CAMBRIA SUITES HOTEL Pittsburgh, PA

TECHNICAL REPORT 3 LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

Adam Kaczmarek | Structural Professor Linda Hanagan November 29, 2010

The Pennsylvania State University November 29, 2010

TABLE OF CONTENTS

Table of Contents2
Executive Summary4
Introduction: Cambria Suites Hotel5
Structural System Summary
ETABS Model11
Code & Design Requirements12
Loads13
Gravity14
Wind15
Seismic20
Load Distribution23
Load Path23
Center of Rigidity/Mass23
Relative Stiffness25
Torsion
Shear27
Direct Shear27
Torsional Shear
Shear Strength Check
Drift & Displacement
Overturning Moments
Conclusion
Appendix A: Building Layout
Appendix B: Loads
Appendix C: Load Distribution44

Professor Linda Hanagan	The Pennsylvania State University
Technical Report 3	November 29, 2010
Appendix E: Shear	
Appendix F: Drift & Displacement	
Appendix G: Overturning Moments	61

The Pennsylvania State University November 29, 2010

Executive Summary

The following technical report provides an analysis of the existing design of the lateral force resisting system of the Cambria Suites Hotel. All loads that were calculated in the existing structural conditions report were applied to the lateral force resisting system which was analyzed for this report. The lateral force resisting system is comprised of reinforced concrete masonry shear walls. A detailed description of the structural system of the building and how all loads are transferred to the foundation is given in the report.

Through the following report, an ETABS model was created to compare the analysis results to the hand calculations performed for the Cambria Suites Hotel. It is important to note that this model represents an analysis of the existing lateral members only; shear walls and rigid diaphragms. This was done to simplify the attempt of creating a model of the Cambria Suites Hotel. In accordance, all hand calculations only accounted for the shear walls as the lateral resisting system. Diaphragms were modeled as rigid area elements with applied area masses which were determined in the existing structural conditions report. The ETABS model was also used to determine the Fundamental Period of the building. Lateral loads were applied to the model to determine center of rigidity, center of mass, torsion, overturning moment, story drift, and story shear. These results were all compared to the hand calculations and the checked against allowable code limits.

After comparing the ETABS model with the hand calculations, a few differences were found in the location of the center of rigidity. This difference is most likely a result of the hand calculations only accounting for the shear walls, whereas the ETABS model includes the rigid diaphragms. Due to this difference, the center of rigidity values calculated by hand will be used in determining relative stiffness, torsion, shear, and overturning moment. The hand calculations verify that the shear walls are properly reinforced and are providing the majority of the lateral resistance. This suggests that it is only necessary to include the shear walls for this analysis.

The result of the overturning moment calculations show that the gravity system of the building will resist any uplift or torsion created on the building due to the lateral loads. This is because the lateral loads are a small fraction of the gravity loads. Other results such as displacements and story drifts were also found to be within the allowable code limits, and are verified by hand calculations, as well as the ETABS model.

The Pennsylvania State University November 29, 2010

Introduction: Cambria Suites Hotel

Cambria Suites Hotel is the newest, upscale, contemporary all-suite hotel located at 1320 Center Avenue in Pittsburgh, Pennsylvania. This luxury hotel is built adjacent to the new CONSOL Energy Center, home to the Pittsburgh Penguins hockey team, and numerous concerts and special events. The 142-suite hotel contains a total of 7 levels above grade and was built on a quite challenging site. The hotel will have a variety of room suites, such as the double/queen suite, king suite, one bedroom suite, deluxe tower king suite, and hospitality suite.

The Plaza Floor level will mainly consist of a few bistro-style restaurants which open to an outdoor terrace which will overlook the city of Pittsburgh and the CONSOL Energy Center. At the Hotel Floor level, guests will be greeted by an airy two-story lobby where they can take part in a state-of-the-art fitness center or the relaxing indoor pool and spa. There are also two meeting rooms and a board room for guest use, as well as, a large kitchen/bar off of the lobby entrance. At the North end of the Second Floor level, a steel Porte Cochere will be cantilevered to cover part of the main entrance. In addition, the property will feature an 1800 square foot presidential suite with one of a kind skyline view of downtown Pittsburgh and a 7th floor concierge lounge that will offer a wet bar and lounge space for guests to use and enjoy.

The hotel is fully landscaped and will also have an exclusive 143 space onsite parking garage with access to the CONSOL Energy Center for event patrons staying at the property. The Hotel Floor level will have a precast concrete pedestrian bridge leading to the top level of the parking garage. The bridge is supported by the hotel and the garage. The South end of the bridge will be supported by the garage on slide-bearings to allow for differential lateral movement between the two structures. The exterior of Cambria Suites Hotel is mainly brick and cast-stone veneer, architectural decisions made to resemble the bordering CONSOL Energy Center. A lighter color brick is used from the 2nd-Roof Floor levels, with the addition of a cast-stone band at Floor levels 2 and 7. The darker color brick is used from the 2nd Floor level and below, as well as vertical strips to separate window pairings and to accent building corners.

The following report will analyze the lateral system of the Cambria Suites Hotel and will determine if the building design is sufficient to resist the lateral loads that act on the building. An ETABS model of the building was designed to compare the results of the hand calculations with the lateral analysis of the building model.

The Pennsylvania State University November 29, 2010

Structural System

Foundation

The geotechnical engineering study for the Cambria Suites Hotel was completed by GeoMechanics Inc. on December 29, 2008. In the study, the site of Cambria Suites Hotel is underlain by sedimentary rocks of the Conemaugh group of rocks of Pennsylvania age. The Conemaugh group is predominantly comprised of clay stones and sandstones interbedded with thin limestone units and thin coal beds. The soil zone conditions consisted of materials of three distinct geologic origins: man-made fill, alluvial deposits, and residual soils. The fill in the hotel test borings was placed in conjunction with the recent demolition and regarding of St. Francis Hospital in order to build Cambria Suites and CONSOL Energy Center. Ground water exists locally as a series of perched water tables located throughout the sol zone and new the upper bedrock surface. Excavations in soils and bedrock can be expected to encounter perched water. The volume of inflow into excavations should be relatively minor, should diminish with time and should be able to be removed by standard pump collection/pumping techniques. The report also states that the most economical deep foundation solution for Cambria Suites included a system of drilled-in, cast-in-place concrete caissons with grade beams spanning between adjacent caissons to support the anticipated column and wall loads of the structure. With varying types of bedrock on site, the allowable end bearing pressure ranges from 8, 16, and 30 KSF. As for the floor slab, GeoMechanics Inc. recommended to place a ground floor slab on a minimum six-inch thick granular base and to provide expansion joints between the ground floor slab and any foundation walls and/or columns. This is done to permit independent movement of the two support systems.

As a result of GeoMechanic's geotechnical study, the foundation of Cambria Suites Hotel incorporates a drilled cast-in-place concrete caissons and grade beams designed to support the load bearing walls and columns. The ground floor is comprised of a 4" concrete slab on grade, as well as, 10" precast concrete plank in the Southern portion of the building. The 4" concrete slab on grade is reinforced with 6x6-W1.4 welded wire fabric and has 4000 PSI normal weight concrete. The slab increases to 8" in thickness with #5 @ 16" O.C. in the South-West corner of the building, and increases to 24" with #5 @ 12" O.C. within the core shear walls where the elevator shaft is located. For the majority of the slab on grade, the slab depth is 14'-0" below finish grade.

The Pennsylvania State University November 29, 2010

The drilled cast-in-place caissons extend anywhere from 20-30 feet deep below grade and are socketed at least 3' into sound bedrock. Caisson end bearing capacity is 30 KSF (15 ton/SF) on Birmingham Sandstone bedrock. The caissons are designed with a compressive strength of 4000 PSI, range from 30-42 inches in diameter, and are spaced approximately between 15' and 30' apart (refer to Appendix A). Typical caissons terminate at the Plaza level and are tied into a grade beam with #3 ties @ 12" O.C. (horizontal reinforcement) and 4-#6 dowels (vertical reinforcement) embedded at least two feet into the drilled caisson. Where steel columns are located, a pier is poured integrally with the grade beam and reinforced with 8-#8 vertical bars and #3 @ 8" O.C. horizontal ties. (As shown in Figures 1.1 & 1.2)

The grade beams have a compressive strength of 3000 PSI and range from 30-48 inches in width and 36-48 inches in depth. Each grade beam is reinforced with top and bottom bars which vary according to the size of the beam. Grade beams span between drilled cast-in-place caissons which transfer the loads from bearing walls, shear walls, and columns into the caissons. From the caissons, the loads are then transferred to bedrock. (As shown in Figures 1.1 & 1.3)

The Pennsylvania State University November 29, 2010

Superstructure System

The typical floor system of Cambria Suites Hotel consists of 10" precast hollow-core concrete plank with 1" leveling topping. The precast plank allowed for quicker erection, longer spans, open interior spaces, and serves as an immediate work deck for other trades. Concrete compressive strength for precast plank floors is 5000 PSI and uses normal weight concrete. The typical spans of the plank floors range from 30'-0" to 40'-0". The floor system is supported by exterior load bearing concrete masonry walls, as well as, interior steel beams and columns.

The Plaza level floor system is a combination of 10" precast concrete plank, 8" precast concrete plank and 4" slab on grade. Since there is no basement in the North-East section of the hotel due to the fitness center and pool, the site was excavated properly in order to place the 4" slab on grade and 8" precast concrete plank. The 4" slab on grade will be for the fitness center where as the 8" concrete plank will surround the pool area. (As shown in Figure 2.1)

The Pennsylvania State University November 29, 2010

Since the masonry bearing walls are typically located on the perimeter of the hotel, steel beams and columns were needed thru the center of the building to support the precast concrete plank floors. Steel beam sizes range from W16x26 to W24x94, and steel column sizes range from W8x58 to W18x175. Each column connects into concrete piers within the grade beams via base plates which vary in size. Base plates use either a 4-bolt or 8-bolt connection, typically using 1" A325 anchor bolts which extend 12" or 18" respectively into the concrete pier. The steel beams vary in length from 13'-0" to 19'-0" and typically span in the East-West direction. Exterior bearing masonry walls and the steel beams will take a reaction load from the precast concrete plank flooring, as well as other loads from levels above, which will then transfer thru steel columns and exterior bearing walls and thus transferring all loads to the foundation system. (As shown in Figure 2.2)

The roof structural system at both the Second level and main Roof level uses untopped 10" precast concrete plank. Reinforced concrete masonry extends passed the Roof level to support a light gauge cornice which wraps the entire building. A high roof is constructed for hotel identification purposes and uses 10"-16 GA light gauge roof joists @ 16" O.C., supported by 8"-20 GA light gauge wall framing below. W8x21 hoist beams support the top of the elevator shaft which rest on $\frac{1}{2}$ "x7"x7" base plates. There are a total of eight drains located on the roof for the drainage system. (As shown in Appendix A)

The Pennsylvania State University November 29, 2010

Lateral System

The lateral system for the Cambria Suites hotel consists of reinforced concrete masonry shear walls. The exterior shear walls, as well as the core interior shear walls, are constructed of 8" concrete masonry, with the exception of a few 12" concrete masonry walls on the lower floor levels. All shear walls are solid concrete masonry walls which extend the entire height of the structure without openings for windows or doors. The core shear walls are located around the staircases and elevator shafts. The exterior shear walls are scattered around the perimeter of the building. (As shown in Figure 3.1) Shear walls supporting the Plaza level to the Third Floor level have a compressive strength of 2000 PSI. All other shear walls support a compressive strength of 1500 PSI. In addition, all concrete masonry shall be grouted with a minimum compressive strength of 3000 PSI. Typical reinforcement for all shear walls is comprised with #5 bars at either 8" O.C. or 24" O.C.

Wind and seismic loads, as well as gravity loads, are transferred to the foundation by first traveling thru the rigid diaphragm; the precast concrete plank floor system. Loads are then transferred to the concrete masonry shear walls. From there, loads are transferred down to the preceding floor system and/or transferred the entire way to the grade beam foundation, finally travelling thru the concrete caissons which are embedded in bedrock.

The Pennsylvania State University November 29, 2010

ETABS Model

ETABS is a recognized industry leader for building analysis and design software developed by Computers and Structures, Inc. One of the advantages of this program is the ability to look at each floor of the building strictly as a rigid diaphragm against lateral loading. Therefore, for the analysis of this technical assignment, the building's lateral system and diaphragms were the only building components modeled. As shown in Figures 4.1 and 4.2, the shear walls and diaphragms were the only components modeled. Material properties were inputted for the shear walls, and a rigid diaphragm was assigned for the floor. Gravity loads were then applied as additional area masses to the floor diaphragms. Wind and seismic loads were applied about the centers of rigidity of the building. In addition to comparing the results of hand calculations, an ETABS model effectively determines the following: center of mass, center of rigidity, the controlling ASCE 7-05 load combinations, story displacements, story drifts, story shears, and the effects of torsion.

ETABS Model: North & West Walls Figure 4.1

1 iyurt 1.2

Codes and Requirements

References used by the engineer of record in order to carry out the structural design of the Cambria Suites Hotel.

- International Building Code (IBC), 2006 (As amended by the City of Pittsburgh)
- Minimum Design Loads for Buildings and Other Structures (ASCE 7-05), American Society of Civil Engineers
- Building Code Requirements for Structural Concrete (ACI 318-05), American Concrete Institute
- Specifications for Structural Concrete (ACI 301-05), American Concrete Institute
- PCI Design Handbook Precast/Prestressed Concrete Institute
- The Building Code Requirements for Masonry Structures (ACI 530), American Concrete Institute
- Specifications for Masonry Structures (ACI 530.1), American Concrete Institute
- Specifications for Structural Steel Buildings Allowable Stress Design and Plastic Design (AISC), American Institute of Steel Construction
- ETABS Building Analysis and Design Software Computers and Structures, Inc.

Drift Criteria

The following allowable drift criteria used to check deflection of the Cambria Suites Hotel will be in accordance with the International Building Code, 2006 edition.

Allowable Building Drift $\Rightarrow \Delta_{wind} = H/400$

Allowable Story Drift $\Rightarrow \Delta_{seismic} = 0.02 H_{sx}$

The Pennsylvania State University November 29, 2010

Load Combinations

The following list shows the various load combinations according to ASCE 7-05 for factored loads using strength design and from the International Building Code, 2006 edition. These load combinations are used in the analysis of the lateral system for this report.

1.4D 1.2D + 1.6L + $0.5L_r$ 1.2D + 1.6L_r + 1.0(L or W) 1.2D + 1.6W + 1.0L + $0.5L_r$ 1.2D + 1.0E + 1.0L 0.9D + 1.6W 0.9D + 1.0E

All load combinations were considered in the analysis of the ETABS model. After evaluating story displacements, shears, and drifts computed by ETABS for each of the above load combinations, it was concluded that the controlling load combination for the North/South direction was $1.2D+1.6W+1.0L+0.5L_r$ due to its large surface area. The controlling load combination for the East/West direction was 0.9D+1.0E.

The Pennsylvania State University November 29, 2010

Gravity Loads

The gravity load conditions determined by ASCE 7-05 are provided for reference and are compared to the Design Loads used by AES:

Live Loads (LL)			
Area	AES Design Load (PSF)	ASCE 7-05 Load (PSF)	Design Load (PSF)
Public Areas	100	100	100
Lobbies	100	100	100
First Floor Corridors	100	100	100
Corridors above First Floor	40	40	40
Private Hotel Rooms	40	40	40
Partitions	15	≥15	15
Mechanical	150	150	150
Stairs	100	100	100
Roof	20	20	20
Dead Loads (DL)			
Material	AES Design Load (PSF)	ASCE 7-05 Load (PSF)	Design Load (PSF)
10" Concrete Plank	Unknown		91
8" Masonry Wall (Fully Grouted)	Unknown		91
8" Masonry Wall (Partially Grouted			60
w/ Reinf. @ 24" O.C.)	Unknown		09
8" Masonry Wall (Partially Grouted			60
w/ Reinf. @ 48" O.C.)	Unknown	Section 3.1	
Steel	Unknown		varies
Partitions	Unknown		15
MEP	Unknown		10
Finishes & Miscellaneous	Unknown		5
Roof	Unknown		20
*Snow Load (SL)			
Area	AES Design Load (PSF)	ASCE 7-05 Load (PSF)	Design Load (PSF)
Flat Roof	21	21	21
*Refer to Appendix B fo	or Snow Analysis		

The Pennsylvania State University November 29, 2010

Lateral Loads

Wind Analysis

In the following wind analysis, wind loads were determined according to ASCE 7-05, Chapter 6. This is the same code that Atlantic Engineering Services referenced when calculation the wind loads. Since the overall building height of Cambria Suites hotel reaches 86'-10" (High Roof extends to 102'-2"), it is required to determine the wind loads through the use of Section 6.5: Method 2 – Analytical Procedure because it exceeds the 60'-0" maximum building height stated in Section 6.4: Method 1 – Simplified Procedure. The wind variables used during this analysis to calculate the design wind pressures are located in Table 1a. For detailed equations and base calculations used for this procedure, refer to Appendix B. The North/South and East/West wind directions are labeled on the typical floor plan in Figure 5.1.

The Pennsylvania State University November 29, 2010

Win	d Variables	ASCE Reference	
Basic Wind Speed	V	90 mph	Fig. 6-1
Directional Factor	K _d	0.85	Table 6-4
Importance Factor	I	1.0	Table 6-1
Occupancy Category		II	Table 1-1
Exposure Category		В	Sec. 6.5.6.3
Enclosure Classification		Enclosed	Sec. 6.5.9
Building Natural Frequency	n ₁	1.47 (Rigid)	Eq. C6-19
Topographic Factor	K _{zt}	1.0	Sec. 6.5.7.1
Velocity Pressure Exposure Coefficient evaluated at Height Z	Kz	varies	Table 6-3
Velocity Pressure at Height Z	qz	varies	Eq. 6-15
Velocity Pressure at Mean Roof Height	q _h	17.1	Eq. 6-15
Gust Effect Factor	G	0.85	Sec. 6.5.8.1
Product of Internal Pressure Coefficient and	cc	0.18	
Gust Effect Factor	GC _{pi}	-0.18	Fig. 0-5
External Pressure Coefficient (Windward)	Cp	0.80 (All Values)	
External Pressure Coefficient (Leeward)	Cp	-0.5 (N/S Direction, L/B = 0.45) -0.2 (E/W Direction, L/B = 2.22)	Fig. 6-6

Table 1a: Wind Variables

*Equation C6 – 19:

 $f_{n1} = (150/H)$ where H = building height (ft.)

 $f_{n1} = (150/102.167) = 1.47 \ge 1 \text{ Hz}$ \therefore The building is considered rigid

The Pennsylvania State University November 29, 2010

The wind pressures in the North/South direction were determined and are located in the following table, (Table 1b). This wind direction is of more concern since the wind contacts a building length of 219'-8", compared to 98'-11" in the East/West direction. The direction of wind is adjacent to a road that services the front of hotel, and a parking garage that does not extend passed the Hotel level of Cambria Suites. Neither obstruction from the front or back of the hotel will cause a significant wind load blockage to the structure. An elevation view of the hotel is provided in Figure 5.2 which shows the wind loads of the windward and leeward pressures at each level, as well as the base shear. A basic loading diagram is also provided in Figure 5.4 to show wind loads and story shears.

					Wind	Loads (North/S	outh Directi	on)				
						B = 2	19'-8" L:	= 98'-11"					
Level	Height Above Ground, z (ft.)	Story Height (ft.)	Kz	qz	Wind Press Windward	sure (PSF) Leeward	Total Pressure (PSF)	Force of Windward Pressure Only (Force of Total <) Pressure (k)	Windward Shear Story (k)	Total Story Shear (k)	Windward Moment (ftk)	Total Moment (ft k)
High Roof	102.167	15.333	1.00	17.6	12.0	-7.27	19.3	5.52	8.88	5.52	8.88	521.64	839.16
Roof	86.833	10	0.95	16.7	11.36	-7.27	18.6	24.95	40.86	30.47	49.74	2042.10	3343.58
7	76.833	10	0.92	16.2	11.02	-7.27	18.3	24.21	40.20	54.68	89.94	1738.91	2887.66
6	66.833	10	0.88	15.5	10.54	-7.27	17.8	23.15	39.10	77.84	129.04	1431.63	2417.75
5	56.833	10	0.84	14.8	10.06	-7.27	17.3	22.10	38.00	99.93	167.04	1145.45	1969.80
4	46.833	10	0.79	13.9	9.45	-7.27	16.7	20.76	36.73	155.62	203.77	868.40	1536.48
3	36.833	10	0.74	13.0	8.84	-7.27	16.1	19.42	35.39	140.11	239.16	618.16	1126.53
2	26.833	10	0.63	11.1	7.55	-7.27	14.8	16.59	32.56	156.70	271.72	362.10	710.78
1	14.833	12	0.56	9.87	6.71	-7.27	14.0	17.69	36.85	174.38	308.57	156.24	325.51
В	0	14.833	0	0	0	0	0	0	0	174.38	308.57	0	0
				Σ	Windwa	rd Story	Shear =	174.38	kips				
					Σ Το	tal Story	Shear =	308.57	kips				
					Σ Wind	ward M	oment =	8884.63	ft-k				
					Σ-	Total Mo	ment =	15157 26	ft-k				
				1.1.1			,	10107110					
				17.0.8	5E 7	102.10	e7'						
			-	iero i									
				11.34	PSF >	86.9	33			7			
						7/0.8	23						
				[1,0]	7 FSF					>			
						_ 44.8	33'						
				10-	SY PSF					1			
			_		>	56.8	33'			->			
					10.04 HSF					4			
					ave BE	46.8	33'						
					140 141	74. 00	221			5			
					RELAT		22			~ "			
					pirel 131-	24.8	33'						
				7.55	PSF					-			
				1,52		. 14.83	3'			-			
					4.71BF								
							+	BASE = 30	8.57 k				
							Figure	5.2				Ρασο	17

Table 1b: North/South Wind Loads

North/South Wind Pressures

The Pennsylvania State University November 29, 2010

The wind pressures in the East/West direction were determined and are located in the following table, (Table 1c). Since there are buildings adjacent to Cambria Suites on both the East and West side, wind blockage can have an effect on the full wind loading for the structure. However, wind loading in this direction must be examined as if these surrounding buildings were not present. An elevation view of the hotel is provided in Figure 5.3 which shows the wind loads of the windward and leeward pressures at each level, as well as the base shear. A basic loading diagram is also provided in Figure 5.5 to show wind loads and story shears.

	Wind Loads (East/West Direction)												
						B = 98	3'-11" L=	= 219'-8"					
Level	Height Above Ground, z	Story Height (ft.)	Kz	qz	Wind Press	sure (PSF)	Total Pressure	Force of Windward	Force of Total	Windward Shear Story	Total Story	Windward Moment	Total Moment (ft
	(ft.)				Windward	Leeward	rd (PSF)	 Pressure Only (k) 	Pressure (K)	(к)	Snear (K)	(ILK)	к)
High Roof	102.167	15.333	1.00	17.6	12.0	-2.91	14.9	5.52	6.850	5.52	6.850	521.64	647.33
Roof	86.833	10	0.95	16.7	11.36	-2.91	14.3	10.32	12.97	15.84	19.820	844.89	1061.39
7	76.833	10	0.92	16.2	11.02	-2.91	13.9	10.02	12.66	25.86	32.481	719.44	909.48
6	66.833	10	0.88	15.5	10.54	-2.91	13.5	9.58	12.23	35.44	44.710	592.52	756.11
5	56.833	10	0.84	14.8	10.06	-2.91	13.0	9.15	11.80	44.59	56.5	474.27	611.40
4	46.833	10	0.79	13.9	9.45	-2.91	12.4	8.59	11.24	53.19	67.744	359.49	470.17
3	36.833	10	0.74	13.0	8.84	-2.91	11.8	8.04	10.68	61.22	78.427	255.84	340.06
2	26.833	10	0.63	11.1	7.55	-2.91	10.5	6.86	9.51	68.09	87.935	149.83	207.59
1	14.833	12	0.56	9.87	6.71	-2.91	9.6	7.32	10.50	75.41	98.432	64.68	92.72
В	0	14.833	0	0	0	0	0	0	0	75.41	98.43	0	0

Table 1c: East/West Wind Loads

Σ Windward Story S	hear =	75.41	kips
Σ Total Story S	hear =	98.43	kips
Σ Windward Mor	nent =	3982.60	ft-k
Σ Total Mon	nent =	5096.26	ft-k

124 045	102,167'	
12.0 134	84.635	
11.3675F		
	26.833	>
IL #2 PSF		
	64.833	>
10.54 PSF		
	50.8331	>
ING ISF		
945 BE	<u> </u>	>
149 107	21 0001	
8.84 PSF		>
	76.833	
7.55 PKE		
100 101	14.833'	
		T
6.71 PSF		
		7
	6 BASE = 98.43 K	

<u>Figure 5.3</u> East/West Wind Pressures

The Pennsylvania State University November 29, 2010

Wind Load Diagrams

<u>Figure 5.5</u> East/West Wind Loading Diagram

The Pennsylvania State University November 29, 2010

Seismic Analysis

In the following seismic analysis, seismic loads were determined according to ASCE 7-05, Chapters 11 and 12. As identified in Section 1613 of the International Building Code (IBC), Cambria Suites Hotel is to be designed and constructed to resist the effects of earthquake motions. According to IBC 2006 criteria, Site Class for Seismic Design of "C" should be used for existing conditions. Other variables used in this analysis that are needed to calculate base shear and overturning moments, according to ASCE 7-05, are located in Table 2a.

Seismic Design	Variable	S		ASCE References
Site Class		(2	Table 20.3-1
Occupancy Category		1		Table 1-1
Importance Factor		1	.0	Table 11.5-1
Structural System		Ordinary F Masonry S	Reinforced hear Walls	Table 12.2-1
Spectral Response Acceleration, short	Ss	0.1	.25	Fig. 22-1 thru 22-14
Spectral Response Acceleration, 1 s	S ₁	0.0)49	Fig. 22-1 thru 22-15
Site Coefficient	Fa	1	.2	Table 11.4-1
Site Coefficient	Fv	1	.7	Table 11.4-2
MCE Spectral Response Acceleration, short	S _{ms}	0.	15	Eq. 11.4-1
MCE Spectral Response Acceeration, 1s	S _{m1}	0.0	833	Eq. 11.4-2
Design Spectral Acceleration, short	S _{ds}	0.1	100	Eq. 11.4-3
Design Spectral Acceleration, 1 s	S _{d1}	0.0)55	Eq. 11.4-4
Seismic Design Category	S _{dc}	ŀ	4	Table 11.6-2
Response Modification Coefficient	R	2	.0	Table 12.2-1
Building Height (above grade)(ft)	h _n	102	.167	
		North/South	East/West	
Approximate Period Parameter	Ct	0.02	0.02	Table 12.8-2
Approximate Period Parameter	х	0.75	0.75	Table 12.8-2
Calculated Period Upper Limit Coefficient	C _u	1.7	1.7	Table 12.8-1
Approximate Fundamental Period	Ta	0.643	0.643	Eq. 12.8-7
Fundamental Period	Т	1.09	1.09	Sec. 12.8.2
Long Period Transition Period	TL	12	12	Fig. 22-15
Seismic Respose Coefficient	Cs	0.025	0.025	Eq. 12.8-2
Structural Period Exponent	k	1.295	1.295	Sec. 12.8.3

Table 2a

Note: Seismic Loads are the same in both North/South and East/West direction because the structural type is the same in both directions (Table 12.8-2)

The Pennsylvania State University November 29, 2010

An Excel spread sheet was created to determine the story weight of each individual floor (above grade), as well as the total building weight. Using the story weight values, the base shear and overturning moments due to seismic loads were also determined. Please refer to Appendix B for detailed Excel spread sheet calculations used to determine the building weight, as well as, the base shear and overturning moments at each story level provided in Table 2b. In addition, a seismic loading diagram was generated to show the story forces and story shears at each level. (As shown in Figure 6.1)

	Ba	se Shear and	Overturni	ng Mom	ent Distribu	tion	
Story	b (f+)	Story Weight	w h ^k	C	Lateral Force	Story Shear	NA (f+ L)
Story	Π _x (IL)	(k) w _x n _x	C _{vx}	F _x (k)	V _x (k)	w _x (тt-к)	
High Roof	102.167	7.92	3168	0.001	0.52	0.52	48.78
Roof	86.833	1878.42	608681	0.195	99.18	99.70	8116.49
7	76.833	2333.98	645478	0.207	105.18	204.88	7555.37
6	66.833	2333.98	538841	0.173	87.80	292.68	5429.14
5	56.833	2410.92	451222	0.145	73.53	366.21	3811.07
4	46.833	2410.92	351194	0.113	57.23	423.44	2393.96
3	36.833	2410.92	257312	0.083	41.93	464.85	1334.71
2	26.833	2383.72	168804	0.054	27.51	492.87	573.04
1	14.833	2829.80	93003	0.030	15.15	508.03	112.39
В	0	1320.07	0	0	0	508.03	0
			3117703				

Table 2b

Total Building Weight =	20321	k
Base Shear =	508.03	k
Total Moment =	29374.97	ft-k

Note: Since the basement level is mainly above grade (\approx 75%), the building weight of this level is included in the seismic analysis.

r

The Pennsylvania State University November 29, 2010

٦

	(N/5 2	E/W DIR	ECTION)		
STORY FOR	<u>CE (K)</u>			STORY SHEA	r (K)
0.52					
99, IB	7			4	0.57
105.18				<	
100110				<	Z04.B
87.80	> -		111		292.
73,53		+ + + +			
57,23	- <				
41,93				5	423.4
				-	464.1
27,51	> -		+ +		492.8
15,15	> .		1		
				<	508.0
		6	DASE =	508.03 ×	

Figure 6.1 Seismic Loading Diagram

The Pennsylvania State University November 29, 2010

Load Distribution

Load Path

Lateral force resisting systems transfer lateral loads (wind and/or seismic) to the building's foundation where the loads dissipate. This load path is assumed to be governed by the concept of relative stiffness, which states that the most rigid members in a building draw the most forces to them. In the case of Cambria Suites Hotel, the lateral forces come in contact with the exterior of the building, are then transmitted through the rigid diaphragms, to the masonry shear walls, and lastly down into the foundation (grade beams and caissons). This load path is shown in Figure 7.1. The exterior shear walls with longer spans resist the majority of the lateral forces because they have minimal assistance from the slab. The steel frame which extends through the middle of the building only transfers gravity loads to the foundation.

Figure 7.1

Center of Rigidity & Mass

Every concrete masonry wall in the Cambria Suites Hotel is essentially a shear wall because they are all reinforced and grouted. For this assignment, the shear walls analyzed consisted of walls with minimal or no openings for windows. For organization purposes, Figure 7.3 was created which assigns a number to each shear wall to better reference exactly what shear walls are being discussed throughout the analysis. All shear walls are 8"

thick but vary in length and are located at different distances from the center of rigidity. The rigidity of each wall is based on the thickness, height of wall from base, and length of wall. Figure 7.2 shows the center of mass of Cambria Suites Hotel.

ETABS Center of Mass Figure 7.2

The Pennsylvania State University November 29, 2010

Individual wall rigidities are shown in Tables in Appendix C. Table 9a provides the rigidities for walls spanning in the North/South direction, whereas Table 9b provides the rigidities for the East/West walls. The rigidities of each wall were calculated using the following equation:

$$R = \frac{Et}{4\left(\frac{H}{L}\right)^3 + 3\left(\frac{H}{L}\right)}$$

The rigidities of each wall can then be used to determine the center of rigidity of each floor using the following equation:

Center of Rigidity =
$$\frac{\Sigma[(R)(Distance between origin and element)]}{\Sigma R}$$

The centers of rigidity for each floor can be found in Table 3a. Since Cambria Suites Hotel has a non-rectangular floor plan, the center of mass was taken from the ETABS model and is consistent throughout every floor. Center of rigidity values differ from the hand calculations and the ETABS model because the hand calculations only account for the shear walls, whereas the ETABS model takes into account floor diaphragms. Hand calculations will be used whenever center of rigidity is needed for other calculations. Detailed calculations can be found in Appendix C.

The Pennsylvania State University November 29, 2010

	Table 3a -	ETABS vs.	. Hand Cald	culation Co	mparison	
		Center o	f Rigidity		Center	of Mass
	ETABS Ca	lculation	Hand Ca	lculation	ETABS Ca	lculation
	Х	Y	Х	Y	Х	Y
Story 7	893.223	637.406	1413.98	732.85	1349.669	624.978
Story 6	925.841	637.857	1411.72	720.58	1349.669	624.978
Story 5	987.077	635.834	1408.58	705.92	1349.669	624.978
Story 4	1055.513	629.144	1404.10	688.56	1349.669	624.978
Story 3	1123.123	618.645	1397.48	668.42	1349.669	624.978
Story 2	1183.795	604.869	1387.43	645.84	1349.669	624.978
Story 1	1230.503	587.569	1371.96	621.87	1349.669	624.978
Plaza	1253.537	564.343	1342.86	595.33	1349.669	624.978

Relative Stiffness

Relative stiffness is the percentage of lateral force that is being distributed into each shear wall. Since the wall rigidities were determined, we can use them to find the relative stiffness of each wall at each floor using the following equation:

Relative Stiffness =
$$\frac{R}{\Sigma R}$$

The values for the North/South walls at every floor can be found in Table 3b. The values for East/West walls at every floor can be found in Table 3c. Appendix C will show detailed calculations for the relative stiffness of walls. The relative stiffness of each wall will help determine how much of the load each wall will have to resist.

				Table	3b - Rela	tive Stiff	ness (%)				
					North/S	outh Force	2				
Floor Level	Wall 2	Wall 3	Wall 5	Wall 7	Wall 9	Wall 11	Wall 12	Wall 14	Wall 15	Wall 16	Wall 17
7	9.1	13.6	14.9	1.0	13.6	0.3	0.3	0.6	21.7	11.2	13.6
6	9.2	13.6	14.9	1.0	13.6	0.3	0.3	0.7	21.5	11.3	13.6
5	9.3	13.6	14.9	1.1	13.6	0.3	0.3	0.7	21.3	11.3	13.6
4	9.4	13.7	14.9	1.1	13.7	0.3	0.3	0.7	21.0	11.4	13.7
3	9.5	13.7	14.8	1.2	13.7	0.3	0.3	0.8	20.5	11.5	13.7
2	9.8	13.7	14.7	1.3	13.7	0.3	0.3	0.9	19.9	11.7	13.7
1	10.2	13.7	14.6	1.6	13.7	0.4	0.4	1.1	18.8	11.9	13.7
В	10.8	13.4	14.1	2.5	13.4	0.8	0.8	1.8	17.0	12.1	13.4

The Pennsylvania State University November 29, 2010

		Та	able 3c -	Relative	Stiffness	(%)		
			E	ast/West	Force			
Floor Level	Wall 1	Wall 4	Wall 6	Wall 8	Wall 10	Wall 13	Wall 18	Wall 19
7	0.1	0.2	1.4	27.6	11.4	0.7	0.1	58.4
6	0.1	0.3	1.5	28.1	12.0	0.8	0.1	57.1
5	0.2	0.3	1.7	28.6	12.7	0.9	0.1	55.5
4	0.2	0.4	2.0	29.1	13.7	1.0	0.2	53.5
3	0.2	0.4	2.4	29.5	14.8	1.3	0.2	51.2
2	0.3	0.6	3.0	29.7	16.2	1.6	0.3	48.3
1	0.5	0.9	4.1	29.3	17.5	2.3	0.4	44.9
В	1.1	1.9	6.2	27.6	18.3	4.1	1.0	39.9

Torsion

Torsion is present when the center of rigidity and the center of mass do not occur at the same location. Eccentricity (the distance between the center of rigidity and center of mass) induces a moment, which creates an additional force on the building called torsional shear. When determining the torsional effects on the building, two different types of torsional moment need to be taken into account. According to ASCE 7-05, torsion for rigid diaphragms is the sum of the inherent torsional moment and the accidental torsional moment. The inherent torsional moment, M_t , is a result from the eccentricity between the locations of the center of rigidity and center of mass. This eccentricity times the lateral force at the specified floor level will give the inherent torsional moment. The accidental torsional moment, M_{ta} , is caused by an assumed displacement of the center of mass. This displacement is equal to 5% of the center of mass dimension each way from the actual location perpendicular to the direction of the applied force. Torsional moments produced can be seen in Tables 4a and 4b. Appendix D shows detailed calculations for building torsion.

	Table 4	a - Overall I	Building Tor	sion	
		North/South	Direction		
Story Level	Factored Lateral	COR-COM	M. (ft-k)	M. (ft_k)	M (ft-k)
	Force (k)	(ft.)			Twit, tot (TC K)
Story 7	65.4	5.4	353.2	738.7	1091.9
Story 6	64.3	5.2	334.4	726.8	1061.2
Story 5	62.6	4.9	306.7	707.0	1013.7
Story 4	60.8	4.5	273.6	687.1	960.7
Story 3	58.8	4.0	235.2	664.1	899.3
Story 2	56.6	3.1	175.5	639.8	815.3
Story 1	52.1	1.9	98.9	588.6	687.5
Plaza	59.0	-0.6	-35.4	666.3	630.9
				Total:	7160.5

Page | 26

The Pennsylvania State University November 29, 2010

	Table 4	b - Overall I	Building Tor	sion	
		East/West D	irection		
Floor Level	Factored Lateral Force (k)	COR-COM (ft.)	M _t (ft-k)	M _{ta} (ft-k)	M _{t,tot} (ft-k)
Story 7	12.97	9.0	116.6	67.4	184.0
Story 6	12.66	8.0	100.9	65.8	166.7
Story 5	12.23	6.7	82.5	63.6	146.1
Story 4	11.80	5.3	62.5	61.3	123.8
Story 3	11.24	3.6	40.7	58.4	99.1
Story 2	10.68	1.7	18.6	55.6	74.1
Story 1	9.51	-0.3	-2.5	49.4	47.0
Plaza	10.50	-2.5	-25.9	54.6	28.6
				Total:	869.5

Shear

The overall shear force is the combination of direct and torsional shear. Direct shear forces relate to the relative stiffness of the shear walls, whereas the torsional shear forces relate to the torsional moments produced on each floor which results from the wind or seismic loads.

Direct Shear

Direct shear is the distribution of the lateral forces among the shear walls at each level of the building. The greater the stiffness of a shear wall, the greater the load the wall can resist. Tables 5a and 5b show the direct shears applied to each wall for each floor level. Detailed calculations for obtaining the direct shear for the North/South and East/West direction may be found in Appendix E.

				Table 5	a - Nortl	n/South	Direct Sh	near					
Load Combination		Factored					Distrib	outed Force	e (k)				
1.2D+1.6W+1.0L+0.5Lr	Force (k)	Force (k)	Wall 2	Wall 3	Wall 5	Wall 7	Wall 9	Wall 11	Wall 12	Wall 14	Wall 15	Wall 16	Wall 17
Roof	40.86	65.4	5.97	8.91	9.76	0.66	8.91	0.16	0.16	0.42	14.18	7.35	8.91
Floor 7	40.20	64.3	5.90	8.77	9.59	0.66	8.77	0.16	0.16	0.42	13.85	7.25	8.77
Floor 6	39.10	62.6	5.79	8.54	9.32	0.66	8.54	0.17	0.17	0.42	13.33	7.09	8.54
Floor 5	38.00	60.8	5.70	8.31	9.04	0.67	8.31	0.17	0.17	0.43	12.77	6.93	8.31
Floor 4	36.73	58.8	5.60	8.04	8.72	0.69	8.04	0.18	0.18	0.45	12.07	6.77	8.04
Floor 3	35.39	56.6	5.55	7.75	8.35	0.74	7.75	0.19	0.19	0.48	11.25	6.61	7.75
Floor 2	32.56	52.1	5.31	7.12	7.59	0.83	7.12	0.22	0.22	0.55	9.81	6.20	7.12
Floor 1	36.85	59.0	6.37	7.91	8.29	1.48	7.91	0.46	0.46	1.04	10.01	7.14	7.91

The Pennsylvania State University November 29, 2010

			Table 5b -	East/We	est Direc	t Shear				
Load Combination		Factored			C	istributed	Force (k)			
0.9D+1.0E	FOICE (K)	Force (k)	Wall 1	Wall 4	Wall 6	Wall 8	Wall 10	Wall 13	Wall 18	Wall 19
Roof	12.97	12.97	0.02	0.03	0.18	3.58	1.48	0.09	0.01	7.58
Floor 7	12.66	12.66	0.02	0.03	0.19	3.55	1.52	0.10	0.02	7.23
Floor 6	12.23	12.23	0.02	0.04	0.21	3.49	1.56	0.11	0.02	6.79
Floor 5	11.80	11.80	0.02	0.04	0.23	3.43	1.61	0.12	0.02	6.31
Floor 4	11.24	11.24	0.03	0.05	0.26	3.31	1.67	0.14	0.02	5.75
Floor 3	10.68	10.68	0.04	0.06	0.32	3.17	1.73	0.18	0.03	5.16
Floor 2	9.51	9.51	0.05	0.09	0.39	2.79	1.67	0.22	0.04	4.27
Floor 1	10.50	10.50	0.12	0.20	0.65	2.90	1.92	0.43	0.10	4.19

Torsional Shear

A torsional shear force is present on the building due to the torsional moments produced on each floor caused by the eccentricity. Thus, each shear wall will have to resist this additional force. The total torsional shear at each wall is dependent on the relative stiffness of each shear wall. The greater the relative stiffness, the greater the shear force on that wall. To determine the torsional shear, the following equation is used:

$$T = \frac{V_{tot}ed_i R_i}{J}$$

- V_{tot} = total story shear
- e = eccentricity
- d_i = distance from center of rigidity to shear wall
- R_i = relative stiffness of shear wall
- J = torsional moment of inertia

The torsional shear forces were determined for the shear walls supporting floor 4 and can be found in Table 6a. Detailed calculations for obtaining the torsional shear can be found in Appendix E.

The Pennsylvania State University November 29, 2010

	Table	6a - Tors	ional She	ear in Shear	Walls Suppor	ting Floor 4	
		Factored Story Shear V _{tot} (k)	Relative Stiffness R _i	Distance from COM to COR e (in)	Distance from Wall i to COR d _i (in)	(R _i)(d _i ²)	Torsional Shear (k)
Wall 1	E/W	108.39	0.002	63.6	61.4	7.5	0.001
Wall 2	N/S	326.03	0.095	54.4	1254.0	149389.0	1.371
Wall 3	N/S	326.03	0.137	54.4	1132.2	175617.1	1.785
Wall 4	E/W	108.39	0.004	63.6	160.6	103.2	0.003
Wall 5	N/S	326.03	0.148	54.4	1404.1	291781.5	2.391
Wall 6	E/W	108.39	0.024	63.6	538.6	6961.1	0.058
Wall 7	N/S	326.03	0.012	54.4	1132.2	15382.0	0.156
Wall 8	E/W	108.39	0.295	63.6	688.6	139863.9	0.908
Wall 9	N/S	326.03	0.137	54.4	312.1	13344.7	0.492
Wall 10	E/W	108.39	0.148	63.6	322.6	15398.7	0.214
Wall 11	N/S	326.03	0.003	54.4	60.1	10.8	0.002
Wall 12	N/S	326.03	0.003	54.4	155.9	72.9	0.005
Wall 13	E/W	108.39	0.013	63.6	85.6	95.2	0.005
Wall 14	N/S	326.03	0.008	54.4	84.9	57.6	0.008
Wall 15	N/S	326.03	0.205	54.4	1223.9	307075.9	2.887
Wall 16	N/S	326.03	0.115	54.4	1169.9	157396.6	1.548
Wall 17	N/S	326.03	0.137	54.4	1055.9	152744.7	1.665
Wall 18	E/W	108.39	0.002	63.6	385.4	297.1	0.003
Wall 19	E/W	108.39	0.512	63.6	475.4	115714.6	1.089
		-	Torsional N	Moment of Iner	tia J = $\Sigma(R_i)(d_i^2)$ =	1541314.2	

Shear Strength Check

In order to verify if there is sufficient reinforcement in the shear walls, a shear strength check must be performed. According to ACI 318-08, the shear strength of a reinforced concrete masonry shear wall can be obtained by the following equation:

$$V_n = A_{cv} [\alpha_c \lambda \sqrt{f'c} + \rho_t f_y]$$

The shear wall strength checks performed for walls supporting floor 4 can be found in table 7a. Each shear wall was within the capacity determined by the shear strength which verifies that the masonry reinforcement is adequately designed. Detailed calculations for shear strength can be found in Appendix E.

The Pennsylvania State University November 29, 2010

			Tal	ble 7a - Shear	Wall Stre	ength Ch	eck					
				Suppor	ting Floor	4						
Floor **	Direct Shear (k)	Torsional Shear (k)	V _u (k)	Vertical Reinforcement	Spacing (in)	Length (in)	Thicknes s (in)	A _{cv} (in ²)	α_{c}	ρ _t	$\Phi V_n(k)$	
Wall 1	0.08	0.001	0.08	(1) #5	24	122	8	976	2	0.001615	136.3846	OK
Wall 2	23.36	1.371	24.73	(1) #5	24	318	8	2544	2	0.001615	355.4942	OK
Wall 3	34.52	1.785	36.31	(1) #5	24	366	8	2928	2	0.001615	409.1537	ОК
Wall 4	0.14	0.003	0.15	(1) #5	24	150	8	1200	2	0.001615	167.6859	OK
Wall 5	37.72	2.391	40.11	(1) #5	24	378	8	3024	2	0.001615	422.5686	OK
Wall 6	0.81	0.058	0.87	(1) #5	24	271	8	2168	2	0.001615	302.9526	OK
Wall 7	2.65	0.156	2.81	(1) #5	24	150	8	1200	2	0.001615	167.6859	OK
Wall 8	14.06	0.908	14.96	(1) #5	8	820	8	6560	2	0.004844	1869.933	OK
Wall 9	34.52	0.492	35.01	(1) #5	24	366	8	2928	2	0.001615	409.1537	OK
Wall 10	6.17	0.214	6.38	(1) #5	24	576	8	4608	2	0.001615	643.914	OK
Wall 11	0.66	0.002	0.67	(1) #5	24	94	8	752	2	0.001615	105.0832	OK
Wall 12	0.66	0.005	0.67	(1) #5	24	94	8	752	2	0.001615	105.0832	OK
Wall 13	0.42	0.005	0.43	(1) #5	24	216	8	1728	2	0.001615	241.4678	OK
Wall 14	1.70	0.008	1.71	(1) #5	24	129	8	1032	2	0.001615	144.2099	OK
Wall 15	54.12	2.887	57.01	(1) #5	24	432	8	3456	2	0.001615	482.9355	OK
Wall 16	28.62	1.548	30.17	(1) #5	24	342	8	2736	2	0.001615	382.324	OK
Wall 17	34.52	1.665	36.19	(1) #5	24	366	8	2928	2	0.001615	409.1537	OK
Wall 18	0.06	0.003	0.07	(1) #5	24	114	8	912	2	0.001615	127.4413	OK
Wall 19	27.91	1.089	29.00	(1) #5	8	1152	8	9216	2	0.004844	2627.028	OK

Drift and Displacement

The overall drift is a concern for nonstructural members and should be limited as much as possible. Building drift and deformation becomes a larger factor as the height of the building increases. According to IBC 2006, wind load drift is limited to an allowable drift of $\Delta = \ell/400$, whereas the seismic drift is limited to an allowable drift of $\Delta = 0.02h_{sx}$. Wind controls the drift in the North/South direction of the building and the seismic forces control the drift in the East/West direction. The allowable building drift limit for Cambria Suites Hotel will be:

 $\Delta limit = 1042"/400 = 2.605"$

In order to determine the overall building drift, the displacement and story drift of each individual floor will be summed. The following equation was used to determine the overall building drift:

$$\Delta cantilever = \Delta flexural + \Delta shear$$

Actual hand calculations used to determine the drift and displacement can be found in Tables 10a, 10b, and 10c in Appendix F.

The Pennsylvania State University November 29, 2010

Overturning Moments

Since lateral forces and moments are exerted on the building, overturning affects must be considered. These overturning moments are a concern due to the impact that they could potentially have on the foundation system. Therefore, a calculation must be conducted to determine if the dead load of the building will be sufficient enough to resist the impact of the overturning moments. As shown in table 8a, total overturning moments are provided due to wind and seismic loads. Note that the wind loads controlled in the North/South direction, whereas the seismic loads controlled in the East/West direction. In order to verify that the dead load was adequate to resist these overturning moments due to wind and seismic loads, the stresses due to the lateral loads were compared to the stresses due to the self-weight of the building. It was concluded that the stresses due to the lateral loads were such a small fraction of the stresses due to the dead loads; thus the foundation will experience minimal overturning affects. However, a force will be present along the perimeter of the building due to the moment exerted on the structure. Detailed calculations for overturning moments can be found in Appendix G.

			Table 8a - O	verturning Moments	s	
Floor	Height Above	Story Height	N/S W	/ind Forces	E/W Se	ismic Forces
		(ft)	Lateral Force F _x (k)	Total Moment M _x (ft-k)	Lateral Force $F_x(k)$	Total Moment M _x (ft-k)
PH Roof	102.167	15.333	8.88	839.16	0.52	48.78
Roof	86.833	10	40.86	3343.58	99.18	8116.49
7	76.833	10	40.20	2887.66	105.18	7555.37
6	66.833	10	39.10	2417.75	87.80	5429.14
5	56.833	10	38.00	1969.80	73.53	3811.07
4	46.833	10	36.73	1536.48	57.23	2393.96
3	36.833	10	35.39	1126.53	41.93	1334.71
2	26.833	10	32.56	710.78	27.51	573.04
1	14.833	12	36.85	325.51	15.15	112.39
Plaza	0	14.833	0	0	0	0
		Total =	308.57	15157.26	508.03	29374.97

The Pennsylvania State University November 29, 2010

Conclusion

After modeling the lateral force resisting system of Cambria Suites Hotel in ETABS and completing a thorough analysis of the system, the following conclusions were made:

- Upon evaluating the basic load combinations as defined in ASCE 7-05, it was determined through ETABS that the load case 1.2D+1.6W+1.0L+0.5L_r controls in the North/South direction, whereas 0.9D+1.0E controls East/West direction.
- Before evaluating the load combinations in ETABS, it was necessary to revise the wind load analysis performed in Technical Report 1. As a result of these changes, it was still found that wind loads controlled in the North/South direction due to the larger façade and the seismic loads controlled in the East/West direction.
- An ETABS model was used as a reference to verify that the model and hand calculations were providing similar and reasonable results. It was also concluded that the values computed by hand were to be used in all subsequent calculations.
- It was found that the center of rigidity values differed from the ETABS model and hand calculations. This was due to the hand calculations only taking into account for the shear walls, whereas the computer model also included the floor diaphragm.
- Torsion was present in the building due to the eccentricity between the center of mass and rigidity. This created a torsional shear in addition to the direct shear which was already acting on the shear walls. A shear strength check was performed to determine if the reinforcement and thickness of the shear walls was designed adequately to resist the total shear.
- The overall building drift was determined by ETABS and by hand calculations to be within the allowable code limitations. Although, since the calculations neglect that the interior core shear walls act as a whole, the drifts and displacements can only be an approximation.
- Overturning moments were found to be present due to the lateral loads on the building. However, a stress check was performed to determine that the self-weight of the building resists the overturning moments and the impact on the foundations due to overturning is minimal.

The Pennsylvania State University November 29, 2010

Appendix A: Building Layout

Foundation Plan

Plaza Level Framing Plan

Hotel Level Framing Plan

Second Level Framing Plan

The Pennsylvania State University November 29, 2010

Appendix B: Loads

Wind Loads

-			SHEET NO.		OF
	Atlantic Enginee	ring Services	CALCULATED BY	A. KACZHAREK	DATE
	650 Smithfield Street • 5	uite 1200	CHECKED BY		DATE
AES	Pittsburgh • Pennsylvan	ia 15222	SCALE		
Period States					
WIN	D LGADS				
		*			
	METHOD 2 :	ANALYTICAL	PROCEDURE		
• 4	ND VARIABLE	5			
	V = 90 mp	h			
	Kd = 0.85				
	1 = 1.0				
	EXPOSURE : E	5			
-	Kzt = 1,0				
-				V.	
,	X	LEVEL	HEIGHT	Kz	
(TABLE	(-3)	B	0'	0'	
CASE	2		14-10"	0.56	
		2	26-10	0.63	
NOTE :	INTERPOLATE	3	34-10	0.74	
	K2 VALVES	4	46-10	0.79	
		5	56-10	0.84	
		6	66-10	0.88	
-		7	70-10	0.92	
		KOGF	86-10	0.45	
		HIGH KOOF	102-2	1.00	
		- VVV	1/ ² T	1-	
	92 = 0.00	ESCO KZ KZE K	av 1	(Eq	. (6-15.)
-			VARIES BY LEVEL		
	0	NOCI VI.	N/- 02/102/1		
	92= 0	1.00256 Kz (11	2)(0,85)(40)(1	.0)	
-	* -				
	- (HI	DIT IN TH	DIE		
	AN	FUI IN TA	DLE		
	EXAMPLE	O / FIFI I	: 03 = 04-3	50/050/10Va	(902)(10)
	C.X4MPLE	C LEVEL I	= 9 8=		
			- 1.01	- Pr	

CALCULATED BY CALCULATED BY CHECKED BY SCALE BGe, 83	A.KAC	Z ZEMÁRI	εK	DATE	3	
CHECKED BY CHECKED BY SCALE BG(r, 6/3		211414	≥K	DATE		
SCALE				DATE		
SCALE	11		_			
= 86.83	11					
= 86.83		L.I	4	1.1	1.1	
=	3 +	102.10	17		11	-
	Z	-	-	- 94	1.5	
				1	4	
				Kzt	= 0.	97
= 0.(eh =	0.61	94.5	1)=	56.	1 7 Zm	
			1			
0,85)(90	pz)(1	0)	= _1	7.10	> PSF	
FAST / 6	JEST					
WINDWART	D =	0.8				
LEEWARD) E	- 0.Z				_
L/B =	2.22	-			++	
= 219.67	B =	98.9	21			
	-		-			
		-				
OWAZD)		G	=	± 0.	18	
		1	FOR E	Nelos	ED	
(JARD)			BUIL	DINGS	š.	
write j						
		-		++		-
	= 0.6h = 6.85)(90 <u>EAST / 6</u> WINDGWARI LEEWARI 2/B = = 219.67' WARD) WARD)	$= 0.4ch = 0.6($ $= 0.6ch = 0.6($ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$ $= 0.85)(90^{2})(1.$	= 0.6h = 0.6 (94.5) $= 0.85 (902)(1.0)$ $EAST / WEST$ $WWDWARD = 0.8$ $LEEWARD = 0.8$ $L/B = 2.22$ $= 219.67' B = 98.93$ $WARD)$ GU $WARD)$	$= 0.6h = 0.6 (94.5') =$ $East / WEST$ $WWDWARD = 0.8$ $LEEWARD = 0.8$ $LEEWARD = -0.2$ $L/B = 2.22$ $= 219.67' B = 98.92'$ $GC_{pi} =$ $For e$ $BULC$	K_{zt} $= o.(ch = o.((94.5') = 56.7)$ $= 17.10$ $EAST / WEST$ $WWDWARD = o.8$ $LEEWARD = -0.2$ $L/B = 2.22$ $= 219.67' B = 98.92'$ $GC_{pi} = t o.$ $For EDCLOS$ $WARD)$ $GC_{pi} = t o.$ $BUILDINGS$	$K_{2t} = 0.$ $= 0.6ch = 0.6(94.5') = 56.7' 7 \overline{z}_{m}$ $= 0.85)(90^{T})(1.0) = 17.10 \text{ psf}$ $= 17.$

	JOB TECH, REPORT 1 - CALC	ULATIONS
	SHEET NO. 3	OF 3
	CALCULATED BY A. KACEMAREK	DATE
Atlantic Engineering Services	CHECKED BY	DATE
Pittsburgh • Pennsylvania 15222		
AES	SCALE	
WIND IDADS (CONT.)		
EAST / WEST EXAMPLE : Q LEVEL		
Pz = 9,87 (0,85) (0,8)		
= 6.71 PSF		
Ph = 17,10 (0,85) (-0,2)		
E - 7.91 BE		
+ LUND PRESCORES CALCULATED FOR I	ALL STORY AND POT ID T	ARLE
WIND TERSOLES THROWTED FOR E	ACT SLORE AND POL IN 1	AD
· FORCE OF WINNARD ONLY		
TORCE OF WINDWIND ONC.		
E. = B/cha brick) De		
IN D (STORY HEIGHT) PE		
ink Franklin - Inter 1	E = (719 (57))/121) (671)	= 17/04
NIS EXAMPLE · @ CELEL I	$F\omega = (214)\omega T / (12) (\omega, T) $	
· FORE DE TATAL PRESSURE		
TORCE OF TOTAC TRESSORE		
12K FYAMPLE: PIEVER 1	E= 1719 17')(17')(14.08	= = 36 B5 K
MIS EXAMPLE - C CEVEL (F1 - (211.01)(10)(10)	(F) States K
· 12		
WINDWARD SHEAR SIDEY		
W/S EVANDLE : 5 / FIEL 7	EE E. O (Haullas - Rose	17)
1015 FRAMIFLE . & LECEL I	T - TW E (HIGH FORF T FORF	
	- 5,52 + 24,15 + 24,21	- <u>31.00 k</u>
· Time and she o		
TOTAL STORE STEAK		
NE EVANOLE : DIELEL 3	E= E Olympics	2015 + 7
NIS EXAMPLE . & LEVEL 9	FT E (HIGH FOOF +)	
	- 0,00 + 40,86 + 40,2	- Ba'aa k

The Pennsylvania State University November 29, 2010

Seismic Loads

Seism	ic Force Re	sisting Syste	m: Floor We	eights	
		Floor 1			
Approximate A	Area:	16,236	SF		
Floor to Floor H	eight:	12	ft.		
W	Walls:			perimpose	d:
Perimeter:	763.91	ft.	Partitions:	15	PSF
Height:	12	ft.	MEP:	10	PSF
Unit Weight:	91	PSF	Finishes:	5	PSF
Weight =	834.19	k	Weight =	487.08	k
		Slab:			
Thickness:	10	in.			
Unit Weight:	91	PSF			
Weight =	1477.476	k			
		Columns:			
				Total	
Shape	Quantity	Weight	Column	Weight	
	. ,	(PLF)	Height (ft)	(k)	
W8x58	1	58	12	0.696	
W10x45	1	45	12	0.54	
W10x60	1	60	12	0.72	
W10x77	5	77	12	4.62	
W10x88	1	88	12	1 056	
W10x100	5	100	12	6	
W18x175	1	175	12	21	
110/11/5	-	1/5	Weight =	15 732	k
	1	Beams:	Weight .	101702	
	1			Total	
Shane	Quantity	Weight	Beam	Weight	
e mape	Quantity	(PLF)	Length (ft)	(k)	
W8x15	1	15	14	0.21	
W8x15	1	15	8	0.12	
W8x15	1	15	7.83	0.12	
W16x26	1	26	5	0.12	
W16x26	1	26	13	0.15	
W18x25	1	25	15 42	0.54	
W/18x25	1	25	11 17	0.24	
W18v55	1	55	18	0.99	
W18v55	1	55	22	1 21	
W18v60	1	60	17 17	1.21	
W18v60	1	60	17.22	1.05	
W 10X00	1	96	21 /	1.04	
	1 2		21.4 16	1.04	
VV 24XJJ	1	55	10 56	1.70	
VV 24XUZ	1	76	19.00	2.01	
VV 24X / O		/0	20.5	2.01	
vv24X94		94	25.33	2.38	L.
	<u> </u>		weight =	15.32	К
		ht of Floor -	2020.00	1.	
	iotai welg	sint of Floor =	2829.80	K	
			1/4.29	42F	

Example of Floor Weights Found

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB <u>TECH</u> , <u>REPORT</u> <u>I</u> - <u>CALCULATIONS</u> SHEET NO. <u>I</u> OF <u>U</u> CALCULATED BY <u>A</u> , <u>KACZMAREK</u> DATE CHECKED BY <u>DATE</u> SCALE
SEISMIC LOADS	
· SITE CLASS C · Very Deme Soil &	Soft Rock (TABLE 20.3-1)
· OCCUPANCY CATEGORY I	(TABLE 1-1)
· IMPORTANCE FACTOR : 1,0	(TABLE 11.5-1)
· SPECTRAL RESPONSE ACCLERATION, SHOP	ZT (S3) (FIG. 22-1 three 22-14)
SPECTRAL RESPONSE ACCELERATION, IS	; (s,)
$S_{5} = 0.125$ $S_{1} = 0.049$	
· SITE COEFFICIENTS (Fa : Fu) (TABLE 11.4-1 \$ 11.4-2)
$F_a = 1, z$ $F_v = 1, 7$	
 Sns = FaSs 1,2(0.125) SMS = 1 	(Eq. 11.4-1)
• $5_{DS} = \frac{2}{3}(S_{MS})$ = $\frac{2}{3}(0.15)$ $5_{DS} = 0$	(Eq. 11.4-3)
· SMI = FUSI = 1.7 (01049) [SMI =	0,0833 (Eq. 11.4-2)
· SDI = 2/3 SHI = 2/3 (0.0833) SDI = 0	0.055 (Eq. 11.4-4)

Atlantic Engineering Services SHEET NO. 650 Smithfield Street • Suite 1200 CHECKED BY Pittsburgh • Pennsylvania 15222 SCALE	REPORT 1 - CALCULATIONS Z OF 4 4, KACZMAREK DATE DATE
SEISMIC LOADS (cont.)	
$= 0.02(102.167)^{0.75} T_a = 0.643$	(Eq. 12.8-7)
• $Cu = 1.7$	(TABLE 12.8-1)
• $T = T_a C_u$ = 0.643 (1.7) [T = 1.09 s]	(SEC. 12.B.Z)
• $C_{s} = \begin{bmatrix} S_{b1} \\ T(R_{1}) \end{bmatrix} = \begin{bmatrix} 0.055 \\ 1.09(2/1) \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \end{bmatrix}$	5 2 0.01
$\frac{Sos}{(R_{f_{I}})} = \frac{0.100}{(2/1)} = 0.05$ $\frac{SoiTL}{T^{2}(R_{f_{I}})} = \frac{0.055(12)}{(1.09)^{2}(2/1)} = 0.278$ MIN.	Z D.01 AES used this value in their calculations z D.01
WHERE : $R = Z$ (TABLE 12.7 I = 1.0 (TABLE 11.7 TL = 1Z (FIG. 22-	2-1) 5-1) 15)
• $k = 0.75 + 0.5(T)$ = 0.75 + 0.5(1.09) $k = 1.295$	(SEC, 12.8.3)

Atlant 650 Sm AES	ic Engineering nithfield Street • Suite 1 rgh • Pennsylvania 152	JOB JOB SHEET NO. SHEET NO. 200 CHECKED 222 SCALE	ECH. KEPORT I - CA 3 ED BY <u>A. KACZMAREK</u> BY	_ OF _ DATE _ DATE
SEISMIC	LOADS (CO	<u></u>		
· SEE EXC	EL SPREADS	HEETS FOR FLOOR L	DEIGHTS	
1	FLOOR	APPEOX. FLOOR AREA	TOTAL WEIGHT	-
	в	12808 SF	103.07 PS	F
	1	16236 5F	174.29 PS	F
	2	15/13 SF	157.73 PS	F
	3-5	15113 SF	159.53 R	SF
	6-7	15113 SF	154,44 PS	
	ROOF	15113 SF	124.29 ASF	
- H	IGH ROOF	576 3F	13.75 PSF	
(1) (1)	T = 1280B + 3(15 + 574 T = 2032	(103107) + 16236 (1 113)(159153) + 2(15 (13175) 1 k	74.29) + 15113(15 5113)(154144) + 151	7.73) 13(124.29)
· BASE S	HEAR (V)			
V	= CsWT =	0.025 (20321.)		
	V = 5	508.025 K		
· wxhx ^k	(varies e h	reight)		
· Wxhx ^k EXAME	(varies e) le e Level	neight) 1 : WX = 2829.8	к, hx = 14.833	5', k=1.295

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB <u>TECH-REPORT 1 - CAL</u> SHEET NO. <u>4</u> CALCULATED BY <u>A, KACZMAREK</u> CHECKED BY SCALE	OF OF DATE DATE
SEISMIC LOADS (CONT.)		
· Zwihi ^k ⇒ sum of wxhx of all	floors = [3117703 f+-k	
• $C_{Vx} = \frac{\omega_x h_x^k}{\Xi_{\omega} h_i^k}$ (varies e he	eight) (E	q, 12,8-12)
EXAMPLE & LEVEL 1 : Cus	x = 3117703 = 0.030]
• Fx = Cux (V)	(E	59. 1218-11)
EXAMPLE & LEVEL 1 = Fx	= 0.0798(508.025k) = [5.15 K
· STORY SHEAR (Vx)		
$V_x = F_x (e \ level) + F_x (e$	all levels above)	
EXAMPLE @ LEVEL 7: Vx =	Fx(HR) + Fx(RooF) + Fx(7 0,52 + 99,18 + 105,18	2)
V× e	27 = 204.88 K	
· MOMENTS (MX)		
Mx = (Tributary Floor Area Heigh	+)(Fx)	
EXAMPLE @ LEVEL 7 : Mx =	((76.833 + 66.833) / Z) (1	105.12)
M× e	7 = 7555.39 f+,k	

The Pennsylvania State University November 29, 2010

Appendix C: Load Distribution

Rigidity/Relative Stiffness

	antic Engla	ooring Convisor	SHEE	T NO.	DBY	A. KACZMAREK	
650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222		CHECKED BY DATE					
RIGID	TY (4- C	DORD,) : PLAZA	FLOOR				
	E	·t		E		336"15 JF'	
R	= 4(h/)3	+ 2/h/1)			=	33 (145 PCF) 1.5	2000 PSI
	1(14)				=	2.577 × 104	Psi
						2577 KSI	(ALL FLOORS)
b				+	=	a"	
		t		h	=	height from k	ase to
						each level	(varies)
	L_			L	=	length of w	all element
WALL I	:					(2577 KSI) (B"	2
178"		2nd FLOOR	R1-1	=	L	1(178 3 + 3(-	178 = 1227
		HOTEL FLOOR				1207	
	122"	,					
'yeu u	:						
and 4		2nd FLR			0	2577 KSI)(B")	
178"			R4 - 1	2.	-	1178 3 2/17	8 = 2012
		HIE			-	(150) - (15	
1	150"	1					
JALL 6	:						
		2nd FLR.			12	577 KSI) (B")	
178			R6-1	=	4/	178 3+ 3/178	= 6642
-	_	H.F.			7(27) / (27)	-
	Z7)"	1					

Atlar 650 Pittsb AES	ntic Engineering Serv Smithfield Street • Suite 1200 Surgh • Pennsylvania 15222	vices	JOB <u>TECH REPORT 3 - CI</u> Sheet no. <u>Z</u> calculated by <u>A. KACZMAREK</u> CHECKED BY SCALE	OF (0 DATE
WALL 8 :	Znd FLE.	R8-1 =	(2577 ksi)(8") $4(178)^3 + 3(178) =$	29,786
) 	H.F. 20"		(826) - (640)	
WALL 10 =	Z nd FLR H.F.	R10-1 =	$\frac{(2577 \text{ KSI})(8")}{4(\frac{178}{576})^3 + 3(\frac{178}{576})} =$	19,72Ce
(JALL 13 : 178"	2nd FLE. H.F.	R13-1 =	(2577 KSI)(8'') $4(\frac{176}{216})^3 + 3(\frac{178}{216}) =$	4376
21 WALL 1B 178"	2 Z nd FLR, H.F.	R18-1 =	$\frac{(2 \leq 77) \times 51}{4(\frac{178}{114})^3 + 3(\frac{178}{114})} = 1$	1935
WALL 19 : 178"	z rd FLE. H.F. 152"	R19-1 =	$\frac{(25.77 \text{ ksl})(8'')}{4(\frac{178}{1152})^3 + 3(\frac{178}{1152})} = 6$	43,103

Atlantic Engineering S 650 Smithfield Street • Suite 120 Pittsburgh • Pennsylvania 15222	ervices 0	SHEET NO	OF (Q MAREK DATE DATE
$ZR = R_{1-1} + R_{4-1} + R_{4-1}$ = 107,907	+ RB-1 + R10-1	+ R14-1 + R18-1 +	Rig-1
· RELATIVE STIFFNESS			
P		7551	
90= 2R × 100	WALL =	107,907 = 1.1	70
	12011 4 =	1992	
	(-2011 (g =	1.1.70	
	WALL 8 =	27.6 %	
	WALL 10 =	18.3 %	
	WALL 13 =	4.1 70	
	WALL 18 =	1.0%	
	WALL 19 =	39.9%	
$\frac{2R \cdot d}{2R} = \frac{1227(750) + 291}{4376(603) + 1}$	Z(52B) + 664Z 1035(1074) + 4	(150)+29786(4)+1 3103 (1164)	9.726 (360)
	107,907		
9-0-01 - F9F	33 "		
1 COOKD - 513			
1 - COOKD - 575			
1 - COOKD - 373			
L / - COOKD - 575			
1 - COOKD - 373			

Atlantic Engir 650 Smithfield Stree	neering Services et • Suite 1200		JOB SHEET NO. CALCULATED BY CHECKED BY	4 KACZMAREK	OF(
AES Presburgh Pennsy	DED : HOTE	- FLOOR	SCALE		
(.)411 2 3					
	and FLR.		(2577 K	six(8")	
78"		Rz-1	= 0/1783	+3/178 =	8659
,	4.F.		1(3(8)		
318"	-				
WALL 3,9, \$ 17	:				
	2nd FLE.	0	(2577 K	SID(B")	
I7B"	<i>Н.</i> F.	K3-1 = 9-1 17-1	= 4(<u>178</u>)	+ 3 (778) =	10,742
366"	-				
WALL 5 =					
1	2nd FLR.		(2577 K	si)(8")	11 762
178"		R5-1 :	= 4/1783	+ 3/178	11,205
	H,F.		(378 /	-(318)	
378"	-				
WALL 7 :					
	Znel FLR.	0	(2577 KS	SI)(8")	2013
178"	HF.	K7-1 3	$= 4\left(\frac{178}{156}\right)^3$	$+3(\frac{1791}{150})$	
/50"	-1				
WALL 11 \$ 12					
1	2nd FER.		(2571 K	si)(8")	
ī78 [°]	HF.	R11-1 :	$=$ $4\left(\frac{120}{94}\right)^3$ $+$	3(178)	= 628
94"					

Atlantic 650 Smithf Pittsburgh	Engineering Service Tield Street • Suite 1200 • Pennsylvania 15222	5	CALCU	ILATED BYA, KACZMAREK. (ed by	DATE
(1)011 14 =					
CONCENT	and EIR.			(2577 KSI)(8")	
178	C FC I	R14-1	=	, 178,3 , 178	= 1407
	H.F.			4(129) + 3(129)	
1 12	9"				
WALL 15 :-					
	Znd FLP.	0		(2577 KSI)(B")	-
176		K15-	=	$4\left(\frac{178}{102}\right)^3 + 3\left(\frac{178}{102}\right)$	- 13,599
	H.F.		_	(432) (432)	
43	32"				
1.1011 10:					
				(2577 KSI)(B")	
178"		Rile-1	=	$4\left(\frac{170}{342}\right)^{3} + 3\left(\frac{176}{342}\right)$	= 9700
	on 1				
24	6				
ER = RZ-1 + 1	R3-1 + R9-1 + R17-1	+ R5-1	+ R7-1	+ R11-1 + R12-1 + R	14-1 + R15-1 + R16-
00,10					
· RELATIVE S	STIFFUESS				
70=50	× 100 ()0	11 7 =	10.9	3 %	
Ch.	WALL	3,9,17 =	13.4	070	
	WA	11 5 =	14.1	90	
	WAL	17=	2.5	70	
	WALL	11,12 =	0.8	9 70	
	WA	L14 =	1.8	970	
-	WAL	L 15 =	17.0	30	
	WAL	1 16 =	12.1	70	

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB <u>TECH. REPORT 3 - CALCOLATIONS</u> SHEET NO. <u>(0</u> OF <u>(0</u> CALCULATED BY <u>A: KACZMAREK</u> DATE CHECKED BY <u>DATE</u> SCALE
· CENTER OF RIGIDITY	
$\frac{ZR \cdot d}{ZR} = \frac{8659(150) + 10742(272) +}{+ 203(272) + 628(+ 13599(2628) + 97)}$	10743(1092)+10742(2460)+11263(4) (1344)+628(1560)+1407(1489) 100(2574)
	80,123
X- COORD = 1342,85'	·
· CENTER OF MASS FOR HOTEL	- FLOOR :
X - coord. = 1349.669'' Y - coord. = 624.978''	0- 112.47' 0- 52.08'
· CENTER OF RIGIDITY FOR HOTEL	FLOOR:

					Table 9	9a - Wall	Rigidity	Calculati	on (N/S S	Span)				
Supported Floor	Height (in)	Wall 2 (L=318)	Wall 3 (L=366)	Wall 5 (L=378)	Wall 7 (L=150)	Wall 9 (L=366)	Wall 11 (L=94)	Wall 12 (L=94)	Wall 14 (L=129)	Wall 15 (L=432)	Wall 16 (L=342)	Wall 17 (L=366)	ΣRigidity	Center of Rigidity (X)
7	1042	137	204	224	15	204	4	4	10	325	169	204	1500	1413.98
6	922	194	288	315	22	288	5	5	14	455	238	288	2115	1411.72
5	802	287	424	463	33	424	8	8	21	662	352	424	3105	1408.58
4	682	449	655	713	53	655	13	13	34	1007	547	655	4795	1404.10
3	562	753	1080	1171	93	1080	24	24	60	1622	909	1080	7895	1397.48
2	442	1383	1933	2082	185	1933	48	48	120	2803	1648	1933	14115	1387.43
1	322	2867	3844	4100	448	3844	121	121	296	5296	3345	3844	28125	1371.96
В	178	8659	10742	11263	2012	10742	628	628	1407	13600	9700	10742	80125	1342.86

	Table 9b - Wall Rigidity Calculation (E/W Span)												
Supported Floor	Height (in)	Wall 1 (L=122)	Wall 4 (L=150)	Wall 6 (L=271)	Wall 8 (L=820)	Wall 10 (L=576)	Wall 13 (L=216)	Wall 18 (L=114)	Wall 19 (L=1152)	ΣRigidity	Center of Rigidity (Y)		
7	1042	8	15	86	1715	708	44	7	3634	6218	732.85		
6	922	12	22	123	2276	972	64	10	4631	8109	720.58		
5	802	18	33	183	3088	1377	95	15	5996	10805	705.92		
4	682	29	53	289	4298	2023	152	24	7911	14779	688.56		
3	562	51	93	492	6165	3104	263	42	10693	20904	668.42		
2	442	103	185	927	9189	5017	510	85	14972	30988	645.84		
1	322	253	448	2007	14516	8677	1163	213	22266	49543	621.87		
В	178	1227	2012	6642	29786	19726	4376	1035	43103	107908	595.33		

The Pennsylvania State University November 29, 2010

Appendix D: Torsion

=	JOB TECH. REPORT 3 - CAL	COLATIONS		
	SHEET NO	_ OF		
Atlantic Engineering Services	CALCULATED BY A. KACZMAREK	DATE		
650 Smithfield Street = Suite 1200	CHECKED BY	DATE		
AES PRISOURI PENNSYMANIA 15222	SCALE			
DUERALL BUILDING TORSION				
$M_{t,tot} = M_t + M_{ta}$				
Factored Lateral Force = 1. = 1.	6 W 6 (Total wind pressure fi	àrce e story)		
Mt = (factored lateral force) (ea	ccentricity)			
eccentricity = COR - CO	M			
· Example @ Floor 4 M N/S D	irection :			
e = 1404,10" - 1349,60	19" = 54.4" or 4.5			
Factored Lateral Force	$= 1.6 (38.00^{k}) = 60$.B K		
Mt = 60.8 k (4.5')	= 273.6 ft.k			
Mta = (factored lateral force) (5% ossumed displacement ea	ach way of co		
· Example @ Floor 4 m N/SI	sirection (Asce	7-05 , SEC. 12.8.		
COM = 1349.669"				
5°70 displacement in ear	ch direction = 135 "	or 11.3		
Factored Lateral Force	2 = 1,4 (38;0 k) e	60.8 K		
$M_{ta} = 60.8 \text{ k} (11.3')$	= 687.04 ft.k			
Mt, tot = Mt + Mta = 273.6	+ 687.04 = 960.64	ft.k		
	2			

The Pennsylvania State University November 29, 2010

Appendix E: Shear

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB <u>TECH, REPORT 3 - CA</u> Sheet no. <u>I</u> calculated by <u>A, KACZMAREK</u> checked by scale	COLATIONS of date date
SHEAR		
· Controlling Lood Combinations	s	
North South: 1,2D + 1, East/West: 0,9D +	$6 \omega + 1.0L + 0.5L_R$ 1.0E	
DIRECT SHEAR		
Direct Shear = (factored st	ory force) (relative stif	Fress to
· Example for Floor 4 m	N/S Direction @ Wall	2
Direct Shear = 58.8 k (0.0	095) = 5.59 k	
TORSIONIAL SHEAR		
T = J		
Vror = story shear e = distance from center of mass di = distance from element to centre Ri = relative stiffness of element J = torsianal moment of inertic	to center of rigidity ter of rigidity t	
· Example for Wall 7 Scipporting /	Floor 4	
-factored story shear = - $COR (X - coord) = 140$ - $COM (X - coord) = 134$	1.6 (203.77 k) = 326.037 4.10" 9.669"	2 k
e = cor - con = 59.4	131	
-Ri = 0.01Z		

	Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB TECH REPORT 3 SHEET NO. 2 CALCULATED BY <u>A KACZ MAREK</u> CHECKED BY SCALE	
	- Location of Wall 7 = 271	192" (X-coord.)	
	$di = \omega_a _i - CoR_i = 271.92^* - R_i \times d_i^2 = 0.012 (-1132.18)^*$	- 1404.10" = -1132. ² = 15,382	18"
	J = 1541314,2		
-	(324,032 E)(54.431")(113	2.18")(0.012)	
	1 = 1541314.2		
	T = 0.156 k		
	calculated values of all shear wall can be found in Table	lls supporting Floor 4	
-			

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	JOB TECHL REPORT 3 - CALCULATIONS SHEET NO OF CALCULATED BY ALKACEMAREK DATE CHECKED BY DATE SCALE				
SHEAR STRENGTH					
• ACI 318.08 (sec.21.9.4) ⇒ str	uctural walls shall not exceed Vn				
$\phi V_n = \phi A_{cr}(\alpha_c \lambda_r f_c^2 + p)$	*fg)				
$\phi = 0.75$ $Acv = gross area of con dc = Coefficient = 2 if hw/lw pt = Av/s.h$	xcrete. > 2.D				
s = shear reinf h = thickness c	Forcement spacing & wall				
· Example for wall 9 supporting Fl	1005 4				
- Direct Shear = distributed a 4 of wall	firect force on all floors above floor 9				
From Table 5a = 8.31 + 8	8,54 + 8.77 + 8.91 = 34.53 K				
- Torsional Shear (Table Coa)					
Va = 34.53 k + 0492	K = 35.02 K				
- Vertical Reinforcement: (1) = $Pt = \frac{(1)(0.31)}{(24)(8)} = 0.00$	#5 @ 24" O.C. 1(0)				

<u></u>	JOB TECH, REPORT 3-C	HCULATIONS		
	SHEET NO. 2	OF		
	CALCULATED BY A, KACZMAREK	DATE		
650 Smithfield Street + Suite 1200	CHECKED BY	DATE		
A E C Pittsburgh • Pennsylvania 15222				
AES	SCALE			
Acy = (2(01)(B") = 2928 m2				
411 (2020 . 2) [()2	000			
QVn = 0.75 (2460 mc) 2.0 (1	000 / T 0.00161 (60)			
\$Vn = 408.6 F > 35	5.02 = Vu : OK			
P IN SUL C. IL O.L.	Lelve and Level			
· Remaining Shear Strength Calcul	artions are located			
M Table 7a.				

The Pennsylvania State University November 29, 2010

Appendix F: Drift and Displacement

Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	job <u>TECH, REPORT 3</u>	<u>CALCULATIONS</u> of <u>4</u> date <u>4</u> date <u>4</u>
STORY DISPLACE MENT		
· Approximate the story shear	by Edcont, of each	n story
· Story Drift		
$\Delta = 0.020 \text{ hsr}$		
have a story height be	low story X (ASCE 7-	65, Table 12,12-1)
$\Delta cont. = \Delta flexestel + \Delta she \Delta flexural = \frac{Ph^3}{3EcI}\Delta shear = \frac{1.2Ph}{ErA}\Delta cont. = 3EcI + ErA$	5	
Ec = DS(145 PCF)	(12000 P) = 25 77	ALL STORIES
$A = (length) \times (th)$ $T = (thickness) \times (th)$ $I = (thickness) \times (th)$ $I = (th)$	ckness)	

Atlantic Engineering So 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	SHEET NO. Contraction CALCULATED BY CALCULATED BY O CHECKED BY Date Date SCALE SCALE
· Example for Wall 9	M N/S Direction
Floor 1 Supported :	
91 ^K	A = 8" (306") = 2928 in2
178"	$I = B''(366)^3/12 = 32685264 m^4$
3666"	$\Delta_{1} = \frac{(7,91^{K})(178)^{3}}{3(2577)T} + \frac{1.2(7R1)(178)}{1031(2928)}$
	$\Delta I = 7.74 = -4 + 5.59 = -4$
Floor Z Supported:	
ia K	
	A = 2928 m2
322"	I = 32685264 m4
	(JIZ)(322) 112(JIZ)(322)
2.64011	az = 3(2577) I 1031 (2928)
Cuu	$\Delta z = 9,41 = 4 + 9.113 = -4$
	$\Delta z = 0.00185z \text{ in.}$
Floor 3 Scipported:	
·/>>\\\\ 1	A = 2928 m2
4412"	$I = 32685264 m^4$
	(7.75×(442)3 112(7175)(442)
minin 1	(3 = 3(2577)I T 1031(2928)
366"	13 = 0.00264B + 0.001362
	$\Delta 3 = 0.004009$ in.

Atlantic Er 650 Smithfield Pittsburgh • P	street • Suite 1200 ennsylvania 15222	rvices	JOB SHEET NO CALCULATED BY CHECKED BY SCALE	2eport 3 - CAC 3 1. KACZMAREK	CDLATIOUS of date date
8.04 K	562"	$A = 2978$ $T = 3768$ $\Delta 4 = \frac{(8.8)}{3(2)}$	10 ² 5264 10 ⁴ 1)(562) ³ 577)I ⁺	1,2(8,04)(562 1031(2928)	
		$\Delta q = 0.00$ $\Delta q = 0.00$	25647 T	0,001 190	
B.31 K	682"	$A = 2920$ $T = 3260$ $\Delta s = \frac{(83)}{3(25)}$	1 m² 55264 m4 1 <u>X682)³</u> 577)I +	1.2(831)(68 1031 (2928)	
) ted	15 = 0.0 15 = 0.0	24.85 in	0,007753	
8,54×	1 802"	$A = 2926$ $I = 3260$ $\Delta c = \frac{1836}{3(25)}$	3 m ² 85264 m ⁴ 1 <u>(802)³ 1</u> (m) I +	2(8.54)(802) 1031 (2928)	
		$\Delta \omega = 0.0$ $\Delta \omega = 0.0$	1743385 + >20156	0.0027226	

Atlan 650 S AES	tic Engineering Serv mithfield Street • Suite 1200 Irgh • Pennsylvania 15222	ices	SHEET NO CALCULATED BY _/ CHECKED BY SCALE	4 4. Kaczmarek	QATE
<u>Floor 7 5</u> 8.77 ^K	aported 922"	$A = 292B$ $I = 326B$ $(B.77)$ $\Delta 7 = \frac{(B.77)}{3(25)}$ $\Delta 7 = 0.0$ $\Delta 7 = 0.0$	1/1 ² 15264 1/1 ⁴ <u>(</u> 922) ³ 77)I + 77)I 5272022 304169_	1.2(B.77)(922) 1031 (2928) + 0.603214 10.	
Roof Sup	louz"	$A = 2928$ $T = 3268$ $\Delta r = \frac{(8.9)}{3(2)}$ $\Delta r = 0.0$ $\Delta r = 0.0$	3 io ² 35264 in 1)(1042) ³ 2577)I 339893 · 43584	4 + 112 (8,91 + 1031 (+ 0,003691)(1042) (2928)
 Overall Ea Za Alimi Calculation Con be- 	Displacement of = $7.36E-4 + c$ + 0.012685 = 0.046881 in + = $\frac{1}{400} = 1$ ed displacements on Found in Tables	F Wall 9 + 0.020 + 0.020 -42'' - 400 = -20 -42'' - 400 = -20 -400 = -20 -400 = -20 -400 = -20 -400 = -20 -40	0.00400 156 2.605	59 + 0.0074 " > 0.046881 Walls 8,10	чз (":. DK , ξ 15

	Table 10a - Wall 8 Story Displacements												
Floor Supported	Lateral Force (k)	E _c (ksi)	E _r (ksi)	I (in⁴)	Thickness (in)	Length (in)	Height (in)	Δ_{flex}	Δ_{shear}	Story Displacement (in)	Story Drift: N/S Direction (in)	Story Drift: E/W Direction (in)	Allowable Story Drift (in)
Roof	3.58	2577	1031	32685264	8	820	1042	0.016019	0.000661	0.01668008	0.000071	0.000023	1.7367
7	3.55	2577	1031	32685264	8	820	922	0.011022	0.000581	0.011602871	0.000074	0.000022	1.53367
6	3.49	2577	1031	32685264	8	820	802	0.007134	0.000497	0.007631494	0.000077	0.000021	1.3367
5	3.43	2577	1031	32685264	8	820	682	0.004307	0.000415	0.004721695	0.000079	0.00002	1.137
4	3.31	2577	1031	32685264	8	820	562	0.002329	0.000331	0.002659129	0.000078	0.000018	0.9367
3	3.17	2577	1031	32685264	8	820	442	0.001083	0.000248	0.001330984	0.000073	0.000015	0.7367
2	2.79	2577	1031	32685264	8	820	322	0.000368	0.000159	0.000527229	0.000062	0.000011	0.5367
1	2.90	2577	1031	32685264	8	820	178	6.47E-05	9.15E-05	0.000156181	0.000039	0.000006	0.2967
Total Wall Displacement (in) =								0.045309664					

					Table 10	b - Wall	10 Story	[,] Displace	ements				
Floor Supported	Lateral Force (k)	E _c (ksi)	E _r (ksi)		Thickness (in)	Length (in)	Height (in)	Δ_{flex}	Δ_{shear}	Story Displacement (in)	Story Drift: N/S Direction (in)	Story Drift: E/W Direction (in)	Allowable Story Drift (in)
Roof	1.48	2577	1031	32685264	8	576	1042	0.006615	0.000389	0.007003637	0.000104	0.000016	1.7367
7	1.52	2577	1031	32685264	8	576	922	0.004708	0.000353	0.005061613	0.000105	0.000016	1.53367
6	1.56	2577	1031	32685264	8	576	802	0.003181	0.000316	0.003496494	0.000107	0.000015	1.3367
5	1.61	2577	1031	32685264	8	576	682	0.002027	0.000278	0.00230487	0.000106	0.000014	1.137
4	1.67	2577	1031	32685264	8	576	562	0.001172	0.000237	0.001409103	0.000102	0.000013	0.9367
3	1.73	2577	1031	32685264	8	576	442	0.000591	0.000193	0.000784084	0.000092	0.000011	0.7367
2	1.67	2577	1031	32685264	8	576	322	0.00022	0.000135	0.000355468	0.000076	0.000008	0.5367
1	1.92	2577	1031	32685264	8	576	178	4.28E-05	8.63E-05	0.000129103	0.000046	0.000005	0.2967
							Total Wal	l Displacer	nent (in) =	0.020544373			

					Table 10	c - Wall	15 Story	Displace	ements				
Floor Supported	Lateral Force (k)	E _c (ksi)	E _r (ksi)		Thickness (in)	Length (in)	Height (in)	Δ_{flex}	Δ_{shear}	Story Displacement (in)	Story Drift: N/S Direction (in)	Story Drift: E/W Direction (in)	Allowable Story Drift (in)
Roof	14.18	2577	1031	32685264	8	432	1042	0.063467	0.004974	0.068441201	0.000117	0.000008	1.7367
7	13.85	2577	1031	32685264	8	432	922	0.042945	0.004299	0.047243944	0.000118	0.000009	1.53367
6	13.33	2577	1031	32685264	8	432	802	0.027215	0.003601	0.030815784	0.000119	0.000008	1.3367
5	12.77	2577	1031	32685264	8	432	682	0.016029	0.002933	0.018961909	0.000117	0.000008	1.137
4	12.07	2577	1031	32685264	8	432	562	0.008481	0.002285	0.010766327	0.000111	0.000008	0.9367
3	11.25	2577	1031	32685264	8	432	442	0.003843	0.001674	0.005517235	0.0001	0.000007	0.7367
2	9.81	2577	1031	32685264	8	432	322	0.001296	0.001064	0.002359644	0.000081	0.000005	0.5367
1	10.01	2577	1031	32685264	8	432	178	0.000223	0.0006	0.000823306	0.000048	0.000003	0.2967
							Total Wal	l Displacen	nent (in) =	0.18492935			

The Pennsylvania State University November 29, 2010

Appendix G: Overturning Moments

OVERTORNING MOMENT DTAL WIND FORCE 308.7 K M=15,157.3 ft K FORCE 308.7 K M=15,157.3 ft K TOTAL SEISNIC FORCE SOBLOS K SOBLOS K NO(5 DIRECTION) (E/W DIRECTION) (E	Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222	job <u>TECH, REPORT 3 - (</u> sheet no. <u>1</u> calculated by <u>A, KAC2MAREK</u> checked by scale	CALCOLATIDADS of Z date date
DETAL WIND FORCE 302.7K Image: 15,157.3 ft /k TOTAL SEISHIC Soc.03 R 302.7K Soc.03 R Soc.03 R Soc.03 R Image: 100 (D/S DIRECTION) (D/S DIRECTION) (D/S DIRECTION) (D/S DIRECTION) (D/S DIRECTION) (E/W DIRECTION) (D/S DIRECTION) (E/W DIRECTION) (D/S DIRECTION) (E/W DIRECTION) (D/S DIRECTION) (E/W DIRECTION) (E/W DIRECTION) • Cateral loads will create overturning moment, while the gravity loads will exceed the lateral loads, the stress due to seismic and lateral loads will be calculated. STREPS DUE TO DEAD LOADS Weight of building 20,321 K Spare Footage of Fundation	OVERTURNING MOMENT	M = 29,374.	9 ftik
 Sociost Sociost	FORCE	TOTAL SEISHIC	
 (D/S DIRECTION) (D/S DIRECTION) (E/W DIRECTION) (ads. will create overturning moment, while the gravity loads will exceed the lateral loads, the stress due to seismic and lateral loads will be calculated. STRESS DUE TO DEAD LOADS Weight of building = 20,321 K / 12,808 SF × 1000 Hz = 1586.6 PSF 	308.7 *	508.03 %	
 (D/S DIRECTION) (E/W DIRECTION) (E/W DIRECTION) Cateral loads will create overturning moment, while the gravity loads will try to resist the overturning moment. To determine if the gravity loads will exceed the lateral loads, the stress due to seismic and lateral loads will be calculated. STRESS DUE TO DEAD LOADS Weight of building = 20,321 K Square Fastage of Faudation = 12,808 SF × 1000 lb. = 1586.6 PSF 			
 (D/S DIRECTION) (E/W DIRECTION) Cateral loads will create overturning moment, while the gravity loads will try to resist the overturning moment. To determine if the gravity loads will exceed the lateral loads, the stress due to seismic and lateral loads will be calculated. STRESS DUE TO DEAD LOADS Weight of building = 20,321 K / 1000 lb. = 1586.6 PSF 	77777777777		, , , , ,
 Cateral loads will create overturning moment, while the gravity loads will try to resist the overturning moment. To determine if the gravity loads will exceed the lateral loads, the stress due to seismic and lateral loads will be calculated. STRESS DUE TO DEAD LOADS Weight of building = 20,321 K Square Faotage of Faudation = 12,808 SF × 1000 lb. = 1586.6 PSF 	(N/S DIRECTION)	(E/W DIRECTIO	~)(v
STRESS DUE TO DEAD LOADS $\frac{\text{Weight of building}}{\text{Square Footage of Fandation}} = \frac{20,321 \text{ K}}{12,808 \text{ SF}} \times 1000 \text{ Hz} = 1586.6 \text{ PSF}$	 Cateral loads will create overtury gravity loads will try to resist To determine if the gravity loads, the stress due to seism be calculated. 	ning moment, while the the overturning moment bads will exceed the later ic and lateral loads will	
$\Rightarrow \frac{\text{Weight of building}}{\text{Square Footage of Fandation}} = \frac{20,321 \text{ K}}{12,808 \text{ SF}} \times 1000 \text{ Hz} = 1586.6 \text{ PSF}$	STRESS DUE TO DEAD LOADS		
	$\Rightarrow \frac{\text{Weight of building}}{\text{Square Footage of Fandation}} = \frac{z}{z}$	12,808 SF × 1000 lb. =	1586.6 PSF
	•		

Atlantic Engineering Services so sentimies time + suin 1200 Presburgh + Pernoylvania 15222 STRESS DUE TO E/U SEISHIC LOADS $STRESS DUE TO E/U SEISHIC LOADS STRESS DUE TO D/S = 2.570 of Dead Load STRESS DUE TO D/S (ATERAL COADS)STRESS DUE $		SHEET NO. 2	OF	2
Altantic Engineering Services bosominated states 1200 Phetburgh + Perngykunia 15222 STRESS DUE TO E/U SEISHIC LOADS STRESS DUE TO E/U SEISHIC LOADS $\Rightarrow \frac{508.03 \text{ k}}{12,806 \text{ SF}} = 39.67 \text{ PSF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ STRESS DUE TO $\frac{3}{5} \frac{24.1}{1586.6} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic laads are a much smaller percentage of the gravity loads, overturing is not a concern for the design of Camberia Zuites Hotel.		CALCHINTED BY A. KACZMAREK	DATE	
Description and the rouge of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	Atlantic Engineering Services	CALCULATED BT	DATE	
STRESS DUE TO E/U SEISHIC LOPPS $\Rightarrow \frac{508.03^{k} (1000 \text{ lb})}{12,808 \text{ SF}} = 39.67 \text{ PSF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Loed}$ $\Rightarrow \frac{308.7^{k} (1000 \text{ lb})}{12,808 \text{ SF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{308.7^{k} (1000 \text{ lb})}{12,808 \text{ SF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{208.7^{k} (1000 \text{ lb})}{12,808 \text{ SF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	Pittsburgh • Pennsylvania 15222	CHECKED BY	DATE	
STRESS DUE TO E/JS SEISMIC LOADS $\Rightarrow \frac{508.03^{K} (1000 \text{ lb})}{12,808 \text{ SF}} = 39.67 \text{ PSF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ STRESS DUE TO U/S CATERAL COADS $\frac{308.7^{K} (1000 \text{ lb})}{12,808 \text{ SF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{208.7^{K} (1000 \text{ lb})}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral ord seismic loads are a much smaller percentage of the gravity loads, oylerturning is not a concern for the design of Combria Suites Hotel.	ES	SCALE		
STRESS DUE TO E/LS SEISHIC LOADS $\Rightarrow \frac{508.03^{K} (looc lb)}{12,808 SF} = 39.67 PSF$ $\Rightarrow 39.67 \times 100\% = 2.5\% of Dead Lood$ $\frac{57RE5S}{1586.6} DUE TD .0/S (ATERAL COADS$ $\Rightarrow \frac{308.7^{K} (looc lb)}{12,808 SF} = 24.1 PSF$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% of Dead Coad$ Since the stresses of the lateral and seismic Isads are a much smaller percentage of the gravity loads, 0yerturning is not a concern for the design of Cambria Suites Hotel.			1	
STRESS DUE TO E/U SEISMIC LOADS $\Rightarrow \frac{508.03^{K} (1000 \text{ lb})}{12,808 \text{ SF}} = 39.67 \text{ PSF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ $\text{STRESS DUE TO U/S (ATERAL COADS}$ $\frac{308.7^{K} (1000 \text{ lb})}{12,808 \text{ JF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, OVErturning is not a concern for the design of Cambria Suites Hotel.				
$\Rightarrow \frac{508.03^{k} (1000 \text{ lb})}{12,808 \text{ sF}} = 39.67 \text{ PSF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ $\frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ $\frac{308.7^{k} (1000 \text{ lb})}{12,808 \text{ SF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, Overturning is not a concern for the design of Cambria Suites Hotel,	STRESS DUE TO E/W SEISMIC L	OADS		
$\Rightarrow \frac{508.03^{k} (1000 \text{ lb})}{12,808 \text{ sF}} = 39.67 \text{ PsF}$ $\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ $\frac{308.7^{k} (1000 \text{ lb})}{12,808 \text{ JF}} = 24.1 \text{ PsF}$ $\Rightarrow \frac{308.7^{k} (1000 \text{ lb})}{12,808 \text{ JF}} = 24.1 \text{ PsF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, $0/2^{k} \text{ turning is not a concern for the design of Cambria Surfes Hotel.}$				
$\Rightarrow 12,808 \text{ sf} = 31.67 \text{ for}$ $\Rightarrow 39.67 \text{ 1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ $\text{STRESS DUE TO U/S (ATERAL COADS}$ $\frac{308.7K (1000 \text{ lb})}{12,800 \text{ JF}} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	508.03 K (1000 16)	2017 85		
$\Rightarrow \frac{39.67}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ STRESS DUE TO U/S (ATERAL COADS $\frac{308.74 (1000 16)}{12,806 3F} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	=> 12,808 SF =	37.67 FSF		
$\Rightarrow 39.67$ $1586.6 \times 100\% = 2.5\% \text{ of Dead Load}$ STRESS DUE TO U/S (ATERAL COADS $\frac{308.7K (1000 16)}{12,800 3F} = 24.1 \text{ PSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern far the design of Combria Suites Hotel.				
$\frac{2.10}{1586.6} \times 100\% = 2.5\% \text{ of Dead Load}$ STRESS DUE TO $\frac{10}{5}$ (1000 16) $\frac{308.74 (1000 16)}{12,800 3F} = 24.1 \text{ PSF}$ $\frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, OVErturning is not a concern for the design of Cambria Suites Hotel.	= 29.107			
$\frac{15 \text{ BG-10}}{\text{STRESS DUE TO U/S (ATERAL COADS}}$ $\frac{308.7^{K} (1000 10)}{12,800 3F} = 24.1 \text{ PSF}$ $\frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Coad}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	1500 × 100% = 2.	5% of Dead Load		
STRESS DUE TO W/S (ATERAL LOADS $308.7^{K} (1000 16)$ = 24.1 PSF 12,808 3F = 24.1 PSF 24.1 310070 = 1.570 of Dead Load Since the stresses of the lateral and seismic loads are a much smaller percentage of the grawity loads, Overturning is not a concern for the design of Cambria Suites Hotel.	1586.0			-
STRESS DUE TO w/s (ATERAL COADS 308.7^{K} (1000 16) $\Rightarrow 12,800 \text{ SF} = 24.1 \text{ RSF}$ $\Rightarrow 24.1 \text{ SF}$ $\Rightarrow 24.1 \text{ SF}$ $\Rightarrow 1586.6 \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.				
STRESS DUE TO W/S LATERAL LOADS $308.7^{k} (1000 16)$ = 24.1 PSF 12,808 3F = 24.1 PSF $\frac{24.1}{1586.6} \times 10070 = 1.570$ of Decd Load Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.				_
$\frac{308.7 \times (1000 \text{ lb})}{12,806 \text{ JF}} = 24.1 \text{ PSF}$ $\frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of } \text{Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	STRESS DUE TO N/S LATER	LAL LOADS		
$\frac{308.7k (1000 lb)}{12,806 3F} = 24.1 PSF$ $\frac{24.1}{1586.6} \times 10070 = 1.570 \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.				
$\Rightarrow 12,800 \text{ SF} = 24.1 \text{ YSF}$ $\Rightarrow \frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	308.7K (1000 16)			
$\frac{24.1}{1586.6} \times 100\% = 1.5\% \text{ of Dead Load}$ Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Saites Hotel.	=> 12,800 SF = 24.	.I MSF		
= 24.1 = 1586.6 × 100% = 1.5% of Decd Load Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.	icy on the			
=) ISB(6.6 × 100% = 1.5% of Dead Load Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern far the design of Cambria Suites Hotel.	24.1			
Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern far the design of Combria Suites Hotel.	=) 100/ × 100% = 1.5	5% of Dead Load		
Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Combria Suites Hotel.	1560.0			
Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern for the design of Cambria Suites Hotel.				
Since the stresses of the lateral and seismic loads are a much smaller percentage of the gravity loads, overturning is not a concern far the design of Cambria Suites Hotel.				-
are a much smaller percentage of the gravity loads, overturning is not a concern far the design of Cambria Suites Hotel.				
Overturning is not a concern for the design of Cambria Suites Hotel.	Since the stresses of the la-	teral and seismiz loads		
Combria Suites Hotel.	Since the stresses of the lat	teral and seismic loads ge of the gravity loads	1	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce	teral and seismic loads ge of the gravity loads and far the design of	1	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Combria Suites Hotel.	teral and seismiz loads ge of the gravity loads ern far the design of	1	
	Since the stresses of the la- are a much smaller percenta overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	,	
	Since the stresses of the lat are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	1	
	Since the stresses of the lat are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	1	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	1	
	Since the stresses of the lat are a much smaller percenta overturning is not a conce Cambria Suites Hotel.	teral and seismiz loads ge of the gravity loads ern far the design of	,	
	Since the stresses of the la- are a much smaller percenta overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	/	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	,	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	1	
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of	,	
	Since the stresses of the la- are a much smaller percenta overtaining is not a conce Cambria Suites Hotel.	teral and seismiz loads ge of the gravity loads ern far the design of	,	
	Since the stresses of the la- are a much smaller percenta overturning is not a conce Cambria Suites Hotel.	teral and seismiz loads ge of the gravity loads ern far the design of		
	Since the stresses of the la- are a much smaller percenta overturning is not a conce Cambria Suites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of		
	Since the stresses of the la- are a much smaller percentage overturning is not a conce Cambria Scuites Hotel.	teral and seismic loads ge of the gravity loads ern far the design of		