

THESIS SCOPE OF WORK

LIGHTING REDESIGN – 4 SPACES:
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL BRANCH CKT. REDESIGN
ELECTRICAL DEPTH TOPICS
STATIC VS. ROTARY UPS
FEEDERS VS. BUS DUCT
ARCHITECTURAL BREADTH
MECHANICAL BREADTH

Presentation

•LIGHTING REDESIGN •EXTERIOR COURTYARD •LIVING ROOM •DAYLIGHT STUDY •WINE BAR •BALLROOM •ELECTRICAL BRANCH CKT. REDESIGN •ELECTRICAL DEPTH TOPICS •STATIC VS. ROTARY UPS •FEEDERS VS. BUS DUCT •ARCHITECTURAL BREADTH •MECHANICAL BREADTH

BUILDING OVERVIEW

LIGHTING DEPTHS
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

•5 Star/5 Diamond Resort and Spa •Middleburg, VA

BUILDING OVERVIEW

LIGHTING DEPTHS
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

•5 STAR/5 DIAMOND RESORT AND SPA •MIDDLEBURG, VA •340 ACRE SITE

BUILDING OVERVIEW

LIGHTING DEPTHS
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

LUKE RENWICK | LIGHTING/ELECTRICAL | APRIL 14, 2010

•5 STAR/5 DIAMOND RESORT AND SPA •MIDDLEBURG, VA •340 ACRE SITE •230,000 SQ. FT. •LEED CERTIFICATION

GENERAL DESIGN GOALS

•INTRODUCTION/OVERVIEW •LIGHTING DEPTHS •Exterior Courtyard •Living Room •Daylight Study •Wine Bar •Ballroom •Electrical Depth Topics •Feeders vs. Bus duct

•FEEDERS VS. BUS DUCT •MECHANICAL BREADTH •CONCLUSIONS •ACKNOWLEDGMENTS

- LIGHTING RESPECTFUL TO TRADITIONAL VIRGINIA HORSE AND WINE COUNTRY
- PROMOTE RELAXATION WITH LOCATION OF LIGHT AND USE OF WARM COLOR TEMPERATURE SOURCES
- EXHIBIT ELEGANCE, CLASS, HIGH QUALITY

EXTERIOR COURTYARD

•CONCLUSIONS •ACKNOWLEDGMENTS	 WINE BAR BALLROOM ELECTRICAL DEPTH TOPICS FEEDERS VS. BUS DUCT MECHANICAL BREADTH CONCLUSIONS ACKNOWLEDGMENTS
----------------------------------	---

EXTERIOR COURTYARD

EXTERIOR COURTYARD

LIVING ROOM

No. of the other	Salaman	der Resort .	and Spa	Living Room	
	Simple Visual Tasks	IES – ILLUMINANCE 10 fc	DESIGN ILLUMINANCE 10.96 fc		
		ASHRAE LIGHTING POWER DENSITY	DESIGN LPD		
	Lobby/Lounge With Decorative Allowance	1.2 W/sq.ft. 2.2 W/sq.ft.	 0.95 W/sq.ft.		
	Luke Renwick 1	LIGHTING/ELECTRIC/	al April 14, 2010		

Salamander Resort and Spa	Living Room Daylight Study	
 INTRODUCTION/OVERVIEW LIGHTING DEPTHS EXTERIOR COURTYARD LIVING ROOM DAYLIGHT STUDY WINE BAR BALLROOM ELECTRICAL DEPTH TOPICS FEEDERS VS. BUS DUCT MECHANICAL BREADTH CONCLUSIONS ACKNOWLEDGMENTS LUKE RENWICK LIGHTING/ELECTRICAL APRIL 14, 2010	 Analysis Goals: Daylight Penetration Study (Continuous)Daylight Autonomy Photosensor Integration Energy Savings 	

LIVING ROOM DAYLIGHT STUDY

- DAYLIGHT PENETRATION STUDY
 - POTENTIAL PROBLEM JUNE 21st
 - 6:00 AM, 7:00 AM, 6:00 PM

LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

•INTRODUCTION/OVERVIEW

•EXTERIOR COURTYARD

•LIGHTING DEPTHS

LIVING ROOM DAYLIGHT STUDY

LIVING ROOM DAYLIGHT STUDY

GRAND BALLROOM

GRAND BALLROOM

5 - 15 fc	17.7 fc (dimmable)
ASHRAE LIGHTING	DESIGN LPD
POWER DENSITY	
1.3 W/sq.ft.	1.1 W/sq.ft.
	ASHRAE LIGHTING POWER DENSITY 1.3 W/sq.ft.

Luke Renwick | Lighting/Electrical | April 14, 2010

FEEDERS VS. BUS DUCT

 INTRODUCTION/OVERVIEW LIGHTING DEPTHS EXTERIOR COURTYARD LIVING ROOM DAYLIGHT STUDY WINE BAR BALLROOM ELECTRICAL DEPTH TOPICS FEEDERS VS. BUS DUCT MECHANICAL BREADTH CONCLUSIONS ACKNOWLEDGMENTS LUKE RENWICK LIGHTING/ELECTRICAL APRIL 14, 2010	•GOALS •CALCULATE COST FOR LONG-RUN COPPER FEEDERS •COMPARE TO COST OF BUS DUCT •FIND LOWEST COST SOLUTION	Ettral rooms containing distribution panels
---	---	---

INTRODUCTION/OVERVIEW LIGHTING DEPTHS EXTERIOR COURTYARD LIVING ROOM DAYLIGHT STUDY WINE BAR BALLROOM ELECTRICAL DEPTH TOPICS FEEDERS VS. BUS DUCT MECHANICAL BREADTH CONCLUSIONS ACKNOWLEDGMENTS

Luke Renwick | Lighting/Electrical | April 14, 2010

FEEDERS VS. BUS DUCT

MSB TO DN4B3/DN4B3A = 610 FT.

MSB TO DN4G4A = 600 FT. ; DN4G4A TO DN4G4B = 141 FT.

FEEDERS VS. BUS DUCT

and the second second	•INTRODUCTION/OVERVIEW •LIGHTING DEPTHS •Exterior Courtyard •Living Room •Daylight Study •Wine Bar •Rauboom	•ANALYSIS SCENARIOS: •EXISTING COPPER FEEDERS •INDIVIDUAL BUS DUCT FROM MSB T •ONE LARGE BUS DUCT – TAP OFF TO •INDIVIDUAL BUS DUCT TO PANELS – •LARGE BUS DUCT TO PANELS – ALUM	O DISTRIBUTION PANELS Distribution panels Aluminum bus duct Inum bus duct
1.28	DALLKOOM	Scenario	Total Cost
- 58	•ELECTRICAL DEPTH TOPICS	#1: MSB to Distribution Panels via Feeders	\$513, 614.15
No.	•FEEDERS VS. BUS DUCT	#2: Individual Busduct to Distribution Panels	\$439.790.00
"Ha	MECHANICAL PREADTH	#3: Large Busduct with Tap-offs to Panels	\$416,732.00
	MIECHANICAL DREADIN	#4: Scenario #2 with Aluminum Busduct	\$351,711.00
	•CONCLUSIONS	#5: Scenario #3 with Aluminum Busduct	\$362,460.00
	•Acknowledgments	•Savings: scenario #1 – Scenario #	4 = <u>\$161.903.15</u>

Luke Renwick | Lighting/Electrical | April 14, 2010

SALAMANDER RESORT AND SPA HEAT RECOVERY •ANALYSIS GOALS: •INTRODUCTION/OVERVIEW •Provide heat recovery to air handling unit "AHU-2" •LIGHTING DEPTHS FROM FIREPLACE EXHAUST •EXTERIOR COURTYARD •DESIGN LOOP, SIZE RECIRCULATION PUMP •LIVING ROOM •Daylight Study •Wine Bar •BALLROOM IN R.L •ELECTRICAL DEPTH TOPICS •FEEDERS VS. BUS DUCT 50 •MECHANICAL BREADTH •Conclusions •Acknowledgments <u>Dates</u> LUKE RENWICK | LIGHTING/ELECTRICAL | APRIL 14, 2010

HEAT RECOVERY

PRESSURE DROP:
●PIPE LENGTH → 10.8FT.
●FITTINGS → 32FT.
•COILS → 11.5FT.

•Total Head = 54.3ft.

•Sensible load needed for preheat coil = 480 MBH •MBH = 500 * GPM * ΔT

•PUMP SIZED AT 24 GPM TO PROVIDE 480 MBH

Luke Renwick | Lighting/Electrical | April 14, 2010

HEAT RECOVERY

CONCLUSION

•ENERGY EFFICIENT – REDUCED POWER CONSUMPTION BY 60%

•CONSERVATIVE, DECORATIVE LIGHTING RESPECTFUL TO

•COST EFFECTIVE SOLUTION TO ALUMINUM BUS DUCT

•ENHANCES ARCHITECTURE/INTERIOR DESIGN

INTRODUCTION/OVERVIEW
LIGHTING DEPTHS
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

REPLACEMENT OF LONG-RUN COPPER FEEDERS
•MECHANICAL

•ENERGY SAVINGS FOR HEAT RECOVERY

MIDDLEBURG CONTEXT

•LIGHTING

•ELECTRICAL

ACKNOWLEDGEMENTS

INTRODUCTION/OVERVIEW
LIGHTING DEPTHS
EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM
ELECTRICAL DEPTH TOPICS
FEEDERS VS. BUS DUCT
MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

THANK YOU TO....

•PROFESSORS HOUSER, MISTRICK, DANNERTH

•TURNER CONSTRUCTION •MARK MILLER

•AE CLASSMATES •Sth year Lighting/Elec. Students

•FAMILY AND FRIENDS

INTRODUCTION/OVERVIEW
LIGHTING DEPTHS

EXTERIOR COURTYARD
LIVING ROOM
DAYLIGHT STUDY
WINE BAR
BALLROOM

ELECTRICAL DEPTH TOPICS

FEEDERS VS. BUS DUCT

MECHANICAL BREADTH
CONCLUSIONS
ACKNOWLEDGMENTS

LUKE RENWICK | LIGHTING/ELECTRICAL | APRIL 14, 2010

QUESTIONS?

