Voorhees Replacement Hospital Voorhees, New Jersey

Final Report

Paul Stewart

Structural Option

Consultant: Dr. Ali M. Memari

April 7th, 2010

General Building Statistics:

Location: Voorhees, New Jersey

Size: 642,000 ft² Total Levels: 9

Construction Dates: March 2008 - March 2011

Construction Cost: \$323 Million

Design Team:

Owner: Virtua Health

Owner's Rep: Hammes Company

Architect/Engineers: HGA Architects and Engineers, LLC Geotechnical Engineer: Lippincott & Jacobs Consulting

Elevator Consultant: Lerch, Bates, & Associates Construction Manager: The Turner Company

Lighting/Electrical

(6) 2000 KVA units transform produce 277Y/480 Volt service

(3) 1500 KW generators provide emergency power

Uses a rotary UPS in order to provide uninterrupted power during a power loss

Majority of Interior Lighting is recessed fluorescent fixtures designed to follow IESNA recommendations

Structural

Steel structure

Concrete footings reston on concrete piers Steel bracing and moment frames Composite steel/concrete slab system Geopiers required to densify the loose soils

Mechanical

- (10) Air handling units serving various portions of the building
- (3) 1,000 ton water cooled chillers, with an area for 2 additional chillers if needed
- (4) 2,083 GPM cooling towers, with an area for 2 additional towers if needed

Paul Stewart | Structural Option

Table of Contents

Executive Summary	6
Acknowledgements	8
Introduction	9
Existing Building Information	11
Architecture	11
Sustainable Features	11
Electrical	12
Lighting	12
Mechanical	12
Telecommunication	13
Existing Structural System	14
Foundations	14
Superstructure	15
Floor System	15
Columns	16
Lateral System	17
Roof System	19
Proposal	20
Problem Introduction	20
Problem Solution	21
Breadth Topics	22
MAE Topic	22
Structural Study	23
Codes & Design Standards	23
Gravity Loads	24
Helipad Design	25

7Helipad Background Research
Helipad Location Study
Helipad Slab Design
Rebar Location Details
Gravity Column Redesign
Foundation Redesign
Details
Lateral System Design
Wind Loads
Seismic Loads
Load Combinations
Braced Frame Design
RAM Model46
Frame Sizes and Layout
Lateral Foundation Design55
Lateral Force Distribution
Spot Checks
Drift
Center of Mass and Rigidity61
Torsion
Overturning Moments
Comparison of Existing Lateral System vs. New System
Connection Design68
Typical Connection #1 69
Typical Connection #2
Typical Connection #3
Typical Connection #4
Electrical Analysis71
·
Acoustical Study72

Conclusions	73
Bibliography	75
Appendix A: Typical Floor Plans	76
Appendix B: Helipad Slab Calculations	83
Appendix C: Helipad Column Calculations	101
Appendix D: Helipad Foundation Calculations	107
Appendix E: Wind Calculations	113
Appendix F: Seismic Calculations	121
Appendix G: Free Body Diagram	124
Appendix H: Lateral Force Distribution	130
Appendix I: Spot Checks	131
Appendix J: Drift	133
Appendix K: Connections	134
Appendix L: Electrical	143
Appendix M: Acoustical	144

Executive Summary

The Voorhees Replacement Hospital is a new hospital replacing the current Voorhees hospital due to its inability to expand and be renovated. The new building is 9 stories tall, approximately 140 feet tall. It consists of two parts, a main bed tower, and a services building.

In the final report the current building's systems will be explained in depth. An in depth description of the mechanical, electrical, lighting, telecommunication, and structural systems will be given. The architecture of the building will also be explained as well as some of the building's sustainable features.

A description of the proposed changes to the building will then be given. An overview look at the potential benefits of the changes will be given, and the process of making the changes will be explained.

The current helipad will be looked at and the possibility of moving it from the parking area to the top of the building will be explored. This report will look into possible problems and requirements that a helipad located on the roof will require. A location will then be determined based on these requirements. In order to move it from its current location, the helipad will be redesigned as a two-way slab with beams spanning from column to column. The beams supporting the slab will also be designed as concrete beams. Due to the added weight on the roof, the gravity columns that support the new helipad will be adjusted for the added weight. Also, since weight is added to the columns, the foundations will also need to be redesigned. These new foundations will then be checked against a RAM model to insure they are accurate.

In order to eliminate moment frames throughout the building, the lateral system will also be changed. The lateral system will be changed in the Southern Building from a combination of braced frames and moment frames, to a system that only uses braced frames. Since changing the lateral system will also change the seismic forces, these forces will need to be redesigned. In order to design the new system a RAM model will be created. This model will assist in the design and analysis of the new building.

Because new braces will be added to the building, a study of their new location will be performed to insure that the architecture is unchanged. The location of these new braces will then be plugged into the RAM model and a design will be performed. The location and sizes of the new braces will then be reported. Since the forces on the foundations will also change, the foundations will also need to be redesigned. The new foundations are redesigned and the sizes are reported.

The new system will also be analyzed for a number of different factors. The analysis will look at the new building's drift, center of mass and center of rigidity, torsion, overturning moment, and constructability. These factors are then compared to the old system's values. It is found that the new systems' seismic forces are reduced due to the new R value. It is also found that by eliminating moment frames, time and money can be saved with the new system. Although it is found that the new system will have a larger drift, torsion, and overturning moment when compared to the old system.

Due to the new type of lateral system a design of the connections for the new braces will be performed. Two brace to column connections, a brace to beam connection, and a brace to brace connection will be designed and reported in this report.

Because of the new location of the helipad, an electrical breadth and an acoustical breadth will be performed. The electrical study will determine new wire sizes for lights located on the new helipad. These wires will also be tied into an existing circuit breaker. The acoustical study will look at the potential sound entering patients' rooms. The study will find that a new façade type will be necessary in order to eliminate sound entering the space.

Acknowledgements

To Virtua Health:

For permitting the use of the Voorhees Replacement Facility for this project.

To The Turner Company:

Especially Bill Swanson and Chris McCrae

For taking time out of your day to track down project information, for providing me with construction documents, providing me with a tour of the site, and answering my questions.

To HGA Architects and Engineers, LLC Especially Mike Torine, Mark Debrauske, Jeff Harris, and Paul Gruettner For providing me with background information.

To Heliport Systems Inc.:
Especially Bill Davis
For providing me with information on helipad systems.

To the Pennsylvania State university Architectural Engineering Department: Especially Dr. Ali Memari, Professor Kevin Parfitt, and Professor Robert Holland For helping me throughout my thesis by providing answers to my questions.

To the Architectural Engineering Class of 2010: For helping me keep my sanity throughout the year.

To my girlfriend Kara, family, and friends: For their patience and understanding when my thesis came first and all your loving care and support.

Introduction

The Virtua Voorhees Replacement Hospital is located in Voorhees, New Jersey (Latitude: 39.84° Longitude: -74.93°), immediately off Rt. 73. It will be replacing the old Voorhees hospital because of its inability to be renovated. The new hospital will have 9 floors, starting with a Garden Level continuing up through Floor 8. The building is broken up into two main areas, the main bed tower (referred to as Building A, or Northern Building in this report), and a services building (referred to as Building B, or Southern Building in this report). The building is also broken up into 7 smaller zones, for ease of reference in the drawings. Figure 1 shows how the building is split up.

For the final report of the Voorhees Replacement Hospital the existing conditions are explained in detail. All of the systems including mechanical, electrical, and lighting are explained to give some background on this building. The structural system is then explained in greater detail so that the current building can be compared to any new designs. A proposal is also introduced in order to fully understand the purpose of this report. The proposal will introduce the conclusions that this report is hoping to make.

After the proposal is introduced a structural study will be conducted. This study will look at the possibility of moving the existing helipad from the parking area and adding it to the roof of the structure. In order to move the helipad, it must first be designed as a concrete two-way slab system using concrete beams that span from column to column. The supporting gravity columns will then be analyzed and increased in size to account for the added load from the helipad. Finally, to ensure that the helipad is a feasible addition, the foundations will need to be redesigned to support the added gravity loads.

This report will also look into changing the lateral system from a combination of steel moment and braced frames to purely braced frames. By making this change this report hopes to eliminate the need of moment connections which can be both costly and timely. In order to ensure that this is a possible option, many factors for the new system will be studied. First, new seismic loads will be calculated in order to find the change in loading that occurs when switching from a combination of lateral systems to a purely braced frame system. A RAM model will then be created to assist in the design of the new lateral system. Following the design an analysis of the structure will be preformed to look at the drift, torsion, and overturning moments of the new structure. These criteria will then be compared to the existing system to see the advantages and disadvantages of the new system.

An advanced study of connections will be preformed to look at the new lateral connections. Four typical connections will be designed to fulfill the MAE requirements of this

report. The four connections will include two brace to column connections, a brace to beam connection, and a brace to brace connection.

Two breadths will also be preformed for this report, an electrical breadth and an acoustical breadth. Since the change in location of the helipad will also be moving the light fixtures that are required for it, an electrical study will be required to size the new wires and breaker for the new lights. Also, since the helicopter, now located on the top of the building, will create added noise, an acoustical study will be required to find the noise levels in the patients' rooms. Also, in the case that noise levels are too high, the existing façade will need to be redesigned to reduce the noise levels.

Figure 1 - Separation of Zones

Existing Building Information

Architecture

The new Virtua Replacement Hospital will be a nine story hospital with approximately 360 beds, each in its own private room. The building is split into two main parts, a main bed tower (Figure 2) and a services building (Figure 3). The main bed tower is 8 levels and holds zones 1 through 3. This tower holds the majority of the 360 beds and private rooms. It is a

Figure 2 - Main Bed Tower

The other services building, which holds zones 4 through 7, is attached to the main bed tower via a thin corridor. The corridor has large windows along either side to allow for light to enter the space. The services building houses most of the labs, offices, and other surgical spaces needed in

the hospital. The services are located on the ground floor through the 5th floor. Above the

curved building with a curtain wall facing the majority of the site. This curtain wall allows residents to get an excellent view of the site and the natural wetlands that were protected during construction. This particular shape mixed with the curtain wall also helps sunlight enter the building, allowing natural light to fill the patients' rooms.

Figure 3 - Services building

5th floor, the building narrows to match the width of the corridor connecting the bed tower and the services building. Mechanical spaces start on the 6th floor and continue up through the 8th floor. The main features of this building are the light wells which also act as courtyards. These light wells are located in the center of the building allowing natural daylight to enter the center of the building while also allowing the occupants of the building a chance to get some fresh air without leaving the hospital. The services building also allows for future growth, by adding more space on top of zone 6.

Sustainable Features

Besides the natural light provided by the curtain wall and light wells, the Virtua Replacement Hospital also takes advantage of some other sustainable techniques. One example is the wetlands located on the 120 acre site. During construction protection was required around certain trees and natural areas to insure that they would stay intact for when

the building was complete. For the areas that were not protected during construction, the designers called out various grasses and plants native to the area.

The designers also anticipated a bus route to go to the hospital allowing visitors and staff to bus in rather than drive. Bike racks were added for those who would rather bike to the hospital instead of drive or take the bus.

Electrical

Electrical service is received from Atlantic City Electric (ACE) at 12.47 KV. Currently there is only one utility service, however, a second service is planned to be installed in the future to increase reliability. The hospital has six 2,000 KVA unit substations to transform the utility service to 277Y/480 Volts. This power is then distributed throughout the facility.

For emergency power, the hospital will have three 1,500 KW diesel generators, with provisions to add a fourth generator in the future, when the hospital expands. In the event of a loss of power, these generators will come on line and backup essential electrical branches, which include life safety circuits, critical branch circuits, equipment branch circuits, and the newly added helicopter lights. To provide uninterruptible power for the roughly 10 seconds when utility power is lost and the generators come on line, this hospital will have a rotary UPS. This is basically a large flywheel that is always spinning. If utility power is lost, it will continue to spin for about 30 seconds and generate power for that time while the generators are coming on line.

Lighting

For the interior lighting design, the IESNA recommendations were followed. Recessed fluorescent fixtures of various types, sizes, and styles were used in the majority of the building. Electronically ballasted T8 linear, twin-tube long compact and triple-tube compact fluorescent lamps were used as the building standard.

Lighting for the parking and driving areas are provided by pole-mounted cutoff luminaries. The fixtures were classified as cut-off luminaries by the IESNA and have a peak distribution of less than 90 above nadir. Light trespasses are limited to not more than 0.5 foot-candles crossing the property line. The pole heights were determined by the Voorhees Township Code, and the heights determined the spacing and wattage for each lamp. Typical exterior lights are metal halides.

Mechanical

Building heating, HVAC humidification, domestic water heating, and auxiliary steam demands for the hospital shall be served from a Central Utility Plant (CUP) hybrid heating system located primarily at the 5th floor mechanical area. The steam boilers provide primary

service for the facility's demands. The plant capacity is based on an initial installation of 3 boilers to provide a total capacity of 1,500 BHP. The design facilitates future expansion of 2 additional units for a future capacity of 2,500 BHP total. The steam system also provides supplemental capacity and backup fuel redundancy for facility HVAC heating.

Facility cooling will be provided by a centralized chilled water system. Primary chilled water generation will be provided at the CUP. Chilled water will be generated by electric drive, water-cooled, centrifugal water chillers. Base chiller sizing shall be nominal 1,000 cooling tons each. Base plant capacity shall be based on an initial installation of 3, 1,000 ton units to provide a total capacity of 2,000 ton, with one unit always reserved for redundancy. The facility is designed for a future expansion of 2 units to increase capacity to 4,000 tons. Cooling heat will be rejected through 4 induced-draft, cooling tower cells. The cooling towers will be high efficiency design with a nominal capacity of 833 cooling tons heat rejection per cell. There is also room for 2 future cells.

There are 3 sets of air handling units. All the units are located in the 7th floor ancillary mechanical room. The first set contains 2 units and serves non-patient care areas such as Dietary, Environmental Services, Receiving, Lab and Maintenance. The second set contains 2 units and serves the Emergency Department, Peds Emergency, Surgery, C-Section operating rooms, the Pharmacy, and NICU. The Operating and C-Section rooms have pressure monitors to maintain positive room pressure, and will alarm if positive pressure is not maintained. The third set contains 6 units and serves the patient care areas.

Telecommunication

The telecommunication system of the building is on the low-voltage system and is being provided on cat-6 cables. A Public Address (PA) system is utilized in the building. The system is unique in that it must be able to withstand an earthquake, meaning it must remain in place without any separation of parts from the device when subjected to seismic forces specified, and the unit must be fully operational after the seismic event.

Existing Structural System

Foundations

The soil for the Voorhees Replacement Hospital is mainly a sandy soil. To prevent these loose soils from liquefaction, stone piers, or geopiers were required to be put in to densify the soil. These geopiers were required to increase the bearing pressure of the soil to 6,000 psi for the soil below all the building's foundations, canopy foundations, and utility structures. For any soil below the site's retaining walls, the bearing pressure was required to be increased to 3,000 psi. The minimum required equivalent coefficient of friction equals 0.36 for sliding resistance across the entire footing bottom area for the retaining walls, and brace frame foundations.

The foundation system is a series of concrete footings either resting on concrete piers, or resting on grade. The exterior columns are concrete footings with sizes ranging from $4' \times 4' \times 1' - 6''$ to $13' \times 13' \times 3' - 4''$ with rebar sizes ranging from #6 - #10 both ways. The columns that rest on concrete piers range in size from $2' - 4'' \times 2' - 4''$ to $3' \times 4' - 6''$ with rebar sizes ranging from #9 - #11 for the vertical reinforcement, and #4's or #5's for the ties. See Figures 4 and 5 below for typical footing and pier details.

Figure 4 - Typical Concrete Foundation

Figure 5 - Typical Foundation Footing With a Concrete Pier

The garden level floor system is constructed, in most places, using a 5" concrete slab on grade, with $6 \times 6 - W2.9 \times W2.9$ WWF. In specified spots the size of the concrete slab is increased for specialized equipment, such as refrigerator equipment required for the kitchen and dietary section of the hospital. In zones 4 and 5, a grade beam travels along the perimeter. The grade beam is shown in Figure 6 below.

Figure 6 - Typical Concrete Grade Beam Detail

Superstructure

Floor System

The floor system of the Voorhees hospital is a composite steel/concrete system. In Building A the typical bay sizes are around 30' x 30' or 30' x 10', depending on what area of the building they are located in. In Building B the bay sizes are typically $31' - 4'' \times 31' - 4'' \times 29' - 4''$. $3 - \frac{1}{2}$ " light weight concrete sits on top of 3" x 18 Gage composite steel deck. The total thickness of the concrete is $6 - \frac{1}{2}$ " with 6x6-W2.1xW2.1 WWF.

The steel deck is connected to the W-shape beams by ¾" diameter x 5" long shear studs allowing the two systems to work together in composite action. The beams then frame into larger W-shape girders via a single angle connection or a single plate connection. The beams are coped allowing them to connect to the girder's web so that the composite deck can sit on both the beams and the girders. A typical beam to girder connection is pictured below in Figure 7. The W-shape girders frame into W-shape columns by either double angle connections, or by

Figure 7 - Typical Single Plate Beam to Beam Connection Detail

Figure 8 - Typical Double Angle Beam to Column Connection Detail

moment connections. The double angle connection is shown above in Figure 8.

Columns

Typical columns for the Voorhees Replacement Hospital are W14's. The gravity columns are much lighter than the lateral columns. This is due to the added lateral force that the lateral columns must take. The columns are spliced every two floors, 4'-0" above the floor with either a bolted column splice or a welded splice. The columns located in zone 6 are designed for future expansion to be built above.

Lateral System

The Voorhees Replacement Hospital uses a combination of braced framing and moment connections for its lateral system. Though in both buildings the composite floor system and the roof deck acts as a diaphragm to transfer loads to either the braced frames, or the moment connections. In building A the braced frame supports the N-S lateral forces while the moment connections brace the E-W lateral system. The braced system consists of diagonal, square, HSS connected to W shapes. The braced frames are of two different styles, the bracing either frames from corner to corner, or from lower corner to the midpoint of the top beam. Typical frames can be seen in the Figures 10 and 11 on the next page. The moment frames in the Northern Building support the E-W lateral forces. The moment connections are located at the columns at the perimeter of the building, see Appendix A for a typical floor plan. A typical moment connection can be seen below in Figure 9.

Figure 9 - Typical Moment Connection Detail

Figure 10 - Typical Braced Frame

Figure 11 - Typical Braced Frame

In Building B a combination of systems is used. In the N-S direction braced frames are used to resist the lateral forces. In the E-W direction, both braced frames, and moment connections resist the loads. The moment connections, again, are typically exterior columns running along the perimeter of the building. The diagonal braces are typically, like in Building A, diagonal HSS's connected to W shapes.

Roof System

The roof system is composed of 3" x 20 Gage steel roof deck topped with a concrete slab, vapor retarder, and insulation system. In certain areas the roof deck must support the green roof. To support the extra 100 psf of added weight from the green roofs, W shapes are added with a short beam to beam span. A section with added beams can be seen in the Figure 12 below.

Figure 12 - Typical Framing Plan for Garden Roofs

Proposal

Problem Introduction

For the final report of the Voorhees Replacement Hospital, two features of the building will be studied. The first feature that will be looked at is the hospital's helipad which is currently located near the parking lot on site, as seen in Figure 13. The current helipad which is located far from the building's Emergency Room increases a patients' time until they can receive proper medical care. By locating the helipad away from the building, an ambulance must transfer a patient from the helicopter to the hospital. In order to eliminate this step, this report will look at relocating the helipad from the parking lot to the top of Building B.

Figure 13 - Location of Current Helipad

The second feature that will be studied in this report is the southern building's lateral system. In Building B a combination of braced frames and moment frames are used. Since moment frames can be much more expensive than braced frames and can take longer to install, an attempt will be made to eliminate all moment frames, replacing them with new braced

frames.

Problem Solution

An in-depth study will be preformed to find any and all requirements for helipads that are located on top of hospitals and other building types. Because the helicopter will be refilling on the helipad certain requirements may be necessary for spill containment and fire protection. Due to these added requirements, this report will look at keeping the existing helipad for fueling and storage purposes. There will also be special requirements for fall protection, and other safety concerns that will need to be researched.

After the requirements for the helipad are found, a design of the helipad will be required. A location on the roof will need to be found so that the helipad is located close to an elevator shaft so that the patient can be easily transported from the helipad to the emergency room. After finding a location the helipad will be created using a concrete pad supported by steel members. The concrete pad will be a two – way concrete slab since the helipad is square. The pad will be supported by steel W shapes that frame down to the building's structural system.

The building's gravity system will need to be redesigned to account for the extra gravity loads introduced from the helipad and the helicopter. The structural system will continue to be composite steel beams with steel columns. Member sizes will be increased so that they are acceptable for the new loads. The current bay sizes will be used throughout the building in order to maintain the proper circulation in the building.

The building's lateral system will also need to be redesigned for the added weight of the helipad. It was found in Third Technical Report that the seismic forces in the North – South direction control over the wind forces. Since the seismic forces are directly related to the building's weight, when the extra weight of the helipad and the helicopter are added, the seismic forces will be increased. Therefore the lateral members must be redesigned for the new forces.

In Building B the lateral system will be altered in order to eliminate any moment connections. This will help to eliminate the added costs and time that moment frames can create. The building's circulation will have to be looked at as a result of this. By adding braced frames there is potential that a wall will be added in a hallway resulting in a circulation problem. If this is found to be the case then potential solutions will be looked at, such as moving the hallway, or using a specialized brace that does not affect the entire bay, such as a 'V' brace.

Breadth Topics

The new Voorhees Hospital uses many methods to make sure that their patients are in a healthy stress-free environment. If noise from a helicopter can be heard in the hospital then all of the work the designers have done to create those friendly, stress-free environments will be lost. Therefore, the building envelope will have to be studied in order to ensure that the noise in the building is not a distraction. The noise levels are likely to increase even though there is already a helipad on site. The current helipad is far away from the building in the parking area, if it is moved to directly on top of the building then noise will increase significantly. If the noise levels are found to be too high in the building, then the building envelope will have to be redesigned in order to reduce the noise levels.

The relocation of a helipad to the roof of the building will also require special lights to be added so that the helicopter can see the helipad in the dark. These lighting requirements will be researched, and lights will be chosen and placed on the new helipad per the requirements. The lights will also need a source of power to ensure that they are always available. Possible sources of power will be researched in the existing plans and new wires will be designed for the lights. A path for the wires will be determined and the voltage drop will be checked to ensure that the new wires are a reasonable length. The wire sizes will be changed if the voltage drop is found to be excessive.

MAE Topic

The MAE requirement for this report will be fulfilled through the seismic analysis. Methods taught in AE538: Earthquake Design will be used to determine the seismic forces, and design the lateral members accordingly. These calculations can be found in the Seismic Loads section of this report. Additionally, use of the AE597A: Computer Modeling course will be vital when creating and understanding a RAM model of the hospital. RAM modeling will be used to analyze and design both gravity and lateral members. Details about the RAM model can be found in the RAM Model section of this report. The use of AE 534: Steel Connections will also be used to design typical braced frame connections. Typical connection designs can be found in the Steel Connections section of this report.

Structural Study

Codes & Design Standards

Design Codes

International Building Code (IBC) 2006

American Society of Civil Engineers (ASCE 7-05), Minimum Design Loads for Buildings and Other Structures, 2005

American Concrete Institute (ACI 318), Building Code Requirements for Structural Concrete

American Institute of Steel Construction (AISC), Steel Construction Manual

Material Strength Requirement Summary:

Cast-in-place Concrete:

 $f_c' = 3,500 \text{ psi } @ 28 \text{ days for all lightweight concrete on metal decking}$

 $f_c = 4,000 \text{ psi } @ 28 \text{ days for all other concrete types}$

Concrete Masonry:

Concrete Masonry Units: ASTM C90 Type "N-1"

Masonry Grout: f'_c = 3,000 psi @ 28 days

Masonry Mortar: ASTM C270 (Type S uno)

Steel Reinforcing:

Reinforcing Bars: ASTM A615 (Grade 60)

Welded Bars & Anchors: ASTM A706 (Grade 60)

Deformed Bar Anchors: ASTM A496

Epoxy-Coated Reinforcing Bars: ASTM A775 or ASTM A934

Welded Wire Fabric: ASTM A185

Structural Steel:

W & WT Shapes: ASTM A992, $F_v = 50$ ksi

Plates & Shapes Other Than W: ASTM A36, $F_y = 36$ ksi

Rectangular HSS: ASTM A500, Grade B, F_y = 46 ksi

Round HSS: ASTM A500, Grade B, $F_y = 42 \text{ ksi}$

Pipes: ASTM A53, Type E or S, Grade B, $F_y = 35$ ksi

Bolts: ASTM A325, $F_y = 36 \text{ ksi}$

Expansion Bolts: Hilti, Rawl, Thunderstuds, or National Fasteners

Adhesive Anchors/Grout: Sika, Hilti, Epcon

Headed Studs/Shear Connectors: ASTM A108

Welds:

All Types: E70XX

Gravity Loads

Building live loads are determined by referencing ASCE 7-05. Table 1 below outlines the findings.

Live Loads										
Load Description	ASCE 07-05 Load (psf)	Reduced?	Reducible by Code?	Assumed Partition Load (psf)						
Labs	60	Yes	Yes	20						
Operating Rooms	60	Yes	Yes	20						
Private Rooms/Wards	40	Yes	Yes	20						
Offices	50	Yes	Yes	20						
Corridors above the 1 st floor	80	Yes	Yes	N/A						
Lobbies/1 st floor corridors	100	Yes	No	N/A						
Stairs and Exits	100	No	No	N/A						
Storage	125	No	No	N/A						
Mechanical Room	125	No	No	N/A						
Roof Garden	100	N/A	No	N/A						
Roof	20	N/A	Yes	N/A						

Table 1 - Live Loads

Building snow loads are determined by referencing ASCE 7-05. Table 2 below outlines the loads used in this report.

Snow Loads						
Found						
Ground Snow Load, Pg	25 psf					
Flat Roof Snow Load, P _f	24 psf					
Snow Importance Factor	1.2					
Snow Exposure Factor, C _e	1.0					
Thermal Factor, C _t	1.0					

Table 2 - Snow Loads

Helipad Design

Helipad Background Research

There are many regulations for helipads that are located on top of hospitals. The FAA, or Federal Aviation Administration sets these regulations; all requirements for helipads in this report come from the FAA's Advisory Circular, AC 150/5390-2B. For this report many considerations were taken into account when determining the location of the helipad, and designing the helipad.

One of the main requirements found from the FAA report is the size requirements for the helipad. The helipad is broken up into two main areas, the TLOF, or Touchdown and Lift-Off Area, and the FATO, or the Final Approach and Takeoff Area. The TLOF area must be 1.0 rotor diameters in length and width, but not less than 40 feet. There must also be at least one FATO that contains the TLOF, and it must be 1.5 times the overall length of the helicopter. In this report it will be assumed that the maximum size helicopter that will be used has a 42 foot overall length.

The FAA report also defines safety measures that must be taken. One of the more

obvious safety measures that must be taken is that there are be no obstacles above the helipad. If there are any obstacles close to the landing area, a helicopter blade might hit it. Another safety procedure for rooftop helipads is

a safety net that hangs off of the helipad. Since no obstacles may be above the

Figure 14 - Typical Safety Net Detail

helipad, in order to keep people from falling, a safety net that hangs below the helipad must be installed. The net must be at least 5 feet wide, and should be able to hold a load of 25 psf. An

example of a safety net detail can be found above in Figure 14.

The helipad must also follow OSHA and fire protection guidelines. Elevated helipads require two separate access points per OSHA guidelines. At least one of these access points should be a ramp in order to safely and quickly move the incoming patient. Any ramps or stairs that are used should be designed according to OSHA guidelines. For helipads the NFPA 418: Standards for Heliports, and NFPA 403: Aircraft Rescue Services should be used. This states that a fire hose or extinguisher should be provided adjacent to, but not above, the TLOF.

Snow removal must also be considered when designing a helipad since swirling snow raised by a helicopter's rotor can cause the pilot to lose sight of the intended landing point. For this report it is assumed that snow removal will be handled by employees of the hospital. Another weather factor that must be considered is the rain. The helipad will be required to have a broomed or roughened finish so that users can maintain traction during wet weather. It is crucial that the helipad is not slippery for safety concerns.

Vibration is also a large concern when dealing with helipads on the top of buildings. A helicopter on top of buildings can cause vibration throughout the building disturbing areas that require minimal vibrations, such as surgical spaces. A vibration analysis is not part of this report, and will need to be looked at further in the future.

The final non-structural consideration for a hospital helipad is the MRI machine. MRI's can create powerful magnetic fields and can interfere with a helicopter's magnetic compass or other navigational systems. When designing a hospital's helipad, the location of the MRI must be taken into account. For this report it was assumed that the MRI machine has no affect on the incoming helicopters or the helipad.

The FAA also defines the load requirements that need to be designed for. In the FAA report it states that the helipad must be designed for a static load equal to the maximum takeoff weight of the helicopter. For this hospital it will be assumed that the maximum weight of any helicopter landing is 12,000 pounds. The FAA report also states that the helipad must be designed for a dynamic load of 150% of the takeoff weight, or for this helipad, 18,000 pounds. For this report it will be assumed that the 18,000 pounds acts as a static load.

Helipad Location Study

Many factors are considered selecting the area for the helipad to be located. The first factor taken into account is the height of the building's roofs. Since the building is not a consistent height, the tallest part of the building is needed in order to eliminate any obstructions for the helicopter. Another factor taken into account was the building's column grid lines. An area is needed where the shape of the helipad slab would fit easily onto the building's existing columns in order to eliminate unnecessary transfer girders. Important factors such as the location of the building's intake air are taken into account when deciding on

Figure 15 - Helipad Location

a location for the helipad. It is important to avoid the building's intake air since a helicopter can release unpleasant and possibly harmful exhaust from its engine. The final consideration for the location of the helipad is its distance compared to the emergency room. Since one of the goals for moving the helipad is to decrease the time it takes the patient to get to the Emergency Room, it is important to locate the helipad so that it is quick and easy to get to the ER.

Taking all of these factors into consideration, a location in Zone 5 is determined to be ideal. The helipad rests between grid lines La-Na and 7a-10a on Level 9 in Zone 5.The exact location can be seen in Figure 15. This location is ideal for a number of

reasons. First, it is the tallest area on the building, with very few objects that are above it. There are communication antennas in Zone 7 that will need to be relocated to another part of the building so that they do not interfere with the helicopter. This location is also ideal because the helipad can easily rest on the building's existing gridline. The grid line can be seen in Figure 15, and it allows for helipad supports to line up directly with the building's supports. The helipad location is ideal also because it is located directly next to the building's main elevator shafts. Along grid line 3a there are 8 elevator shafts, 2 staff elevators, 4 patient elevators, and 2 spaces for future elevators. These elevators are located directly in the corridor that connects the northern bed tower and the southern services building. They are located just down the hall from the 1st floor emergency room. Since the 2 staff elevators and the 4 patient elevators might be in use in an emergency, a new elevator will need to be installed that is specifically designed to service between the helipad and 1st floor where the ER is located. With this location of the helipad, and the new elevator in place it will be quick and easy for personnel to travel from the helipad directly to the 1st floor without making unnecessary stops.

There are also disadvantages to this location however. The main disadvantage for this location is that it is not as wide as other preferred sites. For this location, the building's width limits the width of the helipad, specifically the FATO and safety net. In order to have the proper size helipad, the FATO area of the helipad would have to hang off of the building by a considerable amount. Since this would not be architecturally pleasing, it must be assumed for this location that approaching and departing helicopters will only come from the North or South. The North and South sides of the helipad will be long enough to accommodate an approaching or departing helicopter.

The safety net that hangs of the building creates another disadvantage. Because the building is not large enough, the FATO is taken to the edge of the building to allow for the largest area possible. Since the pad ends at the edge of the building, a safety net must still attach to the end of the pad. The pad will then hang 5 feet off of both the pad and the building allowing it to be seen from the ground. Though this is not ideal, it is assumed to be acceptable because the helipad is 140 feet above grade and a 5 foot overhang is expected not to be extremely noticeable.

Helipad Slab Design

The helipad lab is designed as a two-way slab using the direct design method. The columns are assumed to be attached to 20" x 20" base plates. Beams are assumed to span

Figure 16 - Design Sections of Helipad

from column to column and are 10" in depth and 20" in width. A snow load of 25 psf, live load of 100 psf, and a dead load of 136 psf, which includes self weight with a 10" slab thickness, are also assumed. For these loads a load combination of 1.2D + 1.6L + .5S is used. For the design of the helipad, the pad is broken up into 4 sections labeled A-D. The design sections can be seen in Figure 16. The moments in the beam, column strip and middle strip are found for each section. The moments can be found below in Tables 3, 5, 7, and 9. These moments are used to then find the reinforcement needed in each section of the slab. A hand calculation is performed to find the rebar for the Column Strip of Section A, then excel is used to find the remaining rebar requirements. The reinforcement requirements for each of the slab sections can be found in Tables 4, 6, 8, and 10 below. The calculations can be found in Appendix B. The moments from Tables 3, 5, 7, and 9 are then used to find the reinforcement requirements for the beams. Calculations for the

rebar in the beams can also be found in Appendix B. The final step for the slab design is a shear check in each of the beams. Where the shear is found to be excessive, shear reinforcement is required. The reinforcement requirements for each beam can also be found in Tables 4, 6, 8, and 10 below. These calculations can be found with the other rebar calculations in Appendix B.

	Moment in Frame A (k-ft)											
	M _{edge} M ⁺ M ⁻ M ⁻ M ⁻ M ⁻ M ⁻ M ⁻ M ⁺ M _{edge}											
M _{total}	-66.5	236.9	-291	-270.2	145.5	-270.2	-291	236.9	-66.5			
M _{beam}	-52.5	147.8	-194.4	-180.5	90.8	-180.5	-194.4	147.8	-52.5			
M _{cs slab}	-9.21	26.1	-34.3	-31.9	16.02	-31.9	-34.3	26.1	-9.21			
M _{ms slab}	-5.12	63	-62.3	-57.8	38.7	-57.8	-62.3	63	-5.12			

Table 3 - Moment in Frame A

	Reinforcement in Frame A											
	Medge M* M* M* M* M* M* Medge											
Column Strip	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5			
Middle Strip	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5			
Flexural Beam	(4) #8	(4) #8	(4) #8	(4) #8	(4) #8	(4) #8	(4) #8	(4) #8	(4) #8			
Shear Beam	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			

Table 4 - Reinforcement in Frame A

	Moment in Frame B (k-ft)										
	M _{edge} M ⁺ M ⁻ M ⁻ M ⁺ M ⁻ M ⁻ M ⁺ M _{edge}										
M _{total}	-132.6	472.5	-580	-538.9	290.2	-538.9	-580	472.5	-132.6		
M _{beam}	-108.2	294.8	-387.5	-360	181.1	-360	-387.5	294.8	-108.2		
M _{cs slab}	-19.1	52	-68.4	-63.6	32	-63.6	-68.4	52	-19.1		
M _{ms slab}	-19.1	125.7	-124.12	-115.3	77.2	-115.3	-124.12	125.7	-19.1		

Table 5 - Moments in Frame B

	Reinforcement in Frame B											
	M_{edge}	M _{edge} M ⁺ M ⁻ M _{edge}										
Column Strip	(8) #5	(8) #5	(8) #5	(8) #5	(8) #5	(8) #5	(8) #5	(8) #5	(8) #5			
Middle Strip	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5	(4) #5			
Flexural Beam	(9) #8	(9) #8	(9) #8	(9) #8	(9) #8	(9) #8	(9) #8	(9) #8	(9) #8			
Shear	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4			
Beam	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"			

Table 6 - Reinforcement in Frame B

	Moment in Frame C (k-ft.)											
	M _{edge} M ⁺ M ⁻ M ⁻ M ⁺ M _{edge}											
M _{total}	-45.6	162.3	-199.3	-199.3	162.3	-45.6						
M _{beam}	-34.9	87.2	-127.1	-127.1	87.2	-34.9						
M _{cs slab}	-6.2	15.4	-22.4	-22.4	15.4	-6.2						
M _{ms slab}	-4.5	59.6	-49.8	-49.8	59.6	-4.5						

Table 7 - Moments in Frame C

	Reinforcement in Frame C											
	M _{edge} M ⁺ M ⁻ M ⁻ M ⁺ M _{edge}											
Column Strip	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5						
Middle Strip	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5						
Flexural Beam	(3) #8	(3) #8	(3) #8	(3) #8	(3) #8	(3) #8						
Shear Beam	N/A	N/A	N/A	N/A	N/A	N/A						

Table 8 - Reinforcement in Frame C

	Moment in Frame D (k-ft.)											
	Medge M* M* M* Medge											
M_{total}	-91.1	324.6	-398.6	-398.6	324.6	-91.1						
M_{beam}	-73.6	174.3	-254.1	-254.1	174.3	-73.6						
M _{cs slab}	-13	30.8	-44.9	-44.9	30.8	-13						
M _{ms slab}	-4.5	119.1	-99.7	-99.7	119.1	-4.5						

Table 9 - Moments in Frame D

Reinforcement in Frame D						
	M_{edge}	M ⁺	M ⁻	M ⁻	M ⁺	M_{edge}
Column Strip	(11) #5	(11) #5	(11) #5	(11) #5	(11) #5	(11) #5
Middle Strip	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5	(6) #5
Flexural Beam	(5) #8	(5) #8	(5) #8	(5) #8	(5) #8	(5) #8
Shear	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4	(2) #4
Beam	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"	@ 8"

Table 10 - Reinforcement in Frame D

Rebar Location Details

The reinforcement locations are then determined by using Figure 13.3.8 in ACI 318-08. All reinforcement in the slabs uses a 1" clear cover due to the fact that it is exposed to weather conditions. The reinforcement in the beams uses a clear cover of $1 \frac{1}{2}$ " for the same reasons. Figures 17 - 32 shows the reinforcement placement of each slab area A-D.

Figure 17: Area A Column Strip

Figure 18: Area A Column Strip

Figure 19: Area A Middle Strip

Figure 20: Area A Middle Strip

Figure 21: Area B Column Strip

Figure 22: Area B Column Strip

Figure 23: Area B Middle Strip

Figure 24: Area B Middle Strip

Figure 25: Area C Column Strip

Figure 26: Area C Column Strip

Figure 27: Area C Middle Strip

Figure 28: Area C Middle Strip

Figure 29: Area D Column Strip

Figure 30: Area D Column Strip

Figure 31: Area D Middle Strip

Figure 32: Area D Middle Strip

Gravity Column Redesign

In this section of the final report for the Voorhees Replacement Facility, the gravity columns supporting the helipad are designed. There are columns that support the helipad, as well as act as part of the lateral system for the building. Since these members are designed later in the report, they will be neglected in this section, leaving only the gravity members to be

designed. The gravity columns that are affected by the new helipad are the columns on grid lines La-7a, La-8a, La-9a, Na-8a, Na-9a, Ma-8a, Ma-9a, and Ma-10a. The other four columns, Ma-7a, Na-7a, La-10a, and Na-10a will be designed in the lateral system design.

The supporting gravity columns for the helipad are designed by hand calculations and then confirmed by a RAM model. The existing W shapes are assumed to continue up to the bottom of the pad where they would attach to a 20"x20" base plate and then to the slab. The columns are assumed to have the existing splice locations, 4 feet above levels 2, 4, 5, and 7, so column sizes will be the same in between these floors. Table 4-1 in AISC is used to find the size of all of the gravity columns. These sizes are then confirmed with the RAM design. These calculations can be seen in Appendix

C. A section of each of the designed frames can be seen in the Details section of this report.

For each of the new gravity columns, sizes are increased to account for the added loads. In a special case for columns that are located on the Ma grid line, an added member is required to account for the added load. Columns that are located on the Ma grid line use a transfer girder at level 5 to transfer load to columns on different gridlines, as seen in Figure 33. Due to the added weight of the helipad, the transfer girder required for the new load would not fit in the space allowed. Columns are added below level 5 on the Ma grid line so that the use of a transfer girder is not required. The sizes for these new columns can also be seen in the Details section of this report. The design of these new columns can be found in Appendix C.

Foundation Redesign

The foundations supporting the new gravity columns are also designed by using hand calculations and checked using RAM. The loads found in the previous section are used as the loads acting on the foundations. Values for the soil are found using the existing Geotechnical report. Values obtained from the report are as follows:

$$\gamma_{dry} = 94.39 pcf$$
 $\gamma_{wet} = 103.85 pcf$ $\omega = 10.02$ $qa = 6 ksf$

These values are used to find a γ value of 103.85pcf. Also, it is assumed that a base plate size of 24"x24" is used.

When designing the foundations, certain assumptions are made for ease of construction. The first assumption is that the foundation is square. This cuts down on any mistakes that might be made by putting the foundation in the wrong direction. Also, #8 rebar is used throughout the gravity foundations in order to be consistent with sizes. A clear cover of 3" is also used according to ACI 318-05, because it is permanently exposed to the earth. The last assumption that is made is that the depth of the rebar, d, is the height from the top of the foundation to the space between the two layers of rebar. This assumption is valid because the foundation has equal length and width dimensions.

For this section of the report, only the gravity foundations are designed. All lateral foundations will be designed later in this report, in the Lateral Foundation Design section. The hand calculations for the gravity foundations can be found in Appendix D, while the results can be found in the Details section of this report.

The gravity foundations are checked against the RAM model. For a sample spot check, the foundation located at grid line La-7a is checked against the RAM model. The hand calculations found that the foundation should be $10' \times 10'$ with a depth of 1'-8". It is also found that the foundation should use 11 # 8 rebar in each direction. The RAM model found that the foundation should be $11' \times 11'$ with a depth of 2'-6" and 12 # 7 rebar. Since these two

foundations are somewhat similar, the hand calculations and RAM model are assumed accurate.

Details

The following section is a summary of the gravity columns and foundations sizes. In Figures 34-42 below, the column sizes and foundation sizes are shown for the grid lines La-7a, La-8a, La-9a, Na-8a, Na-9a, Ma-8a, Ma-9a, and Ma-10a.

Figure 34: Grid Line La-7a Columns

Figure 35: Grid Lines La-8a, La-9a, Na-8a, and Na-9a Columns

Lateral System Design

Wind Loads

The wind loads used in the final report of the Voorhees Replacement Facility are the same wind loads that are calculated in the First Technical Report. For these calculations a design wind speed of 100 mph is used per Figure 6-1 in ASCE 7-05. Also, Exposure Category B and an Importance Category III are used. In Table 11 below the calculated wind forces, shear, and moments are calculated. In Figures 43 and 44 the wind loads are shown in pounds per square foot. The calculations for the wind forces can be found in Appendix E.

Level	Height Above Ground	Wind Forces						
	(ft)	Load	(kip)	Shea	r (kip)	Momen	t (ft-kip)	
		N-S	E-W	N-S	E-W	N-S	E-W	
9	142.00	122.9	124.6	0	0	17123.7	17360.5	
8	117.33	199.3	202.1	122.9	124.6	23383.9	23712.4	
7	103.33	151.7	153.9	322.2	326.7	15902.5	15902.5	
6	89.33	149.2	151.4	473.9	480.6	13328.0	13524.6	
5	75.33	146.4	148.4	623.1	632.0	11028.3	11179.0	
4	61.33	149.9	151.9	769.5	780.4	9193.4	9316.0	
3	46.00	152.5	154.6	919.4	932.3	7015.0	7111.6	
2	30.66	146.9	148.9	1071.9	1086.9	4504.0	4565.3	
1	15.33	139.1	141.0	1218.8	1235.8	2132.4	2161.5	
Total		1357.9	1376.8	1357.9	1376.8	103611.2	104833.4	

Table 11 - Calculated Wind Forces

Figure 44: Wind Loads in North - South Direction (psf)

Seismic Loads

The new seismic loads are calculated using the Equivalent Lateral Force Procedure in ASCE 07-05. Some of the same assumptions that are made in Technical Report #1 are also made for this final report. One of those justifications is the use of geopiers to densify the soil. The original soil type was too sandy for the loads created by the building; in order to fix this problem geopiers, or stone piles are used to densify the soil. Because these are used, the site class is assumed to be category D. The calculations for the building's seismic loads can be found in Appendix F. In Tables 12-14 below the new and old seismic loads are shown for a comparison.

	New Building B Seismic Loads									
Level	Story Weight	Height	w _x h _x ^k	C _{vx}	Lateral Force	Story Shear	Moment			
	(kip)	(feet)			(kips)	(kip)	(foot-kip)			
R	2162.2	142	959865.819	0.229	300.410	300.410	42658.184			
8	788.8	117.33	276910.905	0.066	86.665	387.075	10168.400			
7	1294.5	103.33	388687.490	0.093	121.648	508.722	12569.861			
6	515.75	89.33	129469.049	0.031	40.520	549.242	3619.652			
5	3350.9	75.33	682074.899	0.162	213.469	762.712	16080.647			
4	4709.4	61.33	744394.792	0.177	232.974	995.685	14288.274			
3	5212.5	46	578413.207	0.138	181.026	1176.712	8327.210			
2	4133.2	30.66	278464.711	0.066	87.151	1263.863	2672.058			
1	5592.2	15.33	160619.972	0.038	50.269	1314.132	770.629			
Sum	27759.45		4198900.844	1.000	1314.132		111154.915			

Table 12 - New Seismic Loads

	Old Building B N-S Seismic Loads									
Level	Story Weight	Height	w _x h _x ^k	C _{vx}	Lateral Force	Story Shear	Moment			
	(kip)	(feet)			(kips)	(kip)	(foot-kip)			
R	1556.8	139.33	466234.47	0.164	252.125	252.125	35128.580			
8	788.8	117.33	193702.12	0.068	104.748	356.873	12290.089			
7	1294.5	103.33	274494.46	0.096	148.438	505.311	15338.101			
6	515.75	89.33	92436.0	0.032	49.987	555.298	4465.294			
5	3350.9	75.33	493241.3	0.173	266.729	822.027	20092.733			
4	4709.4	61.33	546673.3	0.192	295.624	1117.651	18130.609			
3	5212.5	46	434041.6	0.152	234.716	1352.367	10796.942			
2	4133.2	30.66	215415.7	0.076	116.490	1468.857	3571.585			
1	5592.2	15.33	130883.2	0.046	70.778	1539.635	1085.020			
Sum	27154.05		2847122.1	1.000	1539.635		120898.952			

Table 13 - Existing North - South Seismic Loads

	Old Building B E-W Seismic Loads										
Level	Story Weight	Height	w _x h _x ^k	C _{vx}	Lateral Force	Story Shear	Moment				
	(kip)	(feet)			(kips)	(kip)	(foot-kip)				
R	1556.8	139.33	466234.470	0.164	216.107	216.107	30110.211				
8	788.8	117.33	193702.122	0.068	89.784	305.891	10534.362				
7	1294.5	103.33	274494.458	0.096	127.233	433.124	13146.943				
6	515.75	89.33	92436.003	0.032	42.846	475.969	3827.395				
5	3350.9	75.33	493241.341	0.173	228.625	704.595	17222.343				
4	4709.4	61.33	546673.288	0.192	253.392	957.986	15540.522				
3	5212.5	46	434041.608	0.152	201.185	1159.172	9254.522				
2	4133.2	30.66	215415.651	0.076	99.849	1259.020	3061.358				
1	5592.2	15.33	130883.194	0.046	60.666	1319.687	930.017				
Sum	27154.05		2847122.135	1.000	1319.687		103627.673				

Table 14 - Existing East - West Seismic Loads

Because braced frames are used exclusively in the new calculations, it gives the building a new R value, thus lowering the seismic base shear in both directions. Even though the extra weight is added to the building, this is not enough to counteract the use of a new lateral system.

Load Combinations

There are seven load cases that are considered in this report. The load cases consist of seismic in the East – West direction, seismic in the North – South direction, wind case 1 in the East – West direction, wind case 1 in the North – South direction, wind case 2, wind case 3, and wind case 4. Wind case 1 consists of 100% of the wind load in one direction, while wind case 2 has 75% of the wind pressure acting in one direction with a tensional moment. Wind cases 3 and 4 are similar to 1 and 2 respectively except that they use 75% of the load in both directions at the same time.

Seven load combinations are also considered in this report. The load combinations are taken from ASCE 7-05 section 2.3 and are as follows:

For the most part throughout this design the controlling load combination is the 1.2D + 1.6W + 1.0L + 0.5S combination. This is expected considering in most cases the new wind loads control over the new seismic loads.

Braced Frame Design

The new braced frame design is dependent on many different factors. One of the main factors that control the braced frame design, and more importantly placement, is the architecture. If a hallway or other type of room runs in between two columns a braced frame cannot be placed in that area, or it will cut the hallway or room in half and would then need to be moved so that it can stay continuous. Because this has the potential to create problems to the flow of traffic in the building, an attempt is made to keep all of the originally designed braced frames. Since moment frames are also used in the lateral system, just using the old braces, and not adding new braces was not an option. The lateral system also requires new braced frames to be designed.

Another placement factor that is considered is the symmetry of the braces. In order to provide the least amount of torsion in the building, the center of rigidity is attempted to remain as close to the center of mass as possible. This means that braces are placed on the north side of the building, requires braces to be placed on the south side of the building.

Strength also plays a part in determining the braced frame design and placement. In theory it is possible to use a very small number of braces as long as they are of adequate, large size. This report made an attempt to use smaller brace and column sizes, but use more of them to take the lateral load. Lateral column sizes are attempted to remain similar to the gravity column sizes for ease of construction. Also, the brace sizes are attempted to remain similar in size to the originally designed braced frames. Since these smaller sizes are used, more braces are required in the system.

The braced frames are also designed using a basic assumption that the only force in any of the members of the braced frame is an axial force. Due to the type of connections used to attach the braces to the columns, the only load that is transferred between them is axial. This is a crucial assumption with the braced frame since it assumes that the columns will then have no moments to resist, only axial. Hand calculations and a SAP model are used to prove this assumption in Appendix G and in Figure 45 below. A brace from the building is taken and subjected to the new user defined loads found in the Wind and Seismic sections above. The members are modeled and the moments in the strong and weak axis are released from each member. The model is run and the forces in each of the members are then recorded. These

forces are then checked against the forces found in the hand calculations and found to be equal. The SAP model confirmed the original assumption that axial load is the only acting load case. Figure 46 below shows the axial forces in each member and how the load is transferred to the base.

Figure 45 - SAP Model

Figure 46 - SAP Model with Axial Forces Shown

RAM Model

For this report, a RAM model is created in order to design the lateral system, and check the gravity system. The model is created of the southern building only, based on the assumption that the northern and southern buildings act separately. The building is modeled as closely to the original design as possible, including minor gravity beams where specified. This is to ensure that the building has the proper dead weight included. To account for dead weight from partitions and other objects, a superimposed dead weight of 20 psf is used. An area specific live load is also added to the model to insure proper gravity member calculations. The building is split into smaller areas, and assigned the corresponding live loads; live load values can be found in Table 1 above in the Gravity Loads section. Figures 47-48 below show the RAM model used for this report.

Figure 47 - RAM Model from Southwest

Figure 48 - RAM Model from Northeast

After the building is modeled, a series of designs are performed to find the beam, column, foundations, and frame sizes. The beams are designed as composite beams, using RAM Steel Beam; while the columns are all designed as W14 shapes using RAM Steel Column. The columns are kept as W14 so that the columns sizes could be kept consistent and unnecessary complicated splices could be avoided. The foundations are designed using RAM Foundation using the controlling loads found in RAM Steel Column and RAM Frame.

The lateral frames are designed and analyzed using RAM Frame. The frames are designed so that they consider many requirements. One of the requirements considered is the use of P-Delta effects. Another requirement for the design was to consider all loading cases and combinations. This includes all of the different wind and seismic cases discussed in Load Combinations section of this report. To ensure that the loads for wind and seismic are found correctly, wind and seismic loads from the user are used, as well as RAM calculated wind and seismic loads. Wind and seismic loads from RAM are found by the program using the same criteria used for the user calculated loads found in Appendix E and F and by using IBC 2006 and ASCE 7-05.

Once the lateral criteria is determined for the frames, sizes are required in order to analyze the system. W14x68's and HSS6x6x½'s are used as a starting size. Any members failing this size are increased until all of the members pass. Column sizes are increased to consistent sizes for ease of construction. The only W14 shapes used are 68, 82, 109, 120, 132, and 145. The sizes in between the W14x68, W14x82, and W14x109 are skipped for this design.

Frame Sizes and Layout

Once the analysis is complete in RAM Frame, final sizes and locations are recorded. Below are the frames found during design.

The locations of all then new braced frames are able to avoid interfering with any rooms or hallways. The new braces are all able to be located in existing walls therefore not changing the layout of the building. Where the braces do cross in between a door or hallway, a 'V' type brace is used to avoid the open space.

Figure 49 - Windows Out Looking the Courtyard

The new braces however do make one change to the architecture of the building. In the courtyards in zones 4 and 5, 'X' braces span across the windows looking into the courtyard. The windows that surround the courtyards, as seen in Figure 49, will now have HSS shapes that span between bays. This is not expected to change the overall look of the rooms, or building, as it will still

allow light into the area. It is assumed in this report that the addition of these braces is acceptable, as long as the steel will be painted to match the existing interior finishes.

Lateral Foundation Design

The lateral foundations are designed using RAM Foundation. The load cases and combinations used prior for the Lateral System Design are continued to be used in this section. The values for the soil are found using the existing Geotechnical report and are as follows:

$$\gamma_{dry}$$
 = 94.39pcf γ_{wet} = 103.85pcf ω = 10.02 qa = 6ksf

These values are used to find a γ value of 103.85pcf. Also, it is assumed that a base plate size of 24"x24" is used. These values are then placed into RAM and used to design the lateral foundations.

The majority of the footings used for this report are spread footings. In locations where columns are too close for individual footings, multiple columns are placed on the same footing and designed as continuous footings. In Tables 15 and 16 below the designed spread foundations' dimensions and specifications can be seen, while Tables 17-20 holds the dimensions of the continuous footings. The name of each foundation corresponds to the grid line that it is on.

	Spr	ead Footing	Design Res	ults	
Foundation	Length Dimension	Width Dimension	Thickness (inches)	Bottom Reinforcement	Top Reinforcement
Da-9a	(feet)	(feet) 23	23	(20) #7	(18) #5
Da-31	30	30	30	(23) #7	(20) #7
Ea-9a	24	24	24	(20) #7	(21) #5
Ea-11a	30	30	30	(22) #7	(20) #7
Ga-8a	11	11	11	(10) #7	None
Ga-9a	11 11		11	(10) #7	None
Ga-10a	10 a 12 12		12	(11) #7	None
На-8а	11	11	11	(8) #8	None
Ha-10a	11	11	11	(8) #8	None
Ja-8a	11	11	11	(10) #7	None
Ja-9a	11	11	11	(8) #8	None
Ja-10a	11	11	11	(8) #8	None
Ка-8а	11	11	11	(8) #8	None
Ka-10a	11	11	11	(8) #8	None
La-11a	14	14	14	(17) #7	None
La-12a	30	30	30	(32) #8	20-#7
La-13a	30	30	30	(30) #8	20-#7
La-14a	30	30	30	(36) #7	20-#7
La-15a	30	30	30	(27) #8	20-#7

Table 15 - Spread Footing Design Results 1 of 2

	Spread Footing Design Results									
Foundation	Length Dimension	Width Dimension	Thickness	Bottom Reinforcement	Top Reinforcement					
	(feet)	(feet)	(inches)	Keimorcement	Kennorcement					
La-16a	30	30	30	(47)#7	25-#6					
L.7a-16a	30	30	30	(47) #7	25-#6					
Ma-7a	17	17	17	(24) #7	(13) #3					
Ma-11a	15	15	15	(20) #7	None					
Na-7a	23	23	23	(31) #7	(16) #5					
Na-11a	14	14	14	(18) #7	None					
Qa-8a	12	12	12	(13) #7	None					
Qa-9a	Qa-9a 12 12		12	(11) #7	None					
Qa-10a	18	18	18	(21) #7	(16) #3					

Table 16 - Spread Footing Design Results 2 of 2

Continuous Footing Dimensions									
Foundation Name	Length Dimension (feet)	Width Dimension (feet)	Thickness (inches)						
	(feet)	(feet)	(inches)						
E.7a-9a to Fa-9a	17.00	6.00	18						
E.7a-10a to Fa-10a	18.00	6.00	18						
La-8a to Na-8a	63.00	12.00	60						
La-9a to Na-9a	54.00	12.00	30						
La-10a to Na-10a	62.00	12.00	60						
Ma-12a to Na-12a	51.50	11.00	60						
Ma-13a to Na-13a	53.50	11.00	48						
Ma-14a to Na-14a	54.50	11.00	48						
Ma-15a to Na-15a	59.50	11.00	48						

Table 17 - Continuous Footing Dimensions

	Continuous Footing Design Results									
Foundation	Top Longitudinal Rebar	Bottom Longitudinal Rebar	Top Transverse Rebar	Bottom Transverse Rebar	Shear Rebar					
E.7a-9a to Fa-9a	0'-4' - (5) #3 4'-12' - (12) #4 12'-17' - (12) #4	0'-8' - (5) #7 8'-17' - (10) #7	0'-17' - (1) #3	0'-6' - (10) #3 6'-11' - (6) #5 11'-17' - (10) #3	None					
E.7a-10a to Fa-10a	0'-5' - (5) #3 5'-13' - (14) #4 13'-18' - (13) #4	0'-9' - (6) #7 9'-18' - (8) #8	0'-15' – (1) #3 15'-18' – None	0'-3' - (10) #3 3'-15' - (5) #5 15'-18' - (4) #5	None					

Table 18 - Continuous Footing Design Results 1 of 3

	Con	tinuous Foot	ing Design R	esults	
Foundation	Top Longitudinal Rebar	Bottom Longitudinal Rebar	Top Transverse Rebar	Bottom Transverse Rebar	Shear Rebar
La-8a to Na-8a	0'-9' - (10) #4 9'-19' - (21) #4 19'-31' - (19) #4 31'-44' - (18) #4 44'-54' - (19) #4 54'-63' - (9) #3	0'-12' - (23) #7 12'-24' - (15) #8 24'-49' - (20) #7 49'-63' - (25) #7	None	0'-5' - (11) #7 5'-13' - (18) #7 13'-15' - (6) #6 15'-23' - (18) #7 23'-27' - (9) #7 27'-36' - (15) #8 36'-40' - (9) #7 40'-48' - (18) #7 48'-50' - (6) #6 50'-58' - (18) #7 58'-63' - (11) #7	None
La-9a to Na-9a	0'-4' - (14) #3 4'-14' - (18) #4 14'-27' - (20) #4 27'-39' - (19) #4 39'-49' - (17) #4 49'-54' - (9) #3	0'-9' - (21) #5 9'-21' - (9) #4 21'-33' - (31) #5 33'-44' - (10) #4 44'-54' - (22) #5	None	0'-2' - (5) #6 2'-17' - (6) #7 17'-25' - (7) #8 25'-29' - (6) #6 29'-37' - (7) #8 37'-52' - (6) #7 52'-54' - (3) #6	None
La-10a to Na-10a	0'-8' - (9) #4 8'-18' - (22) #5 18'-31' - (15) #5 31'-43' - (22) #5 43'-53' - (26) #5 53'-62' - (9) #4	0'-12' - (23) #7 12'-32' - (14) #8 32'-62' - (23) #7	None	0'-4' - (9) #7 4'-13' - (15) #8 13'-14' - (3) #6 14'-23' - (15) #8 23'-27' - (9) #7 27'-35' - (18) #7 35'-39' - (9) #7 39'-48' - (15) #8 48'-49' - (3) #6 49'-58' - (15) #8 58'-62' - (9) #7	None
Ma-12a to Na-12a	0'-14' - (16) #4 14'-27' - (19) #4 27'-37' - (20) #4 37'-51.5' - (8) #3	0'-21'-(25) #7 21'-36'-(23) #7 36'-51.5'-(17) #8	None	0'-10'-(13) #9 10'-19'-(15) #8 19'-23'-(9) #7 23'-31'-(18) #7 31'-33-(6) #6 33'-41'-(18) #7 41'-51.5'-(23) #7	None

Table 19 - Continuous Footing Design Results 2 of 3

	Con	tinuous Foot	ing Design R	esults	
Foundation	Тор	Bottom	Top Transverse	Bottom	Shear Rebar
	Longitudinal	Longitudinal	Rebar	Transverse	
	Rebar	Rebar		Rebar	
Ma-13a to	0'-15' - (8) #3	0'-21' - (18) #8	0'-24' – None	0'-12'-(21) #7	None
Na-13a	15'-28' - (24) #4	21'-37' - (22) #7	24'-32' - (1) #5	12'-19'-(13) #7	
	28'-38' - (25) #4	37'-53.5'-(18) #7	32'-34' - (1) #3	19'-24'-(9) #7	
	38'-53.5' - (8)		34'-42' - (1) #5	24'-32'-(8) #9	
	#3		42'-53.5'- None	32'-34'-(2) #9	
				34'-42'-(8) #9	
				42'-53.5'-(20) #7	
Ma-14a to	0'-16' - (13) #3	0'-22' - (18) #8	0'-25' – None	0'-12' - (21) #7	None
Na-14a	16'-28' - (23) #4	22'-38' – (22) #7	25'-32' - (1) #5	12'-20' - (14) #7	
	28'-38' - (24) #4	38'-54.5'-(17) #7	32'-35' - (1) #4	20'-25' - (9) #7	
	38'-54.5'-(11) #3		35'-42' - (1) #5	25'-32' - (7) #9	
			42'-53.5'-None	32'-35' – (5) #7	
				35'-42' - (7) #9	
				42'-54.5'-(13) #9	
Ma-15a to	0'-18' - (19) #3	0'-25' - (11) #10	0'-27' – None	0'-15' - (26) #7	None
Na-15a	18'-31' - (23) #4	25'-40' - (13) #9	27'-35' - (1) #5	15'-22' - (13) #7	
	31'-41' - (16) #5	40'-59.5'-(10) #9	35'-38' - (1) #4	22'-27' – (9) #7	
	41'-59.5'-(8) #4		38'-44' - (1) #5	27'-35' – (8) #9	
			44'-59.5'-None	35'-38' – (5) #7	
				38'-44' - (10) #7	
				44'-59.5'-(27) #7	

Table 20 - Continuous Footing Design Results 3 of 3

It is found that the foundation sizes from RAM are justifiably large. Some of the footing sizes are as large as 30' x 30', though this is to be expected because of the large overturning moment. Since the building has a rather large overturning moment, the footing sizes must also be large to resist the uplift.

Lateral Force Distribution

The distribution of lateral forces to the braced frames is determined based on the relative stiffness of each braced frame. Floor diaphragms are assumed to be infinitely rigid, and therefore distribute lateral loads to each frame based on their stiffness. RAM Structural System uses both of these assumptions when designing the lateral members. A hand calculation of the 8th story East – West lateral system was completed in order to confirm that the correct distribution of forces is used in RAM. The hand calculations can be found in Appendix H, while the results of the calculations and RAM can be found in Table 21 below.

Lateral Force Distribution in East – West Direction of the 8 th Story									
Frame	Percentage of	Force in Frame –	Percentage of	Force in Frame –					
	Shear – Hand Calc.	Hand Calc. (kips)	Shear – RAM	RAM (kips)					
Ma-7a – Na-7a	17.62%	24.12	31.3%	42.83					
Ma-11a – Na-11a	17.62%	24.12	27.04%	36.99					
La-16a – L.7a-16a	11.86%	16.23	17.94%	24.54					
La-15a – Ma15a	17.62%	24.12	5.55%	7.59					
La-14a – Ma-14a	17.62%	24.12	6.29%	8.61					
La-13a – Ma-13a	17.62%	24.12	11.88%	16.26					

Table 21 - Lateral Force Distribution in E-W Direction of 8th Story

For the most part the two values are not very similar. The exact reason for this is unknown, as both methods use only the stiffness of the braces in the calculations, assuming that the columns do not take any lateral load.

Spot Checks

Spot checks are performed for the newly designed members to confirm that they did

not fail. Checks are conducted on the members of a typical lateral brace. The brace chosen is located at grid lines La-16a and L.7a-16a, and can be seen below in Figure 50. A column and brace for this frame are checked with the forces found using RAM. The hand calculations for these spot checks can be seen in Appendix I.

For the specified column a load of 753.4 kips is applied by the load combination 1.2D+1.6W+0.5L, with a length of 15'-4". From Table 4-1 in AISC, the specified W14x109 is capable of taking the load with a capacity of 1190 kips. The shape is specified even though the capacity much higher than the required load because consistency is preferred throughout the building. The next smallest size for a column throughout the building is a W14x82; whose capacity is only 698 kips, therefore a W14x109 is required.

For the specified brace a load of 210.12 kips is applied by the load combination 1.2D+1.6W+0.5L. The brace is checked by finding the required area of a brace subjected to that loading. An area of 11.86 in.² is found to be needed. Since the specified shape, HSS8x8x½ has an area of 13.85 in.², the brace is found to be acceptable.

Figure 50 - Typical Frame

Drift

Seismic and wind drifts are computed using RAM Structural. The seismic values found in RAM are then plugged into the formula:

$$\delta = \frac{C_d \times \delta_x}{I} \times \frac{T}{T_x}$$

The story drift values found from the equations are then compared to the allowable story drift values. The allowable story drift values, or Δ_a , for the wind loads can be found by dividing the height by 400. The allowable seismic story drifts is found by multiplying the height by 0.010 per ASCE 7-05 Table 12.12-1. The new drift values are compared to the existing system's drift values in Tables 22-25 below. The calculations of the new δ can be found in Appendix J.

	Controlling Wind Drift: East – West Direction										
Story	Story	Existing	Story	-	Allowable Story		Existing	Total	1	Allowa	ble Total
	Height	Story	Drift	Drift		Total	Drift		Drift		
		Drift				Drift					
	(feet)	(inch)	(inch)		(ir	nch)	(inch)	(inch)		(inch)	
9	140	0.011076	0.56165	≤	0.68	Acceptable	0.083184	2.32625	Y	4.2	Acceptable
8	117.33	0.015192	0.39805	≤	0.42	Acceptable	0.072108	1.7646	≤	3.52	Acceptable
7	103.33	0.01998	0.34062	≤	0.42	Acceptable	0.056916	1.36655	≤	3.1	Acceptable
6	89.33	0.011472	0.39887	≤	0.42	Acceptable	0.036936	1.02593	≤	2.68	Acceptable
5	75.33	0.005184	0.07244	≤	0.42	Acceptable	0.025464	0.62706	≤	2.26	Acceptable
4	61.33	0.001032	0.07461	≤	0.46	Acceptable	0.02028	0.55462	≤	1.84	Acceptable
3	46	0.00738	0.1708	≤	0.46	Acceptable	0.019248	0.48001	VI	1.38	Acceptable
2	30.66	0.008616	0.17387	≤	0.46	Acceptable	0.011868	0.30921	≤	0.92	Acceptable
1	15.33	0.003252	0.13534	≤	0.46	Acceptable	0.003252	0.13534	≤	0.46	Acceptable

Table 22 - Controlling Wind Drift: E-W

	Controlling Wind Drift: North – South Direction											
Story	Story Height	Existing Story	Story Drift	4	Allowable Story Drift		Existing Total	Total Drift	Allowable Tota Drift			
		Drift					Drift					
	(feet)	(inch)	(inch)		(ir	nch)	(inch)	(inch)		(ir	nch)	
9	140	0.025056	0.1872	≤	0.68	Acceptable	0.12828	1.31267	≤	4.2	Acceptable	
8	117.33	0.046176	0.1872	≤	0.42	Acceptable	0.10322	1.12547	≤	3.52	Acceptable	
7	103.33	0.026928	0.16978	≤	0.42	Acceptable	0.05705	0.93827	≤	3.1	Acceptable	
6	89.33	0.017844	0.16145	≤	0.42	Acceptable	0.03012	0.76849	≤	2.68	Acceptable	
5	75.33	0.000552	0.06492	≤	0.42	Acceptable	0.01228	0.60704	≤	2.26	Acceptable	
4	61.33	0.0021	0.07693	≤	0.46	Acceptable	0.01172	0.54212	≤	1.84	Acceptable	
3	46	0.00414	0.17606	≤	0.46	Acceptable	0.00962	0.46519	≤	1.38	Acceptable	
2	30.66	0.004368	0.16246	≤	0.46	Acceptable	0.00548	0.28913	≤	0.92	Acceptable	
1	15.33	0.001116	0.12667	≤	0.46	Acceptable	0.00112	0.12667	≤	0.46	Acceptable	

Table 23 - Controlling Wind Drift: N-S

	Controlling Seismic Drift: East – West Direction												
Story	Story	Existing	Story	-	Allowal	ole Story	Existing	Total		Allowab	le Total		
	Height	Story	Drift		Drift		Total	Drift		Drift			
		Drift					Drift						
	(feet)	(inch)	(inch)		(in	ich)	(inch)	(inch)		(in	ch)		
9	140	0.05152	0.47261	≤	2.72	Acceptable	0.3478	4.1615	≤	16.8	Acceptable		
8	117.33	0.07601	0.47261	≤	1.68	Acceptable	0.2962	3.6889	≤	14.08	Acceptable		
7	103.33	0.04169	0.61198	≤	1.68	Acceptable	0.2202	3.2163	≤	12.4	Acceptable		
6	89.33	0.04161	0.86848	≤	1.68	Acceptable	0.1785	2.6043	≤	10.72	Acceptable		
5	75.33	0.02971	0.18042	≤	1.68	Acceptable	0.1369	1.7358	≤	9.04	Acceptable		
4	61.33	0.01473	0.18178	≤	1.84	Acceptable	0.1072	1.5554	≤	7.36	Acceptable		
3	46	0.04161	0.50596	≤	1.84	Acceptable	0.0925	1.3736	≤	5.52	Acceptable		
2	30.66	0.41852	0.50251	≤	1.84	Acceptable	0.0508	0.8677	≤	3.68	Acceptable		
1	15.33	0.00903	0.36519	≤	1.84	Acceptable	0.00903	0.3651	≤	1.84	Acceptable		

Table 24 - Controlling Seismic Drift: E-W

	Controlling Seismic Drift: North – South Direction													
Story	Story	Existing	Story	-	Allowable Story		Existing	Total		Allowable Total				
	Height	Story	Drift		Drift		Total	Drift	Drift					
		Drift					Drift							
	(feet)	(inch)	(inch)		(ir	nch)	(inch)	(inch)		(in	ch)			
9	140	0.05722	0.3136	VI	2.72	Acceptable	0.25449	2.9279	≤	16.8	Acceptable			
8	117.33	0.07446	0.3136	VI	1.68	Acceptable	0.19727	2.6143	≤	14.08	Acceptable			
7	103.33	0.04169	0.3229	≤	1.68	Acceptable	0.12281	2.3006	≤	12.4	Acceptable			
6	89.33	0.02377	0.2385	VI	1.68	Acceptable	0.08111	1.9776	≤	10.72	Acceptable			
5	75.33	0.00370	0.1448	VI	1.68	Acceptable	0.05734	1.7391	≤	9.04	Acceptable			
4	61.33	0.00979	0.2175	Y	1.84	Acceptable	0.05369	1.5942	≤	7.36	Acceptable			
3	46	0.02014	0.5436	Y	1.84	Acceptable	0.04384	1.3767	≤	5.52	Acceptable			
2	30.66	0.01923	0.4837	≤	1.84	Acceptable	0.02369	0.8330	≤	3.68	Acceptable			
1	15.33	0.00445	0.3492	≤	1.84	Acceptable	0.00445	0.3492	≤	1.84	Acceptable			

Table 25 - Controlling Seismic Drift N-S

As displayed in the tables above, all of the new drift values are acceptable per serviceability requirements and code requirements. All the new drift values are much larger than the original design. This shows that the new design that eliminates moment frames is less stiff than the original moment frame building and will deflect more. Even though the new drift values are larger than the original, the new design is acceptable because they are still below the code requirements.

Center of Mass and Rigidity

The center of mass, or COM, and the center of rigidity, or COR, for the newly designed building are found using RAM Frame. The values in Table 26 below show the East – West and North – South components of the center of rigidity and the center of mass for each level. In

Table 27 below that, the values for the existing building are seen; these values are found in the Third Technical Report of the Voorhees Replacement Facility. The origin for both the newly calculated values and the existing values is the southwest corner of the grid line.

Newly Calcula	Newly Calculated RAM Values for Center of Mass and Center of Rigidity									
Level	E-W Center of	N-S Center of	E-W Center of	N-S Center of						
	Mass	Mass	Rigidity	Rigidity						
	(feet)	(feet)	(feet)	(feet)						
9	277.15	156.03	274.98	129.05						
8	277.10	210.90	275.49	142.35						
7	277.21	151.06	275.57	154.97						
6	277.16	150.04	274.92	170.68						
5	259.22	191.89	274.19	183.98						
4	253.08	193.30	275.89	182.18						
3	248.81	175.08	276.93	177.34						
2	248.58	174.60	274.01	176.13						
1	216.95	180.33	264.71	169.02						

Table 26 - New Center of Mass and Center of Rigidity

Existing ET	ABS Values fo	or Center of M	lass and Center	of Rigidity
Level	E-W Center of	N-S Center of	E-W Center of	N-S Center of
	Mass	Mass	Rigidity	Rigidity
	(feet)	(feet)	(feet)	(feet)
9	306.4	158.6	309.5	148.2
8	307.1	81.9	306.5	86.2
7	307.0	154.0	306.5	174.6
6	318.1	232.1	317.9	236.7
5	287.6	114.4	306.4	174.4
4	278.0	113.4	303.9	164.7
3	278.5	130.8	302.2	152.0
2	285.7	129.3	300.6	154.3
1	245.5	126.3	275.5	125.1

Table 27 - Existing Center of Mass and Center of Rigidity

The difference between the new center of mass and the new center of rigidity appear to be similar in some areas, while others vary by a large amount. For the East – West direction, the values in the first 5 floors are very different, differing by 30 of more feet. For the floors above the 5th in the East – West direction, the values are fairly similar, only differing by a couple of feet. For the North – South direction, the values are fairly similar only differing by 10 or so feet each floor except the 8th. The 8th floor varies a large amount because the mechanical room spans from the 7th floor to the roof level, skipping the 8th in sections, thus decreasing that level's total mass and changing the location of the center of mass.

The difference in the center of mass and the center of rigidity of the existing system appear to be minimal in East – West direction. The difference in the North – South direction however, appears to be more significant than the East – West direction, however the values are still small.

When comparing the new system's COM and COR to the existing system's COM And COR, the values vary by a large amount. The first difference is that both systems center of mass varies from one another. This is expected to change since the new system is now supporting a helipad located on the top of the building. Another possible reason for the change is that the two buildings are modeled in different programs, starting from scratch each time it was modeled. Since the RAM model is created with more detail than the ETABS model, which did not include any gravity members, the RAM model is assumed to be more correct.

The two centers of rigidity also varied in each system. This is also expected to change since the existing lateral system included moment frames on the outer edge of the building. By changing the system to a lateral frame, frames are not placed in the exact locations of the old moment frames, thus a change in the center of rigidity is expected. The differences in the COM and COR for each system however are fairly similar between the new and old lateral system. For the East – West direction, both systems are similar, with minimal differences in the COM and COR for level 6 and above, while level 5 and below differ by large amounts. For the North – South direction however there are differences between the two systems. While the new system's COM and COR only vary by 10 or so feet, the old system's COM and COR vary by as much as 50 or more feet for story 5 and below. This is ideal for the system since the lower differences create less torsion in the building, reducing the forces acting on the lateral system.

Torsion

Since the center of mass and the center of Rigidity differ by a somewhat large amount, it is to be expected that the building's torsion will be relatively big. The total building torsion consists of two parts, M_t , which is the inherent torsional moment. This is found by multiplying the distance between the center of mass and the center of rigidity by the story shear. The inherent torsional moment is then added to the accidental torsional moment, M_{ta} . M_{ta} is found by multiplying the story shear by 5% of the building width at a specific level. The inherent torsional moment is added to the accidental torsional moment to find the total torsional moment, M_t . The torsion values for the new and existing systems can be seen below in Table 28 and 29.

	New Building Torsion										
Story	North –	South Building	Torsion	East – West Building Torsion							
	M _t	M_{ta}	M _{total}	M _t	M _{ta}	M _{total}					
	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)					
9	427.75	443.5	871.3	5399.5	3055.3	8454.8					
8	515.76	720.8	1236.6	22358.9	4979.5	27338.4					
7	400.57	549.6	950.17	977.9	3818.5	4796.4					
6	538.9	541.3	1080.2	5033.9	3723.3	8757.2					
5	3477.1	3169.5	6646.6	1841.1	3553.4	5394.5					
4	5536.7	3305.2	8841.9	2752.8	3779.2	6532					
3	5026.7	3522.8	8549.5	581.9	3931.1	4513					
2	5850.7	3496.6	9347.3	371.2	3703.7	4074.8					
1	10609.9	4322.7	14932.6	2624.9	6168.1						
Sum			52456.1			76028.3					

Table 28 - New Building Torsion

	Existing Building Torsion									
Story	North –	South Building	Torsion	East – \	West Building	Torsion				
	Mt	M _{ta}	M_{total}	M _t	M _t M _{ta}					
	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)				
9	781.59	567.2813	1348.869	1295.8	2552.244	3848.084				
8	62.849	235.683	298.5318	869.03	4139.715	5008.745				
7	74.219	333.9855	408.2045	3170.3	3170.3 3152.411					
6	9.9974	112.4708	122.4682	696.44	3101.202	3797.642				
5	5014.5	3636.316	8650.822	8904.0	3039.751	11943.75				
4	7656.7	4030.242	11686.9	7792.5	3111.444	10903.91				
3	5562.8	3199.883	8762.652	3277.5	3166.749	6444.269				
2	1735.7	1702.676	3438.377	3722.5	3049.993	6772.493				
1	2123.3	1080.532	3203.872	169.2	3057.374					
Sum			37920.7			58099.02				

Table 29 - Existing Building Torsion

It is seen in the above tables that the torsion in the new design is more than the original design. This is to be expected due to the bigger differences in the COM and COR in the new design. This is a potential problem when designing the new system because the large torsional moments can add shear forces to the frames increasing their load.

Overturning Moments

An analysis is performed to determine the overturning moments cause by the controlling forces. The new overturning moments are then compared to the existing

overturning moments that are found in Technical Report #3. The results can be seen in Table 30 and 31 below.

Level	Height Above		New	Overturi	ning Mo	ments			
	Ground (ft)	Load (kip) Shear (kip)				Overturning Moment (ft-kip)			
		N-S	E-W	N-S	E-W	N-S	E-W		
9	140.00	197.12	200.13	197.12	200.13	27596.8	28018.2		
8	117.33	320.35	326.12	517.47	523.30	37586.7	38263.7		
7	103.33	244.25	250.12	761.72	776.42	25238.4	25844.9		
6	89.33	240.58	243.89	1002.31	1020.44	21491.0	21786.7		
5	75.33	232.27	232.76	1235.08	1253.20	17496.9	17533.8		
4	61.33	242.73	247.55	1477.81	1500.74	14886.6	15182.2		
3	46.00	258.71	257.50	1736.52	1758.25	11900.7	11845.0		
2	30.66	239.49	242.60	1976.00	2000.85	7342.8	7438.1		
1	15.33	222.15	232.09	2198.16	2232.94	3405.6	3557.9		
Total		2198.16	2232.94	2198.16	2232.94	166945.5	169470.5		

Table 30 - New Overturning Moments

Level	Height Above		Existir	ng Overtu	ırning N	loments			
	Ground (ft)	Load ((kip)	Shear	(kip)	Overturning Moment			
	(10)					(ft-kip)			
		N-S	E-W	N-S	E-W	N-S	E-W		
9	140.00	252.125	124.6	252.125	124.6	35128.580	17360.5		
8	117.33	104.748	202.1	356.873	326.7	12290.089	23712.4		
7	103.33	148.438	153.9	505.311	480.6	15338.101	15902.5		
6	89.33	49.987	151.4	555.298	632.0	4465.294	13524.6		
5	75.33	266.729	148.4	822.027	780.4	20092.733	11179.0		
4	61.33	295.624	151.9	1117.651	932.3	18130.609	9316.0		
3	46.00	234.716	154.6	1352.367	1086.9	10796.942	7111.6		
2	30.66	116.490	148.9	1468.857	1235.8	3571.585	4565.3		
1	15.33	70.778	141.0	1539.635	1085.020	2161.5			
Total		1539.635	1376.8	1539.635	1376.8	120898	104833		

Table 31 - Existing Overturning Moments

The results for the new overturning moments are found to be larger than the previous overturning moments by a significant amount. This is not to be expected because the new seismic forces are smaller than existing forces. A possible reason for this is the inclusion of

wind cases in this report. By adding wind cases, larger forces are added to the building creating more building shear, and thus creating more overturning moment. These new large overturning moment values will have to be taken into account when designing the new foundations in the Lateral Foundation Design section of this report.

Comparison of Existing Lateral System vs. New System

The new design, using only braced frames for the lateral system, and the existing design, using a mix of moment frames and braced frames, are compared in this section purely to understand the feasibility of eliminating moment frames. The two systems are compared on many different factors including seismic loads, member sizes, foundation changes, architectural changes, drift, torsion, overturning moment, constructability, and cost.

Because the new system is able to use just braced frames instead of a combination of the two, the seismic base shear is lower for the new design. The new R value that is used for the seismic calculations is able to reduce the seismic load in both directions, North – South and East – West. In the North – South direction it is able to reduce the loads by almost 200 kips, while in the East – West it is able to reduce it an almost negligible 5 kips. This helps in reducing the forces in the building, allowing the wind to control.

The new design also helps in decreasing member sizes of the previous design. Because the existing design uses moment frames, the beam members have to be increased to take added moment forces, with members reaching typical sizes of W24x176 and W36x150. With the new design, since there is no moment in the beams or girders the members can be reduced to a W21x63 or smaller. Also, column sizes can be reduced since they do not take moment loads either. Again, due to the moments that are created in the moment frame, columns can be as large as a W14x311. With the new design column sizes can be greatly reduced with maximum sizes reaching a W14x176. The down side to this new design is the addition of the HSS braces. Because the new lateral system uses braces to resist lateral load, extra HSS members must be used, thus possibly offsetting the savings created by smaller members.

Foundation changes will also have to be made for the new design. In general the foundations for the new design have increased due to the added overturning moment. Because there are fewer lateral foundations throughout the building, there is more overturning moment applied to each of them. This will force the members to increase in size, in some cases as much as 10' in each direction.

The added braces also added architectural challenges for the new design. Because a brace spans the between two columns, any hallways or rooms that are in that area will be cut off and need to be redesigned so the building's floor plan still works. For all cases of new frames throughout this building, interfering with a hallway or room was avoided. This is not

possible however for the windows looking into the courtyard. In order to resist the torsional moment, braces are needed in the area surrounding the two courtyards. 'X' type braces are inserted into those areas to assist with lateral movement and to add to the architecture. By making these braces exposed it continues to allow users to see out into the courtyard, but also allows them to see the structural system. This change to the architecture will need to be studied further to ensure that it will look architecturally pleasing.

Drift is also a factor that is considered when comparing the two systems. The new system is found to have much higher drift values for both the wind and seismic. The new drift values are found to be almost 10 times more than the exiting values. Although the drift values are higher for the new system, they are still all acceptable per serviceability and code requirements.

The torsional and overturning moments are also considered in the comparison of the two systems. For the new building because the COM and COR have a much larger difference, it is expected that the torsion values will be larger than the existing values. This found to be true and adds to the forces that the lateral system must resist. The overturning forces are also larger than the previously calculated values for the existing system. Since the forces are larger in the new system it will affect the sizes of the new foundations because they will have to resist this overturning moment. This will force the foundations to be larger in size than the originally designed foundations.

The final considerations when comparing the two systems are the constructability and cost. Moment frames can require much more welding than the newly designed connections in the braced frames. Since this is the case, time and money can be saved by installing the brace frames. Installing the new system will also not require the use of stiffener plates on any of the connections to stiffen the columns or beams, again saving time and money.

Connection Design

Typical frame connections are designed for this report to fulfill the MAE requirement. In this section four connections are designed. All four connections deal with the newly designed lateral system. The first two connections deal with a brace to column/beam connection. The third connection deals with a brace to beam connection, while the fourth deals with a brace/brace connection. Each of the connections is designed to limit the amount of welding wherever possible. The locations of each connection can be seen in Figure 51, while the calculations for each connection can be seen in Appendix K. Below in Figures 52-55 each connection is detailed.

Figure 51 - Location of Connection Designs

Typical Connection #1

Figure 52 - Brace to Column Connection

Typical Connection #2

Figure 53 - Brace to Column Connection

Typical Connection #3

W21x68

Figure 54 - Brace to Beam Connection

Typical Connection #4

Figure 55 - Brace to Brace Connection

Electrical Analysis

Due to the relocation of the helipad, the systems supporting the pad must also be moved. According to the FAA lights are needed to help guide any approaching helicopters to the helipad. With the relocation of the helipad, the lights must also be relocated and tied into a circuit breaker. The luminaires used for the helipad lighting include the following:

- ZG1 (14) Helipad Omnidirectional Marker Lights 40W 120V
- ZG2 (1) Lighted Windsock and Rigid Frame 464W 120V
- ZG3 (4) Helipad Red Obstruction Light 116W 120V

The luminaires ZG1 are designed to be recessed in the concrete pad as in Figure 56. Each

of the luminaires, ZG1, ZG2, and ZG3, are all placed on separate circuits to avoid voltage drop. All three circuits use a 60° , 14 AWG copper wire in ½" metal conduit. The

wire types are found using two assumptions. The first

Figure 56 - Recessed Light in Helipad

assumption is that the lights are continuous loads and require a reduction factor. Also, it is assumed that the temperatures that the wires will be subjected to will reach $106^{\circ} - 113^{\circ}$, because the lights are located on the roof of the structure. The three wires also checked to ensure that the Voltage Drop is below 3%. For the circuit containing the luminaires ZG1, the Voltage Drop, or VD is found to be 2.49%, while the VD in the other two wires is 2.07%. The calculations for these wires can be found in Appendix L.

The three circuits are all designed to tie into the Panel LEQPH7A1 using 20A breakers. The Panel LEQPH7A1 is located in the 8th floor mechanical space. A breakdown of the panel can be seen below in Figure 57. The highlighted portions of the panel are the new circuits added.

FLUI LOAD DESCRIPTION RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RAPU-12 LIGHTING ARU-12 LIGHTING ARU-12 LIGHTING ARU-12 LIGHTING ARU-12 LIGHTING ARU-13 LIGHTING RECEPTACLES RECEPTACLES RECEPTACLES REAT TRACE		A 360	20 12	0 AMPS 08 VOLTS 0 VOLTS 3 PHAS 4 WIRE SE C	S L-L S L-N E	BRE	AKER	SUB FEE	RCUIT BREA D LUGS JGS ONLY	. LEQPH KER	I7A1			NOTES 4,0	:	AIC RA	ITING		DOUBLE PANE	
FLU LOAD DESCRIPTION RECEPTACLES REPU-18 LIGHTING RAHU-18 LIGHTING RAHU-18 LIGHTING RAHU-18 LIGHTING RAHU-18 LIGHTING RAHU-18 LIGHTING RECEPTACLES REATTRACE REATTRACE REATTRACE REATTRACE REATTRACE	JSH MOUNT OR AREA	VA A 360	20 12 PER PHA B	8 VOLTS 0 VOLTS 3 PHAS 4 WIRE	L-L L-N E CODE		AKER	SUB FEE MAIN LU	D LUGS JGS ONLY	KER						AIC RA	TING		DOUBLE PANE	al
FLU OAD DESCRIPTION RECEPTACLES RELIGIBITION ANU-2B LIGHTING ANU-2B LIGHTING ANU-2B LIGHTING ANU-2B LIGHTING RELIGIBITION RELIGI	JSH MOUNT OR AREA	VA A 360	PER PHA	0 VOLTS 3 PHAS 4 WIRE	L-N E CODE		AKER	MAIN LU	JGS ONLY					4,0	000	AIC RA	TING		DOUBLE PANE	11
FLU OAD DESCRIPTION RECEPTACLES RELIGIBITION ANU-2B LIGHTING ANU-2B LIGHTING ANU-2B LIGHTING ANU-2B LIGHTING RELIGIBITION RELIGI	JSH MOUNT OR AREA	VA A 360	PER PHA B	3 PHAS 4 WIRE	CODE		AKER													
OAD DESCRIPTION RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RHU-1A UGHTING RHU-1A UGHTING RHU-1A UGHTING RHU-1A UGHTING RHU-2A UGHTING RHU-2A UGHTING RHU-3D UGHTING RHU-3D UGHTING RECEPTACLES REATTRACE REATTRACE REATTRACE	OR AREA	A 360	PER PHA B	4 WIRE	CODE		AKER	DOUBLE	LUGS										DOOR-IN-DOOR CONSTRUCTION	
OAD DESCRIPTION LECEPTACLES LECPTACLES LECEPTACLES LEC		A 360	В	SE	CODE														INTEGRAL TVS	is
OAD DESCRIPTION RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES REU-12 LUGHTING RHU-12 LUGHTING RHU-12 LUGHTING RHU-12 LUGHTING RHU-13 LUGHTING RECEPTACLES REATTRACE REATTRACE REATTRACE REATTRACE		A 360	В																ISOLATED GROUND BU	
RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RECEPTACLES RHU-1B LIGHTING RHU-2B LIGHTING RECEPTACLES REAT TRACE REAT TRACE REAT TRACE		360		С		AMP				PHASE			BRE			VA	PER PHAS	SE		ROOM
RECEPTACLES RECEPTACLES HU1-1A UGHTING HU1-1A UGHTING HU1-2A UGHTING HU1-2A UGHTING HU1-2A UGHTING HU1-3D UGHTING RHU2-3D UGHTING RECEPTACLES REAT TRACE REAT TRACE REAT TRACE		1,000	360				POLE	CCT No	A	В	С	CCT No		POLE	CODE	Α	В	С	LOAD DESCRIPTION	AREA
RECEPTACLES HUL-1A LIGHTING HUL-1B LIGHTING HUL-2A LIGHTING HUL-2A LIGHTING HUL-2C LIGHTING HUL-2C LIGHTING ENG-2C LIGHTING HUL-3C LIGHTING ENG-1A-1A-1A-1A-1A-1A-1A-1A-1A-1A-1A-1A-1A-			360		_ ,	20	1	1	X			2	20	1	2	696			LIGHTING	
HUL-18 LIGHTING HUL-28 LIGHTING HUL-20 LIGHTING HUL-20 LIGHTING HUL-20 LIGHTING ECEPTACLES ECETATRACE EATTRACE EATTRACE					3	20	1	3		X		4	20	1	2		696		LIGHTING	
HU-1B USHTING HU-2C LIGHTING HU-3C LIGHTING HU-3D USHTING ECEPTACLES EATTRACE EATTRACE EATTRACE EATTRACE				360	3	20	1	5			X	6	20	1	2			800	LIGHTING	
NHU-2A LIGHTING HHU-3D LIGHTING HHU-3D LIGHTING RECEPTACLES HEAT TRACE HEAT TRACE HEAT TRACE					2	20	1	7	X			8	20	1	2	1,000			AHU-2B LIGHTING	
HU-2C LIGHTING HU-3D LIGHTING ECEPTACLES ECATTRACE HEATTRACE HEATTRACE ECATTRACE			1,000		2	20	1	9		X		10	20	1	2		1,000		AHU-3A LIGHTING	
AHU-3D LIGHTING RECEPTACLES REAT TRACE REAT TRACE REAT TRACE REAT TRACE				1,000	2	20	1	11			X	12	20	1	2			1,000	AHU-3B LIGHTING	
RECEPTACLES HEAT TRACE HEAT TRACE HEAT TRACE HEAT TRACE HEAT TRACE		1,000			2	20	1	13	X			14	20	1	2	1,000			AHU-3E LIGHTING	
HEAT TRACE HEAT TRACE HEAT TRACE HEAT TRACE			1,000		2	20	1	15		Х		16	20	1	2		1,000		AHU-3F LIGHTING	
HEAT TRACE HEAT TRACE HEAT TRACE				360	3	20	1	17			X	18	20	1	3			360	RECEPTACLES	
HEAT TRACE HEAT TRACE		1,500			5	20	1	19	X			20	20	1	3	360			RECEPTACLES	
HEAT TRACE			1,500		5	20	1	21		X		22	20	1	3		540		RECEPTACLES	
				1,500	5	20	1	23			X	24	20	1	7			670	M221	CB-2
		1,500			5	20	1	25	X			26	20	1	6	670			M218	CB-10
NEW LIGHTS - ZG1 HELIPAD)		560		N/A	20	1	27		Х		28	20	1			464		NEW LIGHTS - ZG3	HELIPAE
NEW LIGHTS - ZG2 HELIPAD)			464	N/A	20	1	29			Х	30	20	1					SPARE	$\overline{}$
SPARE						20	1	31	Х			32	20	1					SPARE	1
SPARE						20	1	33		Х		34	20	1					SPARE	_
SPARE						20	1	35			X	36	20	1					SPARE	1
SPARE		$\overline{}$				20	1	37	X			38	20	1					SPARE	-
PARE						20	1	39		X		40	20	1					SPARE	+
SPARE						20	1	41			X	42	20	1		_			SPARE	_
SUBTOTAL CONNECTED	D VA/PHASE	5,360	4,420	3,684												3,726	3,700	2,830	SUBTOTAL CONNECTED VA/PHASE	
			_				CODE		SUMMARY	TU		PAN			_					
		A 76	В	С	VA	Α		CONTIN.		V		VA		A 76	В	C 55	VA	A		
CONNECTED AMPS/PHASE		/6	64	55							46.200		-	/6	64	55	22.720		CONNECTED AMPS/PHASE (ENTIRE PAN	ictj
TOTAL CONNECTED) (IIII) (IUB)				23,720	65	2 LIGHT 3 RECE	PTACLES			16,380 2,700		6,380 2,700			L	23,720	65	TOTAL CONNECTED (ENTIRE PANEL)	
CODE CONNECTED AMPS/PHASE	F /THIS TURN	92	72	61	1			INUOUS			2,700		-	92	72	61			CODE CONNECTED AMPS/PHASE (ENTIR	RE PANELL
TOTAL CODE CONNECTED		32	/2	- 01	26.948		5 HEAT				7,500		7,500	32	12	- 01	26.948	75	TOTAL CODE CONNECTED (ENTIRE PANE	
TO THE CODE CONNECTED	(11112 100)				20,340		6 MOT				670		670			L	20,346	/3	TOTAL CODE COMMECTED (ENTIRE PARI	LLI
								EST MO	ron		838		838							

Acoustical Study

Since relocating the helicopter to the roof of the building will move it closer to the building, an acoustical check is required to ensure that the residents of the building will not be bothered by the increased noise. The façade that is closest to the new helipad site is checked and compared to similar, but alternative, façades. The closest area to the new helipad is a patient room located in Zone 3 of the Northern Building. The façades checked for this area are ¼" glass, which is the existing façade, ¼" laminated glass and 3/16" glass with a 2" airspace, ¾" laminated glass and 3/16" glass with a 4" airspace, and (2) ¾" laminated glass with ½" airspace. Each façade has a Transmission Loss of 31, 48, 44, and 40 respectively.

Since it is assumed that the helicopter will be located on the helipad when it is the loudest, a distance of 142 feet is used in the calculations. It is also assumed that the noise a helicopter of the size used for this report can make is 105 dB. After performing the noise reduction calculations, found in Appendix M, the noise levels are recorded and are shown in Table 32.

dB's recorded in Patient's Room due to Helicopter										
Type of façade TL dB Recorded in Room										
¼" Glass	31	47.3								
1/4" Laminated Glass and 3/16" Glass with a 2" Airspace	48	34.3								
1/4" Laminated Glass and 3/16" Glass with a 4" Airspace	44	30.3								
(2) ¼" Laminated Glass with ½" Airspace	40	38.3								

Table 32 - dB's in Patient's Room

It is found that the existing noise in the patient's room is too high. 47.3 dB is roughly the same amount of noise as the average home or office. Since the rooms are meant for overnight patients, this would be too loud and would result in complaints from the users. It is determined that the ¼" laminated glass and 3/16" glass with a 2" airspace would be ideal for this room. This façade reduces the noise in the room to 34.3 dB. This is roughly the equivalent of a quiet office or conversation which would be ideal for sleeping patients.

Conclusions

The Voorhees Replacement Hospital is a new hospital replacing the current Voorhees hospital due to its inability to expand and be renovated. The new building is 9 stories tall, approximately 140 feet tall. It consists of two parts, a main bed tower, and a services building.

In the final report the current building's systems is be explained in depth. An in depth description of the mechanical, electrical, lighting, telecommunication, and structural systems is also given. The architecture of the building is explained as well as some of the building's sustainable features.

Descriptions of the proposed changes to the building are then given. An overview look at the potential benefits of the changes is given, and the process of making the changes is explained.

The current helipad is looked at and the possibility of moving it from the parking area to the top of the building is explored. This report looks into possible problems and requirements that a helipad located on the roof will require. A location is then determined based on the requirements found. In order to move it from its current location, the helipad must first be redesigned as a two-way slab with beams spanning from column to column. The beams supporting the slab are then designed as concrete beams. Due to the added weight on the roof, the gravity columns that support the new helipad are adjusted for the added weight. Also, since weight is added to the columns, the foundations are redesigned for the added load. These new foundations are then checked against a RAM model to insure they are accurate.

In order to eliminate moment frames throughout the building, the lateral system is also changed. The lateral system is changed in the Southern Building from a combination of braced frames and moment frames, to a system that only uses braced frames. Since changing the lateral system will also change the seismic forces, these forces are redesigned. A RAM model is then created to assist with the design of the new system. This model assists in the design and analysis of the new building.

Because new braces are added to the building, a study of their new location is performed to insure that the architecture is unchanged. The location of these new braces is then plugged into the RAM model and a design is performed. The location and sizes of the new braces is then reported. Since the forces on the foundations will also change, the foundations are redesigned. The new foundations are redesigned and the sizes are reported.

The new system is also analyzed for a number of different factors. The analysis looks at the new building's drift, center of mass and center of rigidity, torsion, overturning moment, and constructability. These factors are then compared to the old system's values. It is found that

the new systems' seismic forces are reduced due to the new R value. It is also found that by eliminating moment frames, time and money can be saved with the new system, although the new system will have a larger drift, torsion, and overturning moment when compared to the old system.

Due to the new type of lateral system a design of the connections for the new braces is performed. Two brace to column connections, a brace to beam connection, and a brace to brace connection are designed and reported in this report.

Because of the new location of the helipad, an electrical breadth and an acoustical breadth is performed. The electrical study determines new wire sizes for lights located on the new helipad. These wires are also tied into an existing circuit breaker. The acoustical study looks at the potential sound entering patients' rooms. The study found that a new façade type is necessary in order to eliminate sound entering the space.

Bibliography

Bill Davis. Personal Interview. 1/11/10.

Das,, Braja M.. Principles of Foundation Engineering. Stamford, CT: Cengage Learning, 2007.

"Decibel Levels." <u>Cool math Lessons - Decibel Levels</u>. Online. 2010 http://www.coolmath.com/decibels1.htm 5 April 2010.

Egan, M. David. Architectural Acoustics. New York, NY: McGraw-Hill, Inc., 1988.

Federal Aviation Administration. "Advisory Circular." <u>105</u> <u>5390</u> <u>2b</u>. Online. 9/30/04 http://www.faa.gov/airports/resources/advisory_cirulars/media/105-5390-2b/150_5390_2b.pdf 5 April 2010.

Geschwindner, Louis F.. <u>Unified Design of Steel Structures</u>. Hoboken, NJ: John Wiley & Sons Inc., 2008.

"Heliport Systems, Inc.." <u>Heliport Systems, Inc. - Design, Manufacture, Construction</u>. Online. 2000 2000 5 April 2010.

Jeff Harris. Personal Interview. 9/18/09.

Mark Debrauske. Personal Interview. 9/9/09.

Mike Torine. Personal Interview. 9/14/09.

Paul Gruettner. Personal Interview. 9/19/09.

"Stop the Helipad." Noise and Low Flying Helicopters - Stop the Helipad at the SF General Hospital. Online. April 05, 2010 http://stophelipad.com/noise.shtml 5 April 2010.

Appendix A: Typical Floor Plans

Level 1, Zone 2 Framing Plan

Level 1, Zone 3 Framing Plan

Level 1, Zone 4 Framing Plan

Level 1, Zone 5 Framing Plan

Level 1, Zone 7 Framing Plan

Hickorss: $\frac{1}{3C + 9}$ $\frac{1}{3C +$	NEW TOTAL CONTRACTOR C		2a
$ \frac{1}{70} = \frac{20}{70} \frac{315}{91} \left(\frac{9}{10} + \frac{60000}{10} \frac{1}{10} \right) = 6.5^{11} \qquad \frac{21.23}{22.5} \left(\frac{100}{10} \right) = 1.423 $ $ = \frac{21.66}{36} \left(\frac{9}{10} + \frac{60000}{10} \frac{1}{10} \right) = 8.023^{11} $ $ = \frac{21.66}{36} \left(\frac{9}{10} + \frac{60000}{10} \frac{1}{10} \right) = 8.023^{11} $ $ \frac{10.55}{36} = \frac{10.55}{10} = 1$			
Henceto A 226.9 145.5 256.9 145.5 256.9 145.5 256.9 145.5 256.9 145.5 256.9 145.5 256.9 145.5 125.9 145.5	0	fmin = 20,833(.8+60000/200000) = 6.5" 31.23-(20/12) = 1.423	
Manage A A A A A A A A	-	= 29.66 (.8 - 60000/200000) _ 8.023" 36 + 9(1.423)	
$A = \frac{1}{12}(335)(11.25)(31.37 - 20/12)^{2} = 415.8 + 1.4$ $A = \frac{1}{12}(335)(11.25)(31.37 - 20/12)^{2} = 415.8 + 1.4$ $A = \frac{1}{12}(335)(11.25)(31.37 - 20/12)^{2} = 415.8 + 1.4$ $A = \frac{1}{12}(335)(11.25)(31.37 - 20/12)^{2} = 415.8 + 1.4$ $A = \frac{1}{12}(35)(11.25)(31.37 - 20/12)^{2} = 415.8 + 1.4$ $A = \frac{1}{12}(35)(10) = 40^{11} + 1.2$ $A = \frac{1}{12}(35)(10) = 40^{11} + 1.2$ $A = \frac{1}{12}(375)(20)(20)^{2} = 1.2$ $A = \frac{1}{12}(375)(20)(20)^{2} = 1.2$ $A = \frac{1}{12}(375)(10)^{2}(12) = 31320$ $A = \frac{1}{12}(375)(10)^{2}(12) = 31320$ $A = \frac{1}{12}(375)(10)^{2}(12) = 31320$ $A = \frac{1}{12}(375)(10)^{2}(12) = 1.5$ $A = \frac{1}{12}(375)(10)^{2}(1$	•	Moments	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A THE	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mo= 48(.335)(11.25)(31.32-20/12)2= 415.8 ft-x	
From $16.4.1 - 2 k = 1.375$ The kanh = $1.375(20)(20)^2$ 18332.3 $15 = \frac{1}{12}$ $\frac{1}{12}$ 1		10" \$ 20" ZO" ZO" ZO+2(10) = 40" & bu+ 67	
$I_{8} = L_{2} + \frac{1}{3} $	\bigcirc	20"	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		d: 18333.3 coc	
$\frac{10^{11}}{10^{11}} = \frac{10^{11}}{10^{11}} $		12 12	
$K = 1.1875$ through interpolation $L_0 = 1.1875 \left(\frac{20(20)^3}{12}\right) = 15833.3$ $\Delta = 15853.3 = 1.011$		10") bes but hu= 204(10)= 30" 5 but 4+= 60"	
$I_{b} = 1.1875 \left(\frac{20(20)^3}{12} \right) = 15833.3$		20"	
$I_{s} = \frac{12}{(31.14^{\circ})(10)^{3}(12)} = 15663$ $Q = \frac{15653.3}{15665} = 1.011$		l l	
	')	Is= (31.14) (10)3(12) : 15662 4 = 15663 = 1.011	

		34
	B11, 1813, 88, 810, 85, 157	
\bigcirc	Ir= 12832'3	
	Z=1.407	
	812,89,06	
	IL = 18333.3	
	Is = ZZSOO	
	Panel 1: dn= 1.011+,585+1.407+.8148_ ,95	
	Penel Z: dn= .95	
	Panel 3: an= .848	
	Penel 4: DCm=, 848 Beams are medium staffners	
()	Ruel S: din= 195	
	Penel 6: dm = .95	
	tam = Ln(.8+ Filecopo) = 29.66(.8+60000/200000) = 9.64" <10" 36-58(dm-,2) 36+5(1.423)(.8482)	
	+- 10" still ok /	
	Ln = 31.33 - 29/12 = 29.66' Sn = 22.5 · 20/12 = 20.833'	
	β: <u>79.6</u> = 1.424 20.833	
	For edge beam in long directions:	
	be = 30 " = E(163*/4)(*34/3)	
	10 (163(20/20))((20)3(20)/2)]+[(163(10))((10)3(10)/2)]=20966.67	
	10] C=[(1-63(20/10))((20)3(10))]+[(1-63(10/10))((20)3(30)/3)]=966.67	
	1 20"	

		40
	Transverse Distribution of longitudinal Monauti:	
\bigcirc	a) Negative Moment@ Rep of support	
	$\frac{L_{z}}{L_{1}} = \frac{22.5}{31.33} = .7182$ $\frac{8^{2}C}{2L_{5}} = \frac{20966.67}{2(11250)} = .93$ $\frac{6}{L_{1}} = .726 \times 1.0$	
	Is = (22.9/2)(12)(10)3 = 11250	
	\$=0 100 100 100 \$=0 92.3 \$>2.5 82.5 79.23 75	-
	16.5 .077 h MS = 5.12	
	b) Negative Moment & exterior file of 1st support	
	CL3 = (1585)(17182) = 42	
	4L 5 778 11.0	THE THE PROPERTY OF THE PROPER
	-291 1786 to CS=-228.7 15 to USCUT=-34.3	
	c) Negative Monent @ indextor five of 1th support	
	c) Negative Monent @ indextor free of 12 support -270.2 .786 to CS = -212.4 .15 to beaut = -180.5 -270.2 .214 to MS = -57.8	-
	d) Positive Moments	-
	.0 66 60 CO .573 73.44 1 90 83.46 75	

					Sa
	236.9 < .734 to .754 t	CS: 173.9 (.85 L MS: CS: 106.8 (.85 L CS: 37.7	6 bean = 04.7.8 6 CS sleb = 26.1 6 bean = 90.8 CS sleb = 16.02		
	Sunnary: France A Total Moment - 66.5 2 Maseum - 52.5 14 Maseum - 9.21 20 Muselb - 5121 6		5. 2 2.8 2.02		
	Reinforcement design		Mine Mo	Hot Not	
()	2 CS wells, b	67.5" 67.5	67.5" 67.5" 6.06" 6.06"	67.5	
	4 Mr. * 12 b 5 Mr Hu 0-9	-1.64 4.64 -1.85 5.16		2.85 2.16	NO. A CONTRACTOR AND RESISTANCE AND REAL ASSESSMENT OF THE PARTY OF TH
	•	१,8 . १५.१4	<u>ፈ</u> ኒ.77 ፡፡ 36.48	(\$.31	TO THE PERSON OF
	7 R=pfy(1-,51pfy) O=-531000 p2+000 x=-b+1-562-400		£012000 P) PJ 000.	. 000 2557	
	8 Ashee = p bd 9 Ashin = .0018 b +		.225 .209	1,22	THE RESIDENCE OF THE PARTY OF T
-					

								60
	Item	Description	Ment	M ^t	Mine	<u>4</u> a_	Mat	and the second
	10	# bers = 4 (1.7)	7,904	ч	4	ч	4	
	* ce.	Non= bl2+ e excel for pe sleer in slob	3.4=4 .	Greenent de	signs	4	4,	
	. 4	ω,, ,335kif	ol= 10.3-	Yz (.625) =	6.6875"			
	9 · · · · 9	V= 8355 (1')(11.25: 20/12/2	- 6.69/p) = 3	3 14			
		ØUL = Ø2 JPZ b	d = .75(z)∫	4000 (12)	6.6878) = 7.	613K > 3.3 K	ok/	
	Moments	472.5	290.		472.5			
	ß	7 (2.3)			- 472.3			
		-13Z.6 -580	-538.9	-538.9	४० ८ -।	32		
		A = '{	\$(.3\$6)(22.5	7(31.33 - 2016	2] = 829	 Ž		
		A= . 7	4+=,57	Hem = .16	Н, "= .63	т _{Мо} +=,35		
() .l	Neyathe	Honerts @ fice	of support					O SECTION OF THE OWNER, THE OWNER
	-132.6-	Moments @ Pers	27:3 (15	to bean = -	19.1			
	Negative	Moment @ expterior	fre of 100	sopport	- 387.5			
-	-580 (Noment @ exterior 7.786 to CS = 1.214 to MS = -	124.12	.15 to slab =	-68.4			
	Nege five	Monant @ into	ior five of	14 support				
		704 1. (()	85 to been : .	360				
	* 5362¶	< . 786 to U <423.6	15 to 664 = -6	3-16				
			-					
~.								
. 2								
								1

		t = 10 in	Size of bars: # 5	Bar Diameter = 0.625 in	Bar Area = 0.31 in	Clear Cover = 3 in	d _{bottom} = 6.5875 in	$f_y = 60000 \text{ psi}$	F _c = 4000 psi				
						10				97			
		Interior Span	₹	38.70	67.50	6.0625	6.88	7.64	36.98	0.00061	0.254		1.22
)	tion A	Interic	Œ.	-57.80	67.50	6.0625	-10.28	-11.42	55.23	0.0009280 0.0006197	0.380		1.22
	S slab: Sec		Mint	-62.30	67.50	6.0625	-11.08	-12.31	59.52	0.0010009	0.410		1.22
	design of M	Exterior Span	₹	63.00	67.50	6.0625	11.20	12.44	60.19	0.0000816 0.0010123 0.0010009	0.414		1.22
	Reinforcement design of MS slab: Section A	_	Mext	-5.12	67.50	6.0625	-0.91	-1.01	4.89	0.0000816	0.033		1.22
· }	Reir	Description		Mu	Ф	Ð	(M _u * 12)/b	$M_n = M_u/\Phi$	$R = (M_n * 12000)/(bd^2)$	Preq	$A_s = pbd$	A = 0.0019ht	S min = 0.001001
7		Item #		1	2	m	4	2	9	7	∞		Ø

12

	Reinforcement design of CS slab: Sec. How. B	
Description Ex	terior Sp	
Mest	M* Mart Mint M*	Size of bar
M _u -19.10	52.00 -68.40 -63.60 32.00	Bar Diame
b 135.00	135.00 135.00 135.00 135.00	Bar A
90.9 p	6.06 6.06 6.06	Clear Co
(M _u * 12)/b1.70	4.62 -6.08 -5.65 2.84	
$M_n = M_u/\varphi$ -1.88642	5.14 -6.76 -6.28 3.16	
R = (M _n * 12000)/(bd ²) 4.56	12.42 16.34 15.19 7.64	
Preq 0.0000761	0.0002074 0.0002730 0.0002538 0.0001275	- :
$A_s = pbd$ 0.062	0.170 0.223 0.208 0.104	
A _{5 min} = 0.0018bt 2.43	2.43 2.43 2.43	
# of bars, N . 8	80	
$N_{min} = b/2t$ 7.	7 7 7	
Bars Needed 8	8 8	
Reinforcement design of MS slab:	yf MS slab:	
Description Ex	Exterior Span Interior Span	
Meet	M ⁺ M _{int} M _{int} M ⁺	
M _u -19.10	125.70 -124.12 -115.30 77.20	
b 67.50	67.50 67.50 67.50 67.50	
90'9 p	90.9 90.9 90.9 90.9	
(Mu, * 12)/b -3.40	22.35 -22.07 -20.50 13.72	
$M_n = M_{\nu}/\Phi$ -3.77	24.83 -24,52 -22,78 15,25	
$R = (M_h * 12000)/(bd^2)$ 18.25	120.10 118.59 110.16 73.76	
P _{req} 0.0003050 (
A _s = pbd 0.125	0.0020384 0.0020124 0.0018669 0.0012430	
A _{5 min} = 0.0018bt 1.22	0.0020124	
# of lbars, N 4	0.0020124 0.823 1.22	
N _{min} = b/2t 4	0.0020124 0.823 1.22 4	

		84
	Negative Monant (int)	
\bigcirc	d= .8118 KLz = 1.13	
	, 85 to beam =-127.1	
	-199.3 1.75 to CS = -149.5	
	-199.3 < .75 to CS = -149.5 \ . 15 to slab = -22.4	
	Positione Noment	
	1.632 to CS = 102.6	
	1623 (.632 to CS = 102.6 (.85 to bean = 87.7)	
	Survey France C	
	Total M -45.6 162.3 199.5	
\cap	Mban -34.9 87.2 727.4 \ Mes -6.72 15.4 -27.4	
	Aus -4.5 59.6 -49.84	
	see corcel for reinforcement designs	
	Honerts	
	324.6	
	91.1 -398.6 -398.6 -91.11	
	Mo = 18 (335)(31.33)(22.5 - 20/12)= 569.4	
	1	
	Negative Moment @ face:	
	Is= 31330 R= .3346	
	F = .3330 $F = .3340$ -91.1 $.951$	
	.0491 to MS = -4.5	
. 1		
	· · · · · · · · · · · · · · · · · · ·	

10 in	5	0.625 in	0.31 in	3	6.6875 in	60000 ps	4000 psi																						
#	ILS: #		Bar Area =	over =	9 = p	f, = 60	f' _c = ,																						
	Size of bars:	Bar Diameter	Bar	Clear Cover =																					1				
																	-									_			
												-																	
	Mint	-22.40	94.00	69.9	-2.86	-3.18	9.07	0.0001514	0.095	1.69	9	2	9		slab:		M	49.80	94.00	69.9	-6.36	-7.06	20.16	0.0003371	0.212	1.69	9	2	9
	₹	15.40	94.00	69.9	1.97	2.18	6.24	0.0000419 0.0001040 0.0001514	0.065	1.69	9	ις	9		design of MIS		₹	29.60	94.00	69'9	7.61	8.45	24.13	0.0000304 0.0004036 0.0003371	0.254	1.69	9	ιń	9
	Mext	-6.20	94.00	69.9	-0.79	-0.88	2.51	0.0000419	0.026	1.69	9	5	9		Reinforcement design of MIS slab:		Mext	-4.50	94.00	69.9	-0.57	-0.64	1.82	0.0000304	0.019	1.69	9	S	9
Description		M	q	Р	(M _u * 12)/b	$M_n = M_o/\Phi$	$R = (M_n * 12000)/(bd^2)$	Preq	$A_s = pbd$	$A_{s min} = 0.0018bt$	# of bars, N	$N_{min} = b/2t$	Bars Needed		Rei	Description		Σ	p	ъ	(M _a * 12)/b	$M_n = M_u/\Phi$	$R = (M_n * 12000)/(bd^2)$	Preq	$A_s = pbd$	$A_{3 \text{ min}} = 0.0018 \text{bt}$	# of bars, N	$N_{min} = b/2t$	Bars Needed
Item #		1	2	ñ	4	5	9	7	60	6	10	11	12			Item #		7	2	m	4	5	9	7	60	ę	10	11	12

Reinforcement design of CS slab: ふんだいへ し

	Rei	inforcement	Reinforcement design of CS slab: Sechioへ D	slab: Sec.	O~O				
Item #	Description		ı					# #	10 in
		M ext	•	Mint			Size of bars:	bars: #	S
1	M _u	-73.60	174.30	-254,10			Bar Dia	Bar Diameter =	0.625 in
2	q	188.00	188.00	188.00			BB	Bar Area =	0.31 in
60	Đ	69.9	69.9	69.9			Clear	Clear Cover =	3.1
থ	(M _u * 12)/b	4.70	11.13	-16.22				= p	6.6875 in
5	$M_n = M_u/\Phi$	-5.22	12.36	-18.02				ť -	sd 00009
9	$R = (M_n^* 12000)/(bd^2)$	7.45	17.64	25.72				₽	4000 ps
7	P. e.g	0.0001243	0.0001243 0.0002948 0.0004303	0.0004303					
00	Ppd = SP	0.156	0.371	0,541					
6	$A_{s min} = 0.0018bt$	3.38	3.38	3.38					
10		11	11	11					
11	$N_{crite} = b/2t$	10	10	10					
112	Bars Needed	11	11	11					
									: -
	Reir	nforcement	Reinforcement design of MS slab:	slab:					
Item #	Description	_	Exterior Span						
		Mext	₹	M					
1	Σ̈́	-4.50	119.10	-99.70					
2		94.00	94.00	94.00				,	
m	ъ	69.9	69'9	69'9					
4	(M _u * 12)/b	-0.57	15.20	-12.73					
5	M _n = M _e /ф	-0.64	16.89	-14.14					
9	$R = (M_n * 12000)/(bd^2)$	1.82	48.22	40.37					
7	Preq	0.0000304	0.0000304 0.0008095 0.0006768	0.0006768					
00	A _s = pbd	0.019	0.509	0.425					
61	$A_{\rm 5min} = 0.0018bt$	1.69	1.69	1.69					
10	# of bars, N	9	9	9					
1	$N_{min} = b/2t$	25	S	2					
12	Bars Needed	9	9	9					

:	
	85, 7, 8, 10, 11, 413
) .	W.L. 1335 (22.5), 5= 3.77 kip
	Wu= 1,778 (26) = 75:38
	Vu= ,5(7528)=37071315 Vusw= 1.2(,208)(31.33) = 3.916
	2
	Vot = 1.15(32.7) + 1.15(3.8)+ 144.4-525 (21.33-01.2) = 52.6 K (\$0. = 56.4k
	B6, 9, tiz
	w, L= 7.54
	W= 150,75"
	Vor = 1.15(75.4) + 1.15(3.9) + 387.5-108 \$/29.66 = 100.65 < \$V per olives
	shar reinforcement
)	Pesign: 8/4000 (20)(17): 17214
	Vs= Vc = 100:6 - 45 = 68.74
	Vs & 45 Fi bud=86 K : Smx = 0/2 = 17/2 = 8.5"
	Av. = (.76 [4000 (30)(8.5)/ = .134
	Avna = \ .75 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	use (2) #4 @ 8.5"
7	

Appendix C: Helipad Column Calculations

				150
	181(9/ns/ng:			
0	Level	Local	Takederin - OL	,
	9 8 7	229.4k \$2.9 \$2.9	229.4 282.3 335.2	
	\$ \$	52.9 \$2.9 44.1	386 1 441 485 1	
	2	44 1 44 1 44 1	S29.7 573.5 617.4	
	9/8 7/6 5 4/5	Size Wi440 VI440 VI4×90 VI4×120		
\sim	M8/ M9:			
	987654321	Lood 458.8 162.15 162.13 See below 66.9 66.9 66.9 66.9	758.8 620.9 788.1 945.2 555.7 622.6 689.5 716.4	ATTACA PARTICULAR AND A TACABATA PARTICULARA
	on column	from bean = 1/2 PL above = 1/2 DL + 52.4.	+ 1.0.2(25)(22.5)(25) 1.6(21)22.5)(100)	3
	DL on	column = 1206 stone + 524+2	9.7 = 83.1	
5	18 31'-6" 71615 32 -0" 514 10' 413 30'-8" 211 34'-8"	5 <u>1 e e</u> Wi44109 Wi44146 Wi4 x90 Wi4X 109 Wi4X 145		TO THE PARTY OF TH
				WINDOWN CONTROL OF THE PARTY OF

			160
	. Been design for M81M9:		
	18.6 4 9 4.52 18.6 18		
	6.15, 6.25, 621, 6.25		
	M= (945.2)(25) + (18.6)(6.25) = 6023.75 ft-K		
	V= P+P = 945.2 + 18.6 = 954.5k		are determine to the dependence of the dependenc
	Assome nel" Y= 6"		A STATE OF THE STA
	beff = 5 = 14. 214 (12) = 75"		
	Try W410x235 Oth 6240		
	0= 5210 = 11.52, > 1 desorbation wopog		,
	Lood is two large, introduce a new	colone roof.	
	Wi4x104	- Lavel 8	
		Level 7	
	-W142	- Level 6	
	weight weight	- Level 5	
		level 4	
	WHENL	Level 3	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Level 7	
-	WHY233	Level 1	
1 .		Ground	
		M12	
		TO COLUMN TO THE T	

I				17
	Beam closign S	L 481 M9:		
	74.4K 945.2	174.01¢		
	625' 6.25' 625'	A		
	design 2 seper			
	Mu = PL = 74.4 (12.5) = 232.5 fl.K		
	V= 74.4 37	٧٤.	garage and the second of the s	
	Asame asl	Yz= 6.5- 12=6		
	best= 3.125'(1	2)= 37.5"		
	Try WE1×44	PNA=7 OF UN = 528	Dt-F	
_ :		Will ble began Arme		
	a= 162 . 85(3.5)(17.5)	= 1.45 ×1" : wrong	accomplian	
	assume a=2"	Yz =65-1=55 Use	WZ1844 PNA=7 440= 522#	-14
	a= 1.45 < Z"	in a le comption		
		2/42) 154 . 1/	chds	
	# shds = Ean	xz = 2(162) = 154 = 16		
	# stds = Ear	42 = C(186) = 13.4 = 16 (To is aclosur - DL	
	Level	Local 458-8	To recolvery - OL	The second secon
	Level 9 6	Local 458-8 162.13 162.13	Te beeckern- OL 458 8 620, 9 783,1	
	Level 9 6	Local 458.8 162.13	To be coloren - OL 458 8 620, 9	MORNILL SPILL LANDS OF CHIRD SPILLS S
	Level 9 6	<u>Local</u> 458-8 162.13 162.13 74.4 74.4	Te becolven - OL 458. 8 620. 9 783.1 945.2 1019.6	METERS CONTRACTOR CANDELL AND
	Level 9 8	Local 458-8 162.13 162.13 162.13 74.4 74.4 74.4	Te becolver - OL 458. 8 620. 9 783.1 945.2 1019.6 1094 1168.4 1242.8	
	Level 9 8 7 6 5 4 3	<u>Local</u> 458.8 162.13 162.13 74.4 74.4 74.4	Te becolvern - OL 458. 8 620. 9 783.1 945.2 1019.6 1094	
	Level 9 8 7 6 5 4 3	Local 458-8 162.13 162.13 162.13 74.4 74.4 74.4	Te becolver - OL 458. 8 620. 9 783.1 945.2 1019.6 1094 1168.4 1242.8	

· · · · · · · · · · · · · · · · · · ·					184
0	Level 918 71615 514 413 211	1-6" 32'-6" 30'-8" 34'-8"	MIN × 533 MIN × 1.28 MIN × 1.48 MIN × 104 ZiFF		
	See (diagram on pige	164		
	Level	Load		Tek eckenson	
	5 4 3 2 1	42.2 42.2 42.2 42.2		95.5 196 2865 382 477.5	
	Level 5/4 4/3 2/1	34-8.	5126 WH4843 WH4890 WH4899		-
\bigcirc	A10:				
	Level	Load		Tokedown	
	987684321	229.4 162.13 162.13 162.13 74.4 74.4 74.4 74.4		2 29.4 3 91.5 553.7 715.79 790.2 864.6 940 1013.4	
	1918 71615 514 413 2/1	34'-6" 34'-6"	MICH × 1 93 MICH × 135 MICH × 135 MICH × 135	MEIX 44 CO MAY 135 MAY 40	
75	side becaus	are the same	cc MBINA	willy withing with 90	

Appendix D: Helipad Foundation Calculations

						19.
A TOTAL ACTION	Design Founded fons :				-	
	Column	Local				
	78 6 L9 8 N8 99 6 M8c 13 M10c 10 M8cR 13	516.53 % 21.6 % 21.6 % 21.6 % 21.6 % 22.3 % 25.3 % 24.5 % 80.9 % 80.9 %				
на на населения деней пределения деней под	Soil: Vay = 94.39 pcf V= 103.85 pcf W= 10.02 Qa=6ksf piers/column: 24224	QL	1.39 = 8 1+.1002 8 = 103.85 pcf			
)	<u>-2-</u>					700
no commente establismo establismo establismo.	f=516.53 K G=516 A= 81 b=	53/A 6.1 ft = 162 8.3 ft = 10 ft				
SACONE POST	78/18/N8/Nd:	M8c,	119е	MOC		
OALANDA	P=621.614 A= 103.644 b= 1144		P= 1325.3 K A= 220.9 ft = 6= 15ft	P= 1094 A= 182.4 b= 14f+	ft.	The state of the s
	P= 480.9 k A= 80.15ft2 b= 9ft					CPALSED CASPELACION
)						
-						i i

			20a
	_ <u>LZ</u>		
0	d2[Ve+ 2/4] +d[Ve+2/2]w = 2/4[BL-w2]	VL= QUE = Q(4) IF'E	
	d=[199,7+ 5,17(1000)] +d[189.7+ (12)+(2)](24) = 5,17(1000)	= 189.7 psi	
	198, 722 + 4983,60-124080=0	g = 516.5/(w) = 5.165 kst	
	d≥ 1514 " Assone #8		
	h=d+d6+3=15:4+1+3=19.4 " use 20" let d:	Z6-3-1= 16"	
	bo = (24+ -165-)4= 160"		
	VL = .75 (40 (16) + 2) (4000 = 284.6 ps)		
	Hu= g L2 S-165(4)2 411.32 K-ft a= As	As (60) 1.474, 85(4)(12)	
	41.32(12)= .9 Az (60)(16 - 1.47 Az/2)		
()	495,84= 8641 As - 39.69 As2		
	As= . 5.898 in 1/4 use		
	p= A .68 0028\$) .0018 1.	gwel V	
	They are the first of the second of the seco	Nation 1	
	Es = 1003 (M=1,176)	285.1 2 (89.)7	7777
	= ,037.87 Ø=,9 o	ik V	
	use (10)#8 each way		
	\$ Br= .65(.85)(4)(24)= 1273 > 516,53K		
			4
7			

	Zla
()	$d^{2}[189.7 + \frac{5.14(1000)}{(15)^{2}(4)}] + d[189.7 + \frac{5.14(1000)}{(12)^{2}(2)}](24) = \frac{5.17(1000)}{4(15)^{2}}[(132)^{2} - (24)^{2}]$
	198.602 - 4981.130 - 150345=0
	d= 17.69"
	h=17.69+3+1=21.69 use 22" d=22-3-1=18"
	b== (27+18): 42"(4): 168"
	VL= .75 (40(18) + 2) 54000 = 218.2 ps;
	Mu = (5.14)(4.5)2 = 52 04 K-A
	52.04 (12) = .9 As (60)(18- 1-47As/2)
	624.48= 972As - 39.74°
	As = .66 use #8@ 14" O.C. 4 = .677
\bigcirc	P= 1 = 168 = 002577 0018 : good
	Es: 003 (18-1.176) = .043>.005 :.0k/ C= 1.47(.677) = 1.176
	use (10) #8 cach way
	\$Bn= .65(.85)(4)(24)2= 1273 +>621.6 = cok V
-)	

		22.
	M80, M96: P=1325.3" use 30"x50" pier	
\bigcirc	£ \$.89 15*15'	
	d2[189.7 + 5.49(1000)]+d[189.7 + 5.49(1000)][30] = 5.98(1000)[(180)2-(30)2]	
	199.93d 2+ 6304.5d=322109.4	
. 7	d= 27, 4"	
	h=27.4+3+1=31.4" use 32" d=32-J-1= 28"	
	60= (32 +26)4= 240"	
	VL = .75 (40(28) + Z) J4000 = 316. Z3psi	
	Hu= (5.89)(6.25)2 113,3×44 9= 1.4745	
	113.3(12)= .9As 60(28- 147As/c)	
	-39.74=1512 Ac - 1359.6 =0	
\bigcirc	4=.921 use #8@ 10" O.C As= .96	
	p= .96 .0025 > .0018 : 06/	
	Es= .003 (28-1.66) = .04767 .005 Ø=.966/	
	use (17) #8 each way	
	OB-= ,65(. \$5)(4)(80)= 1989K>1325.3K	
- 1		
<i>i</i>		

		Z
· ·	Mioc: P=1094.5" 24" x24" pier E=5.6 k=f 14' x14'	
	d2[189.7+ 56(1000)]+d[184.7+526(1000)/211212][247=56(1000)[1682-(2472]	
	199.4d2+5019.5d= 268800	
	d= 26.227"	
	h= 26.23 +3+1= 30,23" use 32" d= 32-3-1= 28"	
	b (28+32)4.240"	
	Vc= .75 (40(28) + 2) 54000 = 316,23ps;	
	HL= 5.6(C)2 = 100.8	
To the state of th	(100.8)(12)= .9A; (60)(28-1.47/2/2)	
	1209.6= 1512A6-39.7A5=	
)	As= 0.8175 use #9 @ 10" O.C. A= .96	
	P= .96 = .0025 > .0018 = ot V	
	€2 = .003 (28-166) = .0476>.005 Ø=.9 :0k /	
	Use (16) #8 each way	
Comment of the Commen	ØBn= 165(195)(4)(24)2= 1273 × 1094.5 × - ok √	
designation of the control		
5		
200		
)		

		24a
() .	M8LE, M9LE, MIOLE: P= 480.9K 24"x 24" pier E= 6.94 kef 9'x9'	
	d2[189.7 + s.4(1000)]+d[189.7 + s.4(1000)](24) = s.4(1000) [1082-242]	
	199,922 + 5044,52= 113575	
	d = 14.35"	
	h=14.35+3+1=18.35" use 20" d=20-3-1=16"	
-	b = (20+16)4= 144"	
	Vc = .75 (40(16) + 2) 14000 2 305.7 ps.	
	Hu= 5-9(8.5)= 36.14+4	
	(36.14)(12) = ,9 A (60)(16 - 1,4124/2)	
$\overline{(}$	433.68 - 864 4 - 39.69 A *	
	As=. 5141 Use #8 @ 18" O.C. As=.5267	
	P=.53002217,0018 : ok/	
	Es= -003 (16-,911) = .04977.005 8=.9 - 0k/	
	USE (6) #8 each way	
	ØB~= .6(,85)(4)(24)2, 1273× > 480.9×	
)		100
		الــــــا

Appendix E: Wind Calculations

	Paul	Stewert.	Virtue	teath Hos	o.tel	Tah #1	Wind Louds	14
	1							
ή.	Acco	ording to A	SLE 07-05					
)		.				N-S:	1771	
	Land a	. 100 mph			As Areis	k= 13	91-4"	
	K	d: .85 per 7	Tble 6-4	Area	B z Areas	4-7: B= 295	875	
	I	:115 per T	.66 6-1			6= 139 - E-W:	4.	
	Acres and a second	Larrand at the Sa			Ares			
		worke alegary			Area:	B B=292		
		5.7.1: 411 p		net		1 = 189		
		-, GI K24+1	٠.٥		Slove	e heights = 15	'cy"	
	β:	61						
	For	exposure typ	ne B per To	ble 6-2:	Post	Mean heigh	F= (57, 5574	
	€	7.0						
		= 1200'				i de la completa de La completa de la co		
		- 47						- :
	Ĝ:	0,84						
)		= 140 = 0.45						
		0.30				· · · · · · · · · · · · · · · · · · ·		
		= 320'.						: -
	F.	nd Ke per	Table 6-3:	K == 1	01(2/2 ₀)	12/x	1 P	
	level	Height (H)	K2	172	20	,		
	0	0	0					1
	1	15,33	0.578					
	3	30.66	0.705					
	4	61.33	0.859					
	5	75, 33 89, 33	0,957					•
	7	103.33	0.998					-
	9	117:33	1.086					
		W Zaich						
		Mrs C.01()	(2) 2hx = 1.08					S
. 1. 0.								-
14	i ·							
	k							

	Paul Stewart Virt.	un Aeulth Hospital	Tech # 1 Wind Loads	(2)
j	· Find velocity pressures:			
	92= 0.00256 Kz Kz+	Ka VZI		
	Height &			
	0			
	15.33	463 642		
	46 19.	819		
	75.33 22.	496 797		
		948 .974		
	117.33 25	. 875 . 176		
	2n= .00256 K, K2+ K4 V2	I= .00256(1.016)(n(.	85)(100)(1.15)= 27.176	
	Gust Effects Factors:			
)	Ni= 22.2/Ho.8 = 22	.2/(139,33).8 = .427	76 per C6.5.8	on and a second
	nothing is the	lexible per 6.2		
	ga=gv=3.4			
	gr = /2 In (3600m) + 5	77 = 3.982 In (3600 n.)	Eq. 6-9	
	Z= .6k= .6(139.33).	83.598		
	Iz= c (33) 16 = .30(8	33) 16 2569	E 6-5	
	Lat $\ell\left(\frac{\tilde{z}}{33}\right)^{\tilde{c}}$, 320 $\left(\frac{83}{3}\right)^{\tilde{c}}$	3) 13 436,23	Εξ 6·7	
	Q= (10) 1/2	QANG - 0.84	15 EE 6-6	
	$\Delta = \sqrt{\frac{1}{1 + .63 \left(\frac{R+L}{L_{\overline{b}}}\right)^{.67}}}$	Q 8. N-s = 0. 7 8		
		QAE-W: 0.7	76	THE PROPERTY OF THE PROPERTY O
		Que-w= 0.78	4	

	Paul Stewart Virtue Health Hoppital Tech #1 Wind Loads (3) 6
\bigcirc	$\overline{V}_{\overline{z}} = \overline{b} \left(\frac{\overline{z}}{\overline{s}_{3}} \right)^{\overline{x}} V \left(\frac{88}{60} \right) = 83.265 \qquad \text{Ee } 6-14$
	$N_1 = n_1 L_2 = 2.24$ $V_2 = 0.083$ $R_n = \frac{7.47N_1}{(1-10.3N_1)^{2/2}} = 0.083$ $E_2 = 6-11$
	$J_1 = \frac{4.6 \text{ m/V}}{\sqrt{2}} = 3.26$
	$R_{h} = \frac{1}{\eta_{1}} - \frac{1}{2\eta_{1}^{2}} \left(1 - e^{-2\eta_{1}} \right) = .2578$
	72=46n B = 721 = 1.752 1216-1 = 5,724
	720N-1 = 6.989 720E-1 = 6.897
	Ru=1, - 1, (1-e-202) = Runs = , 4127 Rune = , 1594
	REGN-5: (1328 REGE-W = . 1345
الحد	73=15.4n.L = 73AN:=19.165 MODEL = 5.865
	Name = 23.093 Name = 23.399
	R_= 1 - 1 2 (1-e-272) = RLANG . 0508 RUNE : . 1559
	RiBUS - 0473 RiBEW - 0418
	R= (-10
	RAUS = . 6994 RAEW = . 4536
	Reps = . 3 953 Reew = . 3 977
	Grans=1.0227 Gracu=.8237 1+1.79, Iz Grans=1.0227 Gracu=.8237 Et 6-8
	The building is enclosed with no parapet, it is not a low-rise building.

	Paul Stewart	Virtue Heelth Hospite	1 Tech#1 Wind Loods (4)
\bigcirc	From 6-6		GCp; = +1-0.18
	Windwerd Well:	. 8	
	Leeward Walls: A-A R-A B-E	vs: -,2388 w: -,5 w: -,5	
	Side walls	7	
	P2 = 62 GF CP - 64 (GGP		€ 6-19
	Pr= Er Goch - Er (BC	p:) leewerd	Ex 6-19
	Area 1,2,3 N-S height Floor	<u>Pa</u>	<u>DL</u>
)	0 -6 15:33 1 30.66 2 46 3 61:33 4 75:23 5 84:33 6 103:23 7 117:23 8 179:23 9	0 16.725 19.326 21.107 22.479 23.543 24.485 25.324 26.062 27.126	11.52.9
	Area 4,5,6,7 NS Floor 0 1 2 3 4 5 6 7 8	14,216 14,216 16,266 17,669 18,781 19,589 20,231 20,993 21,574 22,413	15.842

- 1.	Paul Stewart	Virtua Health Hospital	Tah# 1 Wind Louds (5)	8 :
	Area 1,2,3 E-W	na. graj im		
7.3				
	Floor	Pz	Pr	
	9		16,084	
	1	14,422		
	3	17.952		
	4	11.057		
	S. L.	19.914		
	L	20.672		
	2 4 4 4 4	21.349		
	X	21.942		
	1.	22.800		
,	Area 4,5,6,7 E-W			
	Floor	PŁ	PL	
	0	0	15.85	
	7	14.223		
	3	17.679	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	¥	18.761		
	\$	19.600		
	6	70.343		
\\	7	21.005		
	8	21.586 22.426		
	1	22.426	V *	
~				
	The second secon			ن

Appendix F: Seismic Calculations

	Defermine New Seismire Loads	16
	Southern Boilding:	-
Q.	Location: Voorhees, NJ (Lotitude: 39.84° Longitude: 74.93°)	
	Soil Classification: D	
	Daupanay: Medical	
	Moderial: Structural Steal	
	Structural System: Bracect frames	
	1) 4) So = 0.249 So = 0.057 According to USGS Ground Motion Paremeter Calculatur	
	6) Site Clase D	
	c) SM1: Fe Ss = (1.6)(.249): 3984	
	Fa = 1.6 From ASCE 07-05 Table 11.4-1	
1	Sm, = FvS, = (2.4)(.057) = ,1368	
()	Fr= 2.4 From ASCE 7-05 Table 11.4-2	
	d) Sps = 2/2 Sms = 2/2 (3984)= ,2656	
	$S_{Di} = {}^{2}/_{3} S_{Ri} = {}^{2}/_{3} (.136\%) = .09/2$	
	2) a) Sido.04. Spro.15 can not be assigned to Design Category. A	THE PER PER PER PER PER PER PER PER PER PE
	b) Occupancy Category is III because it is a hospital with emergency treatment facilities	
	c) S, 60.75 not assigned to SDC E or F	
	d) SDC= C from Tobles 11.6-1 \$ 4.6-2	
. 🥎 ,		AND THE PERSON OF THE PERSON O
		A LIPSCOCK AND THE PROPERTY AND ASSOCIATION ASSOCIATION AND ASSOCIATION ASSOCIATIO

```
26
Flowchest 6.6: Disphragms are rigid
  Occupancy Category: III
    R= 3.25 hr ordinary steel concentrically braced Bornes for both directions
    I= 1.5
    Ta= C+L, x = .02(142) 25= ,9623
     Ti=6>Ti
     C_s = \frac{S_{01}}{T(R/I)} < \frac{S_{0s}}{(R/I)}
        -3 .0912 ( .2656 => .043756.1226
        Cs= .04174
Well the from Tech #1
                                           W is believed (see below)
                      . . <u>w</u>
                          8. 2221
                                                2162.2
                                                788.8
                        17945
                                               1294,5
                         515-75
                                                515,75
                        9,028
                                               3350.9
                          4709.4
                                                4709.4
                         5212.5
                                                5212.5
                          4133.2
                                                4133.2
                          S592.2
                                               5592.2
                          27154.1
                                               27759.5
    Weight of helipsel = (10/12") (150 pcf) = 125psf
Aren of helipsel = 3(31.33)(45) = 4229.6412
     Rem weight: (10/22)(24/12)(6)(31.33)(150)=39162.516
= (162)(27/2)(4)(45)(150)=3750016
    Tatal weight of 11 = 39162.5 + 37500 + (125)(3)(31.33)(45)
                        = 605,356K
```

		36
	V= CsW= .04375 (27759.5) = 1314.135	
\bigcirc	K= 175+ 15T= .75+ .5(.9623)= 1,23	
	see excel sheet for along their distribution	
	Story Leteral Force (K) Story Shear (K) 9	
	4 232.97 995.69 3 181.03 1176.71 2 87.15 1263.86 1 50.27 1314.13 Som_ 1314.132	
\bigcirc		
,)		
-		

Appendix G: Free Body Diagram

				5
	2 year 182	EFx= Fiz cos 62.1 + F., cos 62.1 +F	45 - Fis cas 49.4 - Fix cos 49.4 = 0	
\bigcirc	9 49,4 -> F45	E Fy = Fiz sin 62.1 + Fissin 49.4	1- Fiz sin 62.1- Fix sin 49.4-0	-
	L'EM FIR			
	The Total	EFx= F11 (0)49.4 + F19.05 49.	4 - FIG COS 49.4 - FIG COS 49.4 + FRI = 0	
	0/ F31	EFy = Fi7 sh49.4 + Fi6 sh49.4	- Fix shyq.4 - Fiqsix48.4=0	
	LF18 JF19			
	N RELO PE	EFv = Fei cos49.4 + Fes ccs 51.9 +	Fzz cos 51.9 - Fzo cos 49.4 - Fzz =0	
	51.4 F,,	EFy = Feesin49.4 + Feesin49.4	+ Fezsiz 67.4-Fzz siz 51.9=0	
	Fez Fez	*		
\bigcirc				
()				
				Mildelika

		6
	F= 4.00 K T F= 187.55 KT F= 177.15 KC F=	
0	Fu = 36.17 KC Fu = 36.17 KC Fu = 440.84 K7 Fus = 440.84 K7 Fus = 0 Vx 76.8 K -> Vy = 550.78 K1 Wy = 550.78 K1	
		And the state of t
(; ;		

Appendix H: Lateral Force Distribution

			Lateral Force	Dirt	10
	Story 9			-	
0	Dxx = 5.89" - 3.88 = 2.01" Dyy = N/A h = 22.66' = 272"				
	P9; = 199,36 x				
	Frances in No. 117-117;	411-NII, L16-L.	7 16, 65-415, 614-	ull, LIBAIS	
	W7:				
	$K = \frac{AE}{L} \cos^2 \Theta = \frac{(2)(13.5)}{\sqrt{(272)^2}}$)(29000) (135 (135)2 ()2722 +	(BS)= 509	.7 4/h	
	AIL:	· t			
	K = (2)(13.5)(29000) (270)	12700) = 509.7	4m		
O	116 K= (2)(135)(29000) (70	4 3 12 22 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	42.9542		
	K= 2 (13.5)(24000) (135)	+135 E-1) - 50	7.7		
	L14 K= 504.7	K = 50 9.7			A AND STATE OF THE PARTY OF THE
	EK- 2795.9 Klin				
	% of in loce: M7= 17.63% M1= 17.63% L16= 11.86% L15= 17.63%		47: 24.12" All= 24.12" L16= 16.23 K L15= 24.12 K		
	L14= 17.63% L13= 17.63%		614: 24.12" 618: 24.12"		AND REPORTED TO THE PARTY OF TH
1					Control of the Contro

Appendix I: Spot Checks

	Brice Check	Ze .:
	PP- 210,12" Lb=17,33" Lr= 23,14 = 41.5"	
\bigcirc	BBr = 16 (8/16) . 1.75 (8(210.12)/17.33)= 129.3	
	46r= (129.3)(23.14) = 184	-
	(5,000)(00,41)	
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Aur = 219,12 = 5.08	
	Abr - 2(0,12 (27.14/17.23) = 6.78.	
	Area = 5.08+6.78 = 11.86 12	
	Ansser 1/e = 13.85 h2 > Anse ok V	
0		
ĺγ		

Appendix J: Drift

-PPCIIO	lix J: Drift	
	D.A+	32
	Drift = 0.010 hs = 5x=3.17781*	
13		
	Drift= Ca Sac (T) = (3.26)(3.1777) (.9623) = 10.545"	
	1.8 (-0263)	
	Mark 0= .010(140')(1214/14) = 16.8" > Drift : ak	
	8y = 2.27774"	
	Di.Pt= (5.25)(2.27774) (9623) = 7.56" \ Han \ \Delta = 16.8"	
	1.5 (16283)	
	Sec ence	
	See CALCE	
<u> </u>		
\cup		
	THE PROPERTY OF THE PROPERTY O	
,		
)		

Appendix K: Connections


```
201
                                        r= J(e++x)2+(e++1)2 = J(7.15+ 16 8)2+(10.58+14 )
              凡- 亿"
                                         = 19.61
  Limit states:
    4) busset - Bean
       · Bean Web Yield
        · Beam Web Crippling
    bà Gusset- Column
                                                   c) HSS Shape
        · Bolt Sheer
       · Bolt Beering of Tecround on Anytos
· Bolt Decring of Tecround on column med
· Sheer Yield of Anytes
· Sheer Ryphone of Anytes
· Black Sheer of Anytes
· Both Beering & Tecroit on Gusseft Plate
                                                     + Tension Rophure
    VL= & PU = 19.6 (17.47) = 3.56 k VR = ER PU= 10.58 (17.47) = 9.4 K
    He= ec Pu= 715 (17.47) = 6.37 K He= PD= 120 (17.47) = 5.35 K
    a) busset - Pean
       V6= 5.35+ 12 - 85 = 18. Z. K
        try 3/8" weld both sides
Weld: ØR== 1.392(1.5)(3)(712 )(2)= 125.3 x >> Vb /
        BR~=2(.75)(.6)(54)(3/6)( 12 1)= 195.75 4>) V6 /
    6) Gussett-column
        Ve= 3.56+ 21.57 = 25.124 try (3)3/4" $ 325 N 60 Hs
   ij Sheer Stress in boths
        tu= V = 28.95 = 21.82 ksi
    ii) Tensile stress in bolls
        C prot = 3.98 = . 13356
```

	34
	iii) Determine if there's frying: try (2) L4x4x 1/4 x 9"
\bigcirc	P= 3"
	b=2.5- 9/32 - 3/80 1.969"
	Fut= .13356 (9(58)(3)(7/4)2 = 1.24 10 paying 1
	iv) Bolt Sheer
	PVTN = 3(31.8) = 95.4 x > 25.18 x ob/
	V) Bolt Pecring & Tecrout on Angles
	Perry: Ørn= .75(Z,4)(3/4)(58)(1/4)2=39.15
	Terrot on edge: \$12 = .75(1,2)(1,5)(58)(1/4)12=39(15)
	Tecrout in middle: Pr. = ,75(1,2)(3)(58)(14),2=78,38
	OR .= 39.15+39.15+39.15= 117.45"> 25.15" - of
	Vi) Bolt Beering & Tecroit on column will not control
	vii) Show Yield of Angles:
	PRn= PFy 6= ,9(367(1.44)(2)= 125.712 16>25.13 14 016/
	viii) Shear Rupture of Angles: * controls connection
	PR. = PF. Ae Ae UA. U= 1-7/L = (.75)(58)(18723.5 Ae . 82[(3.80)-2(7/2)](1/4)(2) = 1-1.06/6 = 37.98" > 25.12" ob = (873) = .82 > .6 ob
	ix) Block Shear of Angles:
	ØRn= Ø[.6FuAnv + U6s FLAn+] & Ø[.6Fy Agr + Ubs Fu An+]
	Ag = .7.25(44)(2)= 3.625in2 Ant, 2(14)(2-42(7/8)=,78125
	Anv= 3.625_ (2.5)(2)(14)(7/8)= 1.094
	OR = .75[.6)(58)(1.094)+1(58)(18125)] & (.75[.6(36X3.625)-(58X.78125)]
	= 62.546 92.71 ØRN > 25.13 X

	60
	is shown stores in Bults:
0	(10)(,442) = 62.08 c;
	iil Tensile stress in bolte:
	Fu+ 28,56" = .458
	iii) Determine if prying occurs: try (2) L454 = 14
	P= 3"
	b: 2.5 - 1/8-3/8: 2"
	10+: 458 & .4(58)(3)(14)2 = 1.223 ok no prying /
	iv) Bolt Shear:
	ØR= 10(31.8)= 318 € > 274.4 € 6 € /
()	V) Bolt Reving & Tocrowt on Gusset R:
	Pecny: Br== .75(2.4)(3/4)(58)(3/6) = 29.36 k
	Terrort on edge: .75(1.2)(1.5)(58)(1/4)2=39.15 K
	Tearest in middle: ,75(12)(3)(58)(1/4)(2)= 78.310
	ORn= 29.36(10) = 293.6" >274.4" = 6k
	vi) Beering 4 terrort will not control for whom flage
	vil Sheer Yield of Angles:
	PRn= ,9(36)(1.94)(2)= 125.7 K < 274.4 K no good X
	= 9(36)(4.61)(2)=298.73">274.616: ole / try (2) L4" 4" 5/4
	viii) Shear Ryphora of Angles;
	U= 1- 122/20= ,959 An [4.61)2-[2(7/8)(6/9)]= 8.126
	Ac= 7.79 \$Rx = .75(58)(7.79)= 338.9K), 274.42.6k
00 k	

Appendix L: Electrical

-	Electric	le
	ZG1-(14) 40W, 120V-1 USE client LEQPH7A1	
\bigcirc	ZG2-(4)116W, 120V - 2 Distance to circuit = 146'	
	267- (17464W, 120V -3	No.
	A:= .33A Put Zal on one circuit 4 Zaz, Zas on Az= .9667A Seperate circuit A:= 3.8664 continuous tooks templious for	
	Total A. = ,333(14) = 4.662 (1.25) 2 = 5.83 A (7,71) = 8,21 A Az = 7.733 = 7.733 (1.26) = 9.6661 A (7.71) = 13.61 A	4
	use 60°C 14 AWG cupper wire in "12" metal conduit	
	Vultage Drop:	
	Acsume PF= 98% VD=1.833	
	VD, = 4.662(146)(1.833)(2)/1000= 2.49% 43% 6KV VDc= 7.733(146)(1.833)(2)/1000= 4.138 >3% not 6k	
	Split dz 4 Ag	
	VDz = 2.069 % (3% ok	
,	VDz= 2.069%, (3% 1.06	
	stre Panel -> see excel	
		THE PERSON NAMED IN COLUMN
(T)		
		T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-

Appendix M: Acoustical

Append	lix M: Acoustical	
	Acoustics	14
	Helicopter produces 105 dB	
\bigcirc	Glazing on back side of bad fower has an STC=30	
	TL STC	
	"14" g hass 31	
	"14" lamine ted + 2/16 glass w/ 4" Airspace 48 w/ 2" Airspace 44 (2)"14" lamine ted 1 2" Air 40 Space	
	NR= TL=10 log ands Assume 10 log and s=0 TL=31. @ 500 Hz	
	NR= 31 dB	
0	$\frac{I_1}{I_2} = \left(\frac{dz}{d_1}\right)^2 \qquad \qquad I_1 \qquad L_1 = 10 \log \frac{I_1}{I_0} \qquad \qquad d_1 = 2m$	Video de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de la companya del la companya de la companya de la companya de la companya de la companya del la companya
\cup	105 = 10 long I.	
	I.= .0316	
	M-> P 9-> 6	
	8-2 3	
	dz= (51.66)2+(122)2+(50.66)2 = 141.846'= 43.23m	
	$\frac{0316}{\text{Te}} = \left(\frac{43.23}{2}\right)^2$	IVV. sind eminath ValabAVathers all
	Iz > 6.764e-5	
	Lz= 10 log 6.764e.5 = 78.8dB & sound of a mini-bike	
	NR= Lz-Lz	

		2 <i>f</i>
	31=78.3- L:	
\bigcirc	Lz = 47.3 ol 8 & Arraye Hune / office noise	
	would prefer 30 dB de to night petients	
	with (2) 44" liminated glass w/ 14" air space"	
	L3: 78.3-40= 38.3dB	
	with "4" reminated of " liv" gless w/ 2" linspeca:	
	Lz=78.4-44 = 34.30813	
	with 4" Airspee:	
	Lz . 78.3- 48= 30.3d8	
	use the "ley" laminuted glas & \$/16" glass al 2" a repose	
	dP in room = 34.3dB is a govet office I convertion	
\sim		
\odot		
. 7		