TECHNICAL REPORT II

STRUCTURAL STUDY OF ALTERNATE FLOOR SYSTEMS

Chris Vanaskie Structural Layfield Tower Peninsula Regional Medical Center Salisbury, MD Consultant: Prof. Parfitt December 22, 2008

TABLE OF CONTENTS

Executive Summary	3
Introduction	4
Loads	4
Existing Structural System	5
Description Analysis Evaluation	5 5 5
Alternate system 1: Non-composite Steel	6
Description Analysis Evaluation	6 6 6
Alternate system1: Hollow Core Plank	7
Description Analysis Evaluation	7 7 7
Alternate system 2:Two-way Flat plate with Drop Panels	8
Description Analysis Evaluation	8 8 8
Conclusion	9
Appendix	10
Existing System Beam Design Existing System Girder Design Versa Dek Table Non-composite Beam Design Non-composite Girder Design Nitterhouse Hollow Core Plank Specifications Hollow Core Plank Calculations CRSI Handbook	10 11 12 13 14 15 16 17
PCA Slab Output	18

EXECUTIVE SUMMARY

Technical Report II will investigate alternative solutions for the floor system of Layfield Tower. The report will give preliminary sizes of members, depths, and other pertinent information about each system. Figures from handbooks are present as well as hand calculations and tables.

The four systems analyzed were the current composite steel, non-composite steel, hollow core plank on steel members, and a two-way flat plate with drop panels. From analyzing and evaluating these it was found that the hollow core plank does not work well for this project and will no longer be considered. The non-composite and two-way flat plate systems were found to be feasible solutions and have warranted further consideration. The existing system appears to be the most suitable for this building.

INTRODUCTION

The Layfield Tower is part of an expansion and renovation project at Peninsula Regional Medical Center. It is located at 100 East Carroll Street in Salisbury, MD. It is a 200,000 square foot facility that will house a new emergency/trauma center, pediatric unit, intensive care unit, cardiac and thoracic and vascular unit and a neurosciences and stroke unit. The building also features a helipad on the lower roof with access to the third floor of the main tower. There is a connection to the existing hospital at the northeast corner. Construction on Layfield Tower was completed in 2008.

The structure is divided into two parts: the east side (Area A) with three stories and the west (Area B) with one story. An expansion joint connects the two sections of the building.

This report will evaluate and compare different structural floor systems for the building. First is an analysis and evaluation of the existing system: composite steel frame construction. Then alternate systems were evaluated: two-way flat-plate reinforced concrete, non-composite steel frame, and pre-stressed concrete hollow core plank on steel beams.

LOADS

Floor Area	Dead Load (psf)
Partitions	20
Suspended Ceilings	3
Ductwork and Piping	5
Lights	2
Sprinklers	2
Fireproofing	2
Structural Steel Framing	8
6 1/4" Floor Slab (LW)	47
Hanging Load in Mechanical Rooms	65

Floor Area	Live Load(psf)
Elevator Penthouse	150
Mechanical Rooms	15
Office Areas	50
Toilets	60
Corridors	80
Minimum for Design	80

EXISTING STRUCTURAL SYSTEM

Description

The current structural system is made up of structural steel W-shape members. Most connections are shear connections. The typical beam size is W18x35 spaced at 10'-0'' on center. Girders are typically W24X55. The typical bay size is 30'-0'' x 30'-0''. Shown below is a typical floor layout.

.	RAM	Steel Bean	n/Joist	Module ·	try										_ 2 🛛
File	Crite	ria Type	Assign	Process	Reports	Vibration	View	Help							
5	typ			- 🔲	• •	₩	1	s de la composition de la comp	i 🕰		+ ‡ +	□₽	P P 111 lab lab	RB ?	^
)	VV18x35	(18)	H	(07)	W18x35	(18)	ŀ	+ (28)	W18x35 (18)		+ (28)	W18x35 (18)	± (28)	W18x35 (18)
(14)		W18x35	(18)		(17)	W18x35	(18)		(27)	W18x35 (18)		(27)	W18x35 (18)	5 (27)	W18x35 (18)
(2)		W18x35	(18)	W24x5	(7)	W18x35	(18)	W24x5{	(2)	W18x35 (18)	W24x5!	(2)	VV18x35 (18)	W24x5 ((2)	W18x35 (18)
(14) (14))	W18x35	(18)	H	(17)	W18x35	(18)		+ (27)	W18x35 (18)		+ (27)	W18x35 (18)	- <u>1</u> (27)	W18x35 (18)
(14)		VV18x35	(18)	55 	(17)	W18x35	(18)	55	(27)	W18x35 (18)	55	(27)	W18x35 (18)	55 (27)	
(2)		W18x35	(18)	W24x {	(7)	W18x35	(18)	W24x {	(2)	W18x35 (18)	W24x t	(2)	W18x35 (18)	W24xt	W18x35 (18)
(1 1))	VV18x35	(18)		(17)	W18x35	(18)		+ (27)	W18x35 (18)		+ (27)	W18x35 (18)	- <u>T</u> -(27)	W18x35 (18)
) (14)		W18x35	(18)	x55	(17) (VV18x35	(18)	×55) (27)	W18x35 (18)	×55) (27)	W18x35 (18)	x55	<u>W18x35 (18)</u>

Floor slabs are 3-1/4" lightweight concrete on 3" deep 20 gage, galvanized composite metal deck for a total thickness of 6-1/4". They are reinforced with 6x6 W2.1xW2.1 welded wire fabric. All shear studs are 3/4" x 5 3/16".

Analysis

An analysis was run using Ram to design the typical members. Only gravity forces were used while wind and seismic were not considered. The analysis produced matching member sizes to the original plans.

Pros	Cons
Durable	Spray-on Fireproofing required
Speed of construction	
Light Weight	

ALTERNATE SYSTEM 1: Non-Composite Steel

Description

The non-composite structural steel system is made up of structural steel W-shape members. The typical beam size is W8x10 with spaced at 10'-0'' on center. Girders are typically W24x76. The typical bay size is $30'-0'' \times 30'-0''$. Shown below is a typical floor layout.

<u>يلغ</u>	RAM St	eel Beam	n/Joist M	odule - n	oncomposite									_][7 🗙
File	Criteria	Туре	Assign F	Process R	eports Vibration	View Help	0								
2	typ		•		悪 🕺 🍋		à 📸 🕰 🌜	10	1 to	11		?			^
Œ)	W8x10)		ļ	W8x10		-	₩8x10			W8x10)	-	
		<u>W8x10</u>)	76		W8x10		76	W8x10	76		W8x10) 	- 0/	
		W8x10)	W24x		W8x10		I W24X	W8x10	W24x		W8x10)	1 VV 24X	
Œ)	W8x10)		ļ.	W8x10		- - -	W8x10	+-		W8x10)	 - - - - - - - - - - - - - - - - - -	I
		W8x10)			W8x10		-	W8x10			W8x10)	- -	
		W8x10)	W24x76		W8x10		I VV24×76	W8x10	VV24x76		W8x10		1 VVZ4X/0	
e)	W8x10)		+	W8x10		- F	H	—+ 	+	W8x10)	 ++ -{	

Analysis

For this system Ram was again used to find member sizes. Beams were found to be similar to the original design but need camber and girders increased to W24x76. This system consists of a 3" lightweight concrete slab placed on 20 gage 2" high x 6-1/8" pitch x 24-1/2" wide Versa-Deck S.

Pros	Cons
Durable	Spray-on Fireproofing required
Speed of construction	Susceptible to vibration
Light Weight	Increase in floor depth

ALTERNATE SYSTEM 2: Hollow Core Plank

Description

Hollow core planking is a type of precast concrete system. The planks are cast in long lengths and cut to size to accommodate the project. The hollow cores can be filled with grout for added strength if need be. A topping slab may also be added for either structural purposes or strictly leveling. For this system, the precast will be supported by structural steel members. The system analyzed has a two-inch topping for both structural integrity and to ensure the floor is level. The Nitterhouse Concrete Products website provided free specifications and details for their typical planks.

Analysis

Based upon the factored loads and spans the hollow core plank chosen using the Nitterhouse specifications was 6" x 4'0" with 4 $\frac{1}{2}$ " ϕ 270K strands. This system was analyzed with beams spaced at 15'0" on center instead of 10'0". Beams and girders were found to be W24x229 to optimize floor depth.

Pros	Cons
Durable	Spray-on Fireproofing required
Speed of construction	Susceptible to vibration
	Increase in floor depth
	High weight

ALTERNATE SYSTEM 3: Two-Way Flat Plate with Drop Panels

Description

This is a cast-in-place reinforced concrete two-way flat plate system with drop panels at column locations. It consists of a 10" slab and 8.5" drop panels. Although lateral forces were not considered for this system, shear walls would be required.

Analysis

From the CRSI Handbook it was found that for a 30'0" span drop panels were needed that are 10'0" square and 8.5" deep. Columns are to be 24" square. PCA Slab was run to evaluate this system and it was found to satisfy all conditions, including reinforcement and deflection.

Pros	Cons
Durable	Redesign of foundation
Smaller floor depth	Longer erection time
No extra fireproofing	Large columns

Overall Evaluation

	Existing	Non-Composite	Hollow Core Plank	Two-way Flat Slab
Floor Thickness	Moderate	Moderate	Large	Smallest
Fireproofing	Yes	Yes	Yes	No
Fast Erection	Yes	Yes	Yes	No
Lead Time	Long	Long	Long	Short
Further Evaluation	Yes	Yes	No	Yes

CONCLUSION

After analyzing these four systems it was found that the existing system is the most suitable. The hollow core plank is the worst system due to its weight and size of the supporting members. Non-composite steel and the two-way flat slab can considered further. Both work well with the existing layout and have unique advantages. Although these two systems will be investigated further the existing structural system is probably the best for this project.

APPENDIX

Existing System Beam Design

			<u>(</u>	<u> Fravity E</u>	Beam De	<u>sign</u>			
RAM	RAM Steel v DataBase: tr Building Coc	y y le: IBC					St	12/21/0 teel Code: A	8 12:19:30 SD 9th Ed
Floor Ty	pe: typ	Ве	eam Nu	mber = 95					
SPAN IN	FORMATIC	DN (ft): I-1	End (60	.00,106.00)	J-End (90.00,106.00))		
Minir	num Depth sp	becified = 17	7.00 in	11/10/225			r.	50.01.	
Beam	Size (User S	elected)	=	W18X35			Fy = :	50.0 ksi	
Total	Beam Lengtr	n (Π)		30.00					
сомро	SITE PROPI	ERTIES (N	ot Shor	red):					
C	11.1	/* X			Left		Right		
Conc	rete thickness	(in)			3.25		3.25		
Unit V	weight concre	ete (pcr)			115.00		115.00		
Deek	si) ing Orientatio			norn	5.00	Dorr	5.00		
Deck	ing type	11		perpe	ASC 3W	pert	ASC 3W		
beff (ing type	-	90.00	V har	(in)	=	18.00		
Seff (in3)	=	80.45	Str (in	3)	-	102 52		
Jeff (i	in4)	= 1	172 43	Itr (in	4)	=	1812.32		
Stud	length (in)	=	5 19	Stud o	liam (in)	=	0.75		
Stud	Capacity (kip	s) $q = 7.4$	1	oradi	inanii (ilii)		0.70		
# of s	studs: Full	= 60	Partial	= 18 A	ctual = 18				
Num	ber of Stud Ro	ows = 1	Percent	of Full Con	posite Acti	on = 25.87			
	ADS (1-/64).								
LINE LC	Diet	DI	CDI	TI	Dad0/	Type	CLI		
LUau	0.000	0.000	0.000	0.800	13 80/	Red	0.000		
1	30,000	0.990	0.000	0.800	15.070	Reu	0.000		
2	0.000	0.035	0.000	0.000		NonR	0.000		
-	30,000	0.035	0.035	0.000		NOIIIX	0.000		
SHFAR.	Max V (DL	+11) = 25	72 kins	$f_{\rm V} = 5.091$	Fv = 10	9 13 kei	0.000		
MOMEN	TTC.	· LL) - 25.	/2 Kips	11 - 5.07 1	$(31 + 1)^{-1}$	7.15 KSI			
MOMEN	(1S:	Moment		@ II	Ch	Tana	ion Elence	Com	r Floras
span	Cond	Moment) Tens	ion Flange	Comp	Flange
Contor	ProCmp+	3.0	15		1 100	0.82	33.00	0.82	33.00
Jenter	Max +	102.0	15	5.0 0.0	1.00	0.82	33.00	0.82	33.00
	Mmax/Seff	192.9	1.			28.78	33.00		
	Mconst/Sx+	Mnost/Seff	•			29.01	45.00		
Controllir	19	192.9	15	50		- 28.78	33.00		
fc (ksi) =	0.62 Fc	= 1.35				20.10	00.00		
DEACTI	ONE (Ling)								
REACTI	UNS (kips):			Laft	Diaht				
Initia	reaction			0.53	0.53				
DL	Paction			15 38	15.38				
Max	+LL reaction			10.35	10.35				
Max	+total reaction	n		25.72	25.72				
DEELEC	TIONS	te:							
DEFLEC	HONS:		ot	15 00 0		0.043	L/D =	8226	
muta			at	15.00 ft		0.045	L/D –	0330	

Existing System Girder Design

				Gra	avity Be	am Des	<u>sign</u>				
	RAM Stee DataBase: Building C	el v11.0 try Code: IE	BC						Steel C	12/21/08 ode: AS	12:19:30 D 9th Ed
Floor Typ	e: typ		Beau	n Numb	er = 13						
SPAN INF	FORMAT	TON (f	t): I-En	d (60.00	,86.00)	J-End (60	.00,116.0	0)			
Minim	um Depth	specifi	ed = 17.0	00 in							
Beam	Size (Opti	imum)		= W2	24X55			Fy =	= 50.0 k	csi	
Total I	Beam Len	gth (ft)		= 30.	.00						
COMPOS	ITE PRO	PERT	IES (Not	Shored):						
						Left		Righ	t		
Concre	ete thickne	ess (in)				3.25		3.25	5		
Unit w	eight con	crete (p	cf)		1	115.00		115.00)		
fc (ksi	i)					3.00		3.00)		
Deckii	ng Orienta	tion			p	arallel		paralle	1		
Decki	ng type				AS	SC 3W		ASC 3W	7		
beff (ii	n)	=	9	0.00	Y bar(in)	=	22.14	1		
Seff (i	n3)	=	17	4.99	Str (in3)	() () () () () () () () () ()	=	187.86	5		
Ieff (in	14)	=	357	7.09	Itr (in4)		=	4052.40)		
Stud le	ength (in)	=		5.19	Stud dia	m (in)	=	0.75	5		
Stud C	apacity (k	cips) q	= 9.9								
# of st	uds per st	ud segn	nent: Ful	1	= .	42,1,42					
	1000		Par	tial	=	27,2,27					
			Act	tual	=	27,2,27					
Numb	er of Stud	Rows =	= 2 Pe	ercent of	Full Compo	osite Actio	n = 65.63				
	DADS (ki	ne).			100						
Dist	DI	CDI	RedII	Red%	NonRLL	StorI I	Red%	RoofI I	Red%	CU	
10.000	15.38	0.53	12.00	31.7	0.00	0.00	0.0	0.00	Spow	0.00	02 P.
10.000	15.38	0.53	12.00	31.7	0.00	0.00	0.0	0.00	Snow	0.00	
20.000	15.38	0.53	12.00	31.7	0.00	0.00	0.0	0.00	Snow	0.00	
20.000	15.30	0.53	12.00	21.7	0.00	0.00	0.0	0.00	Show	0.00	
20.000	15.50	0.33	12.00	51.7	0.00	0.00	0.0	0.00	Show	0.00	8
LINE LO	ADS (k/ft):									
Load	Dist	Γ	DL (CDL	LL	Red%	Туре	CLL			
1	0.000	0.0	55 0	.055	0.000		NonR	0.000			
	30,000	0.0	55 0	.055	0.000			0.000			
SHEAR:	Max V (I	DL+LL) = 47.97	kips fv	= 5.38 ksi	Fv = 18	.78 ksi				
MOMEN	rs:										
Span	Cond	N	foment	\widehat{O}	Lb	Ch	Те	nsion Fland	re	Compr	Flange
opun	conu		kip-ft	ft	ft		f	b F	b	fb	Fb
Center	PreCm	p+	16.8	15.0	10.0	1.00	17	5 30.0	0	1.75	25.01
- men	Max +		477 7	15.0		1.00	A . 1)		-	A. 8. 8. 80	
	Mmax/So	ff		10.0	STATE		32 7	6 33.0	0		
							24.1	0 33.0	~		
	Mconst/S	x+Mpo	st/Seff				33 3	5 45.0	0		00000
Controlling	Mconst/S	x+Mpo	st/Seff	15.0		12000	33.3	5 45.0 6 33.0	0		

REACTIONS (kips):

S

VERSA-DEK[®]

2" high x 6-1/8" pitch x 24-1/2" wide

Non-composite Deck Selection

Metal Dek Group a unit of CSI

						рітсн 6-1/8"
ECTION PI	ROPERTIES	1	fy = 40 ksi			
GAGE	t (in)	lp (in^4)	In (in^4)	Sp (in^3)	Sn (in^3)	11111
22	0.0295	0.4027	0.3266	0.2895	0.2692	A A A A
20	0.0358	0.4918	0.4251	0.3620	0.3354	HEIGH
18	0.0474	0.6578	0.6166	0.4852	0.4616	4
16	0.0598	0.8372	0.8185	0.6192	0.6000	COVER WIDTH 24-1/2"

		_	_	_	_					510	LIC	_					_			-	_			
h	-	4			-	4.	25"		_	4.	5"	_	-	4.	75"	_	-	5				5.	25	10
GAGE	22	20	18	16	22	20	18	16	22	20	18	16	22	20	18	16	22	20	18	16	22	20	18	16
Wc	35.2	35.2	35.2	35.2	37.6	37.6	37.6	37.6	40.0	40.0	40.0	40.0	42.4	42.4	42.4	42.4	44.8	44.8	44.8	44.8	47.2	47.2	47.2	47.2
Ac	39.7	39.7	39.7	39.7	42.1	42.1	42.1	42.1	44.4	44.4	44.4	44.4	46.8	46.8	46.8	46.8	49.2	49.2	49.2	49.2	51.5	51.5	51.5	51.5
lav	4.6	5.0	5.6	6.2	5.5	5.9	6.6	7.3	6.4	6.9	7.7	8.5	7.4	8.0	8.9	9.8	8.5	9.2	10.2	11.3	9.7	10.5	11.7	12.9
Sb	1.48	1.75	2.24	2.75	1.61	1.91	2.44	2.99	1.74	2.07	2.65	3.25	1.87	2.23	2.86	3.50	2.01	2.39	3.07	3.77	2.15	2.56	3.29	4.03
St	30.5	32.5	35.4	38.0	34.0	36.1	39.3	42.1	37.6	40.0	43.5	46.5	41.4	44.0	47,9	51.2	45.4	48.2	52.5	56.1	49.5	52.6	57.3	61.2
L		1		MAX	KIMU	MAL	LOW	ABLE	UNIF	ORM	LIVE	LOA	DS, (psf) -	ASD/	LRFD	- NO	STU	DS OI	N BE	AMS		-	_
9'-0"	227	301	338	373	245	354	397	400	263	389	400	400	281	400	400	400	300	400	400	400	318	400	400	400
	230	278	338	373	251	304	397	400	273	330	400	400	294	356	400	400	317	383	400	400	339	400	400	400
10'-0"	170	186	246	272	204	223	289	319	235	246	337	372	251	263	390	400	267	280	400	400	284	297	400	400
	181	219	246	272	198	240	289	319	215	261	337	372	232	282	370	400	250	303	399	400	268	325	400	400
11'-0"	119	131	185	204	145	158	217	240	173	189	254	279	204	222	253	323	237	253	274	371	253	268	291	400
	145	165	185	204	158	193	217	240	172	210	254	279	186	227	293	323	200	245	323	371	215	262	347	400
12'-0"	84	93	108	157	103	114	131	185	124	137	157	215	148	162	185	249	174	190	217	285	203	221	252	280
	117	127	142	157	128	149	167	185	139	171	195	215	151	186	226	249	163	200	260	285	175	214	285	326
13'-0"	59	66	78	124	74	82	95	108	90	99	115	130	108	119	137	154	128	141	162	181	150	165	188	211
1 Statistics	92	100	112	124	105	117	132	145	114	137	154	169	124	153	178	196	133	165	204	225	143	177	233	256
14'-0"	41	46	56	64	52	59	69	79	65	72	85	96	79	87	102	115	94	104	121	136	112	123	142	160
	74	80	90	99	86	94	105	116	94	110	123	135	102	127	142	157	110	137	163	180	118	148	187	205
15'-0"	-			46		41	49	57	46	52	62	71	57	64	75	86	69	77	90	103	83	92	107	121
				80		76	86	95	78	89	100	110	85	103	116	127	91	115	133	146	98	124	152	167
16'-0"								41			44	52	40	45	55	64	49	56	67	77	60	68	80	92
		100						78			82	91	70	85	95	105	76	97	110	120	82	104	125	137
17'-0"	-				-											46		40	49	57	43	49	59	69
								-					$\mathbb{P}_{n} \leq \mathbb{P}_{n}$			87		82	91	100	68	88	104	115
18'-0"																			-	41			43	51
																	1			85			88	97
19'-0"																								
20'-0"																								
					-		M	AXIM	UMU	NSH	ORED	CON	STR	UCTIO	ON C	LEAR	SPA	IS						
1span	6'-10"	7'-10"	9'-4"	10'-9"	6'-8"	7'-8"	9'-1"	10'-6"	6'-6"	7'-6"	8'-11"	10'-3"	6'-4"	7'-4"	8'-8"	10'-0"	6'-3"	7'-2"	8'-6"	9'-10"	6'-2"	7'-0"	8'-4"	9'-7"
2span	8'-7"	9'-7"	11'-2"	12'-7"	8'-5"	9'-4"	10'-11"	12'-4"	8'-3"	9'-2"	10'-9"	12'-2"	8'-1"	9'-0"	10'-6"	11'-11'	7'-11"	8'-10"	10'-4"	11'-9"	7'-10"	8'-8"	10'-2"	11'-6"
3span	8'-11"	9'-11"	11'-6"	13'-1"	8'-8"	9'-8"	11'-4"	12'-9"	8'-6"	9'-6"	11'-1"	12'-7"	8'-4"	9'-4"	10'-10'	12'-4"	8'-3"	9'-2"	10'-8"	12'-1"	8'-1"	9'-0"	10'-6"	11'-11'
cantilever	2'-8"	3"-2"	4'-0"	4'-10"	2'-7"	3'-1"	3'-11"	4'-9"	2'-7"	3'-1"	3'-11"	4'-8"	2'-7"	3'-0"	3'-10"	4'-7"	2'-6"	3'-0"	3'-9"	4'-6"	2'-6"	2'-11"	3'-9"	4'-6"
cv/100=f		1	13	1.1.1	Contraction of the	1	21			1.	29			1.	37			1.	44		1	1.	52	

227 230

maximum allowable live load (psf) based on ASD composite design - maximum allowable live load (psf) based on LRFD composite design

clear span

t Design thickness of deck

- Ip Moment of inertia of deck for positive bending
- In Moment of inertia of deck for negative bending Sp Section modulus of deck for positive bending
- Sn Section modulus of deck for negative bending
- fy 40 ksi
- fc 3000 psi

- h Total height of concrete slab
- Wc Weight of concrete (neglecting deflection)
- Ac Effective area of concrete available to resist shear
- lav Average moment of inertia of cracked & uncracked section
- Sb Cracked section modulus for positive bending
- St Cracked section modulus for negative bending
- L Span length; clear distance of deck between supports

Interior bearing of 5" in the above tables. If welded wire fabric is not supplied per ACI requirements (0.00075"AC), reduce loads by 10%. The section property table is based on AISI's Cold-Formed Steel Design Manual, 2001 Edition. The live loads and unshored construction clear spans are based on the Steel Deck Institute's Composite Deck Design Handbook, March 1997 and Design Manual, Pub. No. 30, and ASCE's Standard for the Structural Design of Composite Slabs. Maximum Unshored Rev: 01/27/05 Construction Clear Spans are based on ASD design. The loads in these tables are based on a Simple Span Design Analysis

.

115 PCF LIGHTWEIGHT CONCRETE TABLE

Gravity Beam Design

			<u>G</u>	Gravity B	eam	Design				
	RAM Steel v DataBase: no Building Code	l 1.0 ncomposite e: IBC						St	12/22/0 eel Code: A	8 05:46:02 SD 9th Ed
Floor Ty	pe: typ	Be	am Nui	mber = 105						
SPAN IN Bean Tota	FORMATIO n Size (Optimu l Beam Length	N (ft): I-E m) (ft)	2nd (90 = =	.00,106.00) W8X10 30.00	J-E	nd (120.00),106.00) Fy = 5	50.0 ksi	
LINE LO	DADS (k/ft):									
Load	Dist	DL	LL	Red%	Ту	pe				
1	0.000 30.000	0.010 0.010	0.000 0.000		No	nR				
SHEAR:	Max V (DL+	LL) = 0.15	kips	fv = 0.11 ks	i Fv=	= 20.00 ksi	i			
MOME	NTS:									
Span	Cond	Moment	(@ Lt)	Cb	Tensio	n Flange	Comp	r Flange
		kip-ft		ft f	t,		fb	Fb	fb	Fb
Center	Max +	1.1	15	.0 30.0)	1.00	1.74	30.00	1.74	3.41
Controlli	ng	1.1	15	.0 30.0)	1.00			1.74	3.41
REACT	ONS (kips):									
				Left	Right					
DL r	eaction			0.15	0.15					
Max	+total reaction			0.15	0.15					
DEFLEC	CTIONS:									
Dead	l load (in)		at	15.00 ft	=	-0.206	L	/D =	1752	
Live	load (in)		at	15.00 ft	=	0.000				
Net '	Fotal load (in)		at	15.00 ft	=	-0.206	I	D =	1752	

Gravity Beam Design

			<u>G</u>	ravity B	eam	Design	L			
	RAM Steel v DataBase: no Building Coo	v11.0 oncompos de: IBC	site					Ste	12/22/0 eel Code: A	8 05:46:02 SD 9th Ed.
Floor Ty	pe: typ		Beam Nur	nber = 23						
SPAN IN Bean Total	FORMATIC n Size (Optim Beam Lengt	DN (ft): um) h (ft)	I-End (12) = \ = (1)	0.00,86.00) W24X76 30.00	J-Eı	nd (120.0	0,116.0	0) Fy = 5	0.0 ksi	
POINT I	OADS (kips):								
Dist	DL	RedLL	Red% 1	NonRLL S	torLL	Red%	RoofL	L Red%		
10.000	0.15									
10.000	0.15									
20.000	0.15									
20.000	0.15									
LINE LO	DADS (k/ft):									
Load	Dist	DL	LL	Red%	Ty	pe				
1	0.000	2.670	2.400	39.6%	R	ed				
	30.000	2.670	2.400							
2	0.000	0.076	0.000		Nor	ıR				
	30.000	0.076	0.000							
SHEAR:	Max V (DL	+LL) = 6	3.22 kips	fv = 6.01 k	si Fv	= 20.00	ksi			
MOMEN	TS:									
Span	Cond	Mome	ent (a) Lb		Cb	Tensi	on Flange	Comp	r Flange
		kip	-ft	ft ft			fb	Fb	fb	Fb
Center	Max +	474	.9 15	0.0		1.00	32.38	33.00	32.38	33.00
Controllir	ng	474	.9 15	.0 0.0		1.00	32.38	33.00		
REACTI	ONS (kips):									
				Left	Right					
DL r	eaction			41.49	41.49					
Max	+LL reaction			21.73	21.73					
Max	+total reactio	n		63.22	63.22					
DEFLEC	TIONS:									
Dead	load (in)		at	15.00 ft	=	-0.830		L/D =	434	
Live	load (in)		at	15.00 ft	=	-0.433		L/D =	830	
Net 7	Fotal load (in)		at	15.00 ft	=	-1.264		L/D =	285	

Hollow Core Plank Specifications

Prestressed Concrete 6"x4'-0" Hollow Core Plank

2 Hour Fire Resistance Rating With 2" Topping

4

77

78

1

A

DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI
- 3. Precast Density = 150 PCF
- 4. Strand = 1/2 2 270K Lo-Relexation.
- 5. Strand Height = 1.75 in.
- 6. Ultimate moment capacity (when fully developed) ...
 - 4-1/212, 270K = 67.4 k-ft at 60% jacking force
 - 6-1/2%, 270K = 92.6 k-ft at 60% jacking force
 - 7-1/212, 270K = 95.3 k-ft at 60% lacking force
- 7. Meximum bottom tensile strees is 10 vfc = 775 PSI
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.

9. Flexural strength capacity is based on stress/strain strend mistionships.

- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Topping Strength (228 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire epan. A leaser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.

20

- 13. Load values to the left of the solid line are controlled by ultimate shear alrength.
- 14. Loed values to the right are controlled by uttimate flexural strength or fire endurance limits.
- 15. Load values may be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 16. Cember is inherent in all prestressed holicw core alaba and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	UPERIMPOSED	8EF	NIC	ΈL	ÔAL	19				I	BC :	2006	34/	ACI	318	-05	(1.2	D+	· 1.6	iL)
St	rand							9	IPAI	N (F	EE	ŋ								
Pa	tiern	12	13	14	15	18	17	18	19	20	21	22	23	24	25	26	27	ß	29	30
4 - 1/Z'a	LOAD (PSF)	249	317	230	2255	227	197	174	149	127	108	82	78	8	E6		-			
6- 1/2°s	LOAD (PSF)	624	478	497	377	334	202	209	237	215	184	165	142	ß	104	4 8	7 9	81	49	39
7 - 1/2%	LOAD (PSF)	64 1	422	461	415	364	331	293	274	242	214	190	187	Ħ	124	107	91	77	64	68

This table is for eingic spane and uniform loads. Design data for any of these span-load conditions is evaluated on request. Influidue designs may be furnished to easily unusual condition of hency leads, concentrated loads, continuous, filings or stem openings and narrow widths. The elevable loads shown in this lable order is 2 Nov 5 C bitmuts for maintener railing.

3-10¹

ŧ,

4-0-40.4

71

74

z

6

£ŀ

2855 Maily Pitcher Hey. South, Box N Chembersburg, PA 17202-3203 717-287-4305 Fex 717-287-4518

NITTERHOUSE

PRODUCTS

CONCRETE

11/03/08

6F2.0T

Chris Vanaskie Layfield Tower Salisbury, MD

Hollow Core Plank Calculations

W= 1.2(99+48.75 psf) + 1.6*80 = 305.3 psf

w = 305.3 psf * 15 ft. = 4.58 klf

 $M_u = 4.58^*(30)^2/8 = 515$ ft.-kips

V_u = 4.58*30/2 = 68.7 kips

 $I_{required} = 360*4.58*(30*12)^2/(384*29000) = 6907 \text{ in}^4$

Try W24x229 to optimize floor thickness

w= 4.58+1.2*.229 = 4.85

Mu = 4.85*30²/8 = 546 ft-kips < 1760 ft-kips , OK

Vu = 4.85*30/2 = 73 kips < 674 kips , OK

CRSI Handbook

Gr	- 4, ade 6	000 0 Ba	psi rs	1	S	QUARE	FLA Edge	AT SL E PANI No	AB S EL Beam	YSTE Witl	M n Drop	Panel	ls			SQ	UAR Wi	E INT th Drop	ERIC P Pan	R PA	NEL	
SPAN	Factored Superim-	Squa	ire Drop	Squar	(3) e Column	F	REINFO	RCINC	BARS	(E. W.)	N	IOMEN	ITS	Factored	(3)	REI	NFORC	ING B	ARS (F	14/1	1
$ \ell_1 = \ell_2 (ft) $	Load (psf)	Depth (in.)	Width	Size	V.	Top	lumn Strip	Тор	Middl	e Strip Top	Total Steel	Edge (-)	Bot. (+)	Int. (-)	Superim- posed Load	Square Column	Colur	nn Strip	Midd	le Strip	Total	Concre
			1	h = 10 i	$n_{i} = TOT$		DEDTU	Int.	Bottom	Int.	(psf)	(ft-k)	(ft-k)	(ft-k)	(psf)	Size (in.)	Тор	Bottom	Тор	Bottom	Steel (psf)	sq. f
25	100	5.50	8.33	12	0.776	12.45.0	10.80		IN DHUP	PANEL	5	14.50	530	100-102	h = 10	0 in. = T	OTAL S	LAB DEF	TH BE	WEEN D	ROP P	ANELS
25 25 25 25	200 300 400 500	5.50 7.00 8.50 8.50	8.33 8.33 8.33 10.00	15 18 19 21	0.776 0.809 0.664 0.632 0.744	12-#5 2 12-#5 4 12-#5 1 12-#5 1 13-#5 3	10-#6 13-#6 17-#6 15-#7 11-#9	14-#5 13-#6 15-#6 12-#7 26-#5	9-#5 12-#5 15-#5 10-#7 15-#6	9-#5 10-#5 9-#6 15-#5 10-#7	2.39 2.95 3.59 4.25 4.97	130.1 171.3 212.4 254.3 295.4	260.2 342.6 424.7 508.6 590.8	350.3 461.2 571.8 684.6 795.3	100 200 300 400 500	12 18 21 23	13-#5 12-#6 14-#6 15-#6	9-#5 12-#5 15-#5 18-#5	9-#5 10-#5 12-#5 10-#6	9-#5 9-#5 10-#5 12-#5	2.19 2.63 3.10 3.63	0.884 0.884 0.898 0.912
26 26 26 26 26	100 200 300 400 500	5.50 7.00 8.50 8.50 8.50	8.67 8.67 8.67 8.67 10.40	12 15 18 19 24	0.810 0.704 0.633 0.745 0.745	12-#5 3 12-#5 1 12-#5 1 13-#5 3 15-#5 4	11-#6 11-#7 11-#8 13-#8 13-#9	16-#5 14-#6 15-#6 18-#6 12-#8	11-#5 10-#6 9-#7 11-#7 10-#8	10-#5 12-#5 15-#5 9-#7 14-#6	2.60 3.17 3.88 4.73 5.49	146.8 194.0 240.6 287.7 330.9	293.7 388.0 481.1 575.5 661.8	395.3 522.3 647.6 774.7	100 200 300 400	12 18 21 23	15-#7 15-#5 17-#5 14-#6 13-#7	15-#6 11-#5 14-#5 9-#7 11-#7	16-#5 10-#5 11-#5 13-#5 16-#5	10-#6 10-#5 10-#5 11-#5 10-#6	4.26 2.40 2.73 3.31 4.17	0.947 0.884 0.898 0.912 0.912
27 27 27 27 27 27	100 200 300 400 500	7.00 7.00 8.50 8.50 8.50	9.00 9.00 9.00 10.80 10.80	12 15 18 22 27	0.746 0.804 0.674 0.756 0.682	12-#5 2 12-#5 5 12-#5 2 14-#5 5 16-#5 3	18-#5 17-#6 16-#7 12-#9 17-#8	16-#5 15-#6 13-#7 12-#8 13-#8	12-#5 11-#6 19-#5 10-#8 9-#9	10-#5 13-#5 16-#5 19-#5 9-#8	2.63 3.37 4.12 5.09 5.78	165.4 218.2 270.7 321.6 366.6	330.8 436.3 541.5 643.2 733.3	445.4 587.4 728.9 865.8 987.1	100 200 300 400	25 12 18 21 24	27-#5 15-#5 14-#6 12-#7 26-#5	10-#8 12-#5 11-#6 19-#5 10-#8	10-#7 10-#5 12-#5 15-#5 10-#7	16-#5 10-#5 10-#5 9-#6 15-#5	4.65 2.37 2.92 3.56 4.35	0.947 0.898 0.898 0.912 0.947
28 28 28 28 28	100 200 300 400	7.00 8.50 8.50 8.50	9.33 9.33 9.33 11.20	12 16 19 25	0.784 0.714 0.757 0.692	13-#5 2 13-#5 3 13-#5 5 16-#5 3	14-#6 11-#8 11-#9 17-#8	18-#5 15-#6 14-#7 13-#8	13-#5 17-#5 12-#7 11-#8	11-#5 15-#5 10-#7 12-#7	2.76 3.56 4.56 5.47	185.0 243.2 302.4 357.1	370.0 486.4 604.8 714.3	498.1 654.8 814.1 961.5	100 200 300 400	12 19 21 24	10-#7 17-#5 14-#6 13-#7 16-#7	11-#8 13-#5 17-#5 22-#5 11-#8	11-#7 10-#5 13-#5 12-#6 20-#5	18-#5 10-#5 12-#5 10-#6 12-#6	5.02 2.42 3.02 3.85 4.71	0.947 0.898 0.912 0.912 0.947
29 29 29	200 300 400	8.50 8.50 8.50	9.67 9.67 9.67 11.60	16 22 28	0.737 0.758 0.718 0.639	13-#5 2 13-#5 4 15-#5 4 17-#5 2	22-#5 12-#8 20-#7 15-#9	18-#5 13-#7 16-#7 14-#8	15-#5 19-#5 10-#8 12-#8	12-#5 16-#5 20-#5 10-#8	2.91 3.81 4.92 5.83	206.7 271.2 334.3 392.7	413.4 542.5 668.6 785.4	556.5 730.3 900.1 1057.3	100 200 300 400	12 19 21 26	17-#5 16-#6 15-#7 13-#8	15-#5 19-#5 10-#8 12-#8	12-#5 15-#5 10-#7 12-#7	11-#5 13-#5 16-#5	2.58 3.27 4.34	0.912 0.912 0.912
30 >30 30	100 200 300	8.50 8.50 8.50	10.00 10.00 10.00	12 18 24	0.774 0.744 0.675	14-#5 2 14-#5 4 16-#5 3	10-#8 11-#9 17-#8	20-#5 14-#7 14-#8	16-#5 21-#5 11-#8	10-#6 10-#7 12-#7	3.16 4.16 5.24	229.4 299.6 369.5	458.8 599.1 739.1	617.6 806.5 994.9	100 200 300	12 19 21	14-#6 18-#6 16-#7	12-#6 22-#5 11-#8	13-#5 12-#6 11-#7	11-#5 10-#6 18-#5	2.77 3.57	0.947

12-22-2008, 04:42:04 AM

Page 1

PCA Slab Design

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-1FE5E C:\Documents and Settings\USER\My Documents\FlatPlate.slb

000000	0	000	000	000	000	
000000	00	0000	0000	0000	0000	
00	00	00	00	00	00	
00	00	00		00	00	
000000	00	00		0000	0000	00000
.000000	0	00	00	0000	0000	00000
00		00	00	00	00	
00		0000	0000	00	00	
00		000	000	00	00	
000000	0				0	
00000000	00		00	000	00	
00	00		0	00	00	
0000	00		0	00	00	
000000	00		00	0000	000	0000

00	00	00	00	00
00	00	00	00	00
0 00	00	00	00	00
000	000	00 0	000	000
	00 0	00 00 00 0 00 000 000	00 00 00 00 0 00 00 000 00000 0	00 00 00 00 00 00 00 00 000 00000 000

pcaSlab v1.51 (TM) A Computer Program Analysis, Design, and Investigation of Reinforced Concrete Slab and Continuous Beam Systems

Copyright © 2000-2006, Portland Cement Association All rights reserved

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaSlab computer program. Furthermore, PCA neither makes any warranty prepared by the pcaSlab program. Although PCA has endeavored to produce pcaSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design the pcaSlab program.

(1) INPUT ECHO

General Information:

File name: C:\Documents and Settings\USER\My Documents\FlatPlate.slb
Project: Flat Plate
Frame: Engineer:
Code: ACI 318-02 Mode: Design Reinforcement Database: ASTM A615
Number of supports = 6
Floor System: Two-Way

Live load pattern ratio = 75% Minimum free edge for punching shear = 10 times slab thickness Deflections are based on cracked section properties. In negative moment regions, Ig and Mcr DO NOT include flange/slab contribution (if available) Compression reinforcement calculations NOT selected.

Material Properties:

		1 100 100 100 100 100 100 100 100 100		
		Slabs Beams	Columns	

WC	=	150	150	lb/ft3
f'c		4	4	ksi
Ec	=	3834.3	3834.3	ksi
fr	=	0.47434	0.47434	ksi
fy	=	60	ksi, Bars are :	not epoxy-coated
fyv	=	60	ksi	
Es	-	29000	ksi	

Reinforcement Database:

	t die der wit die bie bie der							
Units	: Db (in),	Ab (in^2)	, Wb (1b)	ft)				
Size	Db	Ab	Wb	Size	Db	Ab	Wb	
						·····		
#3	0.38	0.11	0.38	#4	0.50	0.20	0.67	
#5	0.63	0.31	1.04	#6	0.75	0.44	1.50	
#7	0.88	0.60	2.04	#8	1.00	0.79	2.67	
#9	1.13	1.00	3.40	#10	1.27	1.27	4.30	

Chris Vanaskie Layfield Tower Salisbury, MD pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-1FE5E C:\Documents and Settings\USER\My Documents\FlatPlate.slb 1.41 1.56 5.31 #14 1.69 2.25 7.65 13.60 #18 2.26 4.00 Span Data: Slabs: L1, wL, wR (ft); t, Hmin (in) Span Loc L1 t wL wR Hmin Hmin 30.000 15.000 10.18 1 Int 10.00 15.000 *b 2 Int 30.000 30.000 10.00 15.000 9.33 9.33 3 Int 15.000 4 Int 30.000 15,000 15.000 9.33 30.000 5 Int 10.00 15.000 15.000 10.18 *b NOTES: *b- Slab thickness is less than minimum. Support Data: Columns: cla, c2a, clb, c2b (in); Ha, Hb (ft) cla c2a Ha c1b c2b Supp Hb Red% 24.00 24.00 16.000 24.00 16.000 24.00 24.00 24.00 19.000 100 24.00 19.000 100 24.00 24.00 24.00 24.00 24.00 24.00 24.00 100 100 24.00 16.000 19.000 24.00 16.000 19.000 24.00 24.00 24.00 16.000 24.00 24.00 24.00 24.00 5 19.000 19.000 * Do not check punching shear around this column. Drop Panels: h (in); L1, L2, W1, W2 (ft) Supp h L1 L2 W1 W2 8.50 1.000 5.000 5.000 5.000 *a b d 8.50 5.000 5.000 5.000 5.000 *b 8.50 5.000 *b 8.50 5.000 5.000 5.000 5.000 *b 8.50 5.000 5.000 5.000 5.000 *b 6 8.50 5.000 1.000 5.000 5.000 *a b (*a- Do not check punching shear around this drop panel. 5.000 *a b d *b- Standard drop. *d- Excessive drop thickness will not be used for flexural design. Boundary Conditions: Kz (kip/in); Kry (kip-in/rad) Supp Spring Kz Spring Kry Far End A Far End B Fixed Fixed Ō 0 Fixed Fixed 0 Fixed Fixed Fixed 0 Fixed 5 0 Fixed Fixed 6 Fixed Fixed Load Data: Load Cases and Combinations: SELF Dead DEAD DEAD Live LIVE Case Type U1 1.200 1.200 1.600 Span Loads: Span Case Wa Area Loads - Wa (lb/ft2): 1 Dead 2 Dead 99 99 3 Dead 99 Dead 99 5 Dead 99 Live 80 Live 80 3 Live 80 Live 80 5 Live 80 Support Loads: --- NONE ---Support Displacements: --- NONE ---Reinforcement Criteria:

12-22-2008, 04:42:04 AM

		Top	bars	Botto	m bars	Stir	rups
		Min	Max	Min	Max	Min	Max
Slabs	and Ribs	:					
Bar	Size	#5	#8	#5	#8		
Bar	spacing	1.00	18.00	1.00	18.00	in	

12-22-2008, 04:42:04 AM

Page 3

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-1FE5E C:\Documents and Settings\USER\My Documents\FlatPlate.slb Reinf ratio 0.14 5.00 0.14 5.00 % Cover 1.50 1.50 in

Beams:						
Bar Size	#5	#8	#5	#8	#3	#5
Bar spacing	1.00	18.00	1.00	18.00	6.00	18.00 in
Reinf ratio	0.14	5.00	0.14	5.00 %		
Cover	1.50		1.50	in		

[2] DESIGN RESULTS

Top Reinforcement:

Unit: Span	s: Widtl Strip	h (ft), Zone	Mmax (k-ft), Width	Xmax (ft), Mmax	As (in^2 Xmax), Sp (in AsMin	n) AsMax	SpReg	AsRea	Bars

1	Column	Left	15.00	240.57	1.000	5.076	36.170	10.588	3.250	17-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	895.31	29.000	5.076	36.170	4.390	12.625	41-#5
	Middle	Left	15.00	-0.00	1.000	3.240	26.620	16.364	0.000	11-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	298.45	29.000	3.240	26.620	6.429	8.537	28-#5
2	Column	Left	15.00	767.05	1.000	5.076	36.170	4.390	10.721	41-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	620.88	29.000	5.076	36.170	6.000	8.593	30-#3
	Middle	Left	15.00	255.68	1.000	3.240	26.620	6.429	7.255	28-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	206.96	29.000	3.240	26.620	9.000	5.820	20-#5
3	Column	Left	15.00	653.76	1.000	5.076	36.170	6.000	9.068	30-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	653.76	29.000	5.076	36.170	6.000	9.068	30-#5
	Middle	Left	15.00	217.92	1.000	3.240	26.620	9.000	6.140	20-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	217.92	29.000	3.240	26.620	9.000	6.140	20-#5
4	Column	Left	15.00	620.88	1.000	5.076	36.170	6.000	8.593	30-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	767.05	29.000	5.076	36.170	4.390	10.721	41-#5
	Middle	Left	15.00	206.96	1.000	3.240	26.620	9.000	5.820	20-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	255.68	29.000	3.240	26.620	6.429	7.255	28-#5
5	Column	Left	15.00	895.31	1.000	5.076	36.170	4.390	12.625	41-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	240.57	29.000	5.076	36.170	10.588	3.250	17-#5
	Middle	Left	15.00	298.45	1.000	3.240	26.620	6.429	8.537	28-#5
		Middle	15.00	0.00	15.000	0.000	26.620	0.000	0.000	
		Right	15.00	-0.00	29.000	3.240	26.620	16.364	0.000	11-#5

Top Bar Details:

Units: Length (ft)

	-		Left			Continuous	Right			
Span	Strip	Bars	Length	Bars	Length	Bars Length	Bars	Length	Bars	Length
1	Column Middle	17-#5 11-#5	10.24 7.16				21-#5 28-#5	11.25 11.25	20 - #5	7.46
2	Column Middle	21-#5 28-#5	12.25 12.25	20 - #5 	6.88		17-#5 20-#5	10.75 10.75	13-#5	6.60
3	Column Middle	17-#5 20-#5	10.50 10.50	13 - #5	6.62		17-#5 20-#5	10.50	13 - #5	6.62
4	Column Middle	17-#5 20-#5	10.75 10.75	13 - #5	6.60		21-#5 28-#5	12.25 12.25	20-#5	6.88
5	Column Middle	21-#5 28-#5	11.25 11.25	20 - #5	7.46		17-#5 11-#5	10.24 7.16		

Span	Strip	Width	Mmax	Xmax	AsMin	AsMax	SpReq	AsReq	Bars	
1	Column	15.00	305.60	12,250	3.240	26.620	6.207	8.753	29-#5	

pcaSlab vl.51 © Licensed to: Pe C:\Documents an	Portland nn State N d Setting:	Cement A Jniversit s\USER\My	ssociat y, Lice Docume	ion mse ID: mts\Flat	52416-10 Plate.sl	10277-4- b	22545-1FE5	Έ
Middle	15.00	203	.73 1	2.250	3.240	26.620	9.474	5.726
2 Column Middle	15.00 15.00	171 114	.50 1 .33 1	5.500 5.500	3.240 3.240	26.620 26.620	11.250 16.364	4.792 3.163
3 Column Middle	15.00 15.00	196 130	.27 1 .85 1	5.000 5.000	3.240 3.240	26.620 26.620	10.000 15.000	5.509 3.630
4 Column Middle	15.00 15.00	171 114	.50 1 .33 1	4.500 4.500	3.240 3.240	26.620 26.620	11.250 16.364	4.792 3.163
5 Column Middle	15.00 15.00	3,05 203	.60 1 .73 1	7.750 7.750	3.240 3.240	26.620 26.620	6.207 9.474	8.753 5.726
Bottom Bar Deta	ils:							
Units: Start	(ft), Le:	ngth (ft)						
Span Strip	Bars	ong Bars_ Start	Length	Sh Bars	ort Bars Start	Length		
l Column Middle	29-#5 11-#5	0.00	30.00 30.00	 8-#5	4.50	21.00		
2 Column Middle	16-#5 11-#5	0.00	30.00 30.00					
3 Column Middle	18-#5 11-#5	0.00	30.00 30.00	1-#5	4.50	21.00		
4 Column Middle	16-#5 11-#5	0.00	30.00 30.00					
5 Column Middle	29-#5 11-#5	0.00	30.00 30.00	8-#5	4.50	21.00		
Flexural Capaci	ty:							
Units: From, Span Strip	To (ft), From	As (in^2), PhiM	(k-ft)	Phi	Mn=	PhiMn+	
							212.40	
I Column	1.000	5.00	0 5.27	8.99	-386	.55	313.40	
	5.000	9.24	0 5.27	8.99	-188	.04	313.40	
	10.240	10.80	0 0.00	8.99	c	.00	313.40	
	10.800	15.00	0 0.00	8.99	0	.00	313.40	
	18.750	19.20	0 0.00	8.99	0	.00	313.40	
	19.200	19.92	8 0.00	8.99	0.000	.00	313.40	
	19.928	22.54	0 6.51 8 6.51	8.99	-230	.50	313.40 313.40	
	23.718	25.00	0 12.71	8.99	-432	.65	313.40	
	25.000	29.00	0 12.71	8.99	-900	.99	313.40 313.40	
Middle	0.000	1.00	0 3.41	3.41	-123	.07	123.07	
	1.000	4.50	0 3.41	3.41	-123	.07	123.07	
	5.653	6.16	1 3.41	5.89	-123	.07	209.36	
	6.161	7.16	1 0.00	5.89	C	.00	209.36	
	10.800	15.00	0 0.00	5.89	0	.00	209.36	
	15.000	18.75	0 0.00	5.89	C	.00	209.36	
	19.200	19.20	0 0.00 6 0.00	5.89	0	.00	209.36	
	19.916	24.34	7 8.68	5.89	-303	.18	209.36	
	24.347	25.50	0 8.68	3.41	-303	.18	123.07	
	29.000	30.00	0 8.68	3.41	-303	.18	123.07	
2 Column	0.000	1.00	0 12.71	4.96	-900	.99	177.32	
	1.000	5.00	0 12.71 8 12.71	4.96	-900	.99	177.32	
	5.878	6.87	8 6.51	4.96	-230	.50	177.32	
	6.878	10.80	0 6.51	4.96	-230	.50	177.32	
	11.250	12.25	0 0.00	4.96	-230	.00	177.32	
	12.250	15.00	0 0.00	4.96	0	.00	177.32	
	19,200	19.20	0 0.00	4.96	0	.00	177.32	
	19.250	20.34	6 0.00	4.96	C	.00	177.32	
	20.346 23.399	23.39	9 5.27 5 5.27	4.96	-188	.04	177.32	
	24.495	25.00	0 9.30	4.96	-323	.57	177.32	
	25.000	29.00	0 9.30	4.96	-669	.75	177.32	
Middle	0.000	1.00	0 8.68	3.41	-303	.18	123.07	

12-22-2008, 04:42:04 AM

19-#5 16-#5 11-#5

18=#5 12-#5 16-#5 11-#5 29-#5 19-#5

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-1FE5E C:\Documents and Settings\USER\My Documents\FlatPlate.slb

	1.000 10.800 11.250 12.250 15.000 19.200 19.250 20.363 29.000	10.800 11.250 12.250 15.000 19.200 19.250 20.363 29.000 30.000	8.68 8.68 0.00 0.00 0.00 0.00 6.20 6.20	3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41	-303.18 -303.18 0.00 0.00 0.00 0.00 -219.95 -219.95	123.07 123.07 123.07 123.07 123.07 123.07 123.07 123.07 123.07 123.07
3 Column	0.000 1.000 5.000	1.000 5.000 5.461	9.30 9.30 9.30	5.58 5.58 5.58	-669.75 -669.75 -323.57	198.72 198.72 198.72
	5.461	6.618	5.27	5.58	-188.04	198.72
	9.344	10.500	0.00	5.58	0.00	198.72
	10.500	10.800	0.00	5.58	0.00	198.72
	10.800	15.000	0.00	5.58	0.00	198.72
	19.200	19.500	0.00	5.58	0.00	198.72
	20.656	20.656	5.27	5.58	-188.04	198.72
	23.382	24.539	5.27	5.58	-188.04	198.72
	24.539 25.000	25.000	9.30	5.58	-323.57	198.72
	29.000	30.000	9.30	5.58	-669.75	198.72
Middle	0.000	1.000	6.20 6.20	3.41	-219.95	123.07
	4.500	5.657	6.20	3.41	-219.95	123.07
	5.657	9.325	6.20	3.72	-219.95	134.01
	10.500	10.800	0.00	3.72	0.00	134.01
	10.800	15.000	0.00	3.72	0.00	134.01
	19.200	19.500	0.00	3.72	0.00	134.01
	19.500	20.675	0.00	3.72	0.00	134.01
	24.343	25.500	6.20	3.41	-219.95	123.07
	25.500 29.000	29.000 30.000	6.20 6.20	3.41 3.41	-219.95 -219.95	123.07 123.07
4 Column	0.000	1.000	9.30	4.96	-669.75	177.32
	1.000	5.000	9.30	4.96	-669.75	177.32
	5.000	6.601	9.30 5.27	4.96	-188.04	177.32
	6.601	9.654	5.27	4.96	-188.04	177.32
	9.654 10.750	10.750	0.00	4.96	0.00	177.32
	10.800	15.000	0.00	4.96	0.00	177.32
	15.000	17.750	0.00	4.96	0.00	177.32
	18.750	19.200	6.51	4.96	-230.50	177.32
	19.200	23.122	6.51 6.51	4.96	-230.50	177.32
	24.122	25.000	12.71	4.96	-432.65	177.32
	25.000	29.000	12.71	4.96	-900.99	177.32
Middle	0.000	1.000	6.20	3.41	-219.95	123.07
	1.000 9.637	9.637 10.750	6.20	3.41	-219.95	123.07
	10.750	10.800	0.00	3.41	0.00	123.07
	10.800	15.000	0.00	3.41	0.00	123.07
	17.750	18.750	0.00	3.41	0.00	123.07
	18.750	19.200	8.68	3.41	-303.18	123.07
	29.000	30.000	8.68	3.41	-303.18	123.07
5 Column	0.000	1.000	12.71	8.99	-900.99	313.40
	5.000	6.282	12.71	8.99	-432.65	313.40
	6.282	7.460	6.51	8.99	-230.50	313.40
	10.072	10.800	0.00	8.99	0.00	313.40
	10.800	11.250	0.00	8.99	0.00	313.40
	15.000	19.200	0.00	8.99	0.00	313.40
	19.200	19.760	0.00	8.99	0.00	313.40
	20.760	25.000	5.27	8.99	-188.04	313.40
	25.000	29.000	5.27	8.99	-386.55	313.40
Middle	0.000	1.000	8.68	3.41	-303.18	313.40 123.07
	1.000	4.500	8.68	3.41	-303.18	123.07
	5.653	10.084	8.68	5.89	-303.18	209.36

pcaSlab v1.51 Licensed to: C:\Documents	© Portland C Penn State Un and Settings\	ement Assoc iversity, I USER\My Doc	iation icense: uments	ID: 5241 FlatPlat	16-1010277- te.slb	4-22545-1FE5E		
	10.084 10.800 11.250 15.000 22.839 23.839 24.347 25.500	10.800 0 11.250 0 15.000 0 22.839 0 23.839 0 24.347 3 25.500 3 29.000 3).00 5.).00 5.).00 5.).00 5.).00 5.).00 5. 3.41 5. 3.41 3.	.89 .89 .89 .89 .89 .89 .89 .89 .41	0.00 0.00 0.00 0.00 -123.07 -123.07 -123.07	209.36 209.36 209.36 209.36 209.36 209.36 209.36 123.07		
	29.000	30.000 3	3.41 3.	41	-123.07	123.07		
Slab Shear Ca	pacity:	ti Dhille	The Order S					
Span	b d	Vratio	Ph	niVc	Vu	Xu		
1 360 2 360 3 360 4 360 5 360	.00 8.19 .00 8.19 .00 8.19 .00 8.19 .00 8.19 .00 8.19	1.000 1.000 1.000 1.000 1.000	279 279 279 279 279	9.62 9.62 9.62 9.62 9.62	196.87 169.72 162.76 169.72 196.87	28.32 1.68 1.68 28.32 1.68		
Flexural Tran	sfer of Negat	ive Unbalan	nced Mon	nent at §	Supports:			
Units: Wid Supp Wi	th (in), Munb dth GammaF*M	(k-ft), As unb Comb Pa	; (in^2) it P	\sReq /	AsProv Addi	tional Bars		
1 N 2 79 3 79 4 79 5 79 6 N	ot checked .50 191 .50 119 .50 119 .50 191 ot checked	- .35 U1 Od .41 U1 Od .41 U1 Od .35 U1 Od	id 2 id 1 id 1 id 2	2.593 1.607 1.607 2.593	5.614 4.107 4.107 5.614			
Punching Shea	r Around Colu	mns:						
Units: Vu Supp	(kip), Munb (Vu	k-ft), vu (vu	psi), B Munb C	Phi*vc (p Comb Pat	GammaV	vu Phi*	VC	
1 N 2 3 4 5 6 N	ot checked 406.33 15 358.30 13 358.30 13 406.33 15 ot checked	- 2.0 -1 4.0 4.0 - 2.0 1	.98.16 U 50.81 U 50.81 U 98.16 U	J1 All J1 All J1 All J1 All J1 All	0.400 0.400 0.400 0.400	177.3 189 140.5 189 140.5 189 140.5 189 177.3 189	.7 .7 .7 .7	
Punching Shea	r Around Drop	s:						
Units: Vu Supp	(kip), vu (ps Vu Comb	== i), Phi*vc Pat	(psi) vu Ph	ni*vc				
1 N 2 3 4 5 6 N	ot checked 365.70 Ul 317.67 Ul 317.67 Ul 365.70 Ul ot checked	All 89 All 77 All 77 All 89	9.3 1 7.6 1 7.6 1	124.5 124.5 124.5 124.5				
Maximum Defle	ctions:							
Units: Dz	(in) Frame			Column §	Strip	м	iddle Str	ip
Span Dz(DE 1 -0. 2 -0. 3 -0. 4 -0. 5 -0.	AD) Dz(LIVE) 223 -0.124 077 -0.076 095 -0.091 077 -0.076 223 -0.124	Dz(TOTAL) -0.347 -0.153 -0.186 -0.153 -0.347	-0.32 -0.10 -0.12 -0.10 -0.32	D) Dz(LIV 29 -0.1 25 -0.1 28 -0.1 25 -0.1 29 -0.1	/E) Dz(TOTA 183 -0.5 102 -0.2 123 -0.2 102 -0.2 183 -0.5	L) Dz(DEAD) 12 -0.117 07 -0.050 52 -0.062 07 -0.050 12 -0.117	-0.065 -0.049 -0.059 -0.049 -0.059 -0.049	-0.182 -0.100 -0.121 -0.100 -0.121 -0.100 -0.182
Material Take	off:							
Reinforcem	ent in the Di	rection of	Analysi	ls				
Top Bars: Bottom Bar Stirrups: Total Stee Concrete:	5526.2 s: 5472.6 0.0 l: 10998.8 4104.2	lb <=> 3 lb <=> 3 lb <=> 1 lb <=> 7 ft^3 <=> 2	86.84 1k 86.48 1k 0.00 1k 73.33 1k 27.36 ft		<pre>> 1.228 1 > 1.216 1 > 0.000 1 > 2.444 1 > 0.912 f</pre>	b/ft^2 b/ft^2 b/ft^2 b/ft^2 t^3/ft^2		

12-22-2008, 04:42:04 AM