Analy	Phi*vo 142. 142. 142. 142. 097 038	- 1 1 1 2 (LIV 	E) Dz (TO 71 -(DTAL) Dz	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 305 84 0eflectio Dz (in) 12(DEAD) -0.074 -0.027 Takeoff: prement	ound Drop), vu (p: Vu Comb .12 U2 .72 U2 .74 U2 ns: 	Dz (TOTAL -0.12 -0.04	vu 46.5 67.8 36.5)) Dz(DE 8 -0. 6 -0. of Analy	Phi*vo 142. 142. 142. 142. 097 038	- 1 1 1 1 2 (LIV -0.0 -0.0	E) Dz (TC 71 -(26 -(DTAL) Dz 0.167 0.064	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in) 12(DEAD) -0.074 -0.027 Takeoff: prement rs:	ound Drop), vu (p: Vu Comb .12 U2 .72 U2 .74 U2 ms: 	DS: Pat Pat All All S3 Dz(TOTAL -0.12 -0.04 irection lb <=>	46.5 67.8 36.5 .) Dz (DE .8 -0. 6 -0. of Analy	Phi*vo 142. 142. 142. 142. (Colu (AD) D 097 038 (Sis) b/ft		E) DZ (TC 71 -(26 -(1.922	DTAL) Dz	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 305 84 Deflectio Dz (in) 12 (DEAD) -0.074 -0.027 Takeoff: prement rs: 1 Bars: ps:	ound Drop), vu (p: Vu Comb .12 U2 .72 U2 .74 U2 ns: 	Dz (TOTAL -0.12 -0.04 -0.12 -0.04 -0.12 -0.04 -0.12 -0.04 -0.12 -0.04	vu 46.5 67.8 36.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Phi*vo 142. 142. 142. 142. 097 038 sis b/ft b/ft		E) DZ(TC 71 -(26 -(1.922 1.086 0.000	DTAL) Dz 0.167 - 0.064 - 1b/ft^2 1b/ft^2 1b/ft^2	(DEAD) Dz (LIVE) D 	-0.082		
Units: Supp 	Shear Ar Vu (kip 108 305 84 Dz (in) Dz (in) C(DEAD) -0.074 -0.027 Takeoff: Drcement Irs: Drs: Steel:	ound Drop), vu (p: Vu Comb .12 U2 .74 U2 .77 U2	Ds: Pat Pat All All S3 Dz(TOTAL -0.12 -0.04 irection lb <=> lb <=> lb <=> lb <=>	vu 46.5 67.8 36.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Phi*vo 142. 142. 142. 142. 097 038 097 038 b/ft b/ft b/ft		E) Dz(TC 71 -(26 -(1.922 1.086 0.000 3.008	DTAL) Dz 0.167 0.064 1b/ft^2 1b/ft^2	(DEAD) D2(-0.047 - -0.017 -	LIVE) D 	-0.082		

<u>Design Strip 1</u>

This is a deflection diagram for the slab. The largest deflection in the slab is 0.186".

This is a diagram of the top and bottom reinforcing that PCA Slab designed for the column strip and middle strip. This diagram also shows the reinforcing for the edge beam.

Column Strip Flexural Reinforcement

12-22-2007, 05:00:25 PM

Page 1

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-28F4D E:\Thesis\tech2.2.slb

0000000		000	000	000		
00000000	, ,		0000	0000		
00 00	>	00	00	00	00	
00 00	>	00		00	00	
00000000	>	00		0000	0000	00000
0000000		00	00	0000	0000	00000
00		00	00	00	00	
00		0000	0000	00	00	
00		000	0000	00	00	
000000	0		000	000	0	
00	00		0	00	00	
0000	00		0	00	00	
000000	00	000		0000	000	0000
0000	00		00	00	00	00
00	00		00	00	00	00
00000000	00	0	00	00	00	00
		000 000				

pcaSlab v1.51 (TM) A Computer Program Analysis, Design, and Investigation of Reinforced Concrete Slab and Continuous Beam Systems Copyright © 2000-2006, Portland Cement Association All rights reserved

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaSlab computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for an analysis, design or engineering documents prepared in connection with the use of the pcaSlab program.

[2] DESIGN RESULTS

Top Reinforcement:

			-								
Unit	s: Widtl	h (ft),	Mmax (k-ft)	, Xmax (ft),	, As (in^2), Sp (in	n)				
Span		Zone		Mmax	Xmax	AsMin	AsMax	SpReq	AsReq	Bars	
	Column		7.23	125.94	0.667	1.562	16.370	10.850	3.250	8-#6	
I COLUMN	COLUMN	Middle				0.000	16.370	0.000			
		Right	5.88	264.88	31.333	1.271	13.315	4.153	7.220	17-#6	
	Right	5.00	204.00	31.333	1.2/1	13.315	4.155	1.220	1/-#0		
	Middle	Left	5.70	42.96	0.667	1.231	12.900	17.100	1.089	4-#6	*5
		Middle	5.70	0.00	16.000	0.000	12.900	0.000	0.000		
		Right	7.05	90.35	31.333	1.523	15.955	14.100	2.313	6-#6	
	Beam	Left	1.17 /	73.29	0.667	0.897	5.392	4.942	0.922	3-#6	
		Middle	1.17	0.00	16.000	0.000	5.392	0.000	0.000		
		Right	1.17	154.14	31.333	0.897	5.392	2.471	2.001	5-#6	
2	Column	Left	5.88	199.67	0.667	1.271	13.315	4.153	5.318	17-#6	
M		Middle	5.88	14.53	9.884	1.271	13.315	17.650	0.365	4-#6	*5
		Right	5.88	138.96	27.003	2.815	30.680	10.086	1.422	7-#6	
	Middle	Left	7.05	74.41	0.667	1.523	15.955	14.100	1.897	6-#6	
		Middle	7.05	5.41	9.884	1.523	15,955	16.920	0.136	5-#6	*5
		Right	7.05	51.79	27.003	1.523	15.955	16.920	1.313	5-#6	*5
	Beam	Left	1.17	147.84	0.667	0.897	5,392	2.471	1.915	5-#6	
		Middle		10.76	9.884	0.176	5.392	9.884	0.132	2-#6	
		Right	1.17	102.89	27.003	0.897	5.392	3.295	1.309	4-#6	
	Column	Left	5.88	141.80	0.667	2.815	30,680	10.086	1,451	7-#6	
		Middle		3.03	17.786	1.271	13.315	17.650	0.076	4-#6	*5
		Right	5.88	177.57	27.003	2.815	30.680	10.086	1.820	7-#6	
	Middle	Left	7.05	52.85	0.667	1.523	15.955	16.920	1.340	5-#6	*5
		Middle		1.13	17.786	1.523	15.955	16.920	0.028	5-#6	*5
		Right	7.05	66.17	27.003	1.523	15.955	16.920	1.684	5-#6	*5

		enn State			ation cense ID	: 52416-1	010277-4	-22545-281	74D		12-22-			
E:\Thes	sis\tech	2.2.slb					•						P	a
	Beam	Left	1.17	10	05.00	0.667	0.897	5.392	3.295	1.337	4-#6			
		Middle Right	1.17		2.25	17.786 27.003	0.037	5.392 5.392	9.884 2.471	0.028	2-#6 5-#6			
4	Column	Left	5.88	11	36.86	0.667	2,815	30.680	10.086	1.916	7-#6			
		Middle Right	6.28		0.00	13.335	0.000 1.357	14.220 14.220	0.000	0.000 1.341	5-#6	*5		
	Middle	Left	7.05		71.73	0.667	1.523	15.955	16.920	1.828	5-#6			
		Middle Right	6.65		0.00	13.335	0.000	15.050	0.000 15.960	0.000	5-#6	*5		
	Beam	Left	1.17			0.667	0.897	5.392	2.471	1.912	5-#6			
NOTE		Middle Right	1.17			13.335 26.003	0.000 0.690	5.392 5.392	0.000 9.884	0.000	2-#6			
		of bars	governed	by max:	imum all	owable sp	acing.							
	c Detail													
Unit	ts: Leng	th (ft)				Cont			Diek					
	n Strip	Bars		Bars	Length	Bars	inuous Length			Bars	Length			
	1 Column		10.79	4-#6	6.80			9-#6	12.05	8-#6	6.80			
	Middle Beam		7.41 7.17			•		6-#6 3-#6	11.92	2-#6	4.51			
					F 00						4.01			
2	2 Column Middle	1-#6	9.36	6-#6		5-#6	27.67							
	Beam	2-#6	5.91	1-#6	2.80	2-#6	27.67	1-#6	4.01	1-#6	2.18			
3	3 Column Middle		9.36			4-#6 5-#6								
	Beam	1-#6	4.09	1-#6	2.24					1-#6	2.18			
		7 #6	11.06					4-#6	9.03	1-#6	5.73			
4	4 Column										0.70			
Bottom	4 Column Middle Beam Reinfor	5-#6 3-#6 cement:	11.00 11.24 11.16	2-#6	4.04			5-#6 2-#6	6.24 5.14		5.75			
Bottom ======= Unit	Middle Beam Reinfor ts: Widt	5-#6 3-#6 cement:	11.24 11.16 max (k-f	2-#6 2. (t), Xma: Mmax		 As (in^2) AsMin	, Sp (in AsMax	2-#6)	6.24 5.14 AsReq	Bars	5.75			
Bottom Unit Span	Middle Beam Reinfor ts: Widt Strip	5-#6 3-#6 cement: ====== h (ft), M Width 7.23	11.24 11.16 max (k-f	2-#6 (t), Xma: Mmax 94.79	x (ft), i Xmax 14.250	As (in^2) AsMin 1.562	AsMax 16.370	2-#6) 	6.24 5.14 AsReq 2.428	Bars				
Bottom Unit Span	Middle Beam Reinfor ts: Widt h Strip	5-#6 3-#6 cement: ====== h (ft), M Width 7.23	11.24 11.16 max (k-f	2-#6 (t), Xma: Mmax	x (ft), i Xmax	As (in^2) AsMin	AsMax	2-#6) 	6.24 5.14 AsReq	Bars				
Bottom Unit Span 1	Middle Beam Reinfor ts: Widt Strip Column Middle Beam 2 Column	5-#6 3-#6 cement: 	11.24 11.16 max (k-f	2-#6 (t), Xma: Mmax 94.79 53.36 55.16 43.24	x (ft), 1 Xmax 14.250 14.250 14.250 14.250	As (in^2) AsMin 1.562 1.231 0.897 1.271	AsMax 16.370 12.900 5.392 13.315	2-#6) 5pReq 14.467 17.100 4.942 17.650	6.24 5.14 AsReq 2.428 1.358 0.690 - 1.096	Bars 6-#6 4-#6 3-#6 4-#6	*5			
Bottom Unit Span 1	Middle Beam Reinfor ts: Widt Strip Column Middle Beam 2 Column	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17	11.24 11.16 max (k-f	2-#6 (t), Xma: Mmax 94.79 53.36 55.16 43.24	x (ft), X Xmax 14.250 14.250 14.250	As (in^2) AsMin 1.562 1.231 0.897	AsMax 16.370 12.900 5.392) SpReq 14.467 17.100 4.942 17.650 16.920	6.24 5.14 AsReq 	Bars 6-#6 4-#6 3-#6	*5 *5			
Bottom Unit Span 1	Middle Beam Reinfor ts: Widt h Strip l Column Middle Beam 2 Column Middle	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17	11.24 11.16 imax (k-f	2-#6 2-#6 1, Xmax Mmax 94.79 53.36 55.16 43.24 25.26	x (ft), Xmax 14.250 14.250 14.250 14.250 14.706 14.706	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523	AsMax 16.370 12.900 5.392 13.315 15.955	2-#6) 	6.24 5.14 AsReq 2.428 1.358 0.690 1.096 0.636 0.397	Bars 6-#6 4-#6 3-#6 4-#6 5-#6 2-#6 4-#6 4-#6	*5 *5			
Bottom Unit Span 1	Middle Beam Reinfor ts: Widt h Strip l Column Middle Beam 2 Column Middle Beam	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88	11.24 11.16 max (k-f	2-#6 (t), Xma: Mmax 94.79 53.36 55.16 43.24 25.26 32.02	x (ft), Xmax 14.250 14.250 14.250 14.706 14.706 14.706	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528	AsMax 16.370 12.900 5.392 13.315 15.955 5.392	2-#6) 	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694	Bars 6-#6 3-#6 3-#6 5-#6 2-#6 4-#6 5-#6 5-#6	*5 *5 *5			
Bottom Unit Span 1 2 3	Middle Beam Reinfor ts: Widt h Strip Beam 2 Column Middle Beam 3 Column Middle	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17	11.24 11.16 max (k-f	2-#6 2-#6 33.26 55.16 43.24 25.26 32.02 47.15 27.54	x (ft), 1 Xmax 14.250 14.250 14.250 14.706 14.706 14.706 13.213 13.213	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 13.315 15.955	2-#6) 	6.24 5.14 2.428 1.358 0.690 -1.096 0.636 0.397 1.197 0.694 0.433	Bars 6-#6 3-#6 3-#6 2-#6 2-#6 4-#6 5-#6 2-#6	*5 *5 *5			
Bottom Unit Span 1 2 3 3	Middle Beam Reinfor Ss: Widt Strip Column Middle Beam Column Middle Beam Column Middle Beam	5-#6 3-#6 cement: Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17	11.24 11.16 max (k-f	2-#6 2-#6 33.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91	<pre>x (ft), 1 Xmax 14.250 14.250 14.250 14.706 14.706 13.213 13.213 13.213</pre>	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 13.315 15.955 5.392	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#66 4-#6 3-#6 2-#6 2-#6 2-#6 2-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE	Middle Beam Reinfor ts: Widt Strip Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam Column Scalumn Scalumn	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65	11.24 11.16 imax (k-f	2-#6 t), Xmai Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 32.02 47.15 34.91 62.03 36.75 49.01	x (ft), 1 Xmax 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.699	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 13.315 15.955 5.392 14.220 15.050 5.392	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 3 4 NOTE *5 -	Middle Beam Reinfor ts: Widt Strip Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam Column Scalumn Scalumn	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17	11.24 11.16 imax (k-f	2-#6 t), Xmai Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 32.02 47.15 34.91 62.03 36.75 49.01	x (ft), 1 Xmax 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.699	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 13.315 15.955 5.392 14.220 15.050 5.392	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom	Middle Beam Reinfor ts: Width Strip Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam S: - Number Bar Det	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars	11.24 11.16 max (k-f	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 32.02 47.15 27.54 34.91 62.03 36.75 49.01 by max:	x (ft), 1 Xmax 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.699	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 13.315 15.955 5.392 14.220 15.050 5.392	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit 2 3 4 NOTE *5 - Bottom	Middle Beam Reinfor ts: Widt h Strip l Column Middle Beam 2 Column Middle Beam 3 Column Middle Beam 5: 	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars alls:	11.24 11.16 max (k-f	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 36.75 49.01 1.69 max: (t) (s)	x (ft), 1 Xmax 14.250 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.699 15.699 15.699	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 14.220 15.050 5.392 acing.	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span	Middle Beam Reinfor S: Widt Strip Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam S: Number Bar De S: S: Star Strip	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 0f bars alls: 	11.24 11.16 max (k-f	2-#6 t), Xmai Mmax 94.79 53.36 55.16 43.24 25.26 43.24 25.26 47.15 27.54 34.91 62.03 36.75 49.01 by max: t) s Length	x (ft), 1 Xmax 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.699 15.699 15.699	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Bans s Start	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 acing. S	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span	Middle Beam Reinfor S: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam S: S: Number Bar Det S: Starp	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars ails: t (ft), L Bars 6-#6	11.24 11.16 max (k-f ength (f Long Bar Start 0.00 0.00	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 by max: (t) (t) (t) (t) (t) (t) (t) (t)	<pre>x (ft), x Xmax 14.250 14.250 14.250 14.706 14.706 13.213 13.213 13.213 15.699 15.</pre>	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Bais s Start 	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 acing. S	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span 1	Middle Beam Reinfor S: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam S: Number Bar Det S: Star Strip Column Middle	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars ails: t (ft), L Bars - 6-#6 3-#6	11.24 11.16 max (k-f 	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 1.by max: (t) (t) (t) (t) (t) (t) (t) (t)	x (ft), 1 Xmax 14.250 14.250 14.250 14.706 13.213 13.213 13.213 15.699 15.69	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.526 1.357 1.436 0.813 owable sp Short Bans Short Bans 6 4.8(AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 14.220 15.050 5.392 14.220 15.050 5.392 22.40	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span 1	Middle Beam Reinfor ts: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam S: - Number Bar Det S: Star Strip Column Middle Beam	5-#6 3-#6 cement: 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars ails: t (ft), L Bars 	11.24 11.16 max (k-f	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 1.by max: 	x (ft), 1 Xmax 14.250 14.250 14.250 14.706 13.213 13.213 15.699 15.79	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Bans Short Bans 6 4.8(- 6 4.15	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 14.220 15.050 5.392 14.220 15.050 5.392 22.40	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span 1 2	Middle Beam Reinfor S: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam S: - Number Bar Det Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam	5-#6 3-#6 cement: h (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars alls: t (ft), L Bars 6.#6 3-#6 3-#6 3-#6 4-#6 2-#6 4-#6	11.24 11.16 max (k-f 	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 1.by max: 	x (ft), 1 Xmax 14.250 14.250 14.250 14.706 13.213 13.213 13.213 15.699 15.79 17.77 1.7	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Ban s Start - - - - - - - - - - - - -	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 acing. s Length 22.40 19.37	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span 1 2	Middle Beam Reinfor S: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam S: - Number Bar Det S: Starip Column Middle Beam Column Middle Beam Column Middle Beam Column Middle Beam	5-#6 3-#6 (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars ails: t (ft), L Bars 6-#6 3-#6 3-#6 4-#6 2-#6	11.24 11.16 max (k-f 	2-#6 t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 by max: t) s Lengti 32.00	x (ft), Xmax 14.250 14.250 14.250 14.706 13.213 13.213 13.213 13.213 15.699 15.79 1.77 1.7	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Ban s Start - - 6 4.80 - - 6 4.15 -	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 acing. s Length 22.40 19.37	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			
Bottom Unit Span 1 2 3 4 NOTE *5 - Bottom Unit Span 1 2 3 3	Middle Beam Reinfor S: Widt S: Widt Column Middle Beam Column Middle Beam Column Middle Beam S: Number Bar Det Column Middle Beam Column Middle Beam Column Middle Beam	5-#6 3-#6 (ft), M Width 7.23 5.70 1.17 5.88 7.05 1.17 5.88 7.05 1.17 6.28 6.65 1.17 of bars alls: 	11.24 11.16 max (k-f governed flong Bar Start 0.00 0.0	2-#6 (t), Xmax Mmax 94.79 53.36 55.16 43.24 25.26 32.02 47.15 27.54 34.91 62.03 36.75 49.01 1.by max: t) 32.00	x (ft), 1 Xmax 14.250 14.250 14.250 14.250 14.706 13.213 13.213 13.213 15.699 15.69	As (in^2) AsMin 1.562 1.231 0.897 1.271 1.523 0.528 1.271 1.523 0.576 1.357 1.436 0.813 owable sp Short Bans Start - - - - - - - - - - - - -	AsMax 16.370 12.900 5.392 13.315 15.955 5.392 14.220 15.050 5.392 acing. s Length 22.40 19.37	2-#6) SpReq 14.467 17.100 4.942 17.650 16.920 9.884 17.650 16.920 9.884 15.080 15.960 9.884	6.24 5.14 2.428 1.358 0.690 1.096 0.636 0.397 1.197 0.694 0.433 1.579 0.929	Bars 6-#6 4-#6 3-#6 2-#6 2-#6 5-#6 5-#6 5-#6	*5 *5 *5 *5 *5			

12-22-2007, 05:00:25 PM

Page 3

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-28F4D E:\Thesis\tech2.2.slb

Flexural Capacity: Units: From, To (ft), As (in^2), PhiMn (k-ft) Span Strip From To AsTop AsBot PhiMn-PhiMn+ ----1 Column 0.000 0.667 3.52 -136.05 102.88 2.64 0.667 4.842 3.52 2.64 -136.05102.88 -69.16 6.801 1.76 2.64 102.88 4.842 6.801 8.828 1.76 2.64 -69.16 102.88 8.828 10.787 0.00 2.64 0.00 11.400 16.000 10.787 0.00 2.64 0.00 102.88 11.400 0.00 2.64 0.00 102.88 19.953 20.600 16.000 0.00 2.64 0.00 102.88 19.953 0.00 2.64 0.00 102.88 20.600 22.000 0.00 2.64 0.00 102.88 22.000 25.199 3.96 2.64 -151.10 102.88 27.247 31.333 32.000 3.96 7.48 7.48 -151.10 -273.56 -273.56 102.88 102.88 102.88 25.199 2.64 2.64 27.247 31.333 Middle 0.000 0.667 1.76 1.32 51.91 51.91 -68.85 -68.85 1.32 51.91 51.91 4 800 6.101 1 76 -68.85 6.436 0.00 6.101 0.00 6.436 7.414 11.400 1.76 0.00 0.00 68.85 0.00 0.00 68.85 11.400 16.000 0.00 1.76 0.00 68.85 16.000 20.083 0.00 1.76 0.00 68.85 20.600 21.942 20.083 0.00 1.76 0.00 68.85 20.600 0.00 1.76 0.00 68.85 -102.82 25.564 27.200 21.942 2.64 1.76 68.85 25.564 2.64 1.32 51.91 31.333 32.000 27.200 2.64 1.32 -102.82 51.91 31.333 2.64 1.32 -102.82 51.91 Beam 0.000 0.667 1.32 1.32 -103.71103.71 103.71 0.667 6.167 1.32 1.32 -103.71 0.00 6.167 7.167 0.00 1.32 11.400 16.000 1.32 103.71 7.167 0.00 0.00 11.400 0.00 0.00 16.000 20.083 20.083 20.600 0.00 1.32 0.00 103.71 0.00 1.32 0.00 103.71 21.841 27.493 1.32 20.600 0.00 0.00 103.71 21.841 1.32 -103.71 103.71 29.250 31.333 1.32 2.20 1.32 -103.71 -168.46 27.493 103.71 29.250 103.71 31.333 32.000 2.20 1.32 -168.46 103.71 0.000 0.667 1.76 -273.56 68.90 2 Column 7.48 -273.56 -182.76 -182.76 4.426 7.48 0.667 1.76 68.90 68.90 4.426 1.76 7.850 4.84 1.76 68.90 -68.90 7.850 9.358 1.76 1.76 68.90 9.358 9.884 1.76 1.76 68.90 13.835 17.786 1.76 9.884 1.76 -68.90 68.90 13.835 1.76 1.76 -68.90 68.90 -68.90 -68.90 -118.74 18.312 1.76 1.76 68.90 18.312 19.312 1.76 1.76 68.90 22.670 27.003 27.670 3.08 1.76 68.90 19.312 22.670 27.003 3.08 1.76 -298.62 68.90 68.90 3.08 0.000 0.667 2.64 1.76 69.13 69.13 Middle -102.82 -102.82 4.150 4.937 2.64 1.76 -102.82 69.13 69.13 -86.05 5.150 6.461 2.20 2.20 -86.05 86.05 6.461 9.884 2.20 2.20 -86.05 86.05 13.835 17.786 22.520 9.884 2.20 2.20 -86.05 86.05 13.835 2.20 2.20 -86.05 86.05 17.786 2.20 2.20 -86.05 86.05 22.520 23.520 2.20 1.76 -86.05 69.13 27.003 23.520 2.20 1.76 -86.05 69.13 27.003 27.670 2.20 1.76 -86.05 69.13 0.667 Beam 0.000 0.88 -168.46 70.02 2.20 0.667 1.121 2.20 0.88 -168.46 70.02 1.121 2.802 1.76 0.88 -136.5270.02 2.802 4.231 70.02 4.231 1.76 0.88 -136.52 5.912 0.88 0.88 -70.02 5.912 9.884 9.884 13.835 0.88 0.88 -70.02 70.02 0.88 0.88 13.835 17.786 17.786 23.657 0.88 0.88 -70.02 70.02 -70.02 70.02 0.88 0.88 23.657 24.735 0.88 0.88 -70.02 70.02 24.735 25.493 70.02 1.32 0.88 -103.71 1.32 25.493 26.571 0.88 70.02 26.571 27.003 -136.52 70.02 0.88

Gary Newman

pcaSlab v1.51 C				: 52416-1010277-4-	22545-29540	12-22-2007, 05:00:25 PM	М
E:\Thesis\tech2		iiversity, I	License ID:	52416-1010277-4-	22343-28F4D	Page	4
	27.003	27.670	1.76 0.88	-136.52	70.02		
3 Column	0.000 0.667 5.000 8.358 9.884 13.835 17.786 18.312 19.565 22.670 27.003	5.000 8.358 9.358 9.884 13.835 17.786 18.312 19.565 22.670 27.003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-298.62 -118.74 -68.90 -68.90 -68.90 -68.90 -68.90 -118.74 -298.62	68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90 68.90		
Middle	0.000 0.667 4.150 5.150 9.884 13.835 17.786 22.520 23.520	0.667 4.150 5.150 9.884 13.835 17.786 22.520 23.520	2.20 1.76 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 1.76	-86.05	69.13 69.13 86.05 86.05 86.05 86.05 86.05 69.13 69.13		
Beam	23.520 27.003 0.000 0.667 1.138 2.238 2.994 4.094 9.884	27.670 0.667 1.138 2.238 2.994 4.094 9.884	2.20 1.76 1.76 0.88 1.76 0.88 1.32 0.88 1.32 0.88 1.32 0.88 0.88 0.88	-86.05 -136.52 -136.52 -103.71 -103.71 -70.02 -70.02	69.13 69.13 70.02 70.02 70.02 70.02 70.02 70.02 70.02		
	13.835 17.786 22.535 24.021 25.493 26.978 27.003	17.786 22.535 24.021 25.493 26.978 27.003		-70.02 -70.02 -70.02 -136.52 -136.52 -168.46 -168.46	70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02		
4 Column	$\begin{array}{c} 0.000\\ 0.667\\ 5.000\\ 9.534\\ 9.742\\ 11.062\\ 13.335\\ 17.136\\ 17.642\\ 18.934\\ 20.935\\ 22.228\\ 26.003 \end{array}$	5.000 9.534 9.742 11.062 13.335 17.136 17.642 18.934 20.935 22.228 26.003	3.08 2.20 3.08 2.20 3.08 2.20 3.08 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 1.76 2.20 2.20 2.20 2.20 2.20	-118.74 -119.01 0.00 0.00 0.00 0.00 -68.99 -68.99 -65.82	85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82 85.82		
Middle	$\begin{array}{c} 0.000\\ 0.667\\ 4.000\\ 5.000\\ 9.479\\ 9.534\\ 11.241\\ 13.335\\ 17.136\\ 20.429\\ 21.429\\ 21.670\\ 22.670 \end{array}$	0.667 4.000 5.000 9.479 9.534 11.241 13.335 17.136 20.429 21.429 21.670 22.670	2.20 1.76 2.20 1.76 2.20 1.76 2.20 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 0.00 2.20 2.20 2.20 2.20 1.76 2.20 1.76	-86.05 -86.05 -86.05 -86.05 0.00 0.00 0.00 0.00 0.00 0.00	69.06 69.06 85.94 85.94 85.94 85.94 85.94 85.94 85.94 85.94 85.94 85.94 85.94 85.94 69.06		
Beam	26.003 0.000 0.667 2.363 4.041 9.479 9.534	0.667 2.363 4.041 9.479 9.534	2.20 1.76 2.20 0.88 2.20 0.88 1.32 0.88 1.32 0.88 0.00 0.88 0.00 0.88	-85.94 -168.46 -163.46 -103.71 -103.71 0.00 0.00	69.06 70.02 70.02 70.02 70.02 70.02 70.02 70.02		
	11.157 13.335 17.136 21.531 22.531 26.003	13.335 17.136 21.531 22.531 26.003	0.00 0.88 0.00 0.88 0.00 0.88 0.00 0.88 0.00 0.88 0.88 0.88 0.88 0.88	0.00 0.00 0.00 -70.02 -70.02	70.02 70.02 70.02 70.02 70.02 70.02 70.02		
Longitudinal Be							
		End, Xu (ft		= Vu (kip), Av/s (in Vu Xu	^2/in) Av/s		
1 18.1	3 26.91	2.177	6.126	25.77 2.177	0.0124		

Since the set of the	$\frac{6.126}{14.029} \frac{10.705}{15.09} \frac{16.66}{15.64} \frac{6.126}{0.0004} \frac{0.124}{0.0124}$ $\frac{2}{15.757} \frac{15.264}{15.264} \frac{12.521}{25.651} \frac{12.624}{15.622} \frac{12.524}{15.224} \frac{12.524}{0.0124}$ $\frac{2}{15.64} \frac{12.52}{25.651} \frac{12.64}{15.69} \frac{12.575}{15.69} \frac{12.524}{0.0124}$ $\frac{2}{15.69} \frac{12.177}{15.500} \frac{15.69}{16.99} \frac{12.179}{15.500} \frac{10.0234}{0.0124}$ $\frac{3}{15.69} \frac{12.177}{15.500} \frac{15.69}{15.99} \frac{10.0234}{15.69} \frac{12.179}{0.0124}$ $\frac{13.18}{12.19} \frac{12.579}{15.500} \frac{13.64}{15.99} \frac{13.549}{15.19} \frac{10.0234}{0.0124}$ $\frac{13.18}{12.19} \frac{13.62}{15.500} \frac{13.64}{15.99} \frac{13.549}{15.19} \frac{10.0234}{0.0124}$ $\frac{13.18}{12.49} \frac{13.17}{15.500} \frac{15.59}{15.590} \frac{10.0234}{0.0124}$ $\frac{13.18}{12.499} \frac{13.17}{15.49} \frac{15.59}{15.590} \frac{10.0234}{0.0124}$ $\frac{13.14}{15.49} \frac{13.29}{15.19} \frac{13.64}{15.99} \frac{13.59}{15.19} \frac{10.0234}{0.0124}$ $\frac{13.14}{15.49} \frac{13.29}{15.19} \frac{13.64}{15.99} \frac{13.59}{15.19} \frac{10.0234}{0.0124}$ $\frac{13.14}{15.49} \frac{13.29}{15.19} \frac{13.64}{15.99} \frac{13.59}{15.19} \frac{10.0234}{0.0124}$ $\frac{13.14}{15.49} \frac{13.29}{15.19} \frac{13.64}{0.0004} \frac{13.74}{17.41} \frac{13.299}{0.0004}$ $\frac{13.14}{11.741} \frac{13.299}{15.29} \frac{13.14}{15.19} \frac{13.59}{15.59} \frac{15.79}{0.0124}$ $\frac{13.12}{11.54} \frac{13.29}{15.29} \frac{13.14}{15.59} \frac{13.59}{15.59} \frac{15.79}{0.0124}$ $\frac{13.12}{11.54} \frac{13.29}{15.99} \frac{13.14}{15.99} \frac{13.19}{15.99} \frac{10.12}{15.99}$ $\frac{13.12}{11.16} \frac{13.9}{15.99} \frac{13.14}{15.99} \frac{13.99}{15.99}$ $\frac{13.12}{11.16} \frac{13.9}{15.99} \frac{13.17}{15.59} \frac{13.59}{15.99}$ $\frac{13.12}{11.16} \frac{13.17}{15.59} \frac{13.14}{15.99} \frac{13.17}{15.59} \frac{13.14}{15.99}$ $\frac{13.12}{11.16} \frac{13.17}{15.59} \frac{13.14}{15.99} \frac{13.14}{15.99}$ $\frac{13.12}{15.99} \frac{13.14}{15.99} \frac{13.14}{15.99}$ $\frac{13.12}{15.99} \frac{13.14}{15.99} \frac{13.14}{15.99}$ $\frac{13.12}{15.99} \frac{13.14}{15.99} \frac{13.14}{15.99}$ $\frac{13.12}{15.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.076 0.0000 17.975 0.0000 21.924 0.0124 25.874 0.0124 29.823 0.0124 2.177 0.0124 5.508 0.0124	Pd
$\frac{5.508}{11.501} \frac{9.2}{12.50} \frac{2.76}{14.56} \frac{5.508}{10.0144} \frac{0.0124}{10.000}$ $\frac{13.500}{11.521} \frac{14.56}{10.521} \frac{14.56}{10.522} \frac{13.631}{10.0000}$ $\frac{13.500}{12.2162} \frac{13.631}{10.000} \frac{2.162}{10.000}$ $\frac{13.13}{2.001} \frac{26.91}{2.100} \frac{2.177}{15.500} \frac{5.508}{10.0114} \frac{2.177}{10.000}$ $\frac{13.13}{2.001} \frac{26.91}{2.2162} \frac{2.773}{15.500} \frac{5.508}{10.0124} \frac{0.0124}{10.000}$ $\frac{13.13}{2.001} \frac{2.6.91}{2.2162} \frac{2.773}{15.500} \frac{5.508}{10.0124} \frac{0.0124}{10.000}$ $\frac{13.13}{2.001} \frac{2.6.91}{2.2162} \frac{2.777}{15.500} \frac{5.508}{10.000} \frac{0.0124}{10.000}$ $\frac{13.13}{2.001} \frac{2.6.91}{2.2162} \frac{2.777}{15.500} \frac{5.508}{5.500} \frac{5.733}{5.000} \frac{0.0124}{0.0004}$ $\frac{2.777}{2.120} \frac{5.508}{1.553} \frac{0.553}{1.553} \frac{2.5.93}{5.356} \frac{0.0124}{0.0004}$ $\frac{2.177}{1.755} \frac{5.508}{1.553} \frac{0.533}{5.135} \frac{0.0124}{0.0004}$ $\frac{1.771}{1.741} \frac{14.929}{1.929} \frac{10.000}{1.1.741} \frac{11.741}{0.0000} \frac{0.0004}{1.741} \frac{0.0000}{0.0014}$ $\frac{1.771}{1.741} \frac{14.929}{1.929} \frac{10.000}{1.000} \frac{1.741}{1.741} \frac{0.0000}{0.0004}$ $\frac{1.771}{2.1305} \frac{2.7.92}{2.2.75} \frac{2.4.493}{2.4.93} \frac{0.0124}{0.00124}$ $\frac{1.771}{1.741} \frac{14.929}{1.929} \frac{10.000}{1.000} \frac{1.741}{1.741} \frac{0.0000}{0.0004}$ $\frac{1.711}{2.1305} \frac{2.7.92}{2.2.75} \frac{2.4.493}{2.4.93} \frac{0.0124}{0.00124}$ $\frac{1.711}{1.741} \frac{14.929}{1.92} \frac{1.11}{1.741} \frac{0.0000}{0.0004}$ $\frac{1.711}{2.1305} \frac{2.7.92}{2.2.75} \frac{2.4.493}{2.4.93} \frac{0.0124}{0.0014}$ $\frac{1.711}{2.1305} \frac{1.6}{2.2.75} \frac{2.7.70}{2.4.93} \frac{0.0124}{0.0004}$ $\frac{1.711}{2.1305} \frac{1.6}{2.2.75} \frac{1.7.75}{2.4.493} \frac{1.7.75}{0.0000}$ $\frac{1.7.75}{1.7.75} \frac{1.7.75}{1.7.75} \frac{1.7.75}$	$\frac{5.508}{11.500} = \frac{9.393}{22.76} = \frac{5.508}{5.930} = 0.0124 \\ \frac{9.393}{12.70} = \frac{15.200}{14.52} = \frac{16.933}{16.930} = 0.0124 \\ \frac{16.933}{12.20162} = \frac{16.933}{12.20062} = $	5.508 8.839 22.76 8.839 12.170 14.76 12.170 15.500 6.99 15.500 18.831 10.62	5.508 0.0124	
$\frac{5.508}{22.100} = \frac{8.339}{15.601} = \frac{12.170}{15.601} = \frac{11.6}{8.839} = \frac{12.170}{15.601} = \frac{11.6}{8.839} = \frac{10.000}{12.2.100} = \frac{11.6}{15.601} = \frac{10.000}{12.0.0124}$ $4 = 18.13 = 26.91 = 2.177 = 5.865 = 35.07 = 2.177 = 0.0124$ $4 = 18.13 = 26.91 = 2.177 = 5.865 = 35.07 = 2.177 = 0.0124$ $4 = 18.13 = 26.91 = 2.177 = 5.865 = 35.07 = 2.177 = 0.0124$ $4 = 18.13 = 26.91 = 2.177 = 5.865 = 35.07 = 2.177 = 0.0124$ $4 = 18.13 = 26.91 = 2.177 = 5.865 = 35.07 = 2.177 = 0.0124$ $4 = 18.13 = 26.91 = 0.0124$ $= 12.1305 = 24.493 = 2.75 = 24.493 = 0.0124$ $= 12.1305 = 24.493 = 0.0000$ $= 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0.917 = 0.000 = 0$	$\frac{5.509 \ 8.639 \ 18.37 \ 5.508 \ 0.0124}{12.2100 \ 11.64 \ 18.601 \ 0.0000 \ 12.2100 \ 15.610 \ 1.44 \ 18.010 \ 0.0024 \ 22.162 \ 25.493 \ 30.83 \ 25.493 \ 0.0124 \ 22.162 \ 25.493 \ 30.83 \ 25.493 \ 0.0124 \ 22.162 \ 25.493 \ 0.0124 \ 22.162 $		18.831 0.0000 22.162 0.0124	
<pre></pre>	s.5365 0.5365 0.0124 8.553 11.741 17.94 0.533 11.741 14.929 10.00 11.741 0.0000 14.929 10.00 11.741 0.0000 12.1305 21.493 0.0124 congitudinal Beam Shear Reinforcement Details: This stirt stirups (2 legs each unless otherwise noted) 1 11.4 6 0.5 + <- 94.9> + 12 0 0.3 3 11.6 0.8 0.7 + <- 76.5> + 12 0 0.3 4 13 16 0 0.5 + <- 76.5> + 12 0 0.3 3 13 0 2 0.6 1 + <- 76.5> + 12 0 0.3 4 13 16 0 0.7 + <- 76.5> + 12 0 0.3 Same Shear Capacity: This: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in) Span d PhiVn Vu Xu 0.917 0.76 0.0220 0.5 4 0.4 125.77 2.177 10.076 17.975 13.46 0.5 10.076 1.10 0.00 0.917 13.46 0.5 2.77 2.177 1.10.76 17.975 13.46 1.0.000 0.917 0.0220 0.5	5.508 8.839 18.37 8.839 12.170 11.16 12.170 15.500 5.90 15.500 18.831 13.64	5.508 0.0124 8.839 0.0000 15.500 0.0000 18.831 0.0124	
A constructional Beam Shear Reinforcement Details: Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted) 1 #3 14 @ 8.5 + c 94.8> + 19 @ 8.7 3 #3 12 @ 8.6 + c 79.9> + 12 @ 8.8 Beam Shear Capacity: Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Yu (kip), Av/s (in^2/in) Span d PhiVc Start End Av/s Sp PhiVn Yu Xu 1 18.13 26.91 0.000 0.917 48.14 25.77 2.177 10.076 17.975 48.14 25.77 2.177 10.076 17.975 47.45 33.81 0.0000 2 18.13 26.91 0.000 0.917 47.45 33.81 0.0000 0.917 12.170 0.0224 9.0 46.85 33.166 2.177 12.170 18.831 47.45 33.81 32.000 2 18.13 26.91 0.000 0.917 47.45 33.81 0.0000 0.917 12.170 0.0224 9.0 46.85 33.16 2.177 12.170 18.831 47.68 33.27 0.0000 3 18.13 26.91 0.000 0.917 47.68 33.21 0.0000 0.917 12.170 0.0224 9.0 46.85 33.16 2.177 12.170 18.831 47.68 33.21 0.0000 3 18.13 26.91 0.000 0.917 47.68 33.21 0.0000 0.917 11.741 0.0224 8.7 47.68 33.25 9 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.0000 0.917 11.741 0.0224 8.7 47.64 33.07 2.177 11.741 18.117 13.46 10.52 18.839 15.500 26.753 0.0224 8.3 48.45 22.75 2.4733 25.753 26.670 48.45 36.98 27.670 4 18.13 26.91 0.000 0.917 46.85 36.98 27.670 3 18.13 26.91 0.000 0.917 46.85 30.83 25.493 15.500 25.753 0.0224 8.3 48.45 22.75 2.4733 25.753 26.670 48.45 29.52 26.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.0000 0.917 11.741 18.117 48.45 29.52 26.670 4 18.13 26.91 0.000 0.917 48.45 29.52 26.670	A constructional Beam Shear Reinforcement Details: Units: spacing & distance (In). Span Size Stirrups (2 legs each unless otherwise noted) 1 #3 14 @ 0.5 + C- 94.0> + 19 @ 0.7 2 #3 16 @ 0.5 + C- 79.9> + 12 @ 0.6 3 #3 12 @ 0.6 + C- 79.9> + 12 @ 0.7 4 #3 16 @ 0.7 + C- 76.5> + 12 @ 0.7 4 #3 16 @ 0.7 + C- 76.5> + 12 @ 0.7 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) Span d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 5 pan d Phivo Start End, Xu (ft), Phivc, Phivn, Vu (kip), Av/s (in^2/in) 2 18.13 26.91 0.000 0.917 47.64 5.34.91 22.000 2 18.13 26.91 0.000 0.917 47.66 33.2.92 0.000 0.917 12.170 0.0224 9.7 47.66 33.2.92 0.000 0.917 12.170 18.831 47.66 33.2.92 0.000 0.917 1.741 10.0225 8.6 47.66 27.57 2.177 13.46 11.16 8.839 15.500 2.6733 0.0224 8.7 47.64 33.0.81 22.000 4 18.13 26.91 0.000 0.917 47.66 33.2.99 27.670 4 18.13 26.91 0.000 0.917 47.66 33.62 27.57 2.177 11.741 18.137 47.64 41.45 0.0000 0.917 11.741 10.0224 8.7 47.64 33.059 27.670 4 18.13 26.91 0.000 0.917 47.66 41.45 0.0000 11.771 11.741 0.0224 8.7 47.64 35.07 2.177 11.741 18.117 25.753 0.02	5.365 8.553 25.89 8.553 11.741 17.94 11.741 14.929 10.00 14.929 18.117 6.60 18.117 21.305 13.84 21.305 24.493 22.75	5.365 0.0124 8.553 0.0124 11.741 0.0000 18.117 0.0000 21.305 0.0124 24.493 0.0124	
Units: spacing 4 distance (in). Span Size Stirrups (2 legs each unless otherwise noted) 1 #3 14 @ 0.5 + < 94.8> + 19 @ 8.7 2 #3 12 @ 0.5 + < 75.9> + 12 @ 0.6 3 #3 12 @ 0.5 + < 75.9> + 12 @ 0.8.3 Seam Shear Capacity: Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/ln) Span d PhiVc Start End Av/s Sp PhiVn Yu Xu 1 18.13 26.91 0.000 0.917 40.14 25.77 2.177 10.076 0.2307 46.14 25.77 2.177 10.076 0.2260 8.7 47.45 33.461 2.000 2 18.13 26.91 0.000 0.917 46.85 31.96 2.177 12.170 10.276 46.85 31.96 2.177 13.083 2.000 17.46 35.92 2.777 13.012 26.91 0.000 0.917 46.85 36.8	Units: spacing & distance (in). Span Size Stirups (2 legs each unless otherwise noted) 1 #3 14 @ 8.5 + < 94.8> + 19 @ 8.7 2 #3 16 @ 8.5 + < 79.9 -> + 12 @ 8.3 Span Size Stirups (2 legs each unless otherwise noted) 1 #3 16 @ 8.5 + < 79.9 -> + 12 @ 8.3 Span Size Stirups (2 legs each unless otherwise noted) Yet (2 legs each unless otherwise noted) Span Size Stirups (2 legs each unless otherwise noted) Yet (2 legs each unless otherwise noted) Span Size Stirups (2 legs each unless otherwise noted) Yet (3 legs each unless otherwise noted) Span Size Stirups (2 legs each unless otherwise noted) Yet (3 legs each unless otherwise noted) Yet (2 legs each unless otherwise noted) Yet (3 le	· ·		
$\frac{\text{Span Size Stirrups (2 lege each unless otherwise noted)}{1 + 31 14 & 8.5 + < 94.8> + 19 (8 8.7 + 31 12 8.6 + < 79.9> + 12 (8 8.6 + 31 12 8.6 + < 79.9> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 12 8.6 + < 76.5> + 12 (8 8.3 + 31 - 31 14 - 0.000 - 0.917 + 48.14 + 31.41 -0.000 - 0.917 -0.0226 - 8.5 + 48.14 - 25.77 - 2.177 - 0.076 - 0.0226 - 8.5 + 48.14 - 25.77 - 2.177 - 0.074 + 0.075 - 0.076 - 0.0226 - 8.5 + 48.14 - 25.77 - 2.177 - 0.077 + 0.7795 - 0.000 - 0.917 - 0.074 + 77.45 - 33.81 - 32.000 - 0.917 - 0.076 - 0.0225 - 8.7 - 47.45 - 38.81 - 32.000 - 0.917 - 0.017 + 0.0214 - 9.0 + 66.85 - 31.96 - 2.177 - 12.170 - 0.0244 - 9.0 + 66.85 - 31.96 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 31.96 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 31.96 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 31.96 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 31.96 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 30.63 - 25.7 - 2.177 - 0.017 + 0.0214 - 9.0 + 66.85 - 30.63 - 25.493 - 26.753 - 27.670 $	Span Size Stirrups (2 legs each unless otherwise noted) 1 43 14 @ 0.5 + < 94.8> + 12 @ 0.5 3 81 16 @ 0.6 + < 79.9> + 12 @ 0.6 3 82 12 @ 0.6 + < 79.9> + 12 @ 0.8 Sean Shear Capacity: Total & 0.5 + < 90.9> + 12 @ 0.8 This: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in) Yu Span d PhiVo Start Main Shear Capacity: Total & 0.000 0.917 1 18.13 26.91 0.000 0.917 1 18.13 26.91 0.000 0.917 1 19.13 26.91 0.000 0.917 1 19.975 31.083 0.0252 8.7 48.14 31.41 0.000 1 19.975 31.083 0.0252 8.7 47.45 38.81 32.000 2 18.13 26.91 0.000 0.917			
$\frac{1}{2} \frac{43}{3} \frac{14}{6} \frac{8}{6} 5, \ 5, \ \ 94, \ 6, \ \ 79, \ 9 \ \ + \ 12 \ 6 \ 8, \ 0 \ 4 \ 43 \ 12 \ 6 \ 8, \ 6 \ \ 79, \ 9 \ \ + \ 12 \ 6 \ 8, \ 0 \ 4 \ 43 \ 12 \ 6 \ 8, \ 6 \ \ 79, \ 9 \ \ + \ 12 \ 6 \ 8, \ 0 \ 4 \ 43 \ 12 \ 6 \ 8, \ 6 \ \ 70, \ 9 \ \ + \ 12 \ 6 \ 8, \ 0 \ 0 \ 4 \ 43 \ 12 \ 6 \ 8, \ 6 \ \ 70, \ 9 \ \ + \ 12 \ 6 \ 8, \ 0 \ 0 \ 12 \ 8 \ 8, \ 0 \ 8 \ 14 \ 8 \ 16 \ 8, \ 7 \ 7 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$	$\frac{1}{2} \begin{array}{c} 43 \ 14 \ 0 \ 0.5 \ + \ < - 9 \ 4.8 \ \ > + 19 \ 0 \ 8.7 \ 2 \ 43 \ 16 \ 0 \ 9.0 \ + \ < - 79.9 \ \ > + 12 \ 0 \ 8.6 \ 3.6 \ 9.0 \ 4 \ 43 \ 16 \ 0 \ 8.7 \ + \ < - 76.5 \ \ > + 12 \ 0 \ 8.0 \ 3.6 \ 8.6 \ 9.0 \ 4 \ 43 \ 16 \ 0 \ 8.7 \ + \ < - 76.5 \ \ > + 12 \ 0 \ 8.0 \ 3.6 \ 8.6 \ 9.0 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ $		at ad \	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} + 31 + 6 + 8.5 + (94.8> + 19 + 8.7 \\ 2 + 31 16 + 9.0 + (70.5> + 12 + 8.3 \\ 3 + 31 22 + 8.6 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 8.7 + (70.5> + 12 + 8.3 \\ 3 + 31 16 + 31 + 10 + 10 + 10 + 10 + 10 + 10 + 10$			
Beam Shear Capacity: $y_{nits: d, sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in) Span d PhiVc Start End Av/s Sp PhiVn Vu Xu 1 18.13 26.91 0.000 0.917 48.14 31.41 0.000 0.917 10.076 0.0260 8.5 49.14 25.77 2.177 10.076 17.975 13.46 8.56 10.076 17.975 31.083 32.000 47.45 33.49 29.823 2 18.13 26.91 0.000 0.917 46.85 38.11 0.000 0.917 12.170 0.0244 9.0 46.85 31.96 2.177 18.831 26.753 20.00 13.46 10.62 18.831 18.831 26.753 0.0255 8.6 47.68 26.44 25.493 26.753 27.670 47.68 33.72 0.000 0.917 8.839 0.0255 8.6 47.68 26.44 25.493 26.753 27.670 47.68 33.72 0.000 0.917 8.839 0.0244 9.0 46.85 30.83 25.493 26.753 27.670 47.68 33.72 0.000 0.917 1.8239 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 47.64 41.45 0.000 0.917 1.741 0.0254 8.7 47.64 41.50 77 2.177 11.741 18.117 48.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.50 77 2.177 11.741 18.117 48.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.50 77 2.177 11.741 18.117 25.753 0.0264 8.3 48.45 29.52 26.670 Stab Shear Capacity: Thirts: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.499 146.10 34.07 1.41 1 155.20 8.88 0.499 146.10 32.94 25.95 2 155.20 8.88 0.499 146.10 32.94 2.26$	Para Shear Capacity:	2 #3 16 @ 9.0 + < 79.9> + 12 @ 8.6 3 #3 12 @ 8.6 + < 79.9> + 16 @ 9.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in) Span d PhiVc Start End Av/s Sp PhiVn Vu Xu 1 18.13 26.91 0.000 0.917 48.14 31.41 0.000 2 18.13 26.91 0.000 0.917 47.45 38.61 32.000 2 18.13 26.91 0.000 0.917 47.45 38.61 32.000 2 18.13 26.91 0.000 0.917 46.85 38.11 0.000 0.917 12.170 0.821 47.68 32.59 27.670 3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 0.917 47.68 3.72 0.000 15.90 26.753 0.0244 9.0 46.85 36.98 2.7670 4 18.13	4 #3 16 @ 8.7 + < 76.5> + 12 @ 8.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Units: d, Sp (in), Start, End, Xu (tt), PhiVc, PhiVn, Vu (kip), Av/s (in^2/ln) Span d PhiVc Start End Av/s Sp PhiVn Vu Xu 1 18.13 26.91 0.000 0.917 48.14 31.41 0.000 0.917 10.076 17.975 48.14 25.77 2.177 10.076 17.975 31.083 0.0252 8.7 47.45 33.49 25.823 31.083 32.000 47.45 38.81 32.000 2 18.13 26.91 0.000 0.917 46.85 38.11 0.000 0.917 12.170 0.0244 9.0 46.85 38.11 0.000 0.917 12.170 18.831 47.68 33.72 0.000 3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 4 18.13 26.91 0.000 0.917 47.68 33.72 0.000 0.917 8.839 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 26.753 0.0244 9.0 46.85 30.83 25.493 26.753 27.670 47.68 33.72 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.41 18.117 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 44.64 35.07 2.177 11.41 18.117 25.753 0.0264 8.3 48.45 22.55 2.6670 3 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.41 18.117 25.753 26.670 48.45 29.52 26.670 3 18.15 2.00 8.88 0.567 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 34.07 1.41 55.20 8.88 0.499 146.10 34.07 1.41 55.20 8.88 0.499 146.10 32.94 26.26 4 18.12 Flexural Transfer of Negative Unbalanced Moment at Supports:			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{18.13}{26.91} \frac{0.000}{0.917} \frac{0.001}{10.076} \frac{0.0260}{0.2260} \frac{8.5}{6.5} \frac{48.14}{4.14} \frac{25.77}{2.177} \frac{2.177}{2.177} \\ \frac{10.076}{17.975} \frac{17.975}{1.083} \frac{0.0225}{0.0225} \frac{8.7}{6.7} \frac{47.45}{47.45} \frac{33.49}{38.61} \frac{29.823}{32.000} \\ \frac{2}{18.13} \frac{26.91}{0.000} \frac{0.000}{0.917} \frac{0.917}{0.02244} \frac{9.0}{9.0} \frac{46.85}{46.85} \frac{38.11}{31.96} \frac{0.000}{2.177} \\ \frac{12.170}{12.170} \frac{18.831}{18.831} \frac{26.91}{26.753} \frac{0.00255}{0.0255} \frac{8.6}{8.6} \frac{47.68}{47.68} \frac{25.44}{25.493} \\ \frac{26.753}{26.753} \frac{27.670}{2.670} {} \frac{47.68}{47.68} \frac{33.72}{25.92} \frac{0.000}{0.917} \\ \frac{9.917}{12.560} \frac{8.89}{26.753} \frac{0.02244}{0.02255} \frac{9.6}{8.6} \frac{47.68}{47.68} \frac{25.44}{25.493} \\ \frac{26.753}{26.753} \frac{27.670}{0.02244} \frac{9.0}{9.0} \frac{46.85}{46.85} \frac{33.99}{36.99} \frac{27.670}{2.177} \\ \frac{18.13}{26.91} \frac{0.000}{0.917} \frac{9.917}{0.02244} \frac{9.0}{9.0} \frac{46.85}{46.85} \frac{33.99}{36.99} \frac{27.670}{2.177} \\ \frac{11.741}{18.117} \frac{9.97}{0.02244} \frac{9.0}{9.0} \frac{46.85}{36.99} \frac{35.99}{27.670} \\ \frac{4}{18.13} \frac{26.91}{26.753} \frac{0.000}{0.917} \frac{9.917}{1.741} \frac{10.0254}{0.02244} \frac{8.7}{9.0} \frac{47.64}{41.45} \frac{31.45}{29.52} \frac{21.670}{24.493} \\ \frac{25.753}{25.753} \frac{26.670}{2.177} \\ \frac{11.741}{18.117} \frac{25.753}{25.753} \frac{0.0264}{2.8.3} \frac{8.3}{48.45} \frac{25.52}{29.52} \frac{26.670}{26.70} \\ \frac{11}{155.20} \frac{8.88}{0.489} \frac{146.10}{46.10} \frac{34.07}{1.41} \\ \frac{3}{155.20} \frac{8.88}{0.489} \frac{146.10}{46.10} \frac{34.07}{34.07} \frac{1.41}{1.41} \\ \frac{155.20}{1.41} \frac{8.88}{2.489} \frac{146.10}{32.94} \frac{32.94}{26.26} \frac{2.6}{26} \\ \frac{1.41}{25.20} \frac{8.88}{0.489} \frac{146.10}{46.10} \frac{34.07}{34.56} \frac{1.41}{1.41} \\ \frac{145}{25.20} \frac{145.20}{0.888} \frac{145}{0.489} 1$	Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiV Span d PhiVc Start End Av/s	Sp PhiVn	Vu Xu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0.917}{10.076} 10.076 0.0260 8.5 48.14 25.77 2.177 \\10.076 17.975 13.46 8.56 10.076 \\17.975 31.083 0.0252 8.7 47.45 38.41 929.823 \\31.083 32.000 47.45 38.81 32.000 \\2 18.13 26.91 0.000 0.917 47.45 38.81 92.000 \\2 18.13 26.91 0.000 0.917 47.45 38.81 0.0200 \\18.831 26.753 27.670 46.85 31.96 2.177 \\12.170 18.831 46.85 26.44 25.493 \\26.753 27.670 47.68 26.44 25.493 \\26.753 27.670 47.68 32.59 27.670 \\3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 \\0.917 8.839 0.0255 8.6 47.68 27.57 2.177 \\8.839 15.500 47.68 32.59 27.670 \\3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 \\0.917 8.839 0.0255 8.6 47.68 25.493 \\26.753 27.670 47.68 32.59 27.670 \\4 18.13 26.91 0.000 0.917 47.64 35.07 2.177 \\11.741 18.117 2.575 0.0264 8.7 47.64 35.07 2.177 \\11.741 18.117 46.57 3.48.5 22.75 2.4.493 \\26.753 26.670 48.3 48.45 22.57 2.4.79 \\25.753 26.670 48.3 48.45 22.52 26.670 \\31 15.500 2.575 3 26.670 48.3 48.45 29.52 26.670 \\31 18.13 26.91 0.000 0.917 44.15 0.000 \\0.917 11.741 0.0254 8.7 47.64 35.07 2.177 \\11.741 18.117 2.575 0.0264 8.3 48.5 22.57 2.4.493 \\25.753 26.670 48.3 48.5 29.52 26.670 \\31 15.500 8.88 0.499 146.10 34.07 1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\31.456 1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499 146.10 32.94 26.26 \\1.41 \\3 155.20 8.88 0.499$			
$\frac{17.975}{31.083} \frac{31.083}{32.000} \frac{0.0252}{} \frac{8.7}{47.45} \frac{47.45}{38.81} \frac{33.49}{32.000} \frac{29.823}{32.000}$ 2 18.13 26.91 0.000 0.917 46.85 38.11 0.000 0.917 12.170 0.0244 9.0 46.85 31.96 2.177 12.170 18.831 13.46 10.62 18.831 18.831 26.753 27.670 47.68 32.59 27.670 3 18.13 26.91 0.000 0.917 47.68 32.59 27.670 3 18.13 26.91 0.000 0.917 47.68 32.59 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 28.177 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 25.753 20.670 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 25.753 20.670 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 25.753 20.670 48.83 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.557 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 32.94 26.26	$\frac{17,975}{31,083} 32.000 47.45 33.49 29.823$ $\frac{17,975}{31,083} 32.000 47.45 38.81 32.000$ 2 18.13 26.91 0.000 0.917 47.68 38.11 0.000 0.917 18.831 46.85 38.11 0.000 18.831 26.753 27.670 47.68 33.72 0.000 0.917 8.839 0.0255 8.6 47.68 26.44 25.493 26.753 27.670 47.68 33.72 0.000 0.917 8.839 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 26.753 0.0244 9.0 46.85 30.83 25.493 26.753 27.670 47.68 33.72 0.000 0.917 1.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 47.64 11.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 48.4 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 48.4 41.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.499 146.10 32.94 26.26 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	0.917 10.076 0.0260	8.5 48.14 2	5.77 2.177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{31.083}{22.000} \frac{32.000}{2.000} \frac{47.45}{2.000} \frac{47.45}{38.81} \frac{32.000}{32.000}$ 2 18.13 26.91 0.000 0.917 46.85 38.11 0.000 0.917 12.170 0.0244 9.0 46.85 31.96 2.177 12.170 18.831 47.68 26.44 25.493 26.753 27.670 47.68 32.59 27.670 3 18.13 26.91 0.000 0.917 47.68 33.72 0.000 0.917 8.839 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 13.46 11.16 8.839 26.753 27.670 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 47.64 41.45 0.000 1.1741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 30.59 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	10.076 17.975	13.46	8.56 10.076
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.083 32.000	47.45 3	8.81 32.000
$\frac{1}{1} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{10} \frac{1}{0} \frac{0}{0244} \frac{9}{9.0} \frac{46.85}{11.62} \frac{31.96}{11.62} \frac{2}{18.831} \frac{1}{12.170} \frac{1}{18.831} \frac{1}{2.170} \frac{1}{18.831} \frac{1}{2.170} \frac{1}{13.46} \frac{1}{10.62} \frac{1}{18.831} \frac{1}{12.170} \frac{1}{12.170} \frac{1}{13.46} \frac{1}{10.62} \frac{1}{18.831} \frac{1}{12.170} \frac{1}{12.170} \frac{1}{12.170} \frac{1}{13.46} \frac{1}{10.62} \frac{1}{18.831} \frac{1}{12.170} \frac{1}{12.170} \frac{1}{12.170} \frac{1}{13.46} \frac{1}{10.62} \frac{1}{18.831} \frac{1}{2.170} 1$	$\frac{1}{1} \frac{1}{155.20} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{12.170} \frac{1}{11.741} \frac{1}{12.170} \frac{1}{2.177} \frac{1}{11.741} \frac{1}{10.171} \frac{1}{10.171} \frac{1}{10.171} \frac{1}{10.171} \frac{1}{10.171} \frac{1}{10.171} \frac{1}{11.171} \frac{1}{12.170} \frac{1}{11.171} \frac{1}{$			
$\frac{12.170}{18.831} = \frac{18.831}{26.753} = {27.670} = \frac{13.46}{47.68} = \frac{10.62}{26.44} = \frac{18.831}{25.493}$ $\frac{26.753}{26.753} = \frac{27.670}{27.670} = {47.68} = \frac{32.59}{32.59} = \frac{27.670}{27.670}$ $\frac{3}{18.13} = \frac{26.91}{26.753} = \frac{0.000}{0.917} = {} = \frac{47.68}{47.68} = \frac{33.72}{27.57} = \frac{0.000}{2.177}$ $\frac{8.839}{15.500} = \frac{15.500}{} = {} = \frac{13.46}{11.16} = \frac{11.16}{8.839}$ $\frac{15.500}{26.753} = \frac{27.670}{27.670} = {} = \frac{46.85}{30.83} = \frac{25.493}{25.493}$ $\frac{26.753}{26.753} = \frac{27.670}{27.670} = {} = \frac{47.64}{41.45} = \frac{41.45}{0.000}$ $\frac{4}{18.13} = \frac{26.91}{0.000} = \frac{0.917}{0.917} = {} = \frac{47.64}{41.45} = \frac{41.45}{0.000}$ $\frac{0.917}{0.917} = \frac{17.741}{1.741} = \frac{0.0254}{0.0254} = \frac{8.7}{8.7} = \frac{47.64}{47.64} = \frac{35.07}{2.177}$ $\frac{11.741}{11.741} = \frac{18.117}{11.741} = {} = \frac{13.46}{48.45} = \frac{10.000}{11.741}$ $\frac{11.741}{18.117} = \frac{25.753}{25.753} = 26.670 = {} = \frac{48.45}{45} = 29.52 = 26.670$ Slab Shear Capacity: $\frac{11}{155.20} = \frac{8.88}{0.889} = \frac{0.567}{146.10} = \frac{46.36}{30.77} = \frac{30.59}{1.41}$ $\frac{11}{155.20} = \frac{8.88}{0.499} = \frac{146.10}{32.94} = \frac{30.94}{26.26}$	$12.170 \ 18.831 \ \ \ 13.46 \ 10.62 \ 18.831 \ 18.831 \ 26.753 \ 26.753 \ 26.753 \ 27.670 \ \ 47.68 \ 32.59 \ 27.670 \ 0.917 \ 8.839 \ 0.0255 \ 8.6 \ 47.68 \ 32.59 \ 27.670 \ 0.917 \ 8.839 \ 0.0255 \ 8.6 \ 47.68 \ 27.57 \ 2.177 \ 8.839 \ 15.500 \ 26.753 \ 0.0244 \ 9.0 \ 46.85 \ 36.98 \ 27.570 \ 2.177 \ 8.839 \ 15.500 \ 26.753 \ 0.0244 \ 9.0 \ 46.85 \ 36.98 \ 27.670 \ 4 \ 18.13 \ 26.91 \ 0.000 \ 0.917 \ \ 47.64 \ 41.45 \ 0.000 \ 0.917 \ 11.741 \ 0.0254 \ 8.7 \ 47.64 \ 35.07 \ 2.177 \ 11.741 \ 18.117 \ \ 13.46 \ 10.00 \ 11.741 \ 18.117 \ 25.753 \ 0.0264 \ 8.3 \ 48.45 \ 22.57 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 25.5 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 25.5 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 25.5 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.493 \ 25.753 \ 26.670 \ \ 48.45 \ 29.52 \ 26.670 \ 24.45 \ 29.52 \ 26.670 \ 24.45 \ 29.52 \ 26.670 \ 24.45 \ 29.52 \ 26.670 \ 24.45 \ 29.52 \ 26.670 \ 25.5 \ 24.493 \ 25.75 \ 24.493 \ 2$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.170 18.831	13.46 1	0.62 18.831
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
0.917 8.839 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 13.46 11.16 8.839 26.753 226.753 0.0244 9.0 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 10.0254 8.7 47.64 35.07 2.177 11.741 18.117 -5.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.499 146.10 34.07 1.41<	0.917 8.839 0.0255 8.6 47.68 27.57 2.177 8.839 15.500 13.46 11.16 8.839 26.753 226.753 0.0244 9.0 46.85 36.83 25.493 26.753 27.670 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.17 25.753 26.670 47.64 35.07 2.177 11.741 18.117 25.753 26.670 48.45 29.52 26.670 Stab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.499 146.10 34.07 1.41 <t< td=""><td></td><td></td><td></td></t<>			
$\frac{8.839}{15.500} = \frac{15.500}{26.753} = {27.670} = \frac{13.46}{46.85} = \frac{11.16}{30.83} = \frac{8.839}{25.493}$ $\frac{26.753}{26.753} = \frac{27.670}{27.670} = {46.85} = \frac{46.85}{36.98} = \frac{27.670}{27.670}$ $\frac{4 = 18.13}{26.91} = \frac{0.000}{0.917} = {1.741} = \frac{47.64}{8.5} = \frac{41.45}{41.45} = \frac{0.000}{11.741}$ $\frac{0.917}{11.741} = \frac{11.741}{18.117} = {} = \frac{13.46}{10.00} = \frac{10.000}{11.741}$ $\frac{11.741}{18.117} = \frac{25.753}{25.753} = \frac{26.670}{26.670} = {48.45} = \frac{29.52}{26.670}$ Slab Shear Capacity: $\frac{\text{Vits: b, d (in), Xu (ft), PhiVc, Vu(kip)}}{\frac{1}{155.20}} = \frac{8.88}{0.888} = \frac{0.567}{146.10} = \frac{46.36}{30.07} = \frac{30.59}{1.41}$ $\frac{1}{3} = 155.20 = 8.88 = 0.499 = 146.10 = 32.94 = 26.26$	8.839 15.500 13.46 11.16 8.839 15.500 26.753 0.0244 9.0 46.85 30.83 25.493 26.753 27.670 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Stab d Vratio PhiVc Vu Xu 1 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative U			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.753 27.670 46.85 36.98 27.670 4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.17 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 31.55.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	8.839 15.500	13.46 1	
4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: 48.45 29.52 26.670 January Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 32.94 26.26	4 18.13 26.91 0.000 0.917 47.64 41.45 0.000 0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: 48.45 29.52 26.670 Jiss. b, d (in), Xu (ft), PhiVc, Vu(kip) 48.45 29.52 26.670 Jiss.20 8.88 0.567 146.10 46.36 30.59 3155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports: 54.26 1.41			
Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Yu Xu 1 155.20 8.88 0.499 146.10 32.94 26.26	0.917 11.741 0.0254 8.7 47.64 35.07 2.177 11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity:			
11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Nits: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 32.94 26.26	11.741 18.117 13.46 10.00 11.741 18.117 25.753 0.0264 8.3 48.45 22.75 24.493 25.753 26.670 48.45 29.52 26.670 Stab Shear Capacity: Mits: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41			
25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	25.753 26.670 48.45 29.52 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:		13.46 1	0.00 11.741
Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41			
Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	18.117 25.753 0.0264	48.45 2	
Span b d Vratio PhiVe Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	Span b d Vratio PhiVe Vu Xu 1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41	18.117 25.753 0.0264	48.45 2	
1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	1 155.20 8.88 0.567 146.10 46.36 30.59 2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41	18.117 25.753 0.0264 25.753 26.670	48.45 2	
2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26	2 155.20 8.88 0.499 146.10 34.07 1.41 3 155.20 8.88 0.499 146.10 32.94 26.26 4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	18.117 25.753 0.0264 25.753 26.670 Slab Shear Capacity:	Vu Xu	
	4 155.20 8.88 0.481 146.10 34.56 1.41 Flexural Transfer of Negative Unbalanced Moment at Supports:	18.117 25.753 0.0264 25.753 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc 1 155.20 8.88 0.567	Vu Xu	
	Flexural Transfer of Negative Unbalanced Moment at Supports:	18.117 25.753 0.0264 25.753 26.670 Slab Shear Capacity: Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc 1 155.20 8.88 0.567	Vu Xu 46.36 30.59 34.07 1.41	
		18.117 25.753 0.0264 25.753 26.670 Slab Shear Capacity:	Vu Xu 46.36 30.59 34.07 1.41 32.94 26.26	

		.slb										 age
Supp	Width	GammaF*Mun			AsRe			Additional				
1	52.10	192.5		All Odd Odd								
	52.10	87.2	4 U2	Odd	2.26	3 5	.520					
	52.10 52.10	48.6	5 U2	Odd Even	0.49	6 2	.273					
4 5	52.10	97.9	5 U2	Even	2.55	2 1	. 520	3-#6				
		ound Column										
Units:	Vu (kip), Munb (k- Vu v	ft), v					v vu	Phi*vc			
1	71	.89 82. .49 100.	6	235.15	U2	All	0.33	3 201.1	212.1			
23	164	.49 100.	0	-92.98 16.72	02	ALL	0.41	4 129.2 A 95 6	212.1			
4	151	44 100	8	45.57	112	All	0.41	4 116.8	212.1			
5	52	.16 80. .44 100. .80 78.	8	-104.10	U2	Even	0.34	2 173.9	212.1			
		ound Drops:										
Units: Supp	Vu (kip), vu (psi) Vu Comb Pa	t	vu								
	62	.34 U2 A1	1	32.4								
2	140	01 112 01	1	38.6	146.	9						
3	115	.51 U2 S3 .34 U2 A1		26.9	151.	8 .						
4	132	.34 U2 A1	1	35.3	147.	3						
5	. 4 /	.44 U2 S5		37.1	175.	8						
Maximum D												
	Dz (in)											
	10000	Frame	100.000.00	-		umn St				dle Stri		
span D	z (DEAD)	Dz(LIVE) Dz	(TOTAL						(DEAD) Dz			
1	-0.082	-0.104	-0.18	6 -0.	082	-0.10)5	-0.187	-0.089	-0.113	-0.202	
2	-0.018	-0.017	-0.03	4 -0.	019	-0.01	.8	-0.037	-0.015	-0.014	-0.029	
		-0.021										
4	-0.040	-0.043	-0.08	3 -0.	043	-0.04	16	-0.089	-0.036	-0.039	-0.075	
Material												
	rcement	in the Dire										
Тор Ва		2251.9 lb				<=>	1.40	1 1b/ft^2				
TOP Da	Bars:											
Bottom												
		681.9 lb	<=>	5.98 1	b/ft	<=>	0.42	4 lb/ft^2				

Appendix C:

Composite Steel

Composite Slab Design

The United Steel Deck design manual was used as a design aid as described in the report.

S D United Steel Deck, Inc.	LRFD
	Slab Depth
	<u>tov:</u>

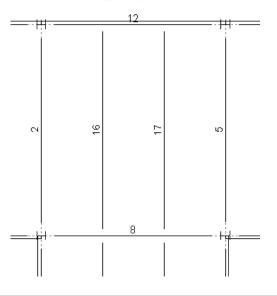
The Deck Section Properties are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_b and φV_n , are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, φM_n .

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. φM_{nl} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). Ac is the area of concrete available to resist shear, in.² per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. Se is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. Isv is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The lay transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10° psi, ϕM_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed \$4(f_c)1/2A_c; pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. Awy is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

			CONTRACT, A	DECK PRO	PERTIES				
Gage		w	As		S _p	S _n	Rs	¢٧"	studs
22	0.0295	1.5	0.440	0.338	0.284	0.302	714	1990	0.43
20	0.0358	1.8	0.540	0.420	0.367	0.387	1010	2410	0.52
19	0.0418	2.1	0.630	0.490	0.445	0.458	1330	2810	0.61
18	0.0474	2.4	0.710	0.560	0.523	0.529	1680	3180	0.69
16	0.0598	3.1	0.900	0.700	0.654	0.654	2470	3990	0.87

		- Contraction (1	A DE LE CONTRA		MPOS	TEPR	OPERTI	ES	HAT AL			
	Slab	фМ _{аl}	Ą	Vol.	W	S _c	l _{uv} in ³	ØM _{no}	φV _{nt}		rishored s		A
	Depth	in.k	in ²	ft3/ft2	psf	in ³	in ³	in.k	lbs.	1span	2span	3span	
19.570	4.50	40.27	32.6	0.292	34	1.00	4,4	28.13	4270	6.32	8.46	8.56	0.023
	5.00	46.44	37.5	0.333	38	1.18	6.0	33.12	4610	6.03	8.09	8.19	0.027
0	5.25	49.53	40.0	0.354	41	1.27	6.9	35.69	4790	5.90	7.93	8.02	0.029
gagi	5.50	52.61	42.6	0.375	43	1.36	7.9	38.29	4970	5.77	7.77	7.86	0.032
3	6.00	58.78	48.0	0.417	48	1.55	10.1	43.58	5340	5.55	7.49	7,58	0.038
5	6.25	61.87	50.8	0.438	50	1.65	11.3	46.26	5540	5.45	7.36	7.45	0.038
N	6.50	64.95	53.6	0.458	53	1.75	12.7	48.97	5730	5.36	7.24	7.32	0.04
22	7.00	71.12	59.5	0.500	58	1.94	15.7	54.44	6150	5.18	7.01	7.10	0.045
	7.25	74.21	61.9	0.521	60	2.04	17.4	57.20	6310	5.10	6.91	6.99	0.047
	7.50	77.29	64.3	0.542	62	2.14	19.2	59.97	6480	5.05	6.81	6.89	0.050
62.311	4.50	48.60	32.6	0.292	34	1.20	4.8	33.77	4560	7.42	9.71	10.03	0.023
	5.00	56.18	37.5	0.333	38	1.42	6.5	39.80	5030	7.07	9.28	9.59	0.027
0	5.25	59.96	40.0	0.354	41	1.53	7.4	42.91	5210	6.91	9.09	9.39	0.029
gagi	5.50	63.75	42.6	0.375	43	1.64	8.5	46.05	5390	6.76	8.91	9.20	0.03
M	6.00	71.32	48.0	0.417	48	1.87	10.9	52.47	5760	6.49	8.57	8.86	0.038
01	6.25	75.11	50.8	0.438	50	1.99	12.2	55.73	5960	6.37	8.42	8.70	0.038
0	6.50	78.90	53.6	0.458	53	2.10	13.7	59.02	6150	6.26	8.27	8.55	0.04
20	7.00	86.47	59.5	0.500	58	2.34	16.9	65.67	6570	6.05	8.00	8.27	0.045
124	7.25	90.26	61.9	0.521	60	2.46	18.7	69.03	6730	5.95	7.87	8.14	0.047
	7.50	94.05	64.3	0.542	62	2.58	20.6	72.41	6900	5.89	7.75	8.01	0.050
514	4.50	55.85	32.6	0.292	34	1.38	5.1	38.67	4560	8.35	10.55	10.91	0.02
	5.00	64.68	37.5	0.333	38	1.63	6.9	45.61	5240	7,94	10.10	10.43	0.027
0	5.25	69.10	40.0	0.354	41	1,75	7.9	49.19	5590	7.76	9.89	10.22	0.025
5	5.50	73.52	42.6	0.375	43	1.88	9.0	52.83	5790	7.59	9.69	10.01	0.03
1	6.00	82.35	48.0	0.417	48	2.15	11.6	60.25	6160	7.29	9.33	9.64	0.036
5	6.25	86.77	50.8	0.438	50	2.28	13.0	64.02	6360	7.15	9,16	9.47	0.038
5	6.50	91.19	53.6	0.458	53	2.42	14.5	67.83	6550	7.02	9.00	9.30	0.04
-	7.00	100.03	59.5	0.500	58	2.69	17.9	75.53	6970	6.78	8.71	9.00	0.045
	7.25	104.44	61.9	0.521	60	2.83	19.8	79.42	7130	8.67	8.57	8.86	0.047
	7.50	108.86	64.3	0.542	62	2.97	21.8	83.33	7300	6.59	8.44	8.72	0.056
11.0	4.50	62.08	32.6	0.292	34	1.53	5.4	42.99	4560	9.20	11.33	11.71	0.023
	5.00	72.04	37.5	0.333	38	1.81	7.3	50.72	5240	8.75	10.84	11.20	0.02
0	5.25	77.02	40.0	0.354	41	1.95	8.3	54.72	5590	8.54	10.62	10.97	0.025
gage	5.50	82.00	42.6	0.375	43	2.10	9.5	58.78	5950	8.35	10.41	10.76	0.03
10	6.00	91.95	48.0	0.417	48	2.39	12.1	67.07	6530	8.01	10.02	10.36	0.036
9	6.25	96.93	50.8	0.438	50	2.54	13.6	71.29	6730	7.86	9.84	10.17	0.03
00	6.50	101.91	53.6	0.458	53	2.69	15.2	75.55	6920	7.71	9.68	10.00	0.04
	7.00	111.87	59.5	0.500	58	3.00	18.8	84.17	7340	7.44	9.36	9.57	0.04
-	7.25	116.85	61.9	0.521	60	3.16	20.7	88.52	7500	7.32	9.21	9.52	0.047
	7.50	121.83	64.3	0.542	62	3.31	22.8	92.91	7670	7.24	9.07	9.38	0.050

Beam Design Results


The beams that were being designed for the representative bay are highlighted in the reports.

RAM	RAM Steel DataBase: N Building Co	ewman				Steel	12/22/07 04:5 Code: ASD 9th	
STEEL E	EAM DESI	GN SUM	MARY:					
Floor Ty	pe: Typical							
Bm #	Length	+M	-M	Seff	Fy	Beam Size	Studs	
	ft	kip-ft	kip-ft	in3	ksi			
3	31.53	156.0	0.0	63.8	50.0	W16X26	24	
7	24.60	192.4	0.0	81.7	50.0	W18X35 u	7, 1, 7	
11	24.60	222.6	0.0	81.7	50.0	W18X35 u	7, 1, 7	
14	31.53	177.8	0.0	65.5	50.0	W16X26	22	
15	31.53	177.8	0.0	65.5	50.0	W16X26	22	
1	26.67	82.7	0.0	30.9	50.0	W12X14	14	
10	27.50	243.9	0.0	89.8	50.0	W18X35 u	11, 2, 11	
2	31.53	186.0	0.0	67.9	50.0	W16X26	26	
8	27.50	380.7	0.0	139.5	50.0	W21X48 u	16, 1, 16	
12	27.50	273.0	0.0	105.1	50.0	W18X35	25, 4, 25	
20	26.67	143.1	0.0	52.5	50.0	W14X22	20	
16	31.53	194.3	0.0	71.8	50.0	W16X26	32	
21	26.67	143.1	0.0	52.5	50.0	W14X22	20	
17	31.53	194.3	0.0	. 71.8	50.0	W16X26	32	
4	26.67	82.7	0.0	30.9	50.0	W12X14	14	
5	31.53	194.3	0.0	71.8	50.0	W16X26	32	
9	27.50	235.2	0.0	91.2	50.0	W18X35	13, 1, 13	
13	27.50	273.0	0.0	105.1	50.0	W18X35	25, 4, 25	
18	31.53	194.3	0.0	71.8	50.0	W16X26	32	
19	31.53	194.3	0.0	71.8	50.0	W16X26	32	
6	31.53	166.8	0.0	71.2	50.0	W16X26	36	

* after Size denotes beam failed stress/capacity criteria.

after Size denotes beam failed deflection criteria.

u after Size denotes this size has been assigned by the User.

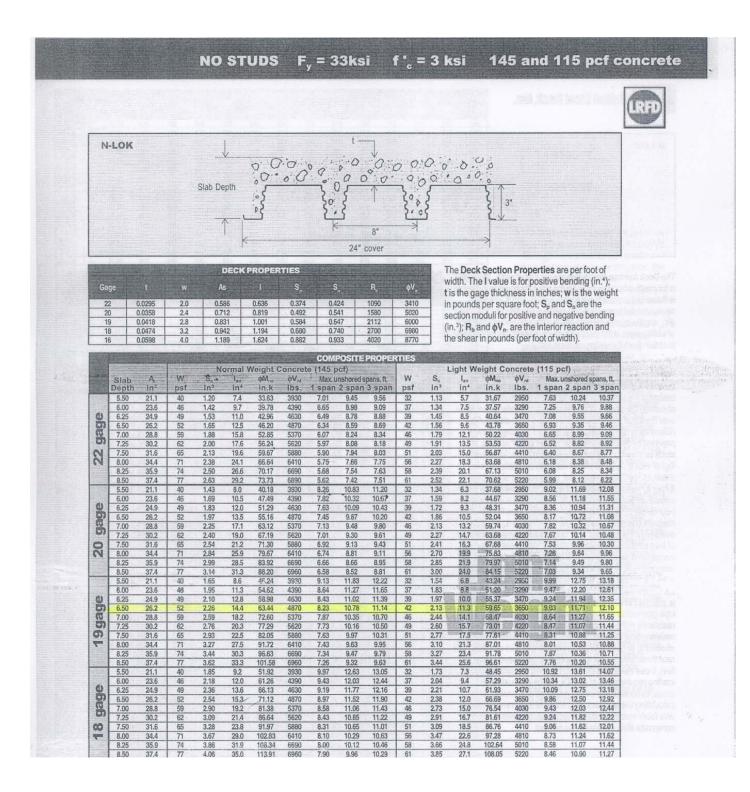
Beam Deflection Summary

RAM Steel v11.0 DataBase: Newman Building Code: IBC

12/22/07 04:54:36 Steel Code: ASD 9th Ed.

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: Typical


Co	mpos	ite / Unshored	1						
Bm	1 #	Beam Size		Initial	PostLive	PostTotal	NetTotal	Camber	
				in	in	in	in	in	
3		W16X26		0.832	0.368	0.744	1.575		
7		W18X35		0.584	0.323	0.378	0.962		
11		W18X35		0.584	0.323	0.475	1.059		
14		W16X26		1.430	0.554	0.645	1.076	1	
15		W16X26		1.430	0.554	0.645	1.076	1	
1		W12X14		1.533	0.499	0.573	1.107	1	
10		W18X35		0.773	0.364	0.551	1.324		
2		W16X26		1.511	0.541	0.632	1.143	1	X26
8		W21X48		0.853	0.327	0.397	1.250		X48 1
12		W18X35		0.908	0.311	0.462	1.371		
20		W14X22		1.224	0.445	0.516	0.990	3/4	
16		W16X26		1.591	0.511	0.599	0.940	1-1/4	
21		W14X22		1.224	0.445	0.516	0.990	3/4	
17		W16X26		1.591	0.511	0.599	0.940	1-1/4	
4		W12X14		1.533	0.499	0.573	1.107	1	
5		W16X26		1.591	0.511	0.599	0.940	1-1/4	
9		W18X35		0.908	0.394	0.463	1.371		
13		W18X35		0.908	0.311	0.462	1.371		
18		W16X26		1.591	0.511	0.599	0.940	1-1/4	
19		W16X26		1.591	0.511	0.599.	0.940	1-1/4	
6		W16X26		0.912	0.339	0.657	1.569		
6		W16X26		0.912	0.339	0.657	1.569		

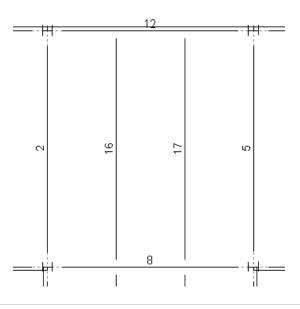
Appendix D:

Non-Composite Steel

Non-Composite Slab Design

The United Steel Deck design manual was used as a design aid as described in the report.

Beam Design Results


The beams that were being designed for the representative bay are highlighted in the reports.

RAM	RAM Steel DataBase: N Building Co	Jewman-N	lonCompo	site			12/22/07 04:02:0 Steel Code: ASD 9th E
STEEL B	BEAM DESI	GN SUM	MARY:				
Floor Ty	pe: Typical						
Bm #	Length	+M	-M	Seff	Fy	Beam Size	Studs
	ft	kip-ft	kip-ft	in3	ksi		
3	31.53	143.8	0.0	57.6	50.0	W18X35	
7	24.60	169.3	0.0	81.6	50.0	W21X44	
11	24.60	199.9	0.0	93.0	50.0	W21X48	
14	31.53	155.8	0.0	68.4	50.0	W18X40	
15	31.53	155.8	0.0	68.4	50.0	W18X40	
1	26.67	73.3	0.0	38.4	50.0	W16X26	
10	27.50	219.5	0.0	93.0	50.0	W21X48	
2	31.53	162.6	0.0	68.4	50.0	W18X40	
8	27.50	329.3	0.0	154.0	50.0	W24X68	
12	27.50	245.0	0.0	115.0	50.0	W24X55	
20	26.67	125.2	0.0	57.6	50.0	W18X35	
16	31.53	-169.5	0.0	68.4	50.0	W18X40	
21	26.67	125.2	0.0	57.6	50.0	W18X35	
17	31.53	169.5	0.0	68.4	50.0	W18X40	
4	26.67	73.3	0.0	38.4	50.0	W16X26	
5	31.53	169.5	0.0	68.4	50.0	W18X40	
9	27.50	206.5	0.0	93.0	50.0	W21X48	
13	27.50	245.0	0.0	115.0	50.0	W24X55	
18	31.53	169.5	0.0	68.4	50.0	W18X40	
19	31.53	169.5	0.0	68.4	50.0	W18X40	
6	31.53	153.2	0.0	57.6	50.0	W18X35	

* after Size denotes beam failed stress/capacity criteria.

after Size denotes beam failed deflection criteria.

u after Size denotes this size has been assigned by the User.

Beam Deflection Summary

RAM Steel v11.0 DataBase: Newman-NonComposite Building Code: IBC

12/22/07 04:02:00 Steel Code: ASD 9th Ed.

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: Typical

Noncor	nposite						
Bm #	Beam Size	Dead	Live	NetTotal	Camber		
		in	in	in	in		
3	W18X35	1.048	0.692	0.990	3/4		
7	W21X44	0.323	0.447	0.770			
11	W21X48	0.404	0.393	0.797			
14	W18X40	0.636	0.935	1.071	1/2		
15	W18X40	0.636	0.935	1.071	1/2		
1	W16X26	0.412	0.663	1.075			
10	W21X48	0.561	0.531	1.093			
2	W18X40	0.670	0.969	1.140	1/2		
8	W24X68	0.408	0.455	0.863			
12	W24X55	0.445	0.416	0.861			
20	W18X35	0.429	0.655	1.084			
16	W18X40	0.705	1.004	1.209	1/2		
21	W18X35	0.429	0.655	1.084			
17	W18X40	0.705	1.004	1.209	1/2		
4	W16X26	0.412	0.663	1.075			
5	W18X40	0.705	1.004	1.209	1/2		
9	W21X48	0.442	0.590	1.032			
13	W24X55	0.445	0.416	0.861			
18	W18X40	0.705	1.004	1.209	1/2		
19	W18X40	0.705	1.004	1.209	- 1/2	1. h	
6	W18X35	1.090	0.764	1.104	3/4		