MOUNTAIN STATE BLUE CROSS BLUE SHIELD HEADQUARTERS

PARKERSBURG, WEST VIRGINIA

DOMINIC MANNO

STRUCTURAL OPTION

FACULTY CONSULTANT: DR. ANDRES LEPAGE

Technical Report 2

10-24-08

TABLE OF CONTENTS

TABLE OF CONTENTS	2
EXECUTIVE SUMMARY	3
INTRODUCTION	4
CODE	5
MATERIALS	6
GRAVITY AND DESIGN LOADS	7
EXISTING STRUCTURE	8
ALTERNATIVE FLOOR SYSTEMS Non-Composite Steel Two Way Flat Slab with Drop Panels Two Way Post Tension Slab	15 16 17 18
OVERALL SYSTEM COMPARISON	19
CONCLUSION	20
APPENDIX A: Typical Bay Used in Calculations	21
APPENDIX B: Existing Composite Steel Floor System	23
APPENDIX C: Non-Composite Steel Floor System	29
APPENDIX D: Two Way Flat Slab with Drop Panels	35
APPENDIX E: Two Way Post Tension Slab	43

EXECUTIVE SUMMARY

In this second technical report alternative floor systems were analyzed for Mountain State Blue Cross Blue Shield Headquarters. Three other systems were analyzed and compared with the original system. When comparing the systems several factors came into consideration: cost, weight, fit to grid, constructability, fire protection, depth, and vibration. The original system is composite steel, spans 30', and carries the large loads. The other three systems I investigated are:

- Non-Composite Steel Floor System
- Two Way Flat Slab with Drop Panels
- Two Way Post Tension Slab

After exploring these options the concrete floor systems seem to work well for this building. They both reduce the total depth of the floor system and can still span the 30 ft. bays. There will be major changes to the lateral system and possibly foundations if further investigated. Technical report 3 will further look into the lateral systems and further decide if these systems could potentially work for Mountain State Blue Cross Blue Shield Headquarters.

INTRODUCTION TO MOUNTAIN STATE BLUE CROSS BLUE SHIELD HEADQUARTERS

Mountain State Blue Cross Blue Shield Headquarters Building consists of 4 stories that sit above grade and is mainly office space. It was designed by Burt Hill Architects. Its main purpose for being built was to expand to include an extra 170 employees that are to be hired this year. G.A. Brown was hired as the contractor and began construction in March of 2008 and is expected to be completed by April of 2009. MSBCBS is located in Parkersburg, WV, which sits on the north-western area of the state near the Ohio border. The building has a brick veneer façade which sits well into the site of downtown Parkersburg. It also has a large glass curtain wall which emphasizes the buildings entrance and gives the building a modern appeal.

The building is approximately 130,000 square feet and has mainly an open floor plan. The buildings top of steel is at a height of 67' - 6.5" above grade due to the screen wall located on the roof for the mechanical units. The floor to floor height of the building is approximately 13'-4". The typical bay size is 30' x 30' being made by composite steel structure and concrete slab on steel decking. The lateral system of the building is made up of four braced frames, two in the north/south and two in the east/west building direction. The foundation contains caissons which extend approximately 70' ft. The ground level consists of a 4" slab on grade with grade beams surrounding the perimeter of the buildings footprint.

CODE

CODE / REFERENCES

2006 International Building Code

(ACI 318-08) Building Code Requirements for Structural Concrete

Specification for the Design, Fabrication and Erection of Structural Steel Buildings Allowable Steel Design, 13th Edition, American Institute of Steel Construction

(ASCE - 07) Minimum design loads for Buildings and other Structures American Society of Civil Engineers

Steel Deck Institute, Design Manual

CODE / REFERENCES USED IN ORIGINAL DESIGN

2003 International Building Code

(ACI 318-05) Building Code Requirements for Structural Concrete

Specification for the Design, Fabrication and Erection of Structural Steel Buildings Allowable Steel Design, 13th Edition, American Institute of Steel Construction

(ASCE - 07) Minimum design loads for Buildings and other Structures American Society of Civil Engineers

Steel Deck Institute, Design Manual

MATERIALS

Concrete

I	Foundations	f'c = 4000 PSI
S	Slab On Grade	f'c = 4000 PSI
I	Exterior Slabs	f'c = 4500 PSI
Ι	Interior Slabs on Metal Deck	f'c = 4000 PSI
Reinfor	cement	
Ι	Deformed Bars	ASTM A615, Grade 60
V	Welded Wire Fabric	ASTM A185
Steel		
S	Structural "W" Shapes	ASTM A992
S	Structural "M," "S," and "HP" Shapes	ASTM A572, Grade 50
(Channels	ASTM A572, Grade 50
S	Steel Tubes (HSS Shapes)	ASTM A500, Grade B
S	Steel Pipe (Round HSS)	ASTM A500, Grade B
P	Angles and Plates	ASTM A36
Metal D	Deck and Shear Studs	
(Composite Floor	2" 20 Gauge
I	Roof Deck	1 ¹ / ₂ " Galvanized
5	Studs	³ ⁄4" Diam. 4 ¹ ⁄2" Tall

DEAD LOADS

Construction Dead Loads

Concrete	150 PCF
Light Weight Concrete	110 PCF
Steel	490 PCF
Partitions	20 PSF
M.E.P.	10 PSF
Finishes and Misc.	5 PSF
Windows and Framing	20 PSF
Roof	20 PSF

LIVE LOADS

Public Areas	100 PSF
Lobby	100 PSF
Office First Floor Corridor	100 PSF
Office Corridors above First Floor	80 PSF
Offices	50 PSF
Light Storage	125 PSF
Heavy Storage	250 PSF
Mechanical	150 PSF
Stairs	100 PSF

EXISTING STRUCTURAL SYSTEM

FOUNDATIONS

The foundation system is drilled caissons that range from 30" in diameter to 66". They were designed to have an allowable skin friction of 550 psf. They contain a variation No. 7 to No. 8 vertical reinforced bars, and have ties that are No. 3 reinforced bars. Depending on the location on the plan the caissons are driven into the ground 59' to 74' below grade. The caissons support the steel framed system and the 4" concrete slab on grade. The grade beams surrounding the perimeter of the building are 24" x 30".

FLOOR SYSTEM

MSBCBS has a composite system with 30' x 30' typical bay size. A 3-1/4" light weight concrete slab sits on a 2" – 20 gauge composite steel decking with $\frac{3}{4}$ " studs. The deck is supported by mainly W18 x 35 beams that are spaced 10' center to center. The majority of the girders are W21 x 62 which transfer the loads from the beams to the columns. This floor system is used for all floors except for the roof and the 4" slab on grade. The roof is made up of an 1-1/2" 20 gauge wide rib galvanized steel deck and is 3 spans continuous with 3" of concrete. The roof floor system is mainly supported by K-series joists that are spaced 6' center to center.

COLUMNS

The gravity columns for MSBCBS are typically W10's. The gravity base plates have a 4 bolt connection and have a thickness varying from 1" to 1-5/8". The lateral columns are W12's. The lateral base plates typically have a 12 bolt connection with a thickness of 1-1/2" to 2-1/2". The mechanical screen roof is composed of HSS 12 x 12 x 3/8 post, which connects to the beam, with a 1" thick base plate.

LATERAL SYSTEM

Four braced frames make up the lateral force resisting system for the building. The placements of these braces were based on the location of interior walls throughout the building. The purpose was to be able to conceal the braces within the walls. Several different types were used, from diagonal bracing to x bracing to uneven inverted chevron bracing. All of these braces are laid out in between floor to floor spaces. The braces range from HSS 8x8's to HSS 10x10's. The braces are connected using gusset plates with a minimum thickness of the beam's web thickness. Typical base plates for these lateral columns are 2-1/2" thick with large caissons to transfer the shear forces. Below is the layout of the lateral braces and elevations (Figures 1 through 5).

Figure 1: Lateral System Layout

Figure 2: Lateral Brace 1 Elevation

Figure 3: Lateral Brace 2 Elevation

Figure 4: Lateral Brace 3 Elevation

Figure 5: Lateral Brace 4 Elevation

EXISTING FLOOR SYSTEM

The composite floor system used in Mountain State Blue Cross Blue Shield is a satisfactory system. It is extremely effective in covering the long open spans needed for the building's plans and is ideal for carrying the heavy loads throughout the building. The deck and slab along with the fireproofing on the beams provide a 2 hour fire rating (Figure 6). The composite system provides a 13 foot 4 inch floor to floor height and the large beams and girders minimize deflections. Detailed calculations can be seen in Appendix B. There is no shoring or formwork needed for this system. Limited openings throughout the building result in fast pouring of the concrete. The steel system used in the building is faster and more proficient than forming and pouring a concrete beam and column system. The overall system is considerably cheap and easy to construct (\$22.75).

The disadvantages of this system are the beams and girders are relatively deep. The total depth of the floor system is approximately 28 inches. With this composite system the steel beams and studs combining with the deck and concrete create a considerable amount of weight for the caissons to carry. This requires that the caissons be driven to depths reaching 74 feet.

Figure 6: Composite Steel Floor System

Overall this system is a good choice for Mountain State Blue Cross Blue Shield. It covers the structural requirements of the building. It enables the building to be completed in a short amount of time and meets the architectural requirements.

ALTERNATE FLOOR SYSTEMS

For this report three different floor systems were analyzed to determine if the existing composite steel system was the most viable. In choosing three alternate systems, I looked into systems that could span large bays. The systems also needed to be able to carry heavy loads and be reasonable in price. The three systems I chose to investigate in the order which they will be presented in the next few pages are:

- Non-Composite Steel System
- Two Way Flat Slab with Drop Panels
- Two Way Post Tension Slab

Various Codes were used in the design of these systems:

(ACI 318-08) Building Code Requirements for Structural Concrete

Specification for the Design, Fabrication and Erection of Structural Steel Buildings Allowable Steel Design, 13th Edition, American Institute of Steel Construction

Vulcraft Steel Deck Manual

R. S. Means Assemblies and Square Foot Cost Data for Parkersburg, West Virginia, 2008

NON-COMPOSITE STEEL SYSTEM

The non-composite steel floor system is fundamental. It is extremely similar to the existing floor structure that Mountain State Blue Cross Blue Shield utilizes. The major difference is that there are no shear studs that need to be welded to the beams for composite action (Figure 7). This cuts down on time which was a concern when designing the building's structure. 4.5" of normal weight concrete was used in my analysis for the slab. A detailed report of the results from RAM showing beam and girder results can be seen in Appendix C. This system fit into the existing grid well, and wouldn't require a different lateral system. It also provides a possibility of adding an additional floor to the building with not much extra effort needed in design.

The system actually increases the weight of the structure and the depth of the steel members used to support the slab. In order to fully utilize this floor system I believe that the column spans would have to be shorter, enabling the beam and girder sizes to decrease. The open floor plan poses a problem for this alternative and the need for extra columns and foundations. Therefore I do not believe that this system is a viable choice for Mountain State Blue Cross Blue Shield.

Figure 7: Non-Composite Steel Floor System

TWO WAY FLAT SLAB WITH DROP PANELS

This two way reinforced concrete slab was designed for a typical interior bay. Since Mountain State Blue Cross Blue Shield's layout is practically square forming 30' x 30' bays this system fits in well. A 20" x 20" column size was assumed in my calculations. The slab was designed with drop panels to decrease the effect of punching shear (Figure 8). The result was a slab thickness of 13", detailed calculations shown in Appendix D. Ballasts or some other techniques will need to be used to conceal the mechanical ductwork which will increase the total thickness.

This system fits almost perfectly into the existing square grid layout of Mountain State Blue Cross Blue Shield. Its total thickness is nearly half of the existing composite design. Since drop panels were used the columns could be reduced in size which could be looked into in a later analysis. This system also handles vibration well and provides a 2 hr fire rating.

Conversely, this system does add weight to the foundations of the structure which could pose problems. The drop panels cause problems with ceiling heights and the layout of the mechanical equipment. The lateral system of the building would now have to be completely different which will be looked at in Tech.3.

Figure 8: Two Way Flat Slab with Drop Panels

Overall this could be a possible alternative for Mountain State Blue Cross Blue Shield. Further investigation is needed to determine change of lateral system and foundation impact. This option utilizes a two way post tension concrete slab and columns. To achieve post tension, the steel tendons are tensioned after the concrete has hardened to a compressive strength of approximately 3,000 psi (Figure 10). The tendons are anchored at the ends within the concrete and have a vertical profile (Figure 9). This system can cover large spans economically. Only a typical interior bay was designed for this report. Column sizes were assumed to be 20" x 20". The resulting thickness of the slab was 8". Detailed calculations can be seen in Appendix E. This system could span even a greater distance while still maintaining a relatively thin slab thickness. This could reduce the amount of columns and foundations in Mountain State Blue Cross Blue Shield. With this minimal slab thickness the addition of another floor could be achieved since this depth is less than half of the original deck. The post tension slab also deals well with deflection and vibrations. It reduces the amount of mild-steel reinforcement.

The post tension slab has a significant increase in weight compared to the original floor system. This system also requires an experienced team for construction and the need to make sure everything is laid out correctly. It is also difficult to run the tendons around openings in the building. After construction adding of openings throughout the building is extremely difficult because of the possibility of rupturing a tendon. This means preconstruction planning must be precise. There must be a different lateral system used in this design.

Figure 10: Horizontal Tendon Layout

Overall this system is an exceptional choice. Further investigation will be needed in order to determine if larger bays and a different lateral system could fit into Mountain State Blue Cross Blue Shield's layout.

	Floor Systems								
Criteria	Composite Steel	Non-Composite Steel	Two Way Flat Slab	Post Tension					
Weight (psf)	59	67	119	100					
Slab Depth	5.25"	4.5"	9.5"	8"					
System Depth	28"	33"	13"	10"					
Constructability	Moderate	Moderate - Low	Moderate	Moderate - High					
Foundation Impact	-	-	Little	Little					
Fire Rating	1 - 2 hr	1 - 2 hr	2 hr	2 hr					
Vibration	Average	Average	Superb	Superb					
Material and Labor Cost per ft ²	\$22.75	\$20.98	\$16.55	\$26.17					
Viable System	Yes	No	Yes	Yes					
Further Investigation	-	No	Yes	Yes					

The following chart shows a comparison of all floor systems (Table 1).

Table 1: System Comparison

Weight comparison shows that the existing composite system is the lightest meaning that the other systems could cause changes to the caissons used for the buildings foundations. The year long construction time frame favors the existing design seeing that the concrete flat slab and the post tension slab could possibly increase construction time due to the difficulty of constructing these systems. I believe that either concrete structure could be a viable alternative depending on the experience of the contractor in those areas and the lee way in construction time. After investigating all these different floor systems it is not difficult to see why the original design was a composite steel floor system. The composite floor system is relatively cheap and easy to construct. Its large bay spans allow for the open floor plan needed in this office building layout. The easy construction allows for the building to be erected and completed in just over a year time frame. The cost of this system is relatively average compared to the others only due to the fact that light weight concrete was used. This system is lightest of the steel systems and has the smallest depth. All these contribute to making it the definite steel design choice.

However, the two way flat slab and two post tension slabs offer different advantages to the project. They present the building with the opportunity of minimizing the total depth of the floor system. This could allow for the addition of another floor. The post tension slab also proposes the possibility of increasing the span size to increase the open space throughout the building. I believe that either of these choices could be a possible alternative. Further analysis will be needed to determine a viable lateral system for these options.

All design values used were in accordance with the codes referenced. Detailed calculations and notes are available for review in the appendices. Any questions or comments can be aimed at Dominic Manno via email: dam336@psu.edu.

APPENDIX A: TYPICAL BAY USED FOR ALL CALCULATIONS

Typical Bay Used for Analysis

APPENDIX B: EXISTING COMPOSITE STEEL FLOOR SYSTEM

Gravity	Веат	Design

.. ..

• .

RAM Steel vH12 DataBase: 06265_00^RAM_Added Stain Building Code: IBC

04/01/08 16:58:17 Steel Code: ASD 9th Ed.

....

Floor Type: 2nd Floor Alt 2 Beam Number = 120

SPAN INFORMATION (h): 1-End (30.00.42.33) J-End (60.00.42.33) W18X35 Fy = 50.0 ksiReam Size (Optimum) ÷ 30.00 Total Beam Length (fi)

COMPOSITE PROPERTIES (Not Shored):

	f.eft		Right
	3.25		3.25
	115.00		115.00
	4.00		4,00
•	perpendicular	per	pendicular
	USD 2" Lok-Floor	USD 27	Latk Floor
.90.00	Y bar(in)	=	17.78
77.66	Str (in3)	-	96.50
1113.61	Itr (in4)	-	1680.47
4.00	Stud diam (in)		0.75
.6			
Partia	16 Actual 16		
Percent a	of Full Composite Actio	n = 26.59	
	.90.00 77.66 1113.61 4.00 6 Partial Percent a	Left 3.25 115.00 4.00 perpendicular USD 2°.Lok-Floor 90.00 Y bar(in) 77.66 Str (in3) 1113.61 Itr (in4) 4.00 Stud diam (in) 6 Partial 16 Actual 16 Percent of Full Composite Action	Left 3.25 115.00 4.00 perpendicular USD 2°,Lok-Floor 90.00 Y bar(in) 77.66 Str (in3) - 1113.61 A00 Stud diam (in) 6 Partial Partial 16 Percent of Full Composite Action = 26.59

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red ⁹ /a	Type	CLL
1	0.000	0.640	0.570	0.800	13.8%	Red	0,200
	30.000	0.640	0.570	0.800			0.200

SHEAR: Max V (DL+LL) - 19.95 kips - fv + 3.95 ksi - Fv = 19.13 ksi

MOMENTS:

Span	Cond	Moment	œ,	Lb	Ch	Tensio	n Flange	Comp	r Flunge
-		kip ft	ft	fl		ťb	Fb	lb	Гb
Center	PreCtup ·	86.6	15.0	0.0	1,00	18.05	33,00	18.05	33.00
	Max =	149.6	15.0						
	Mmax/Seff					23.12	33.00		
	Mconst/Sx+)	/lpost/Seff				26.57	45.00		
Controllin	ıg	149.6	15.0			23.12	33.00		
fe (ksi)	0.31 Fc	1.80							
REACTI	ONS (kins):								

REACTIONS (https);

		L.eft	Right			
Initial reaction		11.55	11.55			
DL reaction		9.60	9.60			
Max -LL reaction		10.35	10.35			
Max -total reaction		19.95	19.95			
DEFLECTIONS:						
Initial load (in)	at	15.00	Jt	-0.702	L/D	513
Live load (in)	244	15,00	Ω —	-0.389	L/D	925
Post Comp load (in)	ar	15.00	ft	-0.429	170 ····	839
Net Total load (in)	ы	15.00	n –	-1.131	L/D	318

RAM VENATC M

<u>Load Diagram</u>

RAM Steel v11.2 DataBase: 06265_00^RAM_Added Stair Building Code: IBC

04/01/08 16:58:17

//	RAM Steel	11.2	<u>Gra</u>	avity Be	<u>am Des</u>	ign			
RAM	DataBase: (Building Co	06265_00^RA ode: IBC	M_Addee	l Stair			5	04/01 Steel Code:	l/08 16:58:17 ASD 9th Ed.
Floor Typ	e: 2nd Fio	or Alt 2	Beam N	umber = 7					
SPAN INI Maxir Beam Total	FORMATI num Depth Size (User Boum Leng	ON (ft): I-Er Limitation spe Selected) th (ft)	nd (30.00 cified = 3 - W2 - 30.	,22.33) 12.00 in 21.X62 00	I-End (30.	00,52.33)	Fy –	50.0 ksi	
COMPOS	STFE PROI	PERTIES (No	t Shored)):					
Coner Unit v fe (ks Decki Decki betf (i Seff (i Stud) Stud (H of st Nurd	rete thicknes veight conc i). ng Orientat ng type in in ang type ength (in) Papacity (ki nuds: Ful sen of Stud J	$\frac{2}{100} = \frac{1}{100}$ ion $\frac{1}{100} = \frac{1}{100}$	0 90.00 59.66 91.74 4.00 Partial	p SD 2° Lok Y bar(in Str (in3) Ifr (in4) Stud dia 33 Act Dult Course	Left 3.25 (15.09 4.00 arallel -Flesor) (in) un (in) unl 34 astis action	USD 2" = =	Right 3.25 (15.00 4.00) perallel Lok-Ulter 19.28 189.35 3566.80 0.75		
BOINTI			arcent of a	i un c'onqu	INTE ACTO	1 27.44			
Dist 10.000 20.000	DL DL 19.20 1 19.20 1	(7): CDL RedLL 17.10 24.00 17.10 24.00	Red% 31.7 31.7	NonRLL 0.00 0.00	StorLL 0.00 0.00	Red%i 0.0 0.0	RoofEE 0.00 0.00	Red% C Snow 6 Snow 6	91.1. 5.00 5.00
SHEAR:	Max V (DI	L=LL) – 35.59	kips fv	– 4.24 ksi	Fv = 20.	00 ksi			
MOMEN: Span Center	TS: Cond PreCmp	Moment kip-ft 231.0	نين ٦ 10.0	[.h [î 0.0	Съ 1.00	Ten th 21.83	sion Flange Fb 33.00	c Con th 21,83	npr Flange Fb 33.00
Controlling fc (ksi)	Max + Mmax/Sef Mconst/Sx g 0.43 Fe	355.9 T () Mpost/Seff 355.9 5 1 80	10.0 10.0			26.75 30.06 26.75	5 33.00 5 45.00 5 33.00))	
REACTIO	ONS (kips):	:							
foitial DL res Max - Max DEFLEC Initial Live k Post C	reaction action -LL reaction total reaction FIONS: load (in) comp load (i	1 1111 1111	L 23 19 16 35 at at at	left Ri 0.10 21 0.20 19 0.39 16 0.59 33 15.00 ft = 15.00 ft = 15.00 ft =	ight 3.10 3.20 5.59 5.59 5.59 5.59 5.59 5.59	734 374 422	L/D = L/D = L/D =	496 962 853	
mitial Live k Post C	toad (in) oad (in) Comp load (.	in)	શા લા at	15.00 ft = 15.00 ft = 15.00 ft =	: .0.1 : -0.1 : -().4	734 874 122	L/D = L/D = E/D =	496 962 853	

<u>Load Diagram</u>

DataBase: 06265_00^RAM_Added Stair

04/01/08 16:58:17

Floor Type: 2nd Floo Span information (ft):	or Alt 2 I-End (30.00,22.3)	Beam Nu 3) J-End (3	nber = 7 0.00,52.33)		
	F	21		P2	
Load	Dist ft	DL kips	LL+ kips	LL- kips	Max Tot kips
P1 1 P2 2	10.000 19. 20.000 19.	.199 1 .199 1	.6.392 (.6.392 ().000).000	35.591 35.591

Assembly B10102542300

Based on National Average Costs

Floor, composite metal deck, 5" slab, 30'x30' bay, 29" total depth, 75 PSF superimposed load, 129 PSF total load

Description	Quantity	Unit	Material	Installation	Total
Welded wire fabric, sheets, 6 x 6 - W1.4 x W1.4 (10 x 10) 121 lb. per C.S.F., A185	0.011	C.S.F.	0.15	0.34	0.50
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, sa	0.011	C.Y.	1.25	0.00	1.25
Structural concrete, placing, elevated slab, pumped, less than 6" thick, includes vibra	0.011	C.Y.	0.00	0.31	0.31
Concrete finishing, floors, monolithic, machine trowel finish	1.000	S.F.	0.00	0.76	0.76
Curing, sprayed membrane compound	0.010	C.S.F.	0.05	0.08	0.13
Structural steel project, apartment, nursing home, etc, 100-ton project, 3 to 6 stories	.9.100	Lb.	10.47	3.37	13.83
Metal decking, steel, non-cellular, composite, galvanized, 3" D, 20 ga	1.050	S.F.	2.07	0.89	2.96
Metal decking, steel edge closure form, galvanized, with 2 bends, 12" wide, 18 ga	0.033	L.F.	0.12	0.07	0.18
Cementitious Fireproofing, sprayed mineral fiber or cementious for fireproofing, bea	0.790	S.F.	0.39	0.66	1.04
Cementitious Fireproofing, sprayed mineral fiber or cementious for fireproofing, corr	1.000	S.F.	0.74	1.00	1.74
Total			\$15.25	\$7.50	\$22.7 5

APPENDIX C: NON-COMPOSITE STEEL FLOOR SYSTEM

Gravity Beam Design

RAM Steel v11.2 DataBase: noncomp ≤ Building Code: IBC

10/20/08 10:29:33 Steel Code: ASD 9th Ed.

Floor Type	: noncomp		Beam	Numbe	r = 34							
SPAN INF Beam S Total B	ORMATIO ize (Optimi eam Length	N (ff): I-) im) .(ff)	End (30 = =	. 00,50.0 W18X4 30.00	0) J 10	End (6	0.00,5	0.00)	Fy	r = 50	0.0 ksi	
LINE LOAD	DS (k/ft):											
Load	Dist	DL	LL	Red	1%	Туре						
1	0.000 30.000	0.850 0.850	0.800 0.800	13.8	:%	Red						
2	0.000 30.000	0.040 0.040	0.000 0.000			NonR						
SHEAR: M	lax V (DL+	LL) = 23.7	0 kips	fv = 4.2	0 ksi	Fv = 20	0.00 k	si				
MOMENT	S:											
Span	Cond	Momen kip-f	t t	@ ft	Lb ft	C	Ъ	Tens fb	ion Fl	lange Fb	Comp fb	r Flange Fb
Center Controlling	Max +	177.8 177.8	31 31	5.0 5.0	0.0 0.0	1.0 1.0)0)0	31.19 31.19	3	3.00 3.00	31.19	33.00
REACTIO	NS (kins):											
				Left	Ri	ght						
DL read	tion			13.35	13	3.35						
Max +I	L reaction			10.35	10).35						
Max +t	otal reaction	n		23.70	23	3.70						
DEFLECTI	ONS: (Ca	mber = 1 /2	2)									
Dead lo	ad (in)		at	15.0	0ft =		-0.914		LÆ	=	394	
Live los	ad (in)		at	15.0	0ft =		-0.708		LD	=	508	
Net To	tal load (in)		at	15.0	0ft =		-1.123		LÆ	=	321	

<u>Load Diagram</u>

RAM Steel v11.2 DataBase: noncomp △ Building Code: IBC

10/20/08 10:29:33 Steel Code: ASD 9th Ed.

Floor Type	: noncomp		Beam	Number	= 12					
SPAN INF Beam S Total F	ORMATIO Size (Optimu Seam Length	N (ff): 1 im) (ft)	l-End (60 = =	.00,30.00) W27X84 30.00) J-En	d (60.00,6	0.00)	Fy = 5	0.0 ksi	
POINT LO	ADS (kips)):								
Dist	DL	RedLL	Red%	NonRLL	StorLL	, Red%	RoofLL	Red%		
10.000	13.35	12.00	31.7	0.00	0.00	0.0	0.00	Snow		
10.000	13.35	12.00	31.7	0.00	0.00	0.0	0.00	Snow		
20.000	13.35	12.00	31.7	0.00	0.00	0.0	0.00	Snow		
20.000	13.35	12.00	31.7	0.00	0.00	0.0	0.00	Snow		
LINE LOA	DS (k/ft):									
Load	Dist	DL	LL	Red%	ώ Τ <u>)</u>	ype				
1	0.000	0.084	0.000		- No	onR				
	30.000	0.084	0.000							
SHEAR: N	Max V (DL+	LL) = 44	.36 kips	fv = 3.79	ksi Fv	= 19.44 k	si			
MOMENT	S:									
Span	Cond	Mome	nt	0	Lb	Сь	Tension	Flange	Comp	r Flange
-		kip-	ft	ft	ft		fb	Fb	fb	Fb
Center	Max +	440	1.5 1	5.0 1	0.0	1.00	24.81	30.00	24.81	29.55
Controlling		440	1.5 1	5.0 1	0.0	1.00			24.81	29.55
REACTIO	NS (kips):									
				Left	Right	t				
DL rea	ction			27.97	27.97	1				
Max +)	LL reaction			16.39	16.39)				
Max +	total reactior	ı		44.36	44.36	i				
DEFLECT	IONS:									
Dead lo	oad (in)		at	15.00	ft =	-0.554	LA	D =	650	
Live lo	ad (in)		at	15.00	ft =	-0.328	LA	D =	1096	
Net To	tal load (in)		at	15.00	ft =	-0.882	LA	D =	408	

<u>Load Diagram</u>

10/20/08 10:29:33

Assembly B10102414000

Based on National Average Costs

W beam and girder, 25'x20' bay, 125 PSF superimposed load, 21" deep, fireproofing .827 SF/SF, 175 PSF total load

Description	Quantity	Unit	Material	Installation	Total	^
Structural steel project, offices, hospitals, etc, 100-ton project, 3 to 6 stories, A992 s	8.800	Lb.	10.12	3.43	13.55	
Cementitious Fireproofing, sprayed mineral fiber or cementious for fireproofing, bea	0.827	S.F.	0.41	0.69	1.09	
Total			\$10.55	\$4.12	\$14.67	~

Assembly B10102581020

Based on National Average Costs

Floor, metal deck, 18 ga, 3" deep, concrete slab, 11' span, 5" deep, 125 PSF superimposed load, 169 PSF total load

Description	Quantity	Unit	Material	Installation	Total	^
C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring,	0.050	L.F.	0.01	0.17	0.18	
Welded wire fabric, sheets, 6 x 6 - W1.4 x W1.4 (10 x 10) 121 lb. per C.S.F., A185	0.011	C.S.F.	0.15	0.34	0.50	
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, sa	0.009	C.Y.	1.03	0.00	1.03	
Structural concrete, placing, elevated slab, pumped, less than 6" thick, includes vibra	0.009	C.Y.	0.00	0.25	0.25	
Concrete finishing, floors, monolithic, machine trowel finish	1.000	S.F.	0.00	0.76	0.76	
Curing, sprayed membrane compound	0.010	C.S.F.	0.05	0.08	0.13	
Metal decking, steel, non-cellular, composite, galvanized, 3" D, 18 ga	1.050	S.F.	2.54	0.93	3.48	
Total			\$3.78	\$2.53	\$6.31	~

APPENDIX D: TWO WAY FLAT SLAB WITH DROP PANELS

FRAME 1 & 2 ANALYSIS WILL BE SAME
SINCE BAY DIMENSIONS AND COL DIMENSIONS
ARE THE SAME.
FRAME 1 & 2:

$$M_{a}: (\frac{1}{8}) 307_{PSF} (30')(28.3')^{2} 922'^{4}$$

MOMENTS
 $M^{-} = 0.68M_{0} = -599'^{4}$
 $M^{+} = 0.28M_{0} = 323'^{4}$
ACI TABLES 13.6.4.1 & 13.6.4.4
 M^{-} T5% TO CS. 25% TO M.S.
 M^{+} (D^{0} % TO CS. 40% TO M.S.
COL. ST. = 15' MID ST. = 15'
FRAME 142
MTOT - 599 323 - 599
 $M_{cS} = -449$ 194 - 449
 $M_{m.S.} = -150$ 129 - 150
ASOME: #7 BRS
 $d_{=115'}^{-} = 0.75 = 11.81''$
 $d_{SUME}^{-} = 9.5 - 0.75 = 11.81''$

FIZAM	EIZZ				
		C	5	M	15
TTEM	DESCRIPTION	M -	M+	M-	M*
1	MOMENT	-449	194	150	129
2	ю	120'	1800	180"	180"
3	d	11.81	8.31	8.31	8.31
4	Mn	499	216	-167	143
5	R	358	209	161	138
6	P	0.0062	0.0036	0.0027	0.0023
7	AJ	5.79	5-38	4.04	3.44
8	As min	3.12	3.42	3.42	3.42
9		15	9	- 1	6
10	1 Nmm 1	5	10	10	10
	$\pi \frac{1}{6^2}$		d=11.0	$5.32^{\prime} - \frac{11.58}{12}$	<u>-1</u> = 11.0

$$W_{R} = 307 \text{ psf}$$

$$V_{R} = 307 (30 \times 11.36) = 105^{K} \text{ caus.}$$

$$c_{1}V_{c} = 0.15(2) \overline{5000} (30 \times 12)(8.31)$$

$$\phi V_{c} = 317^{K} = 105 \text{ csf}$$

$$P_{0}NCHINGS \text{ SHEAR} \text{ Drop PANEL Area}$$

$$Drop PANEL \quad V_{R} = 307 [30 \times 30 - 121]$$

$$V_{R} = 239^{K}$$

$$V_{c} = [4.5000 (430)(11.81)/_{1000} = 1603^{K}$$

$$P_{0} = 239^{K}$$

$$V_{c} = 0.15 (1196) = 897 > 239 \text{ or}$$

$$Q_{V} = 0.15 (1196) = 897 > 239 \text{ or}$$

$$V_{R} = 307 [(30 \times 30) - 38.31]$$

$$= 265^{K}$$

$$V_{c} = [4.5000 (263)(11.81)/_{1000} = 879^{K}$$

$$[2 + 4] 15000 (263)(11.81)/_{1000} = 813^{K}$$

$$\phi V_{c} = 0.15(813) = 610^{K} = 265^{K} \text{ or}$$

Assembly B10102226600

Based on National Average Costs

Flat slab, concrete, with drop panels, 10.5" slab/7.5" panel, 18" column, 30'x30' bay, 75 PSF superimposed load, 217 PSF total load

Description	Quantity	Unit	Material	Installation	Total
C.I.P. concrete forms, beams and girders, exterior spandrel, plywood, 12" wide, 4 us	0.035	SFCA	0.05	0.30	0.35
C.I.P. concrete forms, elevated slab, flat slab with drop panels, to 15' high, 4 use, in	0.997	S.F.	1.75	4.90	6.65
Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for a	4.088	Lb.	2.08	1.51	3.60
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, sa	0.944	C.F.	4.00	0.00	4.00
Structural concrete, placing, elevated slab, pumped, 6" to 10" thick, includes vibratin	0.944	C.F.	0.00	1.05	1.05
Concrete finishing, floors, monolithic, machine trowel finish	1.000	S.F.	0.00	0.76	0.76
Curing, sprayed membrane compound	0.010	C.S.F.	0.05	0.08	0.13
Total			\$7.95	\$8.60	\$16.55

APPENDIX E: TWO WAY POST TENSION SLAB

$$DL = 100 \text{ psf}$$

$$SID = 10 \text{ psf}$$

$$SID = 10 \text{ psf}$$

$$LL_{0} = 80 \text{ rsf}$$

$$LL_{0} = 80 \text{ rsf}$$

$$LL_{0} = 80 \text{ rsf}$$

$$LL \text{ rewards} = 70 (0.35 + 9/4\pi) \text{ AI} = 900044^{-1}$$

$$= 60 \text{ rsf}$$

$$Sections \text{ Redeferites}$$

$$0.485 \cup (ACI. 18.3.3, 18.3.4)$$

$$A = 64 \text{ fs} = 30(12)(7) > 2880 \text{ m}^{-1}$$

$$D = 64^{2}(c = 360(3)^{2}/6 = 3640 \text{ m}^{-3}$$

$$D = 64^{2}(c = 360(3)^{2}/6 = 3640 \text{ m}^{-3}$$

$$D = 64^{2}(c = 360(3)^{2}/6 = 3640 \text{ m}^{-3}$$

$$D = 54^{2}(c = 360(3)^{2}/6 = 3640 \text{ m}^{-3}$$

$$D = 54^{2}(c = 3600 \text{ rsf}$$

$$C = 5000 \text{ rsf}$$

$$C = 3000 \text{ rsf}$$

$$C = 1040 \text{ rs}$$

$$T = 3000 \text{ rsf}$$

$$C = 0.45 (5000) = 2.250 \text{ rs}$$

$$T = 5000 \text{ rs}$$

$$C = 647c = 6.15000 = 424 \text{ rs}$$

$$T = 1725 \text{ rs}$$

$$MG. \text{ PEECAMP LIMITS}$$

$$T = 1725 \text{ rs}$$

$$MIC = 0.75 (100) = 75 \text{ rs}$$

CHER PREMAMPRESSION ALLOWANCE
TENDENS =
$$810/26.6$$

= $30.4 \Rightarrow 036 30$ TENDENS
PACTUAL = $30(26.6) = 798$
Wb = $(798/810)(2.15) = 2.22$ ¹⁶/H
ACTUAL PRECOMPRESSION STRESS
PACTUAL/A = $798'(1000)/2980 = 217$ psi/OF
EFFECTIVE PRESTRESS FORCE
Perf = $798'^{6}$
DL MOMENTS
 $297'^{6}$ $297'^{6}$ $00L = 110(30)/1000 = 3.5 k/Pt$
+ $74'^{6}$ $142'^{6}$
UL MOMENTS
ULL = $60(30)/1000 = 1.8 k/H$
H = $162'^{6}$ $142'^{6}$
+ $150'^{6}$

$$\frac{160^{16}}{200^{16}} = \frac{160^{16}}{200^{16}} = \frac{160^{16}}{200^{16}} = \frac{160^{16}}{200^{16}} = \frac{100^{16}}{200^{16}} = \frac{10$$

$$\frac{2}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000} \frac{1}{10000}$$

SUPPORT STRESSES

$$f_{TOP} = (+M_{DL} + M_{LL} - M_{PAL})/s - P/A$$

 $f_{TOP} = (-M_{DL} - M_{LL} + M_{PAL})/s - P/A$
 $f_{TOP} = [(-297 + 162 - 200)(1000)]/3000 - 2771$
 $= 333 > 6.472 - 0.6 fy PENF.$
 $f_{MET} = [(-297 - 162 + 200)(1000)]/3000 - 2777$
 $= -1086 - 2250$
ULTIMATE STREAMENTH
 $M_1 = P(e)$
 $e = 0 \text{ AT EXT SUP.}$
 $e = 3.0 \text{ AT EXT SUP.}$
 $M_1 = (798)(3)/12 = 200 \text{ F} + K$
 $M_{SEL} = M_{PAL} - M_1$
 $= 200 - 200 = 0 \text{ AT INT SUP.}$
 $M_{LL} = 1.2M_{DL} + 1.6M_{LL} + 1.0M_{SEL}$
 $P(MOSPAN) = 12(238) + 1.6(136) = 494 \text{ A} - K$
 $C SUPPORT = 1.2(-297) + 1.6(-162) = 6166 \text{ H} - K$

Determine MINIMUM BONDED REINFORCEMENT:
The MOMENY REGION:
INT SPAN:
$$f_1 = 26 \text{ pri} \le 2.772 = 1.411 \text{ pri}$$

NO RESTRICE REINF. REEO (ACT 18.7.3.)
NEG MOMENT REGION:
Acm = 0.00075Act (ACT 18.7.3.3)
INTER. ZUP.
Acr = 8(30)(12) = 2880 m²
Acr = 8(30)(12) = 2880 m²
Acr = 8(30)(12) = 2.16 m²
= 11 - # 4 (2.20 m²) TOP
EXT. SUP.
Acr = 2880 m²
Acr = 18.9.3 MIN 4 Base Each Direction
Acr = 18.9.3 MIN 4

CHECK MIN REINF.

$$M_{n} = (A_{2}f_{1} + A_{p}f_{p})(d - 9/2)$$

$$A_{ps} = 0.153 (30) = 4.57$$

$$f_{ps} = f_{re} + 10000 + (f_{2}bd)/(300 A_{p})$$

$$= 174000 + 10000 + (3000 (30 x12) d)/300 (459)$$

$$= 1814000 + 1307 d$$

$$a = (A_{5}f_{1} + A_{5}f_{ps})/(0.75 F_{2}b)$$

$$A_{1} = SUPPOPTS$$

$$d = 8'' - 3/4'' - 1/4'' = 7''$$

$$f_{ps} = 184000 + 1307 (7) = 193, 149 psi$$

$$a = [(2.20)(60) + (4.59(193)]/(0.95(-5))(50x(2)] =$$

$$0.67$$

$$M_{n} = 0.9[(2.20)(40) + (-459(193)][(7 - \frac{0.67}{2})]/12$$

$$= 509 - 616$$

$$A_{5} = 5.8 m^{2} - USE - 25 # 4$$

$$TOP = aT INT. SUP.$$

$$POT = DIRECTIONS$$

$$ACI = 18.9.44.3 (BUD SPAN)$$

$$A = 8 - 11/2 - 1/4 - 6 1/4$$

$$f_{ps} = 184000 + 1307 (6.25) = 192 ksi$$

$$a = [(7.33)(60) + (4.59)(192)][(70.85)(5)(30x(2)] = 0.86$$

