Crossroads at Westfields Building II

Chantilly, Va

STEPHEN LUMPP Structural option

Faculty Consultant: Dr. Andres Lepage

Technical Report 1

EXECUTIVE SUMMARY

This report contains analysis regarding the original design of Building II of the Crossroads at Westfields. It covers an overview of the structural systems, applicable codes and design loads including gravity and lateral loads. Even though two different types of code were used the designs came out relatively similar in many cases. Several spot checks were made and some discrepancies were revealed but overall the designs are close.

Again, even though two different codes were used, IBC 2003 for the original design and ASCE 7-05 for this report, most loads came out very similar. The dead load for the typical floor and roof were the only loads that had any differences. All live loads and snow loads were identical. A detailed analysis was conducted for the lateral forces of wind and seismic, resulting in seismic loads controlling. The calculated dead loads for this report were slightly higher resulting in a conservative design of self weight of the building and spot checks. This may be the reason why seismic loads controlled in a non-seismic region.

The spot checks revealed that the dead load calculation was fairly accurate, about 14% higher for the floors and about 7% higher for the roof. The composite beam and girder check were very accurate with respect to the actual design. The overdesign of the framing members in this report are due to the slight increase of dead load. The column spot check was also very accurate with the exception of how the analysis was completed. The analysis in this report assumed a new design for each floor while the actual design had 2 columns spliced only once. This resulted in the original design having a more conservative approach. The extra framing at the west end of the building was verified when solving for snow loads. The 9.5' tall screen wall coupled with the roof extending 275' in length allowed for snow drift. The surcharge load was then solved for and verified the original design.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	PAGE	2
TABLE OF CONTENTS	PAGE	3
INTRODUCTION	PAGE	4
STRUCTURAL SYSTEMS FOUNDATION SYSTEMS FLOOR SYSTEMS ROOF SYSTEM COLUMN SYSTEM LATERAL SYSTEM	PAGE PAGE PAGE PAGE PAGE	5 6 7 8 9
APPLICABLE CODES	PAGE	10
MATERIALS PROPERTIES	PAGE	11
DESIGN LOADS DEAD LIVE SNOW WIND. SEISMIC	PAGE PAGE PAGE PAGE PAGE	12 12 12 13 15
SPOT CHECK SUMMARY	PAGE	16
APPENDIX	PAGE	18

OVERALL INTRODUCTION

The Crossroads at Westfields are two identical office buildings mirroring each other on site. Although the project is currently on hold, these two buildings will offer over 300,000 GSF of office space to future tenants. Located in the Westfields Corporate Center in Chantilly, Virginia, the site is located at the crossing of the Stonecroft Blvd. and Lee Rd., hence the name.

Site Plan

Building II, identical to Building I, is a 5- story office building with floor plans that offer column-free spans of over 41 feet. The large open floor plan creates long spans that require the beams to be cambered to pass deflection criteria. The structure consists composite steel beam framing with moment frames to resist lateral loading. The roof is supported by joists and steel decking, and the future mechanical units will have composite slab pads similar to each floor.

Typical Floor Plan

FOUNDATION SYSTEMS

The Foundation system consists of reinforced cast-in-place concrete spread footings. According to the Geotechnical report recommendations prepared by ECS, Ltd the allowable soil bearing values vary throughout the site. Foundations bearing on the natural 'weathered rock' soil classification will be designed with an allowable soil bearing of 6000 psf while foundations bearing on engineered fill will be designed for soil bearing of 3000 psf. The concrete strength shall be 3000 psi.

According to recommendations in the Geotechnical Report, the Slab on Grade will bear on the natural soil. The slab is a 4" thick cast-in-place concrete with 6x6–10/10 welded wire mesh (WWM), laid on a 6-mil fiberglass reinforced polyethylene vapor barrier and 4" of washed gravel. Interior SOG will have a compressive strength of 3000 psi, while exterior SOG will have a strength of 4500 psi.

Figure 1 - Typical Foundation section

FLOOR SYSTEMS

A typical floor in the Building II consists of 3" 20 gauge composite steel deck with 3-1/4" lightweight concrete slab totaling a total slab thickness of 6-1/4". The slab shall be reinforced with 6X6-10/10 WWM and have a compressive strength of 3000 psi. The floor is supported by A992 wide flange beams with studs dimensioned at $\frac{3}{4}$ " in diameter and 5 $\frac{1}{4}$ " in length. The beams are spaced at 10' o/c and span 41'-8" in a typical exterior bay and 30'-0" in a typical interior bay, as you can see in Figure 2 below. Depending on the floor, the beams will be cambered from an 1" to $1\frac{1}{2}$ " and will vary in size and weight. Typical interior girders are W24-62 spanning 30'-0", while typical exterior girders vary in size and also span 30'-0".

FIGURE 2 - Typical exterior floor bay

ROOF SYSTEM

As seen in Figure 3, the roof system is comprised of 1-1/2" 22 gauge Type B wide rib galvanized roof deck, on K series bar joists and steel girders. Light-gage framing makes up the 4' parapet and the screen wall encompassing the roof. Precast panels frame into each floor including the roof.

Rooftop Mechanical pads for future tenant equipment shall be constructed similar to the typical floor system consisting of 3" 20 gauge composite steel deck with 3-1/4" lightweight concrete slab totaling a total slab thickness of 6-1/4". The slab shall be reinforced with 6X6-10/10 WWM and have a compressive strength of 3000 psi.

FIGURE 3 - Typical exterior roof section

LATERAL SYSTEM

The lateral resisting system for wind and seismic loads consists of a number of structural steel moment frames running in both directions. Lateral loading is transferred from precast panels (connected at each floor) to each individual floor. Once transferred into the floor system, the load is transferred into composite beams which make up the framing and then into the columns. The columns and beams are connected by a moment connection seen in Figure 4. the columns transfer the rest of the load into the foundation.

FIGURE 4 - Typical Beam to Column Moment connection

Figure 5 clearly shows the four moment frames positioned in each direction, North-South and East-West, supporting the building laterally. In both directions the moment frames are positioned symmetrically about the center axis. The North-South lateral system is 2 sets of parallel moment frames anchoring each end bay. The East-West lateral system is a set of 2 moment frames on each exterior side of the building. The beam sizes vary.

COLUMN SYSTEM

Having a very uniform design layout the column system consists of typical exterior bays of 30'-0" x 41'-8" and interior bays of 30'-0" x 30'-0". All of the columns consist of either a gravity resisting member or a combined lateral and gravity resisting member. Each columns is spliced at 4 feet past the third floor, regardless of its resisting system. All columns vary in size depending on location and load resistance capabilities.

FIGURE 6 – Typical splice connection

APPLICABLE CODE

Design Codes used for Original Design:

- International Building Code, 2003 Edition
- Virginia Uniform State Building Code, 2003
- American Society of Civil Engineers (ASCE)
 - ASCE 7 02, Minimum Design Loads for Buildings and Other Structures
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Ninth Edition (LRFD)
- American Concrete Institute (ACI)
 - Building Code Commentary 318-02

Code Substitutions/ Additional References used for Thesis Design:

- International Building Code, 2006 Edition
- American Society of Civil Engineers (ASCE)
 - ASCE 7 05, Minimum Design Loads for Buildings and Other Structures
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Thirteenth Edition (LRFD)
- American Concrete Institute (ACI)
 - Building Code Commentary 318-08

MATERIALS AND PROPERTIES

Steel:		
	Wide flange shapes Square or Rectangular Tubes Round Pipes Miscellaneous Steel Bolts Steel Studs Weld Strength	50 ksi (A992) 46 ksi (A500 Grade B) 42 ksi (A500 Grade B) 36 ksi (A36) 36/45 ksi (A325N/A490N) 60 ksi (A108) 70 ksi (E70XX)
Concr	ete:	
	Foundations, Int. Wall & Int. SOG	f'c = 3000 psi
	Ext. SOG and Pads Deck supported slabs (lightweight)	f'c = 4000 psi f'c = 3000 psi
Reinfo	rcement:	
	Stirrups and Ties	40 ksi (A615)
	All other	60 ksi (A615)
	Welded Wire Fabric:	(A185)
Cold-F	Formed Steel Framing:	
	20 Gage	33 ksi (A653)
	18 Gage	33 ksi (A653)
	16 Gage	50 ksi (A653)

Note: Material strengths are based on American Society for Testing and Materials (ASTM) Standard ratings.

DESIGN LOADS

All of the Design loads for this technical report were all calculated referencing ASCE 7-05: *Minimum Design Loads for Buildings and other structures.* The actual design loads referenced IBC 2003 and but there wasn't much discrepancy other than calculating the dead load per floor, as seen in Table 1 below. All of the same Live loads and Snow loads were calculated the same resulting in very similar results in design. The dead load calculations can be seen in the Appendix under Table A-1a and Table A-1b.

Design Loads								
		Live Loads						
	Actual Thesis							
Area	Design	Design	Code/Table					
Lobby	100 psf	100 psf	100 (ACSE Min.)					
Office	100 psf	100 psf	50 (ASCE Min.)					
Corridors	100 psf	100 psf	80 (ASCE Min.)					
Roof	20 psf	20 psf	20 (ASCE Min.)					

Dead Loads								
	Actual Thesis							
Area	Design	Design	Code/Table					
Floor	79.3 psf	90.0 psf	Table A-1a					
Roof 28.5 psf 30.0 psf Table A-1b								

Snow Loads								
	Actual	Thesis						
Value	Design	Design	Code/Table					
Pg	25.0 psf	25.0 psf						
Ce	1.0	1.0						
Ct	1.0	1.0						
Cs	1.0	1.0	ASCE 7-05 Chapter 7					
I	1.0	1.0						
Pf calculated	17.5 psf	17.5 psf						
Pf	20.0 psf	20.0 psf						

TABLE 1 - Design Loads

Lateral loads were calculated almost all by hand and inserted into the tables on the following pages. The hand calculations can be found on pages 20-27 in the Appendix. After calculating the lateral loads it was concluded that Seismic actually controlled over Wind, even in this non-seismic region as Table 6. This is partially due to the wind Exposure Factor and the lighter weight with respect to its height.

WIND LOADS

Design Wind Pressures, p in the E-W Direction							
Location	Height above ground z(ft)	q (psf)	External pressure	Internal pressure	Net Pres (ps	sure p f)	
			decp (psi)	dech (bai)	(+GCpi)	(-GCpi)	
	0-15	10.05	6.68	± 2.80	3.88	9.48	
	20	10.93	7.27	± 2.80	4.47	10.07	
	25	11.99	7.97	± 2.80	5.17	10.77	
Windward	30	12.34	8.20	± 2.80	5.40	11.00	
Willuwalu	40	13.40	8.91	± 2.80	6.11	11.71	
	50	14.28	9.49	± 2.80	6.69	12.29	
	60	14.98	9.96	± 2.80	7.16	12.76	
	68	15.55	10.34	± 2.80	7.54	13.14	
Leeward	ALL	15.55	-3.62	± 2.80	-6.42	-0.82	
Side	ALL	15.55	-9.05	± 2.80	-11.85	-6.25	
	68	15.55	-11.63 °	± 2.80	-14.43	-8.83	
Roof	68	15.55	-6.46 †	± 2.80	-9.26	-3.66	
	68	15.55	-3.88 ‡	± 2.80	-6.68	-1.08	

° from windward edge to 68 ft

[†] from 68 to 136 ft

[‡] from 136 to 275 ft

FIGURE 7 - Design Wind Pressures in E-W Direction

Design Wind Pressures, p in the N-S Direction								
Location	Height above ground	a (psf)	External pressure	Internal pressure	Net Pressu	re p (psf)		
	z(ft)	9 (1901)	qGCp (psf)	qGCp (psf)	(+GCpi)	(-GCpi)		
	0-15	10.05	6.43	± 2.80	3.63	9.23		
	20	10.93	6.99	± 2.80	4.19	9.79		
	25	11.99	7.67	± 2.80	4.87	10.47		
Windword	30	12.34	7.89	± 2.80	5.09	10.69		
vinuwaru	40	13.40	8.57	± 2.80	5.77	11.37		
	50	14.28	9.13	± 2.80	6.33	11.93		
	60	14.98	9.58	± 2.80	6.78	12.38		
	68	15.55	9.94	± 2.80	7.14	12.74		
Leeward	ALL	15.55	-6.21	± 2.80	-9.01	-3.41		
Side	ALL	15.55	-8.70	± 2.80	-11.50	-5.90		
Roof	68	15.55	-11.56 °	± 2.80	-14.36	-8.76		
	68	15.55	-10.69 †	± 2.80	-13.49	-7.89		
	68	15.55	-6.71 ‡	± 2.80	-9.51	-3.91		

^o from windward edge to 34 ft
[†] from 34 to 68 ft
[‡] from 68 to 115 ft

 TABLE 3 - Design Wind Pressures

FIGURE 8 - Design Wind Pressures in the N-S Direction

SEISMIC LOADS

Seismic Force Story Distribution								
Floor	w _x	h _x	k	w _x h _x ^k	Σ w _i h _i ^k	C _{vx}		
Base								
2	2760.10	14.25	2.00	560472.81	19622948.41	0.029		
3	2771.10	27.50	2.00	2095644.38	19622948.41	0.107		
4	2739.70	40.25	2.00	4438485.23	19622948.41	0.226		
5	2739.70	54.00	2.00	7988965.20	19622948.41	0.407		
Roof	981.70	68.00	2.00	4539380.80	19622948.41	0.231		

TABLE 4 – Seismic Force Distribution

Floor	F _x (kips)	Story Shear Vx (kips)	Moment (k-ft)
Roof	81.92	-	-
5	144.17	81.92	5570.51
4	80.10	226.09	7785.27
3	37.82	306.19	3223.96
2	10.11	344.01	1040.02
Base	354.12	354.12	144.13
		Overturning Moment (k-ft)	17763.89

TABLE 5 - Seismic Story Shear

FIGURE 8 - Story Shear Diagram

LATERAL LOADS - Worst Case (Base Shear)					
352.12 K (Controls)					
252.0 K					
89.3 K					

TABLE 6 - Worst Case Base Shear

Spot Check Summary

FIGURE 9 - Typical exterior bay

COMPOSITE BEAM

Actual Design: W18x46 (26 studs) Thesis Design: W18x40 (50 studs)

Conclusion: The W18x40 (50) was slightly more economical but did fail in deflection without the camber. If the W18X46 would have been used, 28 studs would have been required which is very close to the actual design. One obvious difference is the *actual design* dead load is about 11 psf lower than the *thesis design* dead load.

See hand calculations pg 30 and 31 in Appendix

COMPOSITE GIRDER

Actual Design: W24X62 (30 studs) Thesis Design: W24x62 (28 studs)

Conclusion: With almost identical designs, the thesis design has actually less strength than the actual design. Placement of the studs is probably the reason behind this, as you can see from Figure 9 that the studs are concentrated toward the both reactions.

See hand calculations pg 32 and 33 in Appendix

COLUMN (A.9-5)

	Actual Design:	Thesis Design:
Roof:	W12X53	W12X40
5 th Floor:	W12X53	W12X40
4 th Floor:	W12X53	W12X53
3 rd Floor:	W12X79	W12X65
2 nd Floor:	W12X79	W12X96

Conclusion: There are many differences in the design of the columns. First, the dead loads used in the thesis design were slightly higher resulting in a greater design at the bottom floor. Secondly, the column is spliced once between the third and fourth floors, therefore the design of the 4th floor column requires it to be carried all the way to the roof. Same goes for the 3rd floor, it is governed by the design of the 2nd floor. In the thesis design, the columns were designed separately per their respective floor, hence the less conservative design at the 3rd floor, 5th floor and roof. When comparing the "governing" floors (2nd and 4th) the thesis design is the same if not conservative.

See hand calculations pg 34and 35 in Appendix

APPENDIX

Dead Load Calculations:

TABLE A-1a - Building Weight						
	Dead	l Load	d Calculations			
Roof	Load		Floor	Load		
Roofing	12.0	psf	Flooring	1	psf	
Deck	1.7	psf	Topping	53.1	psf	
Framing	3.0	psf	Deck/Sub-floor	2	psf	
Insulation	6.0	psf	Framing	8	psf	
Ceiling	1.8	psf	Other	9.4	psf	
Sprinklers	2.0	psf	Ceiling	1.8	psf	
Mech & Elec	2.0	psf	Sprinklers	2	psf	
Misc.	0.0	psf	Mech & Elec	2	psf	
			Misc.	0	psf	
Total Dead	28.5	psf	Total Dead	79.3	psf	

TABLE A- 1b - Building Weight								
Dead Load Calculations								
Roof	Load		Floor	Load				
Roofing	15.0	psf	Flooring	2	psf			
Deck	2.0	psf	Topping	60	psf			
Framing	3.0	psf	Deck/Sub-floor	2	psf			
Insulation	4.0	psf	Framing	10	psf			
Ceiling	2.0	psf	Other	10	psf			
Sprinklers	2.0	psf	Ceiling	2	psf			
Mech & Elec	2.0	psf	Sprinklers	2	psf			
Misc.	0.0	psf	Mech & Elec	2	psf			
			Misc.	0	psf			
Total Dead	30.0	psf	Total Dead	90.0	psf			

Wind Calculations:

WIND CALCULATIONS - ASCE 7-05, METHOD Z · BASIC WIND, V = 90 MPH (FIGURE 1) (6.5.4)(6.5.6.3)· EXPOSURE B · OLCUPANCY CATEGORY 11 - NON-HURRICANE · IMPORTANCE FACTOR, I = 1.0 (6.5.5) (6.5.4) · DIRECTIONALITY FACTOR, KD = .85 · TOPOGRAPHIC FACTOR, K2T = 1.0 (6.5.7) - No HILLS, RIDGES, ESCARPMENTS - DESIGN WIND PRESSURE ON PARAPET PARATET h = 73'-0" G BY LINEAR INTERPOLATION KH = ,90 · VELOCITY PRESSURE 9p ON PARAPET 9p = .00256 (Kh) (K2k) (Kd) (V2) I =,00256 (.9)(1.0)(.85)(90')(1.0) 19F = 15,90 PSF · COMBINED NET PRESSURE LOEFFICIENT, 6Cpm (6.5.12.2.4) GCPM = 1.5 WINDWARD PARAPET GCDM = -1.0 LEEWARD PARAPET · CONBINED NET DELIGN PRESURE PP Pp = gp GCpm = 15.90 (1.5) = + 23.85 FSF ON WINDWARD PARAPET = 15.90 (-1.0) = - 15.90 PSF ON LEEWARD PARAPET Forces: 23.85 (5')= 119.25 PLF (WW) -15.90 (5')= 79.5 PLF (LW)

GUST EFFECT FACTOR · ENCLOSED · RIGID $I_2 = C\left(\frac{33}{2}\right)^{1/6}$ Z=.6h $G = .925 \left(\frac{1 + 1.79a I_2 Q}{1 + 1.79a I_2} \right)$ 9v, 9a = 3.4 $E = \frac{1}{3}$ l = 320 $Z_{min} = 30 \text{ ft}$ $C = \cdot 3$ (TABLE (E-Z)) Z=.6h=.6(68')=40.8 40.8 > 30 = Zmin : 0K Iz: ,3(33) 16= .29 $L_{Z}: l\left(\frac{\overline{z}}{33}\right)^{\epsilon}$ Lz = 320 (40.8) 1/3 = 343 $Q = \sqrt{\frac{1}{1 + .63 \left(\frac{-B + 4}{1 - 1}\right)^{.63}}}$ $Q = \sqrt{\frac{1}{1 + .63} \left(\frac{115 + 68}{212}\right)^{.63}}$ QE.W = . 837 $Q_{N-5} = \sqrt{\frac{1}{1+.65(\frac{275+68}{-442}).63}}$ QN-S= . 783 $G_{K-w} = .925 \left(\frac{1+1.7(3.4)(.24)(.837)}{1+(.7(3.4)(.29))} = .83 \right)$ $G_{N-5} = .925 \left(\frac{1+1.7(5.4)(.29)(.783)}{1+1.7(3.4)(.29)} \right) = .80$

VELOCITY PRESURES 92 394 92 = .00256 K2 K2 Kd V2 I = ,00256 K2(1.0)(.85)902(1.0) 92= 12.63 KZ G VARIES SEE TABLE PRESSURE GEFFIENTS, CP (CASE Z APPLIES) EXPOSURE B · WALL PRESUFE CEEFF.IENTS, CP EAST - WEST WIND NORTH-SOUTH WIND · 1/B = 275 = 2.39 · 4B = 115/25 = .42 WINDWALL WALL: GP = .8LEEWARD WALL: GP = -.78SIDE WALL: GP = -.7 GP = -.7 GP = -.7· ROOF PRESSURE LOEFFIENTS, CP EAST - WEST NORTH-SOUTH h/L= 68/275=,25 5.5 h/L= 68/15=,591 $0 - \frac{1}{2}$: $G_{p} = -.9$, $\frac{1}{2} - h$: $G_{p} = -.9$, $h - \frac{1}{2}h$: $G_{p} = -.5$, 7 = 2h: $G_{p} = -.3$ G = -,93 G = -.86 JINTERPOLATED G = -.54 qi=qn= 15.55 psp (6.5.12.2.1) · INTERNAL PRESSURE (DEFFICIENTS (GLDi) FIGURE 6.5 - ENCLOSED BIDES - GG = ±.18

DESIGN WIND PRESSURES, P2 ? Ph EAST-WEST WINDWARD WALL! PZ = QZ GGP - 24 (GGA) =12 (.83) (.8) - 15.55 (±.18) Fz = . 6692 ± 2,80 (ExT ± INT. PRES) LEEWARD WALL, . SIDE WALLS, ROOF Ph = gn GCp - gh GG; = 15.55(.83)(p - 15.55(±,18) Ph: 12.90 (p + 2.80 (EXT + INT. PRES) SEE TABLE North - South WINDWARD WALL: PZ = 92 G GP - 94 (G(pi)) = 9= (.30)(.8) - 15.55(±,18) P== ,64 9= = 7.80 LEEWARD WALL, SIDE WALLS, TROOF: Ph: 2. GCP-2. GCpi = 15.55(80) (p - 15.55(±.18) P. 12.44 (p ± 2.80 SEE TABLE

Wind Force Calculations

Lateral Forces E-W Direction – Table A-2a						
	Force	Story Shear	Moment			
Floor	Fx, (kips)	V, (kips)	M (ft-k)			
Base/1	-	89.3	0.0			
2.0	17.3	72.0	246.5			
3.0	19.0	53.0	251.8			
4.0	20.3	32.7	268.8			
5.0	21.5	11.2	284.9			
Roof	11.2	-	156.8			
Width	115.0		1208.8			

8 Overturning Moment

Lateral Forces N-S Direction – Table A-2b						
	Force	Story Shear	Moment			
Floor	Fx, (kips)	V, (kips)	M (ft-k)			
Base/1	-	252.0	0.0			
2.0	50.5	201.5	719.6			
3.0	53.6	147.9	710.2			
4.0	56.7	91.2	751.3			
5.0	59.9	31.3	793.7			
Roof	31.3	_	438.2			
Width	275		3413.0			

Overturning Moment

Seismic Calculations:

SEISMIC CALCULATIONS (ASCE 7-05) · SEISMIL GROUP I · SITE CLASS C · IMPORTANCE FACTOR = 1.0 * MAPPED ACCELERATIONS S. ¿ S. - SE É S. FROM INPUTING LATITUDE à LONGITUDE INTO USGS GROUND MOTION PARAMETER CALCULATOR 5, (.2 sec) = . 183 S, (1.0 sec)= .064 * SOIL MODIFIED ACCELERATIONS, Sms & Smi SITE COEFFICIENTS: (TABLE 11.4-1) FA = 1.2 3 SITE CLASS C (TABLE 11.4-2) FV = 1.7 3 SITE CLASS C SM== FAS== 1.2(183)=,22 SM = FVS, = 1.7 (.064) = .109 * DESIGN ACCELERATIONS, Sos & SDI Sps= 2/3 Sms = 2/3 (.22) = .147 (EQN. 11.4-3) SDI = 2/3 SMI = 2/3 (109) = .073 (EEN. 11.4.4 DETERMINE SEISMIC DESIGN CATEGORY (SDC) 1. 53 = .183 7.15 3 ... Not AutoMATICALLY ASSIGNED TO SDC A 2. OLCUPANCY CATEGORY I 3. 5, L. 75 .. Not SDL E OR SDL F 4. CHECK APPROX PERIOD, TA < . 8 TS . Tq = Cehn Ce = .028 3 TABLE 12.8-2 X = .8 3 (STREE MOMENT

Seismic Load Calculations:

TABLE A-3 - Building Weight								
Floor self-weight								
Floor	Area		Dead Load		Weight			
Base	-	-	-	-	-			
2	31032	SF	79.3	PSF	2460.8	К		
3	31170	SF	79.3	PSF	2471.8	К		
4	31170	SF	79.3	PSF	2471.8	К		
5	31170	SF	79.3	PSF	2471.8	К		
Roof	31150	SF	28.5	PSF	887.8	К		
					10764	К		

TABLE A-4 - Building Weight								
Column self-weight								
Column	Quantity	Linear Weight		Height		Total Weight		
W8x40	2	40	PLF	14.3	ft	1.1	К	
W12X50	2	50	PLF	36.5	ft	3.7	К	
W12X53	9	53	PLF	36.5	ft	17.4	Κ	
W12X58	2	58	PLF	36.5	ft	4.2	Κ	
W12X65	3	65	PLF	31.5	ft	6.1	Κ	
W12X65	4	65	PLF	36.5	ft	9.5	Κ	
W12X72	2	72	PLF	31.5	ft	4.5	Κ	
W12X79	4	79	PLF	31.5	ft	10.0	K	
W12X87	4	87	PLF	31.5	ft	11.0	K	
W12X96	2	96	PLF	31.5	ft	6.0	Κ	
W12X106	2	106	PLF	31.5	ft	6.7	Κ	
W14X53	9	53	PLF	36.5	ft	17.4	Κ	
W14X61	2	61	PLF	36.5	ft	4.5	Κ	
W14X120	4	120	PLF	36.5	ft	17.5	K	
W14X132	8	132	PLF	31.5	ft	33.3	K	
W18X86	2	86	PLF	36.5	ft	6.3	K	
W18X106	4	106	PLF	36.5	ft	15.5	K	
W18X119	5	119	PLF	31.5	ft	18.7	K	
W18X119	8	119	PLF	36.5	ft	34.7	Κ	
W18X143	8	143	PLF	31.5	ft	36.0	Κ	
W18X175	3	175	PLF	31.5	ft	16.5	Κ	
				TOTAL WEIGH	IT=	281	Κ	

TABLE A-5 - Building Weight Precast panels								
Base	-	-	-	-	-	-	-	-
2	780	LF	5	ft	57.5	PSF	224.3	K
3	780	LF	5	ft	57.5	PSF	224.3	K
4	780	LF	5	ft	57.5	PSF	224.3	K
5	780	LF	5	ft	57.5	PSF	224.3	K
Roof	175	LF	5	ft	57.5	PSF	50.3	K
							947	K

Total weight of Building = 11,992 K

Snow Calculations:

$$\begin{array}{c} \underbrace{ SNOW \ LOADS} & \left(A SCE 7-05 \right) \\ \cdot \underbrace{ Detreamine \ Growerd Snow \ LOAD, \ P_{3} \\ - Faule 7-1 \ (HANTILLY, \ VA \\ = \underbrace{ P_{15} - 25 \ Fref} \\ \cdot \underbrace{ Detreamine \ Snow \ Density, \ VA \\ = \underbrace{ P_{15} - 25 \ Fref} \\ \cdot \underbrace{ Detreamine \ Snow \ Density, \ VA \\ = \underbrace{ P_{15} - 25 \ Fref} \\ \cdot \underbrace{ Starp + 14 \ S 30 \ Fee \\ \ V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \ V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \hline V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \hline V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \hline V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \hline V = .13 \ p_{2} + 14 \ S 30 \ Fee \\ \hline V = .13 \ (25) + 14 = 17.3 \ S 30 \ V \\ \hline V = .13 \ (25) + 14 = 17.3 \ S 30 \ V \\ \hline V = .13 \ (25) + 14 = 17.3 \ S 30 \ V \\ \hline V = .13 \ (25) + 14 = 17.3 \ S 30 \ V \\ \hline V = .13 \ (25) + 14 = 17.3 \ S 30 \ V \\ \hline V = .100 \ (26) \ Tweet \ Factore \ = 1.0 \\ \cdot \ Tweet \ Factore \ = 1.0 \ (26) \ V \\ \hline V = .100 \ (26) \ Tweet \ Factore \ = 1.0 \ (26) \ V \\ \hline V = .100 \ (26) \ V \\ \hline V = .100 \ (26) \ V \\ \hline V = .100 \ (26) \ V \\ \hline V = .100 \ (26) \ V \\ \hline V = .100 \ (26) \ V \\ \hline V = .100 \ V \\ \hline V$$

.

$$\frac{1}{100}$$

$$\frac{1}$$

Spot Checks: (Composite Beam)

TYPICAL BAY 41-8"× 30'-0" SPOT CHECK · COMPOSITE REAM · DESIGNER AS WI8×46 (26) 41-8" · GIEDER REAM · DESIGNED AS W24X62(30) · SLAB: 31/4" LIGHTWEIGHY D'C = 3000 psi T-GIRDER 30' " DECK: 3" - 20 GA · STUDS: 3/4"\$, 51/4" LOADS: DEAD: 90.0 PSF LIVE = 100 PSF COMPOSITE BEAM TRIB AREA = 10'(30') = 300 SF LIVE LAND REDUCTION KI = 2 (INTERIOR REAM) L= 100 (.25 + 15) = 86,2 PSF $W_{1} = 90.0 (10') = .900 \text{ KLF}$ $W_{11} = 36.2 (10') = .362 \text{ KLF}$ Wu= 1.2D+1.6L = 1.2(90)+16(.862) = 2.46 KLF My: W/2 = 2.46 (41.67)2 = 533 K.FT - Assume a = 2", 1/2 = 61/4"-2" = 5.25" (USE 1/2=5 TO FE · bet { 10'= 120" ~ 1/4(500"): 125" TABLE 3-21 => LIGHTWEIGHT, 3/4"\$,] DELK, WEAK, fc:3KS QN= 17.2 K

Composite Girder:

COMPOSITE GIRDER EXT. BAY + INT. BAY + TRIB ALEA = 30'x (4.67 + 30) = 1075 SF LL REDUCTION KL = 2 (INT. BEAM) L= 100 (25 + 15) = 57.3 PSF Wy = 1.2 (.900) + 1.6 (.573) = 2.00 KLF $\begin{array}{rcl} P_{01NT} & L_{0ATDS} &= \left[\frac{2.00 \left(\frac{41.67}{2}, \frac{30}{2} \right)}{2} \right] \cdot 2 &= 71.7^{K} @ 10^{\prime} \pm 20^{\prime} \\ \hline & 2 \end{array} \right] \cdot 2 &= 71.7^{K} @ 10^{\prime} \pm 20^{\prime} \end{array}$ 10' V 10' V 10' BEFF { 41.67 (12) = 500 41.67 (12) = 125 V VIII n.7 K ABOUME q = 1=7 42 = 5.75 71714 USE S.S. TABLE 3-21 =7 LWC. 11 DECK fc= 3 Koi Qu: 17.1K TABLE 3-19 MEMBER PNA 717K ZQn #STUDS STUDS BEAM WI TOTAL WZ1×62 7 767 228 28 280 1860 WZ4×62 7 827 228 28 280 1860 WZ4×68 7 932 251 30 300 2040 2140 2140 2340 CHECK: WZ406Z $q: \frac{\Sigma R_{H}}{85 (!, R_{2})} = \frac{Z 2 8}{85 (3) (R5)}; , 715 < 1 :. 6K$

CONSTRUCTION DEAD LOAD DEFLECTION P= .900 KLF (41.67, 30)= 32.2K $\Delta = \frac{PL^3}{ZEEI} = \frac{32.2 (30')^3 (144)}{ZE (29000) (1550)} = .100''$ Inny 462 A = 1360 = 30 (12) = 1" > 100" .. OK LIVE LOAD DEFLECTION P=. 573(49, 39): 20.53K A= PL3 = Zo.53 (30) 144 . . 037 " 2 1" . ok 28 (2600) (260) : . 037 " 2 1" . ok JER WZ446Z . USE COMPOSITE W24 × 62 W/28 STUDS FOR Typical GROER

Column (Gravity Only):

COWMN SPOT CHECK: A.9-5 · INTERIOR GRAVITY COLUMN (NO LATERAL LOAD) · COLUMN SPLICED 4'-O" ABOVE 30 FLOOR LOATS: DEAD: FLOOR = 90.0 RSF ROOF = 30.0 PSF LIVE: FLOOR = 100 PSF ROOF: ZO PSF SNOW: ZO PSF TRIB AREA: (41.8 + 30) * 30 = 1077 × 4 = 4308 = A ROOF COLUMN (KL= 14,0') - No LIVE LOAD REDUCTION LAAD: = 1.2 (30.0) + 1.6 (20) + .5(20) $P_{n} = 78.0 \ P_{3F} \left(1077 \ 5F \right) = \frac{84}{2} = \frac{10}{2} \frac{10}{2} \times \frac{40}{2}$ 5th FLOOR (KL= 13.25') LL REDUCTION L = Lo (.25 + 15/AI) = Lo (.25 + 15) = .4786 > .4Lo V ok L= 100 (.478) = 47.8 LOAD = 1.2 (90.0) + 1.6(47.8) = 184.5 PSF (10775F) Pu: 198.7 + 84 K = 282.7 K => W12 × 40 \$ Pn= 322 K

$$\frac{47^{H}}{Flock} = (KL = 13.25)$$

$$\frac{11}{L} \frac{Detworrien}{L : 100 (.25 + \frac{15}{1450}) : 47.8 Psf (SAME AS 5)}$$

$$Lohd = SAME AS 5 = 1845 Psf (1077 SF)$$

$$R.: 198.7K + 282.7K : 481.4K = 1012 K 53$$

$$\frac{30}{PL} \frac{Flock}{Flock}$$

$$\frac{11}{L} \frac{Retroctricn}{R} = (KL = 15.25)$$

$$G = SAME AS 4 ! 5$$

$$LeAD = SAME = 184.5 (1077) : 198.7K$$

$$R_{L} = 198.7K + 481.4K = G80.1 K = 70 \text{ M12 X GS}$$

$$\frac{0}{PR} = 701 \text{ K}$$

$$2ND = Flock = (41.85)$$

$$No = Live = 164.5 (1077) : 178.7K = 701 \text{ K}$$

$$2ND = Flock = (41.85)$$

$$No = Live = 164.5 (1077) : 172 \times 65$$

$$\frac{0}{PR} = 701 \text{ K}$$

$$2ND = Flock = (41.85)$$

$$No = Live = 164.5 (1077) : 172 \times 65$$

$$\frac{0}{PR} = 701 \text{ K}$$

$$12(90) + 1.6(100) = 268 \text{ Ref } (1077) : 172 \times 96$$

$$\frac{0}{PR} : 1012 \text{ K}$$