

TECHNICAL ASSIGNMENT 2

Prepared For: Dr. James D. Freihaut, PhD Department of Architectural Engineering The Pennsylvania State University

Prepared By: Amy L. Leventry Mechanical Option November 3, 2008

TABLE OF CONTENTS

Contents

TABLE OF CONTENTS
EXECUTIVE SUMMARY
ENERGY MODELING PROCEDURE
I. Assigning physical properties of the Building5
II. HVAC system of the Building6
LOAD COMPARISON
ENERGY ANALYSIS
COST ESTIMATE ANALYSIS
EMISSIONS
CONCLUSION
APPENDIX A – COMPONENT BREAKDOWNS
APPENDIX B - SCHEDULES
APPENDIX C – NUMERICAL SUMMARIES
APPENDIX D – DESIGN SUMMATIONS
APPENDIX E – GRAPHICAL LOADS
APPENDIX F – GRAPHICAL ENERGY

EXECUTIVE SUMMARY

Recently more now than ever people have become more energy conscience. Another movement within the building industry today is sustainability. Sustainability and the energy crisis go hand in hand. One of the key concepts of "green" buildings is the reduction of energy use and emission. The emission of the building along with the energy use, loads, and cost were all therefore calculated and assessed for this report.

Specifically within the building industry, energy models have become more prevalent to accommodate for the current energy crisis. Energy models create a breakdown of where and how much of the energy and loads of the building are consumed and generated. This detailed breakdown can then be used to improve or create a new heating, ventilation, and airconditioning system.

The Montgomery College New Science Center is a college laboratory building along with offices and classrooms. This type of building requires special attention towards the heating, ventilation, and air conditioning equipment to maintain safety while minimizing loads and energy of the building as a result minimizing the cost.

In order to aid the design process an energy model was performed for both this report and the actual design of the building. The modeling software IES VE was chosen for its superior modeling capabilities. Overall the software selection was difficult but a success.

The load and energy use of the building came out to be significantly larger than those designed for the building. After further analysis of the problem, it was determined the heat recovery of the building was not simulated correctly. The heating loads were then considerably increased. The loads for the building did not changed but the loads on the equipment increased to account for the energy that would have otherwise been recovered.

The New Science center model for this report uses 8,399,377 kwh of electricity and 70,495 therms of natural gas annually. The operating cost of the building is therefore \$8.66/ft² equaling \$1.2 million. The majority of the operating cost is attributed to the direct acting heaters. The selection of a natural gas boiler helped to reduce the energy cost since natural gas is less expensive than electricity per btu.

ENERGY MODELING PROCEDURE

In order to accomplish energy and load analysis IES VE, an energy and load simulation program, was used. IES VE 5.8.5, Integrated Environmental Solution Virtual Environment was selected based level of accuracy and integration the software can provide. This program allows for a high degree of energy simulation sophistication often necessary with laboratory systems and larger buildings.

When modeling the energy and loads of a building, the more variables taken into account, the more accurate and realistic the results will be. IES VE is one of the most inclusive programs out there today. The amount of information that can be modeled is the reason IES VE was chosen for this energy and load analysis. Some of variable used to calculate the energy and loads of the building include:

- Façade Constructions
 - Wall construction and associated location (R and U values assigned)
 - Window type and associated location (SHGC, Shading Coefficient, R and U values assigned)
 - Roof, floor construction and associated location (R and U values assigned)
 - Interior partitions
 - Ground exposed floors
 - Doors
 - Internal windows
 - Skylights
- Location associated weather files (provides a typical weather file for the location selected on an hour by hour basis)
- Solar files based on the building orientation and location(provide lighting and solar gain values to the model)
- User defined HVAC system
 - Controls used to model flow rate, temperature, etc.
 - System components energy used and generated
- Three dimensional geometry of the building, room adjacency, orientation, and location
- Equipment and occupancy schedules
- Lighting energy used, internal gain created, and illumination of room (Illumination studies were not completed for this report)
- Cost assessment (was not calculated using IES VE for this report)

Room and building usage is vital to conducting energy and load simulations. The type of building will determine the minimum ventilation rate and indirectly affect the internal gains of the room/building. The rooms were grouped together by space type in the Apache HVAC system schematic. This organizes the HVAC system while emphasizing the importance of space type relations over room adjacencies.

The steps below describe the procedure used to conduct the energy and load simulation. The simulation provides the values used in the energy and load evaluation and comparison discussed later in on in this report.

I. Assigning physical properties of the Building

Step 1

The three dimension building geometry/model is loaded into IES. For this report an Autodesk Revit Model was used. The Revit model can be imported directly into the IES software.

Complications are common and should be dealt with from Revit as opposed to IES due to the limited modeling capability the Model Builder IES provides. Every room was checked with the drawing set to verify location, orientation, and square footage. As expected some of the rooms did not match exactly. Modifications were made to geometry of the model to match the drawing set.

Step 2

Select the building location and orientation. This provides the correct weather and solar files for the building. The weather files offer hour by hour outdoor air information for the respective location. The solar files are used to calculate the solar gain and lighting into the building.

IES VE attained permission to use the ASHRAE design weather data of 2005. The ASHRAE percentiles should be entered and a monthly or annual profile should be selected.

To model the Montgomery College New Science Center an annual profile at 99.6% heating and 0.4% cooling was chosen for Baltimore Maryland. The actual New Science Center is to be located in Rockville Maryland. The closest location available through IES VE was chosen in order to model the building as accurate as possible with in the program limitations.

Step 3

The wall, roof, floor, window, and partition types/assemblies are known as the construction templates within IES VE. The construction templates are assigned automatically from the Revit model. As mentioned before, numerous complications arise when importing a Revit model into IES VE. The construction templates were altered to meet the construction drawing more accurately and any additional importing errors are corrected.

II. HVAC system of the Building

Numerous HVAC systems can be created for any particular model. This allows the several different systems to be calculated for the same building. Only one HVAC system was model, the designed model, was created for this report.

The IES VE Apache HVAC: HVAC Simulation Interface is used to simulate the Montgomery College New Science Center HVAC system. IES VE also provides a generic HVAC system. The Apache HVAC system was there for chosen to model the system as accurate to the drawings as possible.

Step 4

Each room is assigned a flow rate specified by the drawing set, by the use of a controller. The controller information requires a proportional bandwidth, maximum change per time set, minimum flow rate, and a maximum flow rate.

<u>Proportional Bandwidth:</u> 1.00 °F <u>Maximum Change per Time Set</u>: 0.2 <u>Minimum Flow Rate:</u> Set at a recommended 1/3rd of the maximum (conservative way to model the minimum air flow to the room) <u>Maximum Flow Rate:</u> CFM specified by drawings based on the diffusers

Spaces that are not supplied air are not modeled in the Apache HVAC system. These spaces still apply the space loads to the model, but do not require air to be supplied to the spaces directly and therefore are not used in the Apache HVAC schematic.

Step 5

Both exhaust and supply fans are incorporated into the modeled system in order to calculate the fan energy used. The fans modeled do not regulate, model, or simulate the flow rate. The fans can only be used to model the energy used.

The Montgomery College New Science Center HVAC system only utilizes an exhaust and supply fan. No return fan is used and therefore no return fan was modeled. Air is returned to the system but only by the draw of the supply fan.

Step 6

System components such as the boilers and chillers are required to be modeled but are not represented visually in the HVAC system. Information for the boilers and chillers is taken off of the drawings.

Boilers:	<u>Load:</u> 5220 kbtu/h	Chillers:	<u>Output:</u> 7320 ktbu/h
	Efficiency: 87%		COP at Temperature 1: 5.26
	<u>Use of CHP:</u> No		Temperature 1: 68 ° F

Fuel is assigned for both the boilers and chillers to track where and how much of the energy is used in the system.

Step 7

Heating and cooling coils are modeled in the system. The boilers and chillers are assigned to the respective coils. Both coils require the specification of a maximum duty (kbtu/h). A contact factor must also be entered for the cooling coil.

The maximum duties were determined by the summation of the values found on the drawing set. The contact factor was set at 0.8 (20% bypass) as recommended by the IES manual.

Step 8

Finally schedules are created for the occupancy, lights, room equipment, HVAC equipments, etc. These schedules are assigned accordingly to model the actual use of the building and HVAC system. This is a realistic representation of the building as opposed to simulating a building with all of the equipment and system used at all times.

As an example the office schedule are described below. Additional schedules created for the model can be found in Appendix B -Schedules.

Office Schedules:

Most of the office weekly schedules have a different profile for the weekday than the weekend. The offices will be occupied during the week only. Schedules assigned to the lights, people, and equipment will follow the following schedules during the week and will be modeled at zero over the weekend.

Figure 1: Lighting Schedule

This weekly profile represents the lighting schedule of the offices. The profile is progress since not all of the lights will be turned on at one particular time. Realistically all the lights will be off first thing in the morning and as more people enter the building more lights will be turned on until all of the lights are in use. 100% of the light use is estimated once the maximum occupancy has been reached at 8:00 AM.

Montgomery College Rockville Campus New Science Center The occupancy schedule shown above, similar to the lighting schedule is progressive to represent a more realistic progression to maximum occupancy. An estimated 20% decrease in occurs around the typical lunch hour. This schedule is used to represent the internal gain from the occupants that will be applied weekly for the entire year.

Figure 3: Office Equipment Schedule

The cooling schedules for the rooms range from 74 degree F before and after occupancy to 77 degree F during occupancy.

Figure 2: Occupancy Schedule

The office equipment schedule follows the occupancy schedule most similarly. The only deviation is the equipment schedule drops to 60% over lunch assuming that even though some of the occupant will be in the office for lunch will not using the equipment as they would during regular business hours.

The equipment also never reaches 100% assuming that all offices computer, printers, etc. will not be used at the same time.

The Apache HVAC system for the Montgomery College New Science Center as designed is shown below. The first four groups of rooms are the offices broken down floor by floor. The remaining four groups are the rest of the rooms of the New Science Center broken organized floor by floor in ascending order.

Figure 5: Apache HVAC System Schematic

Figure 6: Enlarged HVAC Schematic – AHU View

The representative AHU shows one exhaust fan, supply fan, heating coil, and cooling coil. The components of the system were summed and represented by one component within the model. The summation and input data for these components can be found in Appendix D- DESIGN SUMMATIONS.

In general the rooms were modeled as shown, where the control measures the flow rate across the room.

Figure 7: Enlarged Room Schematic

LOAD COMPARISON

Comparing the modeled building to the designed building the loads were found to be significantly greater. No heat was recovered with the modeled system and therefore affected the rest of the calculated loads. The heating coil load increased almost 3,895% and the boiler load increased almost 2,600%. This shows how much the heat recovery can reduce the load of the building. Other increases could be due to control data entry differences. The table below shows the complete breakdown of the system load comparison.

	Load	Computed MMBTU	Designed MMBTU	% increased
	Room heating plant sensible load	7496.4	3772.8	99
ള	Heating coil	6012	154.4	3794
Heatir	Boiler	6123.4	235.57	2499
-	Recovered latent heat	0	1597.3	No recovered heat
	Room cooling plant sensible load	856.7	823.2	4
Cooling	Room dehumidification plant load	27.4	17.3	58
	Cooling coils latent load	4877.5	3657.4	33
	Chiller	19922	11866.3	68
	Summation	45315.4	22124.3	105

Figure 8: Load Comparison – Computed vs. Designed

Figure 9: Load Breakdown

In conclusion well over the majority of the load goes to the chiller. The New Science Center is an internal load dominated buildings. Looking at Classroom 105 for an example the internal gain was comprised of 85% of the load based on peak values. This type of building results in cooling for most of the year regardless of the fact the building is located in Rockville Maryland, a mixed but predominately cold climate. Due to the fact the building is cooling most of the time, the chiller resulted in the majority of the load for the building.

Figure 10: Classroom 105 Internal Gain

The loads graphed over time for the entire year to analysis seasonal energy can be found in Appendix E- GRAPHICAL LOADS but will not be analyized for this report.

ENERGY ANALYSIS

The New Science center consumes 8,645,948 kilowatt hours annually. A complete kilowatt hour breakdown of the total energy use can be found in Appendix A – COMPONENT BREAKDOWN. As expected the energy for the boiler energy increased with the boiler load. In addition, the pump energy increased drastically due to the increased pump power needed for the boiler.

A load and energy month by month breakdown for the model can also be found in the Appendix C - NUMERICAL STUDIES for a more detailed perspective on the energy and loads of the building.

Energy	Computed MMBTU	Designed MMBTU	% increased
Boilers	7,047.8	271.7	2,494
Chillers	4,422.8	2,613.4	69
Direct acting heaters	9,274.5	4,272.2	117
Fans	3,614.1	2,731.7	32
Pumps	5,142	327.6	1,470
Lights	1,432.744	1,432.744	0
Equipment	4,773.798	4,773.798	0
Total System Energy	29,501.2	10,216.6	189

Figure 11: Energy Comparison – Computed vs. Designed

Over all the energy for both the designed and computer values were less than the baseline values, even though the energy was drastically increased due to the lack of energy recovered for the simulated model. This shows the HVAC design combined with the simulated schedules create an excellent system.

Most of the energy went to the direct acting heaters followed by the boilers, pumps, and chillers. The previous load calculations showed the chiller as the dominate load and would therefore be assumed to use the highest percent of energy. This is quite the opposite since the chillers have a COP of 5.26 and boilers are 87% efficient. Although the boilers have a high efficiency they still require over six times the amount of energy as the chillers at equal loads. The pump energy is required regardless of the season and therefore also surpasses the chiller energy.

Figure 11: Energy Use Breakdown

The energy graphed over time for the entire year to analysis seasonal energy can be found in Appendix F- GRAPHICAL ENERGY but will not be analyized for this report.

COST ESTIMATE ANALYSIS

Assumptions based on design reports provided:

- Natural Gas: \$1.54 per therm (2008)
- Electric: \$0.1321/kWh (2008 Projected)
- o Lighting/plug include all building electrical utilization except fan and pump energy

Compared to other electric rates schemes, this fixed rate requires simple calculations. The simulated energy use was converted from mmbtu to therms and kwh respectively. These values were then used to compute the total energy cost based on the assumptions listed above.

	mmbtu	therms	\$1.54/therm
boilers	7047.823	70495.06	\$108,562.39
Total Natural Gas	7047.823	70495.06	\$108,562.39
	mmbtu	kwh	\$0.1321/kwh
chillers	4422.75	1296180.13	\$171,225.40
direct acting			
heaters	9274.428	2718066.66	\$359,056.61
fan	3614.103	1059189.08	\$139,918.88
pump	5142.042	1506983.82	\$199,072.56
equipment	4773.798	1399062.15	\$184,816.11
Lights	1432.744	419895.84	\$55,468.24
Total Electric	28659.865	8399377.68	\$1,109 <mark>,557.79</mark>
Total Energy Cost	_	_	<u>\$1,218,120.19</u>

Figure 12: Cost Estimation Breakdown

The Montgomery College New Science Center utilizes all electric systems and a natural gas boiler. Natural gas is the less expensive of the two energy sources per btu of energy. Therefore, the boiler's energy use must be calculated and modeled separately.

Figure 13: Energy Cost Breakdown

The pie graph shows how each system component contributes to the total energy cost taking the source price differences into account. The boiler consists of 20% of the energy usage but only contributes to 8% of the energy cost. This is due to the reduced energy price of natural gas. Based solely on economic the natural gas boiler is a wise design choice over and electric boiler. To analysis the energy use beyond shear economics, see the emission analysis section of the report.

EMISSIONS

The Montgomery College New Science Center is located in Rockville Maryland and therefore located in the RFC, Eastern Interconnection electric grid. The continental United States is separated up into three main grids of which little energy is transferred.

Figure 14: North American electrical interconnections

The energy model of the New Science Center revealed 8399377.68 kwh, as discussed earlier. Based on the location of the building the amount of major pollutants in the United States could be calculated.

	Eastern	lb of
Pollutant	(lb/kwh)	pollutant
CO2e	1.7400000	14,614,917
CO2	1.6400000	13,774,979
CH4	0.0035900	30,154
N2O	0.0000387	325
NOX	0.0030000	25,198
SOX	0.0085700	71,983
СО	0.0008540	7,173
TNMOC	0.0000726	610
Lead	0.0000001	1
Mercury	0.0000000	0
PM10	0.0000926	778
Solid Waste	0.2050000	1,721,872

Figure 15: New Science Center's Electrical Pollution

The boiler's use of natural gas for the year must also be taken into account. The boiler uses 7047.823 mmbtu. The calculations for this report were made on the assumption that for every 1010Btu, 1 cubic foot of fuel (Natural gas) is delivered to the building at 60 °F at 14.70 psia.

Pollutant	Natural Gas	lb of pollutant
CO2e	123.00000000	937,263
CO2	122.00000000	929,643
CH4	0.00250000	19
N2O	0.00250000	19
NOX	0.11100000	846
SOX	0.00063200	5
СО	0.09330000	711
VOC	0.00613000	47
Lead	0.00000050	0
Mercury	0.00000026	0
PM10	0.00840000	64

Figure 16: New Science Center's Natural Gas Pollution

CONCLUSION

The energy model completed very in depth building load and energy calculations. The software itself lacked the user interface that comes standard with most modeling software programs. Many problems arose in the model creation and were solved based on trial and error, and previous experience. Overall the selection of IES VE for the energy and load modeling software was beneficial. As many and difficult the problems were detail of the results cannot be matched by any other program out there today.

Some of the load and energy calculations varied from the designed building values due heat recovery modeling mistakes. If changes were made to account for the heat recovery the model would match the designed data relatively closely.

The direct acting heaters consumed most of the energy for the Montgomery College New Science Center. The direct acting heater also consumed the majority of the energy cost at 29%. After the fuel source was taken into account the boiler energy cost was reduced from the percent of energy used.

The system could improve the amount of emissions created, but could result in a very costly design. A net-zero building would be the optimal design, but is not done with ease.

In general the building heating ventilation and air-conditioning system was designed well.

APPENDIX A – COMPONENT BREAKDOWNS

	Load	Computed MMBTU	Designed MMBTU	% increased
	Room heating plant sensible load	7496.4	3772.8	199
ting	Heating coil	6012	154.4	3894
Heat	Boiler	6123.4	235.57	2599
	Recovered latent heat	0	1597.3	No recovered heat
	Room cooling plant sensible load	856.7	823.2	104
ling	Room dehumidification plant load	27.4	17.3	158
Coo	Cooling coils latent load	4877.5	3657.4	133
	Chiller	19922	11866.3	168
	Summation	45315.4	22124.3	205

Energy	Computed MMBTU	Computed kwh	Designed MMBTU	Designed kwh	% increased
Boilers	7047.8	2,065,592.03	271.7	79,630.72	2594
Chillers	4422.8	1,296,248.53	2613.4	765,943.73	169
Direct acting heaters	9274.5	2,718,200.47	4272.2	1,252,110.20	217
Fans	3614.1	1,059,232.12	2731.7	800,615.47	132
Pumps	5142	1,507,034.00	327.6	96,014.07	1570
Total System Energy	29501.2	8,646,307.15	10216.6	2,994,314.19	289

APPENDIX B - SCHEDULES

Montgomery College Rockville Campus New Science Center

Lab lighting/people/equipment weekends

APPENDIX C – NUMERICAL SUMMARIES

	Room heating plant sens. load (MMBtu)	ApHVAC heating coils load (MMBtu)	Boilers load (MMBtu)
	amy run1.aps	amy run1.aps	amy run1.aps
Date			
Jan 01-31	878.459	1445.213	1465.615
Feb 01-28	734.607	995.049	1009.926
Mar 01-31	766.645	754.940	766.666
Apr 01-30	634.833	440.604	449.341
May 01-31	513.699	112.658	117.557
Jun 01-30	425.786	25.678	29.056
Jul 01-31	405.235	0.430	3.418
Aug 01-31	425.693	28.436	31.922
Sep 01-30	534.568	74.198	78.766
Oct 01-31	617.361	278.787	286.047
Nov 01-30	730.809	707.081	719.451
Dec 01-31	828.688	1148.963	1165.595
Summed total	7496.381	6012.037	6123.361

Heating Load Breakdown

	Room cooling plant sens. load (MMBtu)	Room dehum. plant load (MMBtu)	ApHVAC cooling coils total load (MMBtu)	ApHVAC cooling coils sensible load (MMBtu)	ApHVAC cooling coils latent load (MMBtu)	Chillers load (MMBtu)
	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps
Date						
Jan 01-31	51.034	2.229	730.117	730.115	0.002	912.490
Feb 01-28	51.512	2.098	699.900	676.006	23.893	883.460
Mar 01-31	64.694	2.392	841.179	825.136	16.042	1070.882
Apr 01-30	68.307	2.296	926.441	833.886	92.555	1168.183
May 01-31	81.456	2.227	1627.132	1125.041	502.092	1913.663
Jun 01-30	86.167	2.295	2122.808	1301.030	821.779	2425.704
Jul 01-31	93.538	2.317	2925.459	1556.915	1368.543	3253.665
Aug 01-31	89.106	2.312	2397.651	1358.119	1039.531	2710.664
Sep 01-30	80.023	2.294	1929.367	1203.614	725.753	2211.220
Oct 01-31	73.609	2.231	1216.873	938.724	278.148	1476.549
Nov 01-30	60.788	2.293	729.631	723.574	6.057	945.619
Dec 01-31	56.415	2.391	748.522	745.399	3.123	949.874
Summed total	856.649	27.375	16895.078	12017.560	4877.517	19921.973

Cooling Load Breakdown

	ApHVAC heating coils load (MMBtu)	Boilers load (MMBtu)	ApHVAC cooling coils total load (MMBtu)	Chillers load (MMBtu)
	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps
Date				
Jan 01-31	1445.213	1465.615	730.117	912.490
Feb 01-28	995.049	1009.926	699.900	883.460
Mar 01-31	754.940	766.666	841.179	1070.882
Apr 01-30	440.604	449.341	926.441	1168.183
May 01-31	112.658	117.557	1627.132	1913.663
Jun 01-30	25.678	29.056	2122.808	2425.704
Jul 01-31	0.430	3.418	2925.459	3253.665
Aug 01-31	28.436	31.922	2397.651	2710.664
Sep 01-30	74.198	78.766	1929.367	2211.220
Oct 01-31	278.787	286.047	1216.873	1476.549
Nov 01-30	707.081	719.451	729.631	945.619
Dec 01-31	1148.963	1165.595	748.522	949.874
Summed total	6012.037	6123.361	16895.078	19921.973

Coil Loads

	Boilers energy (MMBtu)	Chillers energy (MMBtu)	ApHVAC direct acting heaters energy (MMBtu)	ApHVAC fans energy (MMBtu)	ApHVAC pumps energy (MMBtu)	Ap Sys fans/pumps/ctrl energy (MMBtu)	Total system energy (MMBtu)
	montgomery	montgomery	montgomery	montgomery	montgomery	montgomery	montgomery
Date							
Jan 01-31	91.855	70.219	578.132	204.936	0.000	143.734	1088.875
Feb 01-28	48.130	98.095	438.710	193.198	4.069	130.603	912.805
Mar 01-31	28.325	169.007	428.979	229.849	12.717	157.984	1026.861
Apr 01-30	15.961	204.380	343.675	224.412	26.726	154.382	969.535
May 01-31	3.262	290.608	282.618	243.920	45.461	159.883	1025.752
Jun 01-30	0.708	306.102	242.544	243.554	48.124	160.764	1001.798
Jul 01-31	0.054	354.218	212.291	245.453	50.595	174.974	1037.585
Aug 01-31	1.149	318.338	221.777	241.797	48.691	168.705	1000.458
Sep 01-30	3.167	289.762	309.993	248.096	45.200	157.118	1053.336
Oct 01-31	8.729	243.130	327.664	234.572	36.076	159.033	1009.204
Nov 01-30	23.084	171.611	398.080	210.085	8.897	152.266	964.024
Dec 01-31	47.256	97.952	487.730	211.858	1.088	146.631	992.516
Summed total	271.680	2613.422	4272.193	2731.729	327.643	1866.078	12082.747

	Boilers energy (MMBtu)	Chillers energy (MMBtu)	ApHVAC direct acting heaters energy (MMBtu)	ApHVAC fans energy (MMBtu)	ApHVAC pumps energy (MMBtu)	Ap Sys fans/pumps/ctrl energy (MMBtu)	Total system energy (MMBtu)
	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps	amy run1.aps
Date							
Jan 01-31	1686.352	211.755	1080.471	298.474	757.937	167.429	4202.415
Feb 01-28	1162.100	206.485	905.423	273.431	657.420	150.178	3355.036
Mar 01-31	882.224	251.801	948.188	322.923	679.324	176.441	3260.898
Apr 01-30	517.229	272.826	786.003	296.667	535.340	174.375	2582.438
May 01-31	135.541	423.953	637.897	302.965	253.324	181.247	1934.925
Jun 01-30	33.685	524.734	529.318	297.695	90.327	180.733	1656.491
Jul 01-31	4.183	687.453	503.966	308.518	5.433	193.278	1702.830
Aug 01-31	36.989	581.032	529.108	297.823	63.331	188.524	1696.807
Sep 01-30	90.924	479.541	664.269	314.127	186.767	177.545	1913.171
Oct 01-31	329.408	335.215	765.437	301.819	435.166	180.408	2347.456
Nov 01-30	828.008	225.108	902.839	295.152	723.809	170.749	3145.659
Dec 01-31	1341.180	222.845	1021.509	304.511	753.862	167.131	3811.035
Summed total	7047.823	4422.750	9274.428	3614.103	5142.042	2108.037	31609.164

System Energy

APPENDIX D – DESIGN SUMMATIONS

TOTALS USED FOR ENERGY MODEL CALCULATIONS (DATA TAKEN FROM CONSTRUCTION DOCUMENT SCHEDULES)

Supply Fan	CFM	S.P. in wg	Q*P
SF-1A	33,365	6.00	200,190.0
SF-1B	33,365	6.00	200,190.0
SF -2A	33,365	6.00	200,190.0
SF -2B	33,365	6.00	200,190.0
SF -3	2,110	0.85	1,793.5
TOTAL	135,570	5.92	802,553.5

Exhaust Fan	CFM	S.P. in wg	Q*P
EF-1A	24,200	5.50	133,100.0
EF-1B	24,200	5.50	133,100.0
EF-1C	24,200	5.50	133,100.0
EF-1D	24,200	5.50	133,100.0
EF-2	2,900	0.75	2,175.0
EF-3	760	0.60	456.0
EF-4	550	0.50	275.0
EF-5	0	0.00	0.0
EF-6	2,600	0.45	1,170.0
EF-7	77	0.10	7.7
EF-8	77	0.10	7.7
EF-9	77	0.10	7.7
TOTAL	103,841	5.17	536,499.1

Boiler	MBH IN	MBH OUT	Efficiency (%)
B-1	3,000	2610	87
B-2	3,000	2610	87
TOTAL	6,000	5,220	87

Heating Coil	MBTH	kbtuh
HC-1	951.5	951500
HC-2	951.5	951500
TOTAL	1,903	1903000

Chiller	Tons	kbtu/h	KW/ton	COP
CH-1	305	3660	0.669	5.26
CH-2	305	3660	0.669	5.26
TOTAL	610	7,320	0.669	5.26

Cooling Coil	kBTH
CC-1	4,264.0
CC-2	4,264.0
TOTAL	8,528

APPENDIX E – GRAPHICAL LOADS

Room Heating Plant Sensible Load

Unit Heating Load

Montgomery College Rockville Campus New Science Center

Heating Coil Load

Boiler Load

Montgomery College Rockville Campus New Science Center

Cooling Loads:

Room Cooling Plant Sensible Load

Dehumidification Plant Load

Coiling Cools Total Load

Cooling Coils Sensible Load

Dec

Ja

Mar Feb Ab Ma Jul Aug Nov 54 Date: Fri 01/Jan to Fri 31/Dec ApHVAC cooling coils latent load: (amy run1.aps)

4500-

3500-

(Hg 3000 Peol s XS 2000

1500-

07 Jan

Chiller Loads

Cooling Coil Latent Load

Load Summary:

Boiler and Chiller Loads

Heating and Cooling Coil Loads

APPENDIX F – GRAPHICAL ENERGY

Boiler Energy

Chiller Energy

Montgomery College Rockville Campus New Science Center

Direct Acting Heater Energy

Fan Energy

----- ApHVAC pumps energy: (amy run1.aps)

Pump Energy

Fans/pumps/controls energy

Total System Energy

System Natural Gas Energy

Lights Energy

Boiler and Chiller Energy