Crossroads at Westfields

Building II

Chantilly, Va

STEPHEN LUMPP Structural option

Faculty Consultant: Dr. Andres Lepage

Technical Report 2

EXECUTIVE SUMMARY

This report is a study of alternate floor systems for Crossroads at Westfields Building II. Including the existing floor system, composite metal deck with steel framing, three other systems were designed, analyzed, and compared to see whether they were viable for further investigation. The comparison consisted of many factors including architecture, effects on the lateral system, constructability, cost, fire rating, and impact on the foundation. The main architectural feature of the building is its open floor plan which is achieved by spans of over forty feet. Due to the large loads of this office building and long spans the following systems were chosen to be analyzed:

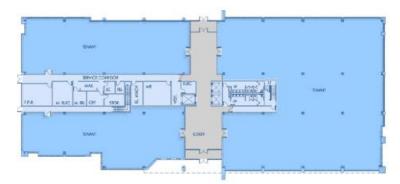
- 1. Composite metal Deck with steel framing (existing)
- 2. Two-way Flat Slab with Drop Panels
- 3. Hollow Core planks with steel framing
- 4. Two-way Post-tensioned slab

Based on the preliminary design and analysis of the 4 systems, the existing composite floor system proved to be the best design for this building, verifying the actual design. The two-way post-tensioned slab and hollow core offered the best alternatives due to the fact that they kept the bay sizes unchanged handling the large loads and long spans. The PT system achieves the least deep floor which allows for the greatest floor to ceiling heights. The Hollow Core system is very similar to the existing composite system but has the most depth of any of the floor systems. The two-way flat slab system required adding columns to split the long spans eliminating it from further consideration. Overall, the hollow core system and post-tensioned system would provide the best alternatives and other criteria such as vibration, deflection and lateral effects will be investigated in future reports.

Stephen Lumpp Technical Report 2 Page 2 of 52

TABLE OF CONTENTS

EXECUTIVE SUMMARY	PAGE 2
TABLE OF CONTENTS	PAGE 3
INTRODUCTION	PAGE 4
STRUCTURAL SYSTEMS FOUNDATION SYSTEMSFLOOR SYSTEMSROOF SYSTEMLATERAL SYSTEMCOLUMN SYSTEM	PAGE 6 PAGE 7 PAGE 8
APPLICABLE CODES	PAGE 10
MATERIALS PROPERTIES	PAGE 11
ALTERNATIVE FLOOR SYSTEMS COMPOSITE METAL DECK (EXISTING)	PAGE 14 PAGE 16
COMPARISON TABLE	PAGE 20
COMPARISONS AND CONCLUSIONS	PAGE 21
APPENDIY	PAGE 22


OVERALL INTRODUCTION

The Crossroads at Westfields are two identical office buildings mirroring each other on site. Although the project is currently on hold, these two buildings will offer over 300,000 GSF of office space to future tenants. Located in the Westfields Corporate Center in Chantilly, Virginia, the site is located at the crossing of the Stonecroft Blvd. and Lee Rd., hence the name.

Site Plan

Building II, identical to Building I, is a 5- story office building with floor plans that offer spans of over 41 feet. The large open floor plan creates long spans that require the beams to be cambered to pass deflection criteria. The structure consists of composite steel beam framing with ordinary moment connections to resist lateral loading. The roof is supported by joists and steel decking, and the future mechanical units will have composite slab pads similar to each floor.

Typical Floor Plan

Stephen Lumpp Technical Report 2 Page 4 of 52

EXISTING STRUCTURAL SYSTEMS

FOUNDATION SYSTEMS

The Foundation system consists of reinforced cast-in-place concrete spread footings. According to the Geotechnical report recommendations prepared by ECS, Ltd the allowable soil bearing values vary throughout the site. Foundations bearing on the natural 'weathered rock' soil classification will be designed with an allowable soil bearing of 6000 psf while foundations bearing on engineered fill will be designed for soil bearing of 3000 psf. The concrete strength shall be 3000 psi.

According to recommendations in the Geotechnical Report, the Slab on Grade will bear on the natural soil. The slab is a 4" thick cast-in-place concrete with 6x6–10/10 welded wire mesh (WWM), laid on a 6-mil fiberglass reinforced polyethylene vapor barrier and 4" of washed gravel. Interior SOG will have a compressive strength of 3000 psi, while exterior SOG will have a strength of 4500 psi.

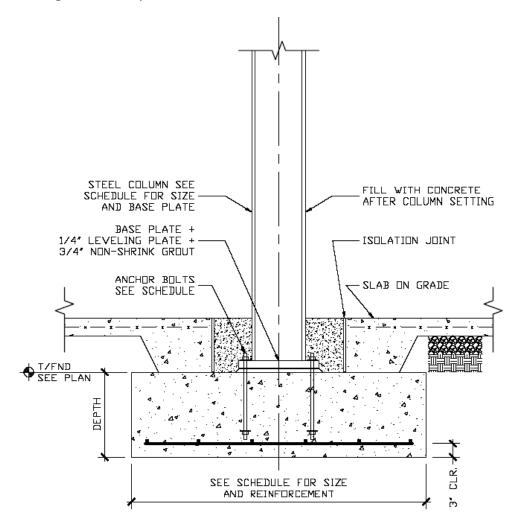


Figure 1- Typical Foundation section

Stephen Lumpp Technical Report 2 Page 5 of 52

FLOOR SYSTEMS

A typical floor in the Building II consists of 3" 20 gauge composite steel deck with 3-1/4" lightweight concrete slab totaling a total slab thickness of 6-1/4". The slab shall be reinforced with 6X6-10/10 WWM and have a compressive strength of 3000 psi. The floor is supported by A992 wide flange beams with studs dimensioned at 3 4" in diameter and 5 1 4" in length. The beams are spaced at 10' o/c and span 41'-8" in a typical exterior bay and 30'-0" in a typical interior bay, as you can see in Figure 2 below. Depending on the floor, the beams will be cambered from an 1" to 1^{1} 2" and will vary in size and weight. Typical interior girders are W24-62 spanning 30'-0", while typical exterior girders vary in size and also span 30'-0".

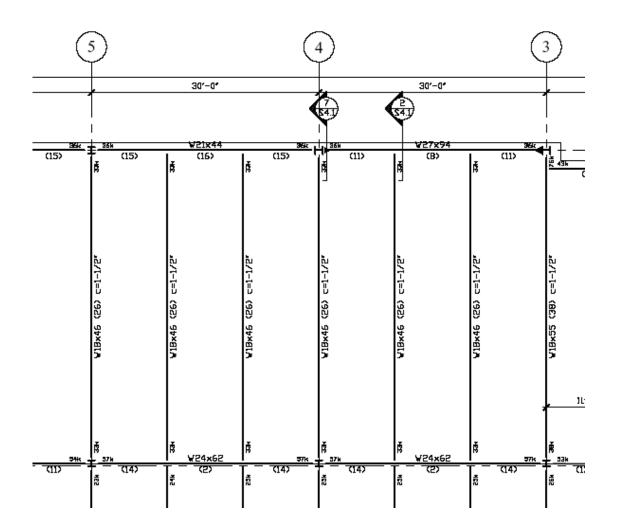


FIGURE 2 - Typical exterior floor bay

Stephen Lumpp Technical Report 2 Page 6 of 52

ROOF SYSTEM

As seen in Figure 3, the roof system is comprised of 1-1/2" 22 gauge Type B wide rib galvanized roof deck, on K series bar joists and steel girders. Light-gage framing makes up the 4' parapet and the screen wall encompassing the roof. Precast panels frame into each floor including the roof.

Rooftop Mechanical pads for future tenant equipment shall be constructed similar to the typical floor system consisting of 3" 20 gauge composite steel deck with 3-1/4" lightweight concrete slab totaling a total slab thickness of 6-1/4". The slab shall be reinforced with 6X6-10/10 WWM and have a compressive strength of 3000 psi.

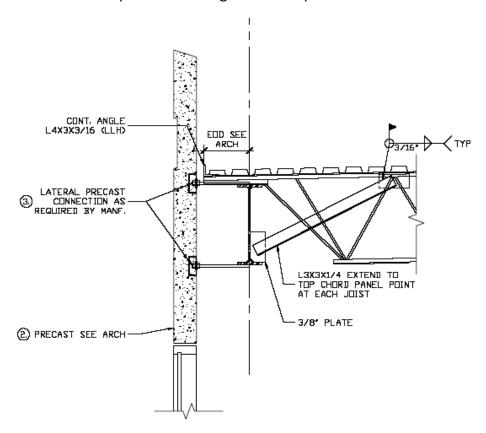


FIGURE 3 - Typical exterior roof section

Stephen Lumpp Technical Report 2 Page 7 of 52

LATERAL SYSTEM

The lateral resisting system for wind and seismic loads consists of a number of structural steel moment frames running in both directions. Lateral loading is transferred from precast panels (connected at each floor) to each individual floor. Once transferred into the floor system, the load is transferred into composite beams which make up the framing and then into the columns. The columns and beams are connected by a moment connection seen in Figure 4. the columns transfer the rest of the load into the foundation.

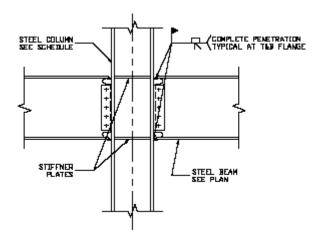


FIGURE 4 - Typical Beam to Column Moment connection

Figure 5 clearly shows the four moment frames positioned in each direction, North-South and East-West, supporting the building laterally. In both directions the moment frames are positioned symmetrically about the center axis. The North-South lateral system is 2 sets of parallel moment frames anchoring each end bay. The East-West lateral system is a set of 2 moment frames on each exterior side of the building. The beam sizes vary.

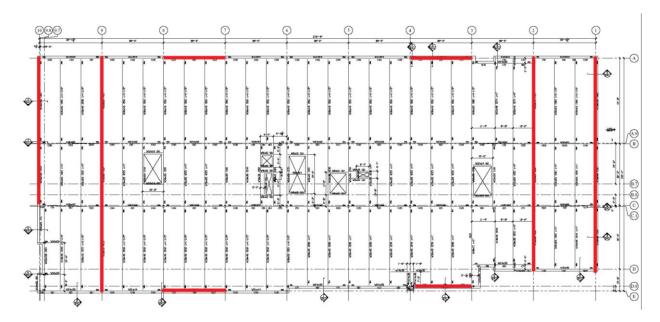


FIGURE 5 - Typical Floor plan with moment frames

Stephen Lumpp Technical Report 2 Page 8 of 52

COLUMN SYSTEM

Having a very uniform design layout the column system consists of typical exterior bays of 30'-0" x 41'-8" and interior bays of 30'-0" x 30'-0". All of the columns consist of either a gravity resisting member or a combined lateral and gravity resisting member. Each columns is spliced at 4 feet past the third floor, regardless of its resisting system. All columns vary in size depending on location and load resistance capabilities.

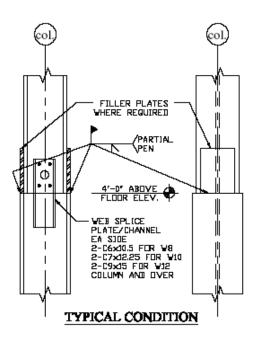


FIGURE 6 - Typical splice connection

Stephen Lumpp Technical Report 2 Page 9 of 52

APPLICABLE CODE

Design Codes used for Original Design:

- o International Building Code, 2003 Edition
- Viginina Uniform State Building Code, 2003
- American Society of Civil Engineers (ASCE)
 - ASCE 7 02, Minimum Design Loads for Buildings and Other Structures
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Ninth Edition (LRFD)
- American Concrete Institute (ACI)
 - Building Code Commentary 318-02

Code Substitutions/ Additional References used for Thesis Design:

- o International Building Code, 2006 Edition
- American Society of Civil Engineers (ASCE)
 - ASCE 7 05, Minimum Design Loads for Buildings and Other Structures
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Thirteenth Edition (LRFD)
- American Concrete Institute (ACI)
 - Building Code Commentary 318-08

Stephen Lumpp Technical Report 2 Page 10 of 52

MATERIALS AND PROPERTIES

Steel:

Wide flange shapes 50 ksi (A992)

Square or Rectangular Tubes 46 ksi (A500 Grade B) Round Pipes 42 ksi (A500 Grade B)

Miscellaneous Steel 36 ksi (A36)

Bolts 36/45 ksi (A325N/A490N)

Steel Studs 60 ksi (A108) Weld Strength 70 ksi (E70XX)

Concrete:

Foundations, Int. Wall & Int. SOG f'c = 3000 psi Ext. SOG and Pads f'c = 4000 psi Deck supported slabs (lightweight) f'c = 3000 psi

Reinforcement:

Stirrups and Ties 40 ksi (A615)
All other 60 ksi (A615)
Welded Wire Fabric: (A185)

Cold-Formed Steel Framing:

20 Gage 33 ksi (A653) 18 Gage 33 ksi (A653) 16 Gage 50 ksi (A653)

Note: Material strengths are based on American Society for Testing and Materials (ASTM) Standard ratings.

Stephen Lumpp Technical Report 2 Page 11 of 52

ALTERNATIVE FLOOR SYSTEMS

Composite Metal Deck (Existing System)

The composite metal deck system is viable floor system for the Crossroads at Westfields considering it is the existing floor system of the building. One of the main architectural features of the building is the 41'-8" spans that are in the typical exterior bays, allowing for maximum office space, as seen in figure 8. The composite system is a very effective system for this because of its ability to span long lengths and resist heavy loads, while meeting deflection criteria. The fire code for Building II requires a 1-hour rating for floor systems structural members. The 6 ¼" slab satisfies the 1-hour rating and the steel framing members require fireproofing to meet the criteria. Although larger wide flanges are needed to meet the deflection criteria, the overall weight of the floor system is approximately 66 PSF which is relatively light compared to the other floor systems proposed.

The Construction process of the composite system is very efficient and is one of the main reasons for this is the existing system for Building II. The erection of the steel members is much quicker than having a concrete structure where formwork and shoring is required. The slab can be poured at a much faster rate because the slab does not require many breaks. The cost of the floor system is \$27.85 per SF according to RS Means and is very similar in price range to the other alternate floor systems. The one negative to this system is the depth of the floor system which is over 30" deep (24" steel sections and 6 1/4" slab) reducing floor to ceiling heights.

Advantages

- Long spans and capable of resisting large loads
- Meets architectural and structural criteria
- Relatively light weight system allowing for smaller foundations
- Efficient construction process
- Relatively cost effective

Disadvantages

- Larger steel members reducing the floor to ceiling height

The number of advantages clearly outweighs the disadvantages showing why this system is not only viable but was chosen as the existing floor system for the Crossroads at Westfields Building II.

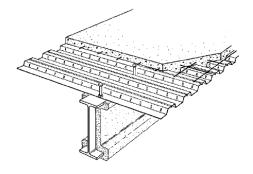


FIGURE 7 - COMPOSITE FLOOR SECTION

Stephen Lumpp Technical Report 2 Page 12 of 52

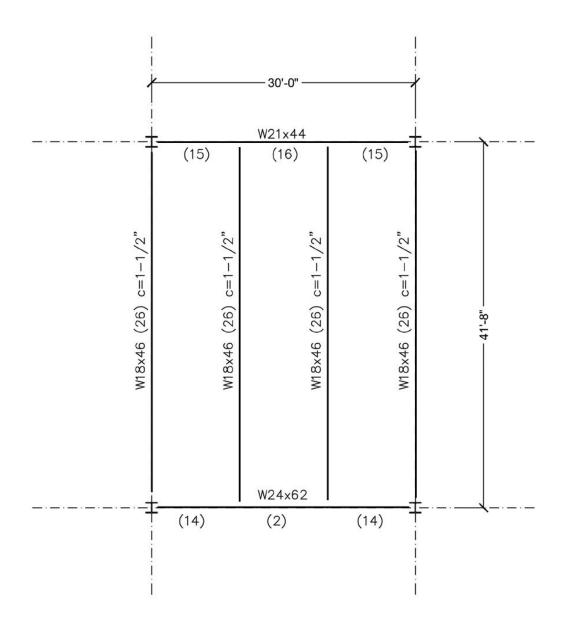


FIGURE 8 - TYPICAL COMPOSITE LAYOUT

Stephen Lumpp Technical Report 2 Page 13 of 52

2-way Flat Slab with Drop Panels

The initial goal as stated in the executive summary was to maintain the original column grid which is the main architectural feature of the floor plan allowing for an open office floor. To keep the original span of 41'-8" in the exterior bays the slab thickness would have needed to be a minimum of 16" thick which would not have been very economical. Therefore, additional columns were added in the middle of the long spans cutting the span length to 20'-10" and creating two 30'x21' bays in lieu of one 42'x30' bay. Unfortunately, this takes away from the "open" floor plan but is more economical resulting in an 11" thick slab instead of a 16" thick slab. The columns chosen were 24" circular with capital and drop panel. The drop panel is used to reduce the slab thickness and remove punching shear. The reason for the circular columns in lieu of rectangular is strictly for architectural aesthetic and would be analyzed for further feasibility if this system was considered a viable solution.

This system requires a totally different lateral system than the existing moment frame. Shear walls would most likely be used on the exterior faces of the building and in the main core around the elevator and stair shafts. Although the slab thickness is only 11" and the drop panels add an additional 4" the floor depth will increase with the addition of other building systems such as mechanical ducts. The weight of the floor system is approximately 137 PSF which is somewhat heavy and coupled with the added shear walls and columns the foundation would need to be redesigned. Although the construction time for this system is especially long due to shoring and formwork, the cost of the system is relatively cheap according to RS Means totaling only \$21.05.

Advantages

- Cost is relatively cheap
- Fireproofing easily meets criteria
- Floor depth is only 15+ inches allowing for greater ceiling heights

Disadvantages

- Architectural floor plan is altered resulting in less "open space"
- Weight of floor system is high
- Construction time is very long due to formwork and shoring

Overall, I would not consider this system viable as an alternate solution mostly because it requires a change to the architectural floor plan. Getting rid of the long spans defeats the purpose to have an "open" floor plan for office use.

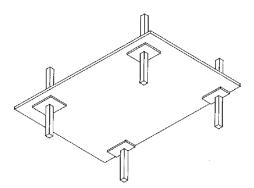


FIGURE 9 - VIEW OF FLAT SLAB WITH DROP PANELS

Stephen Lumpp Technical Report 2 Page 14 of 52

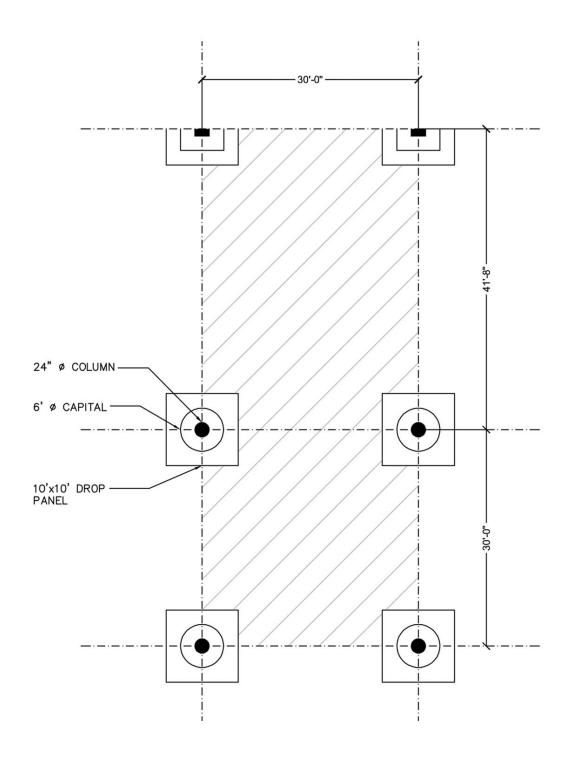


FIGURE 10 - TYPICAL FLAT SLAB LAYOUT

Stephen Lumpp Technical Report 2 Page 15 of 52

Hollow Core Plank

This system meets the goal to keep the architectural floor plan the unchanged. The column grid was altered and the steel framing plan was slightly altered by the subtraction of one beam running in the long direction of the typical bay. The reason why a beam was able to be removed was because the hollow core plank is able to span further distances than the composite steel deck. One negative is that beam spanning that long direction is 30" deep alone, not to mention the additional 6" for the plank itself. That results in a 36" deep floor system minimizing floor to ceiling heights but also meeting the deflection criteria for the system. The weight of the building results in 59 PSF which is relatively light in weight and will not effect the existing foundation.

This system, similar to the existing system, easily meets the 1-hour fire rating for the slab and requires fireproofing for the steel members. The constructability of the system is very efficient and fast, including the erection of the steel and installation of the precast planks. One negative is that the lead time for this system is slower because of the ordering and shipping of the system. The Cost of the planks is \$10.59 while the cost of the steel framing is approximately \$17 totaling \$27.59 which is very comparable to the existing system.

Advantages

- Architectural plan remained unchanged
- Weight of the building is lighter
- Construction time is very fast and efficient

Disadvantages

- Floor depth is 36" minimizing ceiling to floor heights
- Lead time is long due to ordering and shipping

After analyzing this floor system, many similarities were noticed to the existing floor plan with the exception that the lead time is much longer. The other disadvantage is the floor depth is greater than that of the existing system. Overall, the similarities to the existing make this a possibility as an alternative for the Crossroads and Westfields Building II.

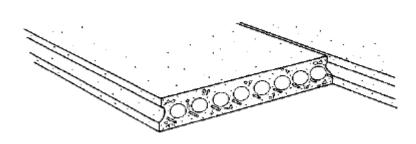


FIGURE 11 - HOLLOW CORE SLAB SECTION

Stephen Lumpp Technical Report 2 Page 16 of 52

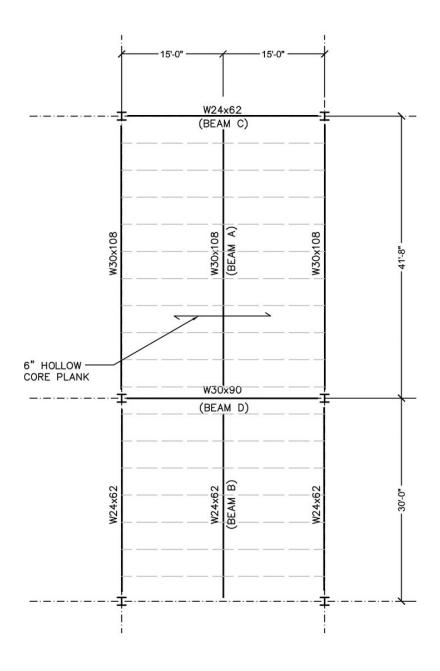
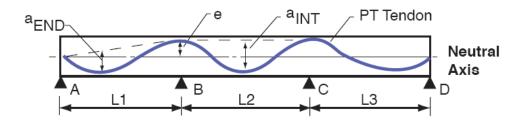


FIGURE 12 - TYPICAL HOLLOW CORE LAYOUT

2-way Post-Tensioned Slab

One of the many advantages of a post-tensioned slab is its ability to achieve long spans economically, and that was the goal for this floor system: minimize the thickness of the slab and keep the long spans. The minimum slab thickness is 12" but unfortunately, due to punching shear a 1" deep, 43" x 43" drop panel was required. Since the main architectural feature of the building is to keep "open" floor plans, this system is probably worth looking into further. The 12" slab easily meets the 1-hour fire rating and the weight of the floor system is 150 PSF which is relatively heavy compared to the composite system with the same number of columns. A new lateral system would have to be designed which may also add weight to the structure.

Post-Tensioned slab are good in deflection and vibration control as well as crack control. The cost is similar to the other systems totaling \$32 per SF with additional costs possible. These additional costs come with construction process. The laying of the tendons and placing of formwork require addition time. Due to the high jacking forces during installation specialized supervision and safety precautions are highly recommended.


Advantages

- Reduced structural depth and longer spans
- Can carry much higher loading
- Great in deflection, vibration and crack control

Disadvantages

- A little expensive due to many safety precautions during installation
- Construction takes a longer for several reasons

Overall, this system is viable solution for an alternate floor system of the Crossroads at Westfileds Building II because it can achieve long spans while maintaining a relatively thin floor depth.

Continuous Post-Tensioned Beam

FIGURE 13 - PT TENDON LAYOUT

Stephen Lumpp Technical Report 2 Page 18 of 52

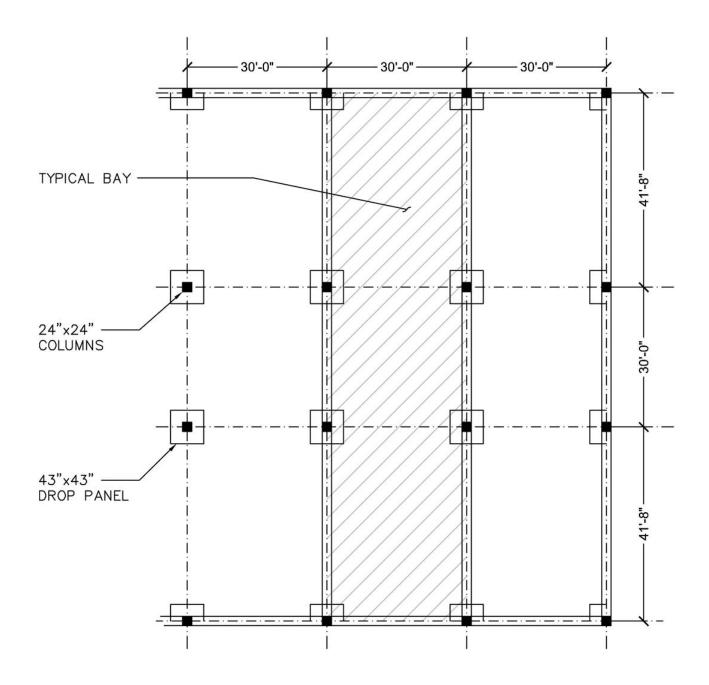


FIGURE 14 - TYPICAL POST-TENSION SLAB LAYOUT

Table 1									
	Flo	oor Systems - Compariso	ons						
Item	Composite Slab (Existing)	2-Way Flat Slab w/ Drop Panels	Hollow Core Plank w/ Steel Framing	Post- Tensioned Slab					
Architectural Requirements (Bay Dimensions unchanged)	Yes	No	Yes	Yes					
Lateral System	No changes	Shear Walls - Both Directions No changes		Shear Walls - Both Directions					
Fire Ratings	Slab - 1-hour Rating Framing - fireproofing	Slab - 1-hour Rating	Slab - 1-hour Rating Framing - fireproofing	Slab - 1-hour Rating					
Slab Depth (in.)	6.25"	11" (+ 4" Drop Panels)	6"	12" (+ 1" Drop Panels)					
Depth of floor sytem (in)	30" (6.25" slab + 24" steel members)	15"+ (11" slab + 4" drop panels + possible ductwork)	36" (6" slab + 30" steel members)	13"+ (12" slab + 1" drop panel + possible ductwork)					
Weight (PSF)	66 PSF	137 PSF	59 PSF	150 PSF					
Foundation Impact	None	Re-design necessary	Very Little	Re-design necessary					
Construction - Process	Efficient	Inefficient (more time and labor)	Efficient, but requires longer lead time	Inefficient (more time, labor and additional supervision)					
Material Cost (SF)	21	11.1	21 (8.5+12.5)	19.4					
Installation Cost (SF)	6.85	9.95	6.59 (2.09 +4.5)	11.4 (+1.2 for equip.)					
Overall Cost (Per SF)	27.85	21.05	27.59	32					
Deflection	Meets Criteria	Further investigation	Meets Criteria	Further investigation					
Vibration	Further investigation	Further investigation	Further investigation	Further investigation					
Viable System for Future consideration	Yes	No	Yes	Yes					

Stephen Lumpp Technical Report 2 Page 20 of 52

COMPARISONS AND CONCLUSION

The goal of this report was investigate viable alternatives for the floor system of the Crossroads at Westfields Building II. Including the existing floor system, a composite design, three schematic designs of additional systems were conducted to test the feasibility of each. Each system was compared to the others through a variety of criteria which can be found in Table 1 located on page 20 in the report. After weighing all of the comparisons it was concluded that the two-way post-tension slab and hollow core floor systems were the best alternatives to the existing system, although the existing composite slab proved to be the best choice for the design. The two-way flat slab will no longer be considered in future reports because it required the addition of extra columns splitting the exterior bays in half.

The three viable choices can all span long lengths and resist heavier loads. The hollow core and the existing composite floor systems are very similar when compared, both are very easy to construct, both require additional fire proofing of their steel members, both are relatively the same cost per square foot, and both have little impact on the foundation and lateral system in place now. The one negative of the two systems is that they both require very deep floors overall, reducing the floor to ceiling height. The PT system on the other hand, maximizes the floor to ceiling height having the least deep floor system. It requires no additional fire proofing and is probably meets vibration criteria easily because its only concrete (further investigation will be conducted on vibration). Some flaws to the PT system are cost and constructability. It costs more than the other two systems per square foot and takes much longer to construct.

After this preliminary design it is concluded that three systems, composite, post-tension, and hollow core will be further investigated. Other criteria will be considered such as deflection, vibration and the effects the lateral system will have on the building and foundation.

Stephen Lumpp Technical Report 2 Page 21 of 52

APPENDIX

Appendix A - Composite Metal Deck on steel framing

Gravity Beam Design

RAM Steel v12.1

DataBase: D07024 Westfields II(new)

10/21/08 23:18:13 Building Code: IBC Steel Code: AISC LRFD

Floor Type: TYP Beam Number = 53

SPAN INFORMATION (ft): I-End (90.00,114.16) J-End (120.00,114.16)

Beam Size (Optimum) = W21X44 Fy = 50.0 ksi

= 30.00Total Beam Length (ft)

COMPOSITE PROPERTIES (Not Shored):

			Left		Right
Concrete thickness	s (in)		3.25		3.25
Unit weight concr	ete (pcf)		115.00		115.00
fc (ksi)			3.00		3.00
Decking Orientati	on		parallel		parallel
Decking type			USD 3" Lok-Floor	USD 3"	Lok-Floor
beff (in)	-	57.00	Y bar(in)	=	18.18
Mnf (kip-ft)	=	740.74	Mn (kip-ft)		715.65
C (kips)	=	389.02	PNA (in)		20.30
Ieff (in4)	=	2237.31	Itr (in4)	=	2379.47
Stud length (in)	=	5.00	Stud diam (in)	=	0.75
Stud Canacity (kin	ne) On :	= 177			

Stud Capacity (kips) Qn = 17.7 # of studs: Full = 78 Partial = 44 Actual = 44 Number of Stud Rows = 1 Percent of Full Composite Action = 56.92

POINT LOADS (kips):

I	Dist	DL	CDL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	CLL
10.	000	15.62	13.55	20.66	20.0	0.00	0.00	0.0	0.00	Snow	4.13
20.	000	15.62	13.55	20.66	20.0	0.00	0.00	0.0	0.00	Snow	4.13

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.071	0.061	0.100	20.0%	Red	0.020
	30.000	0.071	0.061	0.100			0.020
2	0.000	0.044	0.044	0.000		NonR	0.000
	30,000	0.044	0.044	0.000			0.000

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 49.18 kips 0.90Vn = 195.62 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	@	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	PreCmp+	1.2DL+1.6LL	246.5	15.0	10.0	1.00	0.90	275.21
	Init DL	1.4DL	206.3	15.0				
	Max +	1.2DL+1.6LL	481.8	15.0			0.85	608.30
Controlling		1.2DL+1.6LL	246.5	15.0	10.0	1.00	0.90	275.21

REACTIONS (kips):

	Left	Right
Initial reaction	19.56	19.56
DL reaction	17.35	17.35
Max +LL reaction	17.73	17.73
Max +total reaction (factored)	49.18	49.18

RAM

Gravity Beam Design

RAM Steel v12.1

DataBase: D07024 Westfields II(new)

Building Code: IBC

Page 2/2 10/21/08 23:18:13

Steel Code: AISC LRFD

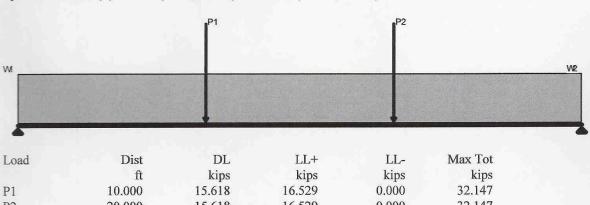
DEFLECTIONS:

Initial load (in)	at	$15.00 \mathrm{ft} =$	-0.996	L/D =	361
Live load (in)	at	15.00 ft =	-0.444	L/D =	810
Post Comp load (in)	at	15.00 ft =	-0.500	L/D =	720
Net Total load (in)	at	15.00 ft =	-1.496	L/D =	241

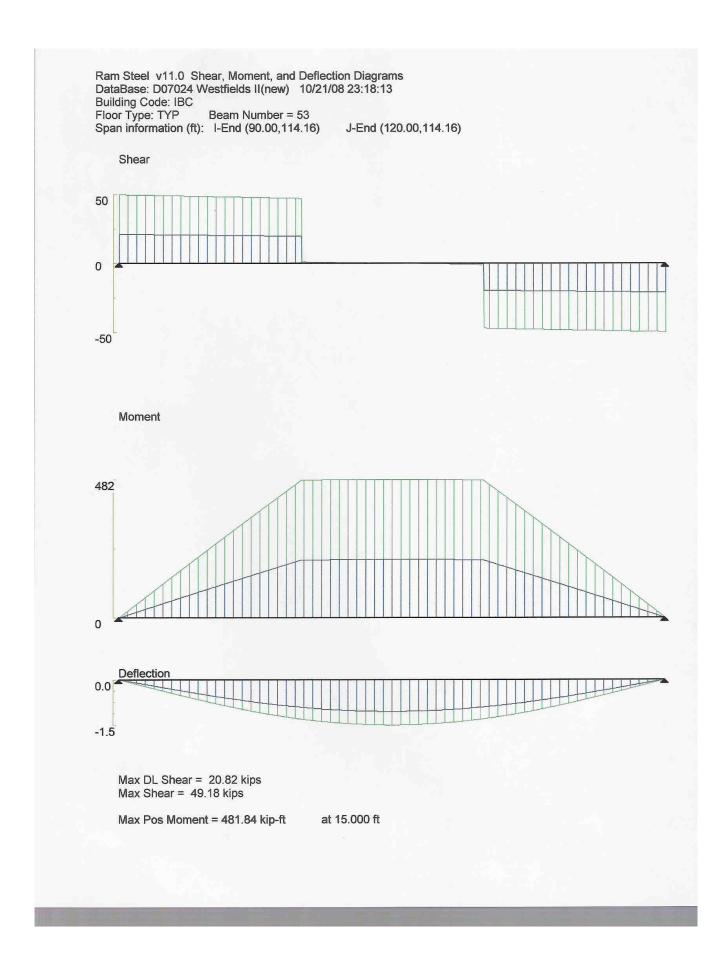
Load Diagram

RAM Steel v12.1

DataBase: D07024 Westfields II(new)


Building Code: IBC

10/21/08 23:18:13


Floor Type: TYP

Beam Number = 53

Span information (ft): I-End (90.00,114.16) J-End (120.00,114.16)

Load	Dist	DL	LL+	LiL-	Max 10t
	ft	kips	kips	kips	kips
P1	10.000	15.618	16.529	0.000	32.147
P2	20.000	15.618	16.529	0.000	32.147
	ft	k/ft	k/ft	k/ft	k/ft
W1	0.000	0.115	0.080	0.000	0.195
W2	30.000	0.115	0.080	0.000	0.195

Gravity Beam Design

RAM Steel v12.1

DataBase: D07024 Westfields II(new) 10/21/08 23:18:13
Building Code: IBC Steel Code: AISC LRFD

Floor Type: TYP Beam Number = 52

SPAN INFORMATION (ft): I-End (90.00,72.83) J-End (120.00,72.83)

Beam Size (Optimum) = W24X62 Fy = 50.0 ksi

Total Beam Length (ft) = 30.00

COMPOSITE PROPERTIES (Not Shored):

			Left		Right
Concrete thickness	ss (in)		3.25		3.25
Unit weight conc	rete (pcf)	115.00		115.00
f'c (ksi)			3.00		3.00
Decking Orientat	ion		parallel		parallel
Decking type			USD 3" Lok-Floor	USD 3'	Lok-Floor
beff (in)	=	90.00	Y bar(in)	=	20.95
Mnf (kip-ft)	=	1184.54	Mn (kip-ft)	=	940.08
C (kips)	=	247.56	PNA (in)	=	17.61
Ieff (in4)	=	3134.17	Itr (in4)	=	4299.78
Stud length (in)	=	5.00	Stud diam (in)	=	0.75
Stud Canacity (ki	ne) On	= 177			

Stud Capacity (kips) Qn = 17.7

of studs per stud segment: Full = 43,1,42

Partial = 14,2,14 Actual = 14,2,14

Number of Stud Rows = 1 Percent of Full Composite Action = 33.19

POINT LOADS (kips):

DL	CDL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	CLL
15.62	13.55	20.66	20.0	0.00	0.00	0.0	0.00	Snow	4.13
11.35	9.81	15.42	20.0	0.00	0.00	0.0	0.00	Snow	3.08
15.62	13.55	20.66	20.0	0.00	0.00	0.0	0.00	Snow	4.13
11.05	9.56	14.91	20,0	0.00	0.00	0.0	0.00	Snow	2.98
	15.62 11.35 15.62	15.62 13.55 11.35 9.81 15.62 13.55	15.62 13.55 20.66 11.35 9.81 15.42 15.62 13.55 20.66	15.62 13.55 20.66 20.0 11.35 9.81 15.42 20.0 15.62 13.55 20.66 20.0	15.62 13.55 20.66 20.0 0.00 11.35 9.81 15.42 20.0 0.00 15.62 13.55 20.66 20.0 0.00	15.62 13.55 20.66 20.0 0.00 0.00 11.35 9.81 15.42 20.0 0.00 0.00 15.62 13.55 20.66 20.0 0.00 0.00	15.62 13.55 20.66 20.0 0.00 0.00 0.0 11.35 9.81 15.42 20.0 0.00 0.00 0.0 15.62 13.55 20.66 20.0 0.00 0.00 0.0	15.62 13.55 20.66 20.0 0.00 0.00 0.0 0.00 11.35 9.81 15.42 20.0 0.00 0.00 0.0 0.00 15.62 13.55 20.66 20.0 0.00 0.00 0.0 0.00	15.62 13.55 20.66 20.0 0.00 0.00 0.0 0.00 Snow

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.062	0.062	0.000		NonR	0.000
	30.000	0.062	0.062	0.000			0.000

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 79.32 kips 0.90Vn = 275.16 kips

MOMENTS (Ultimate):

TARCHARATAR	(CHEMMINE CO)							
Span	Cond	LoadCombo	Mu	a	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	PreCmp+	1.2DL+1.6LL	402.0	13.0	10.0	1.00	0.90	463.87
	Init DL	1.4DL	335.1	13.6		:		
	Max +	1.2DL+1.6LL	789.5	10.5		-	0.85	799.07
Controlling		1.2DL+1.6LL	789.5	10.5			0.85	799.07

REACTIONS (kips):

	Left	Right
Initial reaction	31.39	31.27
DL reaction	27.80	27.69

Stephen Lumpp Technical Report 2 Page 26 of 52

A RAM

Gravity Beam Design

RAM Steel v12.1

DataBase: D07024 Westfields II(new)

Building Code: IBC

Page 2/2 10/21/08 23:18:13 Steel Code: AISC LRFD

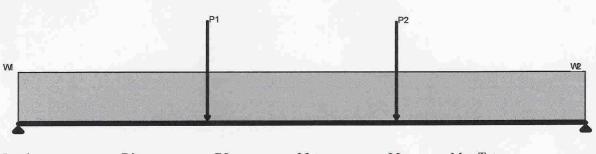
	Left	Right
Max +LL reaction	28.73	28.59
Max +total reaction (factored)	79.32	78.98

DEFLECTIONS:

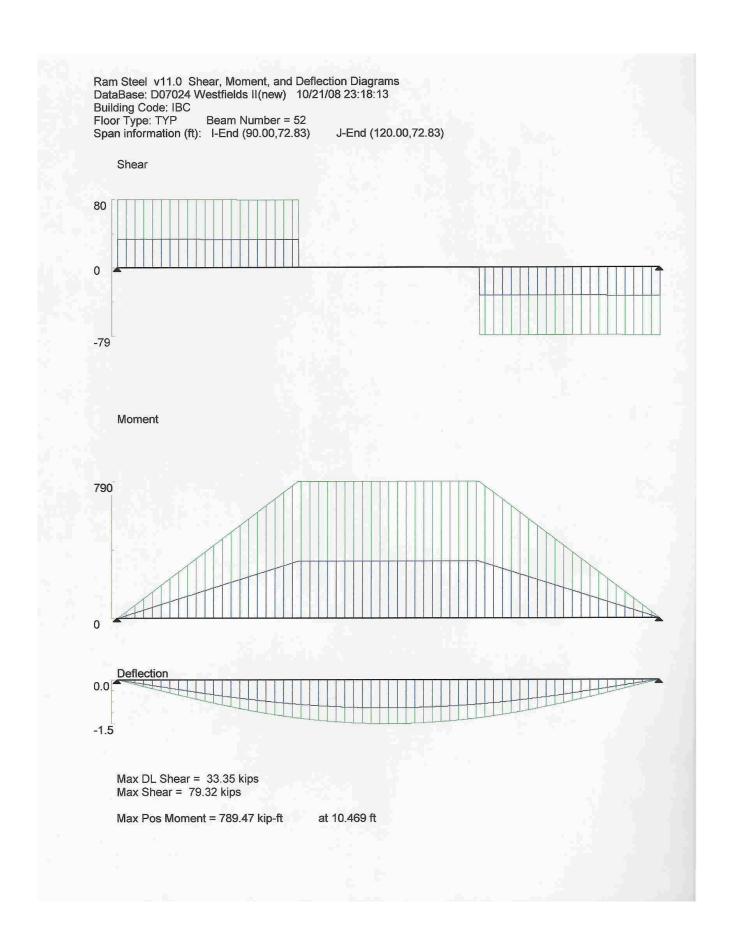
Initial load (in)	at	15.00 ft =	-0.881	L/D =	409
Live load (in)	at	15.00 ft =	-0.522	L/D =	689
Post Comp load (in)	at	15.00 ft =	-0.587	L/D =	613
Net Total load (in)	at	15.00 ft =	-1.468	$\Gamma D =$	245

Load Diagram

RAM Steel v12.1


DataBase: D07024 Westfields II(new)

Building Code: IBC


Floor Type: TYP Beam Number = 52

Span information (ft): I-End (90.00,72.83) J-End (120.00,72.83)

Load	Dist	DL	LL+	LL-	Max Tot
	ft	kips	kips	kips	kips
P1	10.000	26.967	28.862	0.000	55.829
P2	20.000	26.665	28.457	0.000	55.122
	ft	k/ft	k/ft	k/ft	k/ft
W1	0.000	0.062	0.000	0.000	0.062
W2	30.000	0.062	0.000	0.000	0.062

Gravity Beam Design

RAM Steel v12.1

DataBase: D07024 Westfields II(new)

Building Code: IBC Steel Code: AISC LRFD

10/21/08 23:18:13

nber =	56
	nper =

SPAN INFORMATION (ft): I-End (100.00,72.83) J-End (100.00,114.16)

Maximum Depth Limitation specified = 19.50 in

Beam Size (Optimum) = W18X46 Fy = 50.0 ksi

Total Beam Length (ft) = 41.32

COMPOSITE PROPERTIES (Not Shored):

			Left		Right
Concrete thickness	ss (in)		3.25		3.25
Unit weight conc	rete (pcf)	115.00		115.00
f'c (ksi)			3.00		3.00
Decking Orientat	ion		perpendicular	pei	pendicular
Decking type			USD 3" Lok-Floor	USD 3"	Lok-Floor
beff (in)	=	120.00	Y bar(in)	=	18.48
Mnf (kip-ft)	=	798.58	Mn (kip-ft)	=	558.77
C (kips)	=	172.41	PNA (in)	=	13.84
Ieff (in4)	=	1605.05	Itr (in4)	=	2479.06
Stud length (in)	=	5.00	Stud diam (in)	=	0.75
Stud Conneity (ki	na) On	- 122			

Stud Capacity (kips) Qn = 13.3

of studs: Max = 82 Partial = 26 Actual = 26

Number of Stud Rows = 1 Percent of Full Composite Action = 25.54

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.710	0.610	1.000	20.0%	Red	0.200
	41.322	0.710	0.610	1.000			0.200
2	0.000	0.046	0.046	0.000		NonR	0.000
	41.322	0.046	0.046	0.000			0.000

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 45.19 kips 0.90Vn = 175.93 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	PreCmp+	1.2DL+1.6LL	236.3	20.7	0.0	1.00	0.90	340.12
	Init DL	1.4DL	196.0	20.7				
	Max +	1.2DL+1.6LL	466.8	20.7			0.85	474.96
Controlling		1.2DL+1.6LL	466.8	20.7	****		0.85	474.96

REACTIONS (kips):

	Left	Right
Initial reaction	17.68	17.68
DL reaction	15.62	15.62
Max +LL reaction	16.53	16.53
Max +total reaction (factored)	45.19	45.19

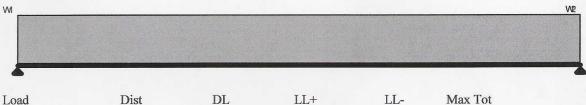
DEFLECTIONS: (Camber = 1-1/2)

	Initial load (in) Live load (in)	at at	20.66 ft = 20.66 ft =	-2.084 -1.128	L/D = L/D =	238 440	
-	Post Comp load (in)	at	20.66 ft =	-1.269	L/D =	391	
	Net Total load (in)	at	20.66 ft =	-1.853	L/D =	268	

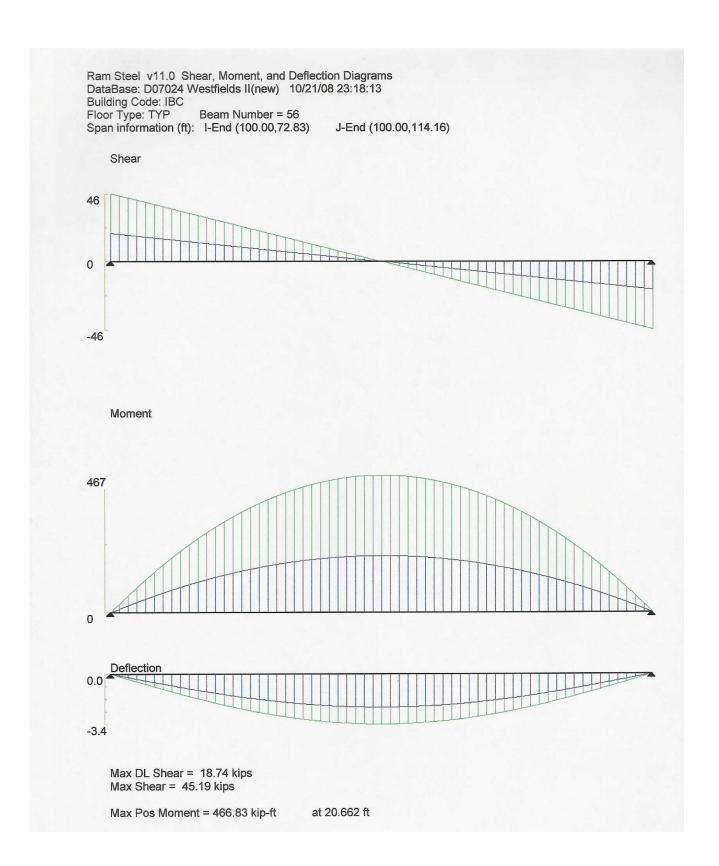
Stephen Lumpp Technical Report 2 Page 29 of 52

Load Diagram

RAM Steel v12.1


DataBase: D07024 Westfields II(new)

Building Code: IBC


10/21/08 23:18:13

Floor Type: TYP Beam Number = 56

Span information (ft): I-End (100.00,72.83) J-End (100.00,114.16)

Load	Dist	DL	LL+	LL-	Max Tot
	ft	k/ft	k/ft	k/ft	k/ft
W1	0.000	0.756	0.800	0.000	1.556
W2	41.322	0.756	0.800	0.000	1.556

Appendix B - Two-way flat slab with drop panels

SHEET NO.	OF	JOB NO.				CTE	ICTI	IKO
CALCULATED BY						JU	ucti	ul a
SCALE		DATE				an engin	eering colla	aborative
							9	
-two-	WAY 5	LAB ANA	ACY515					
	1							
	1 30	1-0" 1 3	00'-0" }	20:0				
	ПП			1 101	+	+	1	
							* AD	
	7/1	* -	XXX	H/H	20'-	10"	COLU	INNU TO
FLAMEA	0	0	0	16	1	41-8	5 SPEII	_ JIMJ_
TATULE	47/		1 X X	11-2			- OPIGIN	
		-147-	TI TO		20'-	10"	- PORIGINI	SC STAN
	0	107	10	10				
		191	19		7	7		
			FRAMER					
· DIRE	er Des	GN NETH	OD CHECK	=:				
	5 CON	TINUOUS =	FANS IN E	AN DIR	ECTION			
7.	l2 3	0 = 1.44	42					
	8. 20	,83						
3.	l2 - 1	4 /3 ks	=> 3	0- 20.83	< /3/	30)		
				9.17 0	- 10	1		
	T I							
-> K	EFERENC	E: AL	1 318-08	3				
				/ -				
0 10/10/1	MUN T.	114055	OF SLAB	(TABLE	9,50)			
	11 = 200	362 836						
	W - 100	00 psi						
	EXT. T	PANEL W	1/0 EDGE	BEAM	In 123 =	30 (12)	= 10,91	-
					1	33		
	· INT. F	ANEL	lo EDGE		In/36 =	30 (12)	10	
						34		
	DUB	THICKNES	5 = 11" (MINIMUM)				

SHEET NO. OF	JOB NO.	- structura
CALCULATED BY	200	
SCALE	DATE	an engineering collaborative
· DROP PAN	EL (13.25)	* ASSUME 24" & COLUMNS
	1 - Alu	
	* - 1	, 30(12) = 60" - 10' DROP PANEL
	1	
		· AV6 STAN = 25.4 - 25% = 6.3
1	DIA. 20%-2	
21/46	9 2010-2 OF Aug.	
4 1/4 d	SPAN	· d= 60"-36"= 24"
		· DROP PANEL DEPTH
	7-24	1" \$ 1/4 (11") \leq \to \leq 1/4 (24)
	72	2"\$ D= 4"
· LOADS	120"	
	E LOADS = 100 7	
· PE	DUCED LIVE LOAD	= 100 (.25 + \sum_{30}(20.83)(1)) - Z WAY SLAS
		= 85 PSF
. 104	ATO LOAD = 25 9	PSF (SUPER IMPOSED)
	= ("/12)(1	50 PCF): 137,5 PSF (SELFWEIGHT)
	. 12(1375+25)	+1.6 (85) = 331 PSF = .331 KSF
Ou	- 112 (15/13 7 28)	
AA	1 12/. 20	2
YV(OMENTS;	1/8 w h, 1, 2 (1- 36.) = 100 — COL CAP Ø
FRAME 4	4: 1/8 (.331) (20.83)	$(30.2)^{2}\left(1-\frac{2(6)}{3(30.2)}\right)^{2}=\frac{496^{-1}}{496^{-1}}$
FEAME R	1: 1/9 (.331)(30)(4	$(8.83)^2 \left(1 - \frac{2(6)}{3(16.83)}\right)^2 = \frac{273^{1}}{10}$
	100000	(3(16.83)
		401 NORTH WASHINGTON STREET T301 987 91 SUITE 900 SOG F301 987 91

SHEET NO.	OF	JOB NO.		structura
CALCULATED BY				
SCALE		DATE		an engineering collaborative
725-018	(max) 0=	NOMENT -	- FRANK A	
DISTRICT.	01100		M.+.,35 Mo	
			MW = , 55 11-5	112 112 112 122 1K
NTER	OR SPAN	17		N= 496 (.65): .322 K
		W.	4=.65 Ma	M+ = 496 (.35) = 174 1K
	. /		,52Mo	11 - 121/- 121/4
	SPAN W/	5		MexT: 496 (.25)=-124 X
ED6E	BEAM	V.	25Mo 1.71	M+ = 496 (.52) = 258 K
			1.71	/ 0
				MINT = 496(.70) = -347 K
		F	RAME B	INT / M- = 273 (.65) =-178 K
				INT
				(M+: 273 (35): 96 12
				(Mex == 273 (.25) = -681K
# No	BEAMS,	THEREFORE	No E	ND & M+ = 273 (.52) = 142 K
166	250NAL C	ONSTANT S	e	MINT = 273 (.70) = - 191 /4
51	IVENESS Z	ATUPS,		10(1NT = 213 (.7P)
TRAM	LE SMMA	CEY_		
	+758		+174	
				FRAME A
	-124	-347 -322		1 Reporte 1
	142		96	TOME S
	-68	-191 -178		FRANCE B
		1110		

JOB			
SHEET NO.	OF	JOB NO.	cti
CALCULATED BY			34
SCALE		DATE	an eng

				LE STRI		
FRANK A	Cowm	N STRIP	= 16.42	· Mi	DOCE STRIP:	205
TOTAL MONEUT	-124	+258	-347	-322	+174	
% TO COLSTRIP	100%	60%	75%	75%	60%	
MOMENT IN C.S	-124	+/55	-260	- 242	+164	
MOMENTIN M.S	0	+103	- 87	-80	+70	
+ , , , ,			(10	-5")		
FRAME B	COLUM	N STRIP	10.42'	MIDD	E STRIP =	201.
TOTAL MOMENT	-68	+142		-178	1 +96	-
70 TO COL STRIP	100 %	60%	75%	75%	6670	
MOMENT IN CS.	-68	+85	-143	-134	1-58	
Month IN MS.	0	+57	-48	- 44	+ 38	
REINFORCEMENT:			BARS, O	18 > dA		
DEPTHS, d 3 { d = 1575 - d = 1175 -					FRAME B	
1 1 - 2	.75 in	12 80"		-		
3 \ d= 1515 -	-2	15.00		d1000	9 0	
(d:11-,75-	:25: 9	.33"		1	FRAME A	
A 9.88"-75"= "	13.13"					
AZ						
9.88 - 75 =	7.13					

Stephen Lumpp

JOB			
SHEET NO.	OF	JOB NO.	
CALCULATED BY			
CULLE		DATE	

			COLUM	N ST	RIP	- 1		MID	DE S	STRIP	
ITEN	1 DESCRIPTION	Mes	M+	Mine		M+	Mexi	M+	Mire	W-	M+
1	Mu	-124	+155	-260	-7:47	+104	0	+103	-87	-80	+70
Z	WIDHH, 6 DEOP	120"	125"	120"	120"	125"	125"	125'	125"	125	125"
3	EFF. DEP. d	13.13"	9.88"	/3./3"	13.13"	9.88	9.88"	9.13"	9.88"	9.86	7.13
4	Mn = Mu/19	-138	172	- 289	-269	116	0	114	-97	-89	178
5	R= Mn/bd2	-80	169	168	156	114	0	131	95	88	+90
		1		.0029		,00195	_	0-225	.0016	,0015	,0015
8	P (TABLE AS.	2.14	3.55	4.57		2.41	0 8	2.78	1.98	1.85	1.71
7	As = Ebd							2.75	2.75	2.75	2,75
8	Asmin = .002 bt		2.75	3.71	3.71		2.75		6.25	6.25	The second second
15 (9	LARGER TOR 8/	44 8.43	8.07	10.39	9.84	6.35	6.25	6.32	= 7	= 7	6.25
33	#6 -	= 9	= 9	= 11	=10	= 7					
Somewis 10.	Nmin = WIDTH Zt	4.00	5.68	4.0	4.0	5.68	5.68	5.68	5.08	5.68	
v <u> </u>	26	= 4	= 6	= 4	= 4	=6	= 6	= 6	=6	= 6	=6
				WMN <				Ministra	Andre		
ITE	M DECRIPTION	Mex	M+	WINT S	M	M+	Mest	Ministra	MINT	SIR M	IP M+
<u>1781</u>		Mex -SB	M+ +85			M+,	Mer	Ministra			
	Mu		M+ +85	MINT	M	M+,		M+	MINT	-44	M* +38
1 2	Mu WIDTH, & DROP	-G	M+ +85	MINT -143	M- -134 120"	M+. +58	O 235	M++57	MINT -48	-44	M+ +38
7 2 3	Mu WIDTH, B DROP EFF. DEP, J	- <i>G</i> 8 120" 13.88"	M+ +85	MINT -143	M- -134 120"	M+, +58	0	M+ +57 28"	MINT -48 235"	M- -44 235"	M+ +38
1 2 3 4	Mu WIDTH, & DROP EFF. DEP, d Mu = Mu/.9	-68 120" 13.38" -76	+85 125" 9.88" +94	M.NT -143 120" 13.86" -159	M ⁻ -134 120" 13.88	M+, +58 125" 9.36" +64	0 235 7.88	M+ +57 235" 9.88	MINT -48 235" 988	-44 235° 7.88	M+ +38 235 2.88
1 2 3 4 5	Mu WIDTH, & DROP EFF. DEP, d Mn = Mn/.9 R = Mn/bd	- CA 120' 13.88" - 76 2 39	M+ +85 125" 9.88"	143 120" 13.88" - 159	M- -134 120" 13.83 -149	M+. +58 125" 9.86"	0 235 9.88	M+ +57 28" 9.86 63	MINT -48 235" 988 -53 28	-44 235° 738 -49	M+ +38 235 2.88 +42 22
1 2 3 4 5 6	Mu WIDTH, B DROP EFF. DEP, d Mn = Mn/.9 R = Mn/bd p (TABLE AS.)	-64 120" 13.86" -76 2 39 1,00065	M+ +85 125" 9.88" +94 +92	MINT -143 120" 13.56" -159 -33 .00145	M- -134 120" B.83 -149 77	158 125" 9.86" +64 +63	0 235 9.88	M+ +57 23° 9.86 63 35	MINT -48 235" 9.88 -53 28	-44 235° 738 -49	M+ +38 235 2.88 +42 22 5.0004
1 2 3 4 5 6	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.) AS = Pbd	-68 120" 13.88" -76 2 39 1.00065	M+ +85 125" 9.88" +94 +92 ,00155 1.91	MINT -143 120" 13.86" -159 -33 .00145 2.42	134 120" 1385 -149 77 .0013 2.16	125" 9.86" +64 +63 .0011	0 235 9.88 0 0	M+ +57 235" 9.86 63 35 ,0055 1,28	MINT -48 235" 988 -53 28 .0005 1.16	-44 235° 7.38 -49 26 .0004	M+ +38 235 9.88 +42 22 5.0004
1 2 3 4 5 6 7 809	Mu WIDTH, & DROP EFF. DEP, d Mn = Mn / 9 R = Mn / bd p (TABLE AS.) AS = p bd ASMIN = .002 bd	- CB 120 13.88" - 76 2 39 1) .00065 1.08	M+ +85 125" 9.88" +94 +92 .00155 1,91 2.75	M.M143 120" 13.86" -159 33 .00145 2.42 3.71	M- -134 120" 13.86 -149 77 .0013 2.16	+58 125" 9.86" +64 +63 .0011 1.36	0 235' 9.88 0 0 - 0	M+ +57 25." 9.80 63 35 .0055 1,28	MINT -48 235" 9.88 -53 28 .0005 1.16	M- -44 235° 7.88 -49 26 .0004 1.04 5.17	M+ +38 235 2.88 +42 22 5.004 .93
1 2 3 4 5 6 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.) AS = Pbd	-46 120' 13.86' -76 2 39' 1.00065 1.08 44 8.43	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25	M.MT -143 120" 13.88" -159 83 .00145 2.42 3.71 8.43	134 120" 1385 -149 77 .0013 2.16	+58 125" 9.86 +64 +63 .0011 1.86 2.75 6.75	0 235 9.88 0 0	M+ +57 25." 9.80 63 35 .0055 1,28	MINT -48 235" 9.88 -53 28 .0005 1.16	M- -44 235° 7.88 -49 26 .0004 1.04	M+ +38 235 2.88 +42 22 5.004 .93
7 56 7 809.	Mu WIDTH, & DROP EFF. DEP, d Mn = Mn / 9 R = Mn / bd p (TABLE AS.) AS = p bd ASMIN = .002 bd	-68 120 13.38" -76 2 39 1) .00065 1.08 5.71 44 8.43 =9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25	MINT -143 120" 13.86" -159 -33 .00145 2.42 3.71 8.43 -9	134 120" 120" 1385 -149 77 .0013 2.16 3.71 3.43	+58 125" 9.86 +64 +63 .0011 1.36 2.75 6.25 = 7	0 235' 7.88 0 0 - 8.17 11.75 = 12	M+ +57 28" 9.86 63 35 .00055 1,28 5.17 1/25 =12	MINT -48 235" 7.88 -53 28 .0005 1.16 5.17 11.75 = 12	-44 235° 7.88 -49 26 .0004 1.04 5.17	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75
1 2 3 4 5 6 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = P.bd ASMIN = .002b4 LAPRISER 7028/.	-68 120 13.38 -76 2 39 1) .00065 1.08 2 3.71 44 8.43 = 9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25 =7 5.68	M.MT -143 120" 13.86" -159 33 .00145 2.42 3.71 8.43 -9 4.0	134 120" 13.88 -149 77 .0013 2.16 3.71 8.43	+58 125" 9.86 +64 +63 .0011 1.86 2.75 6.75	0 235' 9.88 0 0 - 0 5.17 11.25	M+ +57 28" 9.80 63 35 .0055 1,28 5:17 1/75	MINT -48 235" 7.88 -53 28 .0005 1.16 5.17 11.75	M44 235° 738 -49 26 .0004 1,04 5.17 11.75 -12	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75 -12
1 2 3 4 5 6 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = p.bd ASMIN = .002b4 LAPRIER 7028/. VALUE OF THE	-68 120 13.38" -76 2 39 1) .00065 1.08 5.71 44 8.43 =9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25	MINT -143 120" 13.86" -159 -33 .00145 2.42 3.71 8.43 -9	134 120" 1385 -149 77 .0013 2.16 3.71 8.43 = 9 4.0	+58 125" 9.86" +64 +63 .0011 1.36 2.75 6.25 = 7 5.68	0 235' 9.88 0 0 - 0 5.17 11.75 = 12 10.68	M+ +57 235" 9.86 63 35 .00055 1.28 5.17 11.75 =12 10.63	MINT -48 235" 9.88 -53 28 .0005 1.16 5.17 11.75 = 12 10.68	M44 235° 7.333 -49 26 .0004 1.04 5.17 11.75 -12 10.68	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75 -12 10.63
7 56 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = p.bd ASMIN = .002b4 LAPRIER 7028/. VALUE OF THE	-68 120 13.38 -76 2 39 1) .00065 1.08 2 3.71 44 8.43 = 9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25 =7 5.68	M.MT -143 120" 13.86" -159 33 .00145 2.42 3.71 8.43 -9 4.0	134 120" 1385 -149 77 .0013 2.16 3.71 8.43 = 9 4.0	+58 125" 9.86" +64 +63 .0011 1.36 2.75 6.25 = 7 5.68	0 235' 9.88 0 0 - 0 5.17 11.75 = 12 10.68	M+ +57 235" 9.86 63 35 .00055 1.28 5.17 11.75 =12 10.63	MINT -48 235" 9.88 -53 28 .0005 1.16 5.17 11.75 = 12 10.68	M44 235° 7.333 -49 26 .0004 1.04 5.17 11.75 -12 10.68	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75 -12 10.63
7 56 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = p.bd ASMIN = .002b4 LAPRIER 7028/. VALUE OF THE	-68 120 13.38 -76 2 39 1) .00065 1.08 2 3.71 44 8.43 = 9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25 =7 5.68	M.MT -143 120" 13.86" -159 33 .00145 2.42 3.71 8.43 -9 4.0	134 120" 1385 -149 77 .0013 2.16 3.71 8.43 = 9 4.0	+58 125" 9.86" +64 +63 .0011 1.36 2.75 6.25 = 7 5.68	0 235' 9.88 0 0 - 0 5.17 11.75 = 12 10.68	M+ +57 235" 9.86 63 35 .00055 1.28 5.17 11.75 =12 10.63	MINT -48 235" 9.88 -53 28 .0005 1.16 5.17 11.75 = 12 10.68	M44 235° 7.333 -49 26 .0004 1.04 5.17 11.75 -12 10.68	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75 -12 10.63
1 2 3 4 5 6 7 809.	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = p.bd ASMIN = .002b4 LAPRIER 7028/. VALUE OF THE	-68 120 13.38 -76 2 39 1) .00065 1.08 2 3.71 44 8.43 = 9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25 =7 5.68	M.MT -143 120" 13.86" -159 33 .00145 2.42 3.71 8.43 -9 4.0	134 120" 1385 -149 77 .0013 2.16 3.71 8.43 = 9 4.0	+58 125" 9.86" +64 +63 .0011 1.36 2.75 6.25 = 7 5.68	0 235' 9.88 0 0 - 0 5.17 11.75 = 12 10.68	M+ +57 235" 9.86 63 35 .00055 1.28 5.17 11.75 =12 10.63	MINT -48 235" 9.88 -53 28 .0005 1.16 5.17 11.75 = 12 10.68	M44 235° 7.333 -49 26 .0004 1.04 5.17 11.75 -12 10.68	M+ +38 235 2.88 +42 22 5.0004 .93 5.17 11.75 -12 10.63
1 2 3 4 5 6 7 809	Mu WIDTH, b DROP EFF. DEP, d Mn = Mn /.9 R = Mn /bd P (TABLE AS.A AS = p.bd ASMIN = .002b4 LAPRIER 7028/. VALUE OF THE	-68 120 13.38 -76 2 39 1) .00065 1.08 2 3.71 44 8.43 = 9	M+ +85 125" 9.88" +94 +92 .00155 1.91 2.75 6.25 =7 5.68	M.MT -143 120" 13.86" -159 33 .00145 2.42 3.71 8.43 -9 4.0	134 120" 1385 -149 77 .0013 2.16 3.71 8.43 = 9 4.0	+58 125" 9.86" +64 +63 .0011 1.36 2.75 6.25 = 7 5.68	0 235' 9.88 0 0 - 0 5.17 11.75 = 12 10.68	M+ +57 235" 9.86 63 35 .00055 1.28 5.17 11.75 =12 10.63	MINT -48 235" 9.88 -53 28 .0005 1.16 5.17 11.75 = 12 10.68	M44 235° 7.333 -49 26 .0004 1.04 5.17 11.75 -12 10.68	M: +3 2:2 +4: 2:2 5.000 .9 5: 11:

Stephen Lumpp

Technical Report 2

JOB			
SHEET NO.	OF	JOB NO.	
CALCULATED BY			
SCALE		DATE	

CHECK SHEAR	(Z-WAY OR	PUNCHING ACTION)	
AREA 18/1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	DAMETER = 6' d/2 = 13.5 : 6:	darg: 13.35 + 13	./3 _ /3,5"
		CAL SECTION : 6.75 (2)) + 6'
AREA to LOAD; Vu	= W. AREA = ,331 (30' × Z	20.83 - 17 (7.125)2)	
PERMETER ; to = T	T (7.125 × 12) = 2		(3 = 40 (NT. COLVMW)
D / E Z: Ve= (2+ 5	-) It's Do. d = (2	286.6 (13.5) (1000) = + 4/) 3000 (286.6) (13.5) (15.5) (1	(a) = 1271.5 ×
p Vc = .75 (823.	1+)= 617.3 = >	7 193.65 t. ok	
		401 NORTH WASHINGTON STREET SUITE 900 ROCKVILLE MD 20850	T301 987 9234 SDG F301 987 9237 SRG F240 499 0155 STRUCTURA-INC.COM

Appendix C - Hollow Core Plank with Steel Framing

Prestressed Concrete 6"x4'-0" Hollow Core Plank

1 Hour Fire Resistance Rating (Untopped)

	PROPERTIES ecast
A = 187 in. ² I = 757 in. ⁴	$S_b = 245 \text{ in.}^3$ $S_t = 260 \text{ in.}^3$
$Y_b = 3.09 \text{ in.}$	Wt.= 195 PLF
Y _t = 2.91 in. e = 1.34 in.	Wt.= 48.75 PSF

58"

71/8"

710

1음"

 $2\frac{1}{8}$

DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI.
- 3. Precast Density = 150 PCF
- 4. Strand = 1/2"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1.75 in.
- 6. Ultimate moment capacity (when fully developed)...

4-1/2"Ø, 270K = 47.7 k-ft

7-1/2"Ø, 270K = 76.0 k-ft

- 7. Maximum bottom tensile stress is $7.5\sqrt{\text{fc}} = 580 \text{ PSI}$
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Load values to the left of the solid line are controlled by ultimate shear strength.
- 12. Load values to the right are controlled by ultimate flexural strength or allowable service stresses.
- 13. Load values will be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 14. Camber is inherent in all prestressed hollow core slabs and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	UPERIMPOSE	D SER	VIC	EL	OAE	os				1	ВС	200	3 &	ACI	318	3-02	(1.2	2 D -	+ 1.6	3 L)
St	SPAN (FEET)																			
Pa	attern	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
4 - 1/2"ø	LOAD (PSF)	219	191	165	150	131	124	110	97	86	76	66	58	51	45			and .		
7 - 1/2"ø	LOAD (PSF)	345	318	285	262	231	214	197	175	156	138	123	110	98	88	78	70	62	55	49

nitterhouse

CONCRETE

PRODUCTS

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 Fax 717-267-4518 This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 1 Hour & 0 Minute fire resistance rating.

3'-101"

71"

4'-0" +0",-1"

71/8

5"

 $7\frac{1}{8}$ "

05/14/07

6F1.0

Stephen Lumpp

Technical Report 2

Page 38 of 52

SHEET NO. OF JOB NO.	structura
CALCULATED BY DATE	
CALE DATE	an engineering collaborative
PRESERVED CONCERT - HOLON COLE P.	EANK
· 6" × 4'-0" Houar GRE PLANK	I C I I I
· I HOVE RATING (INTOPPED)	1 1 5 1 - 1 - 1
	[A 2
LOADS: LIVE LOAD: 100 PSF	4'0" (TYR)
TEAD LOAD: 25 PSF (SUFFRIMORISE)	
· PLANK: 48.75 PSF (SELFWEIGHT)	I DI
SERVICE LOAD:	
	ON B
1.2(25) + 1.6(100) = 190 PSF	
318 > 190 : OK (FROM TABLE)	I——İ——I
	HOLLOW CORE
Wu: 1.7(25+48.75) +1.6 (100) = 248 5 = 29	50 PSF PLANK (15'SPAN)
DEFLECTION LIMITS:	
Du= 480, DTC = 4240	
BEAM "A DESIGN	
TEB WIDTH = 15', SPANNING 41.67'	
1218 WIDTH = 15, 514010100 11.61	
Du: 5 (.100 (15)) (4161) 4 1726 = (41.67) (12) =:	5 Into = 3374 in4
384 (29,000) Teta 480	
AL = 5 (.250 (.5) (41.67) 4 1728 - 41.67 (.2) =>	-tern = 4217 in4 v
384 (29000) IREQ 240 =)	CONTROL
M (25) (1) (1) (2) 2 11 1K	
Mu= (.250 (15) (41.67) = 814 1K1	
CHOOSE TW30 x (08) I= 4470 in4	> 4217 in4 : 0K
4Mn: 1300 ">	814 in4 ok
y . h - 1300	
401 N	NORTH WASHINGTON STREET T301 987 9 SUITE 900 SDG F301 987 9

SHEET NO. OF CALCULATED BY	JOB NO.		struc1	ulc
SCALE	DATE		an engineering co	ollaborativ
, a				
BEAM B	DESIGN.			
TRIB	WIDTH = 15', 5	PANNING 30'		
31	34 (29,000) Iras	8 <u>30(12)</u> = 1257	int = Inq	
AL: 5	(.250(15))(30)4172	8 30 (12) => 1571:	nt = Ing / CON	TROLS
			7	
Mu = .25	50 (15) (30')2 = 4	122 'K		
CHOOSE	WZ4 X68 =	I = 1830 7 1571	i ok	
	9	6Mn = 664 1K > 422	2 K oK	
GRDER "C	DESIGN			
		- () - ()	. Д	
		of (15.4(.67) = 78.		
LIVE	LOAD = 100 PS	F (15.41.67) = 31.3	K@ MIDSPAN	
D _{11.}	31.3 (30) 1728	= 30(12) => IRE	1299:4	
Dn:	78.1× (30)3 1728	30 (12) => IREQ	- 1745 14	2170015
	48 (29000) IREA	240	- 1/43 /11 0	<i>y</i> 1,200
Mia =	78.1 = (30') =	586 1K		
1 100	4 =			
CHOOS	F W24 X68	I= 1830 >174	15 .: ok	
		&Mn = 664 1K >	586 1K .: OK	
		40	11 NORTH WASHINGTON STREET	T301 98

SHEET NO. OF CALCULATED BY	J0B NO.	structura
SCALE	DATE	an engineering collaborative
N .		
GIRDER D".	DESIGN	
TOTAL LOAD	= 250 (15 (41.67)) + 250 ((5.30) = 134.5 K
19UF 10+0 =	100 (15.41.67) 100 (15.	20)
	2 2	- 53.8
ALL: 53.8 (30)31728 - 30(12) => Ire	= 2404 in4
48 (29)	100) Iero 480	
DTL = 134.5 (30)3 1728 30(12) 360.	6 in 4 V CONTROLS
48 (20	000) Ing 240	
104.5 C	30'): 1009 1K	
(MORF IN)Z	x907 T: 3/10 730	105 :14
Crost 12	5 x90/ I: 3610 730 BMn = 1060 157	loogik OK
	prin = 1000 1	009
	7 W24×68 I	
	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	× × × × × × × × × × × × × × × × × × ×	
	130 × 108	
	3 3 3	
	T W30x90 T	
	+	
	0 0	
	10 0 0	
	20, 766	
	8 2x	
	1 W30×20 I +	
	# # # # # R R R R R R R R R R R R R R R	
	1 W30×20 I +	
	1 W30×90 I	
	1 W30×20 I +	
	1 W30×20 I +	

Appendix D - Two-way post-tension slab

SHEET NO. OF JOB NO.	structura
CALCULATED BY	O II OIO IOII O
SCALE DATE	an engineering collaborativ
TWO-WAY POUT TENSIONED	
	41-8' 30' 41'-8"
LOADS: DEAD LOAD: 25 PEF (SUPERIMPOS	
· LIVE LOAD: 160 por (UNREDUCE)	
	36'
MATERIALS:	70 0 4 4
18164487	30'
CONCERTE: NORMAL WEIGHT 150 PLF	
fei = 3000 ps:	
fi: 5000 psi	30' (ASSUMING 24" x
TRANSITION OF THE PROPERTY OF	24"
REBAR: fy = G0,000 ps:	
UNBOUND TENDONS: 1/2 " 9, 7-WIRE STAN	A: 158 in 2
fyn : 270 Ksi	
to an artist	
PRESTRESS LOSSES: 15 KSI (ACI 18.6	
PRESTRESS LOSSES: 15 KS1 (ALI 18.6)	- 174 Ks; (ACI 18.5.1)
124 - 7: +se = (.153)(174) = 26.6 KIPS/TENDON
SLAB THICKNESS: 144 = 45; LONGES	- 5PAN = 41.62'
N= (41.67.12)/45:	= 11.11 (TRY 12" SLAB)
LOADING: SUPERIMPOSED = 25 PSF	
SELFWEIGHT: (12 M) (150	PCF) - 150 PSF
LIVE LOAD = 100; KL = 1.0	(2-Way SLAB)
4 672 100	(21 - 15 -) - (21/28)
EXTERIOR SPAN: KEDULED = 100	(·4) \[1. (41.67.30) \] = 6/046 PSF
INTERIOR SPAN: 100 (25 -1	5
100	(2-Way SLAB) (.25 + \(\sqrt{1.(41.67-30)} \) = 67.42 PSF 5 - 30×30) = 75 PSF
	401 NORTH WASHINGTON STREET TEXT 9
	SUITE 900 SDG F30US ROCKVILLE MD 20850 SRG F3404

JOB			
SHEET NO.	OF	JOB NO.	
CALCULATED BY			
SCALE		DATE	

CALLULATE SECTION DR	AS GLASS U
	$(12)(12) = 4320 \text{ in}^2$ $(12)(12)^2/6 = 8640 \text{ in}^3$
SET DESIGN PARAME	
AT SERVICE OUPEES TENSION	3000 ps: 510N: , Gf: = . G(3000) = 1,800 Ps1 : 3\fi: = 3\3000 = 164 psi 'OADS 1000 ps: 1000
	(min) ; 300 ps; (max)
	(ES: WEIGHT = .75 (150 PSF) = 112.5 POF 1BC 2003 (2-HOUR FIRE RATING)
-> RESTRAIN ED -> UNRESTRAINED	SLABS = 3/4" (BOTTON) SLABS = 11/2" & 3/4" (BOTTON & TOP RESPECTIVELY)
	401 NORTH WASHINGTON STREET T301 987 9234 SUITE 900 SDG F301 987 9237 ROCKVILLE MD 20850 SRG F240 499 0155 STRUCTURA-INC.COM

Stephen Lumpp

Technical Report 2

HEET NO. OF JOB NO.	structura
ALCULATED BY	Suuctula
CALE DATE	an engineering collaborative
TENDON PROFILE:	
LE POINT	PT TENDON
	NEUTRAL AXIS
L1 \$ L2 \$ L3	<u> </u>
9ewp 2 5	
CONTINUOUS PT BEA	M
TENDEN ORDINATE	TENDEN LOCATION
	6"
· Ext. SUPPORT - ANCHOR	1/1" + MEASURED FROM
· INT SUPPORT - TOP · INT SPAN - BOTTOM	1" BOTTOM OF SLAB
· END SPAN - BOTTOM	1.75"
902 31710 0011010	7.2
91NT= 11"-1" = 10.0"	
9Ero = (6"+11")/2 - 1.75"= 6.75	*
e = VARIES	
PRESTARS FORE REQUIRED TO BALANCE	TARGET LOAD
w3 = .75 wa	
Wb = .75(50)(30') = 3375 PLF	- 232545
106 5 ,73(30)(30) . 33/3 -27	- 3.9/3 74
FORCE IN TENDONS TO COUNTERAGE TH	IT LOAD IN FUR BAY
P= WbLZ/8gand	
$F = \omega_{b} L^{2} / 8_{aend}$ = $(3.375) (41.67)^{2} / 8 (6.75) = 13$	K
= (3.375) (41.67) /8 (12) = 13	0Z.3
	401 NORTH WASHINGTON STREET T301 987 9
	SUITE 900 SDG F301 987 9 ROCKVILLE MD 20850 SRG F240 499 0

JOB			
SHEET NO.	OF	JOB NO.	
CALCULATED BY			
SCALE		DATE	

CHECK PRECOMPRESSION ALLOWANCE	
· DETERMINE # OF TENDONS TO ALLIEVE 1302 K	
# OF TENDONS = 1302 × / 26.6 HEND. = 48.9 La (USE 48 TENDONS) • ALTUAL FORCE FOR BANDED TENDONS	
· ACTUAL FORCE FOR BANDED TENDONS	
PARTURE = 48 TENDONS (Z6.6 K) = 1277 K	
· BOLANCED LOAD FOR END SPAN IS SLIGHTLY ADJUST WY = (1777) (3.375): 3.31 K/FT	red
· DETERMINE ACTUAL PRECOMPRESSION STRESS	
PACTUAL /A = 1277 (1000) = 295.6 ps;	
125(min) < 295.6 < 300 (max) : 0x	
EFFECTIVE PLETIES FORCE, PRG = 1277 K	
401 NORTH WASHINGTON STREET SUITE 900 ROCKVILLE MD 20850	T301 987 923 SDG F301 987 923 SRG F240 499 015 STRUCTURA-INC.CO

Stephen Lumpp

Technical Report 2

Page 45 of 52

SHEET NO. OF	JOB NO.		structura
CALCULATED BY			
SCALE	DATE		an engineering collaborative
DEAD L	DAD MOMENTS:		
	Vol = 175 PSF (30')		
	1000	= 5.25 KLF	
			VI
	41.c7 30	P	US YET
	A	2 2	
	41.07' 30'	41.67'	
	-7514 K	-7011K	44 1 1 1 1 1 1
	-751.4 'K	1.9	+ STAND ANALYSIS TO
	ANIM MILLER	Care I	DETERMINE MOMENS
	+795 °K	+ 795 IK	
	7/15 -	1/12	
Wu	= 67.4 PSF (30') = 2.	O KLE	
	1000		
			OKLE
	# J L J L L L L L L L L L L L L L L L L	2	
	A A	A 8	
	, ,		
	-2861K	-286'K	
	American	TAIN	
	-61'K	The same	
	+303'E	+3031k	
TOTAL	BALANCING MOMENTS,	Mari	
		77	
4) = -3.31 4/ET		
			5. Vie
	* * * * * * * *	A A A A A -3	31 4/51
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	
	- J.K	- 18	
	-5011K +101/K	-501 'K	
	MINNE TO THE	SW/MAR	
	W. Carlottik	W IK	
	1474 lk	4474 1K	
		401 N	IORTH WASHINGTON STREET T301 987 SUITE 900 SDG F301 987
			ROCKVILLE MD 20850 SRG F240 499

JOB SHEET NO. OF	JOB NO.	Othe Lote Inc
CALCULATED BY	JUD NO.	structura
SCALE	DATE	an engineering collaborative
		0
STAGE 1	: STRESSES IMMEDIATELY	ASTER JACKING (DL+PT)
· M	TOSPAN STRESSES	
	· Eyer = (-Moi + Mass) /5 . P/	A
	0 / 1 11 1 2	
	for - (+MDL - MBA)/S - PA	A
	INTERIOR SPAN	
	trof: (-161 +101) 12 (1000)	295.6 = -379 ps; (comp.) < 1800 ps; (.66
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	from (161-101) 12 (1000)	2-295.6: -212 psi (10MP.) < 1800 ps:
	8640 in 3	
	END SPAN	i. ok
		-295.4
	fro = (-795 +501) 12(1000) = - 704 ps; (comp.) < 1800 ps;
	8640 ins	1. ok
	(/20) : (- :	
	+80+ (195-561) 12 (1000)	2-295.6 = 113.3 ps (TENS) < 164 ps (31FG)
	8640 in	i. ot
SUPPOR	T STEESES	
	TOP = (+ Mon - MEAR)/S - P/A	
1.	BOT - (-MOL + MBAL) S-P/A	
	from = (751-474) 12 (1000)	-295.6: 89 psi (TENS.) < 164 : OK
	8640 ;n³	
	fr = (-751 + 474) 12 (1800)	180 (1000) < 1800 os; ' ok
	8640 in ³	- 295.6 5 - 680 (COMP.) C 1800 PS; . OK
		401 NORTH WASHINGTON STREET T301 987 50 SUITE 900 SDE F301 987 50
		ROCKVILLE MO 20850 SRG F240 499 01 STRUCTURA-INC.

SHEET NO.	F JOB NO.	structura	1
CALCULATED BY		0 41 010 4011	-
SCALE	DATE	an engineering collaboration	ve
STAGE	2: STRESSES @ 5	ERVICE LOAD (DI+U+ PT)	
Δ.			
10	IDSPAN STRESSES		
	from = (-MoL - M	4 + MBAL) 1/5 - P/A	
	1 / 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	V. PIA	
	+BOT = (+NDL +1V)	lu-MAR)/5-P/A	
	INTERIOR SPAN		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1
	trop = [-161-61+	(101) 17 (1000) - 295.6 = -464 < 2250psi (.456	1)
	0	640 in	
	FBOT = (161+61-1	01) (12) (1000) 640 in ³ - 295.6 = -127.5 < 2250 ps; ;.	
	8	640 in3 200 121.5 - 2230 PS'	
	END SPAN		
	From: (-795-	303 +501) 12 (woo) _ 1125 ps; < 2250 ps; :. c	ρK
		8640 ius 295.6 =	
	+BOT = (795 + 30	03-501)12 (1000) -295.6 = 533.6 > 424 ps; (6,	F'2
		: S & REINF	
SUR	PRI STREETS	NEDED	
	Gop = C+Mpc + MLL -	Man /= -Ph	
	for = (-Moc - Mu	: Marc)/S - P/a	
		(TENS)	
	frop = (751.4 + 286	-501) 12 (1000) - 295 6: 449.4. 7 424 psi (6)6	7
	86	40 in 5	-]
		64 REINF	
	fer = 1-7514-281	1 st No / 100m	
	86	- C1.5.0 - 1040.0 F5 - C 2230	
	00	(com)	<
		401 NORTH WASHINGTON STREET T301 SUITE 900 S0G F301	9879
		ROCKVILLE MD 20850 SRG F240 STRUCTURA	

JOB				
SHEET NO.	OF	JOB NO.		
CALCULATED BY				
SCALE		DATE		

ULTIMATE STEENGTH	
DETERMINE FACTORED MOMENTS	
-> PRIMARY PT MOMENTS, M.	
M. = P'e e = 0 in @ the EXTERIOR SUPPORT e = 5 in @ THE INTERIOR SUPPORT	
M. = 1277 K(5") = 53Z A.X	
- SECONDARY PT MOMENT, MSEC	
Me = Mon1 - M, -58 A.K -58	44
= 474-532 = -58 A.X. AMARIAN EINT SUPPORTS	
LOAD COMBINATION (Mu = 1.2 Mp + 1.6 Mu + 1.0 (Msee)	
@ MID SPAN Mu = 1.2 (795) + 1.6 (303) + -29 (1.0) = 1410 f	+.K
@ SUPPORT: Mu = 1,2 (-751) + 1.6 (-286) + 1.0 (474) = -885 +	C+ .K
401 NORTH WASHINGTON STREET SUITE 900 ROCKVILLE MD 20850	T301 987 9234 SDG F301 987 9237 SRG F240 499 0155 STRUCTURA-INC.COM

Stephen Lumpp

Technical Report 2

OB HEET NO. OF JOB NO.	structura
ALCULATED BY	Suuctula
CALE DATE	an engineering collaborative
DETERMINE MINIMUM BONDED REIN	FORENENT
· POSITIVE MOMENT REGION	
TOTAL TO BINES TEGICIS	
· INTERIOR SPAN, f 15 G	COMPLESSIVE
No Yositive	REINFORCEMENT NEED ED
· EXTELLOR SPAN	
CAICEON STAN	
£= 533.6 ps: =	2 /5000 = 141 psi
· MIN POSITIVE REINE R	EQUIRED (ACI 18.9, 3,2)
4 1	C = ===
ASMIN SEV YE	fe 533.6 Fe+fo)h (533.6 + 1125)(12") = 3.86"
	(533.5 F 1 - 5)
	Morte (05)(y) l2 = 795+303 (12) (5) (5.86
Asmin = 1060 Nc= 5(60Ksi)	5 (30.12
.5(60Ks1)	1050 K
Asmin = 35.3 in2	1050
1 SM 1 = 33.311	
Asmin = 35.3 in - 1.18 in2/	G+ => Use #10@1Zin % (Botton
30-4	* MIN LENGTH SHALL BE 1/3 CLEA
	SPAN ¿ CENTERED IN POSITIVE
	MOMENT REGION
· NEGATIVE MONNENT REGION	
Asmin = ,00075 Act (ACI)	19. 9.3.3)
· INTELLOR SUPPORTS	
1 (51) (41.67-30) 12 -	5160 (.00075) = 3.87 in2 =>
Hef = (12)(2)	Use (9) #G TOP
, EXTERIOR SUPPORTS	(3.96 in2)
Act: 12 (304) 12: 4320 (.01	0075) = 3.24 12 => USE (8) #6 TOP
	(3.5Z in²)
	401 NORTH WASHINGTON STREET T301 987 9: SUITE 900 SDG 7301 987 9:
	ROCKVILLE MD 20850 SRG F240 499.0: STRUCTURA-INC.(

JOB SHEET NO.	OF	JOB NO.			04	HI IC	41 11	20
ALCULATED BY					Su	ruc	. Lui	d
SCALE		DATE				ineering		
					GIT OF IE		oonazo.	
1	MUST SPA	N MIN. OF 1/6 C	LEAR SPA	N, EAC	H SIDE O	F SUP	PORT (A	KC1 18.9
,	AT LEAST	4 BARS REWI	RED IN	EACH	DIRECTION	(ACI	18.9.3	3.3)
ė	PLACE TO	P BARS WITH 1	.5h AWA	y FRO	m THE FR	HEE OF	THE	
	SUPPORT	SIDE (ACI 18.	9.3.3)					
	- 1	(12) = 18"						
	- 1,51	(12) = 18						
,	MAXIMUM	BAR SPACING	15 17	" (Ac	1 18933			
	1010000	DRE SHEWS						
CHEC	K MINIMU	M REINF SUFF	- KLIENT ,	FOR U	TIMIATE	STRENE	ott	
Mn	= Asfy + Ap	sfps (d-9/2)	. 4	1ps = 1	153 in 4 7.34 in 2 Se + 10000	8 TEND	ions	
			A	PS =	7.34 in2			
				fps= 4	Se + 10,000	+ (féb	d)	
d	= effective	length				Aps	(300)	
9:	(Asty + As	fps) 1.85f2b		= 17	4,000 + 10,00	0 + 500	90 (30.	12)0
					4,000 + 10,00	7.	34 (30	9)
			0		4,000 + 81			
			TP	5 - 10		· · · · a		
. A	T SUPPORT	<						
	d= 12"-3/	4"-1/4" = 11"						
	fos = 184,00	100 + 817.4 (11) = (60 KG) + 7.34 in (192 185 (5KG) (30.112)	192,991	>5'				
	9 = 3.96 in	(60 KGI) + 7.34 is (19:	3 K51)	28				
		.85 (5K61)(30.12)	= //	00				
	pul a	3.96:n2(60 KSI) + 7.	24.2/193 K	517/11	108	15573	1 1	2981K
	410(n = .7	13.16 in (DU 451) + 1.	3/11/(11/3)	1	7 2 /		12	+1+
					1298 > 8	380	: MINI	NOW
							REINF	ok
A	MIDSPAN	(END SPAN)						
	d = 12"-	1/2" - 1/4" = 10.25	5"					
		0 +817.4(10.25)=		Psi				

Stephen Lumpp Technical Report 2

: MINIMUM REINF

401 NORTH WASHINGTON STREET SUITE 900 ROCKVILLE MD 20850

)B			
HEET NO.	0F	JOB NO.	etri icti ira
ALCULATED BY			Suuctuia
CALE		DATE	an engineering collaborative

CHECK TUNCHING SHEAR	
d= 12-1= 11"	
Do: 1 55 (2) + 24" = 35(4) = 140"	
05 = 40 INT. COL , Bc: 1	
V = 1.4/Pc to d = 4/5000 · (140)(11) =	436 K
(2+ 1/Be) It's bod = (2+41) 5000 (140)	
Min (bold + 2) The bod = (40 + 2) 5000 (4	10(11) 5 560 K
Min (bold + 2) Ac bod = (140/1, +) Sector	
ØVc = .75 (436) = 327 K	
90c = 13 (100) = 32/1	
Wu= (1.2) (25+ (150(1/2)) + 1-6(100) =	370 - 220
$\omega_{i} = (1.2)(23+(33+(33)) + 1.2(33)$	5.5.0
Vu: Was AREATERS	
Vu: .370 (30 × (41.62-30) - (55)2) = 394.	.6 K > 327 - NEED DROP
	PANELS
(394.6×/.75) = 4/5000 ·b. (11) => b	= 169"
169" hi 24 d = 2 d 18.25 =	19" /012 - 19"
169"/4=24-d => d=18.25 =	100-14
NEED 13" DROP P	
NED 13 DROP E	ANTA
	401 NORTH WASHINGTON STREET T301 987 9234

401 NORTH WASHINGTON STREET SUITE 900 ROCKVILLE MD 20850

T301 987 9234 SDG F301 987 9237 SRG F240 499 0155 STRUCTURA-INC.COM