ANTHONY JURJEVIC | CONSTRUCTION Advisor: dr. Robert Leicht

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

PRESENTATION OUTLINE:

- I. Project Background
- **II. Prefabricated Application** Structural Breadth
- III. BIM Utilization
- IV. Final Recommendations
- V. Acknowledgements

INTRODUCTION

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

PRESENTATION OUTLINE:

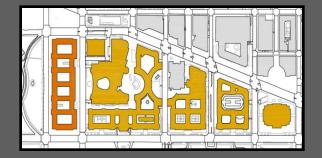
I. Project Background

II. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

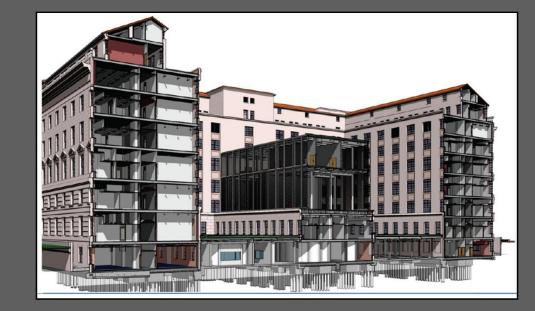


Project Information

Function: Federal Office Building
Project Cost: \$115 million- Phase II
Renovation Area:
264,000 SF- Renovated Office Space
20,000 SF- New Electrical Equipment Enclosure
Construction Dates: 11/15/09- 11/15/11 (24 Months)
Delivery Method: Design-Bid-Build with CM Agency

PROJECT BACKGROUND

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management



PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

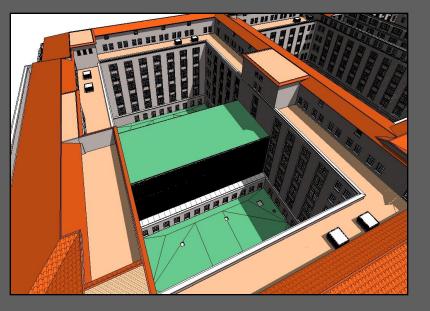
III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Problem and Background Information

- 20,000 SF Electrical Equipment Enclosure to be erected in courtyard 1
- Designed to house facility's major electric components

Research Goal


PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- Structural steel design with concrete slab on one way metal decking
- Originally proposed erection schedule: 123 Days
 - Schedule duration due to setting equipment before structural erection proceeds

• Minimize erection schedule by eliminating curing time with cast in place floor system • Reduce overall structural cost by implementing a more economic floor design

PRESENTATION OUTLINE:

I. Project Background

II. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

_			
Summar	/ of Maior	' Activities-	2nd Floor

Activity	Duration
Steel Framing	15 Days
Concrete 2nd Floor	7 Days
Concrete up to Strength	15 Days
Set Equipment Pads	5 Days
Rig Equipment	2 Days

Original Floor Design

Proposed Solution

PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Composite Deck: 3.2" Light Weight Concrete Slab on 2" 20 Ga. Metal Decking • Curing time of 2nd and 4th floors prolong overall schedule because of large equipment

• Redesign facility's 2nd and 4th floors to be erected with precast hollow core planks • Use high early strength concrete to reduce curing time • New floor system will reduce erection time and minimize cost

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation
- III. BIM Utilization
 - I. Identifying Uses
 - II. Software Application
 - III. GC & FM Benefits
 - IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Structural Calculations

- - $W_{TL} = 1.2D + 1.6L$

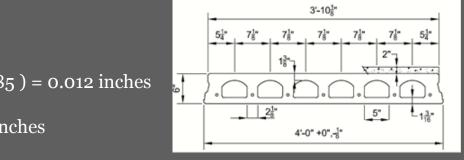
Prestressed Concre 6"x4'-0" Hollow Core 2 Hour Fire Resistance Rating With PHYSICAL PROPERTIES Composite Section

```
Ac= 253 in.<sup>2</sup> Precast b<sub>w</sub> = 16
                    Precast Spop = 37
 c = 1519 \text{ in}^4
Y_{bco} = 4.10 in.
                     Topping S_{tet} = 551 in
Y_{icp} = 1.90 \text{ in.}
                    Precast Stop = 799 in.
Y_{ct} = 3.90 \text{ in}
                    Precast Wt. = 195 PLF
                     Precast Wt. = 48.75 PSF
```

PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- Typical bay with largest span and greatest load was redesigned (Most Equipment) • 6" x 4'-0" Hollow Core Planks- 10 feet length
- All appropriate loads were included to size the plank and new beam locations

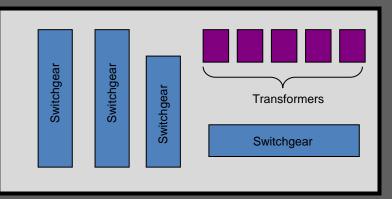

 - $W_{TL} = 1.2(268.74) + 1.6(40) = 386.48 \text{ psf}$

rete	SAFE S	SAFE SUPERIMPOSED SERVICE LOADS											IBC 2006 & ACI 318-05 (1.2 D + 1.6 L)								
Plank	St	rand		SPAN (FEET)																	
2" Topping	Pa	ittern	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
s	4 - 1/2"ø	LOAD (PSF)	349	317	290	258	227	197	174	149	127	108	92	78	66	55		\geq		\leq	\leq
	6- 1/2"ø	LOAD (PSF)	524	478	437	377	334	292	269	237	215	188	165	142	122	104	88	73	61	49	39
6.13 in. 70 in. ³	7 - 1/2"ø	LOAD (PSF)	541	492	451	416	364	331	293	274	242	214	190	167	144	124	107	91	77	64	53

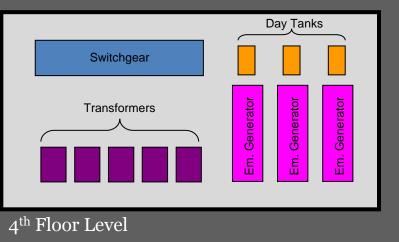
- Planks, Beams, and Girders were resized based on new loads for more efficient design • Structural components were checked for deflection:
 - Total Deflection: $\Delta_{TL} = 5 W_{LL} L^4 (1728) / (384 E I)$
 - Allowable Deflection: $\Delta_{TL} = L / 240$
 - Live Load Deflection: $\Delta_{LL} = 5 W_{LL} L^4 (1728) / (384 \text{ E I})$
 - Allowable Deflection: $\Delta_{LL} = L / 360$

 Planks, Beams, and Girders were resized based on new loads for more efficient design •Example: Beam Design- Check for LL Deflection

 $\Delta_{\rm LL} = 5 \, W_{\rm LL} \, L^4 \, (1728) \, / \, (384 \, {\rm EI})$ E = 29,000,000 $I_{W12X35} = 285 \text{ in}^4$ $\Delta_{\rm TL} = 5 (64) 16.4^4 (1728) / (384 \times 29,000,000 \times 285) = 0.012$ inches Allowable Live Load Deflection: $\Delta_{LL} = L / 360 = (16.4 \text{ ft} * 12 \text{ in/ft}) / 360 = 0.546 \text{ inches}$ 0.012 inches < 0.546 inches therefore OK



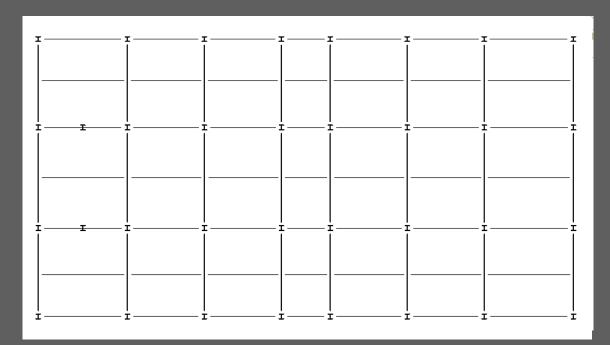
PRESENTATION OUTLINE:


- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

2nd Floor Level


New Design Layout

- Precast Hollow Core Plank System requires significantly less steel
 - 15 tons between 2nd and 4th Floors

PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- 2" Topping included in structural calculations
- Type III High Early Strength Concrete (3000 psi) will be utilized for topping and equipment pads Calcium Chloride Accelerator

2nd Floor EEE: Redesigned Structural Steel Layout

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

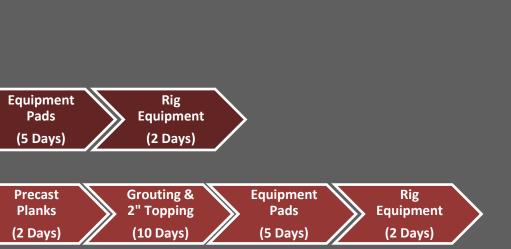
Schedule Acceleration

Crane Use and Occupancy Permit

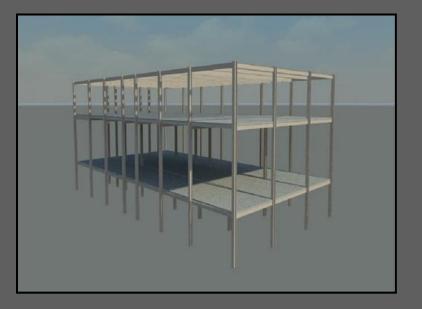

- for any unforeseen conditions

PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT


• Each floor's planks can be erected in 1 day (6,585 SF) • High early strength concrete drastically decreases erection schedule • Schedule reduced by 25 regular working days

• Crane use only permitted on weekends • Saturday 4 AM- Sunday 7 PM • 1 additional weekend included in revised schedule


\sum	Steel Framing (15 Days)	Precast Planks (2 Days)	Grouting & 2 Topping (10 Days)	Equip Pa (5 D
			Cto al	0
			Steel	Prec

(15 Days)

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation
- III. BIM Utilization
 - I. Identifying Uses
 - II. Software Application
 - III. GC & FM Benefits
 - IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Cost Comparison

- Significant savings with less steel members and connections • Precast Hollow Core Planks cost at \$ 7.50/SF Area- includes manufacturing, delivery, grouting, etc. • Columns and Roof structure are to remain consistent • 1.5 Gallon of admixture used per CY concrete (\$5.00 each) • Total project savings of \$98,600.00

PRECAST PLANK APPLICATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

Component	Original	Redesign
Formwork	\$ 9,289.86	\$ 3,096.62
WWF- Rebar	\$ 9,823.01	\$ 3,274.34
CIP Concrete	\$ 47,026.97	\$ 22,422.47
Steel (Total QTY)	\$ 462,186.67	\$ 336,610.84
Steel Connections	\$ 30,811.95	\$ 7,052.40
Metal Decking	\$ 46,637.60	\$ 15,540.60
Precast Planks	-	\$ 98,775.00
Admixtures	-	\$ 402.00
TOTAL	\$ 605,776.06	\$ 507,174.27

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact

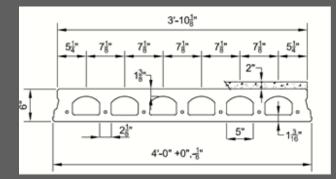
III. BIM Utilization

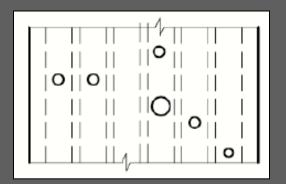
- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Floor Penetrations and Coordination

- Coordinating floor penetrations is a major component of applying hollow core planks • The lead time for designing the plank system is approximately 12 weeks • Most of this time is dedicated to preparing and approving design drawings • Manufacturing will only take approximately 2-3 days

Final Conclusion and Recommendations

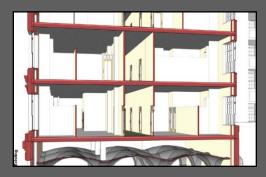

- Proposed redesign will save approximately \$ 98,000.00 Erection schedule will be reduced by 25 working days • Coordinating floor penetrations are crucial to implementing this system • Any changes in design will severely impact project cost • High early strength concrete should be utilized on existing EEE structural design Minimizes risk of any change order impacts

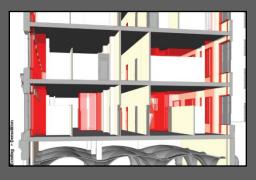

PRECAST PLANK APPLICATION

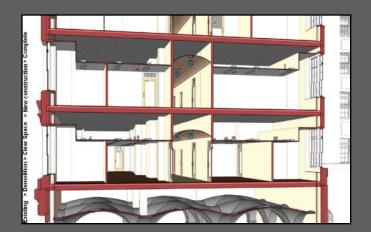
OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- Penetrations should be avoided whenever possible, especially across the plank's webs • Holes are not to be concentrated at one place along the plank
- When large penetrations are necessary:
 - Only in 4' wide planks with no factory cut openings
 - Only 2 webs may be cut per plank
 - Cuts may not be done closer than every fourth plank

• Most importantly, a professional engineer must be contacted for consultation regarding any floor penetrations



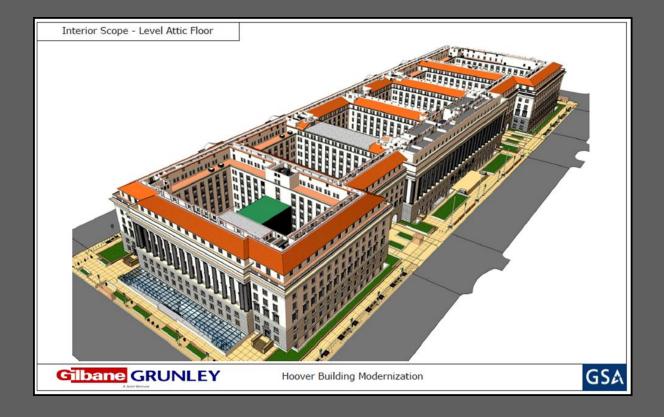

PRESENTATION OUTLINE:


- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Background Information


- Funding allocated for renovation before 2007 : Prior to GSA BIM requirements • Architect's drawings and design completed in 2D AutoCAD
- GGJV uses BIM technology for 3D coordination and design reviews
- Grunley has created a 3D Revit Model for existing, demolition, and new conditions

Research Goal

BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Identify BIM Uses GGJV can apply to the existing 3D Model • Apply the 3D Revit Model for facility management applications • Utilize building information technology to better coordinate phase planning

PRESENTATION OUTLINE:

I. Project Background

II. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

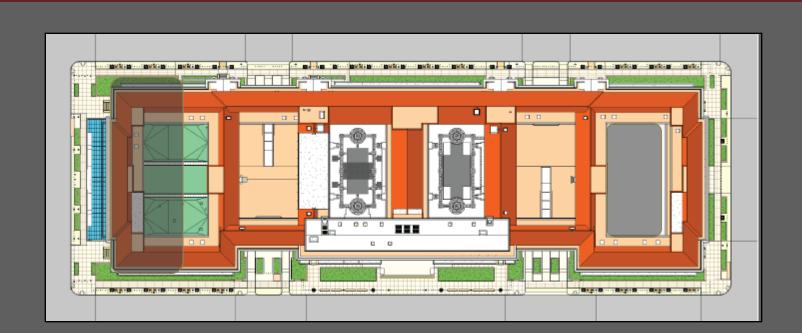
III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

BIM E	BIM Execution Planning Guide Overview								
Priority	Potential BIM Uses								
1	3D Coordination								
1	Design Reviews								
2	Existing Conditions Modeling								
2	Record Modeling								
*1	Space Management and Tracking								
*1	Phase Planning								
*2	Building Maintenance Scheduling								

Penn State BIM Execution Planning Guide

BIM Execution Guide used to identify Uses • Focus on which Uses can be built on the existing 3D Model


Move Management and Phase Planning

BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Phase 2 required the relocation of 500 employees into the Phase 1 Temporary Office Facility Transition stage duration was 39 days

• How can GGJV and GSA minimize move time while managing resources throughout the renovation?

PRESENTATION OUTLINE:

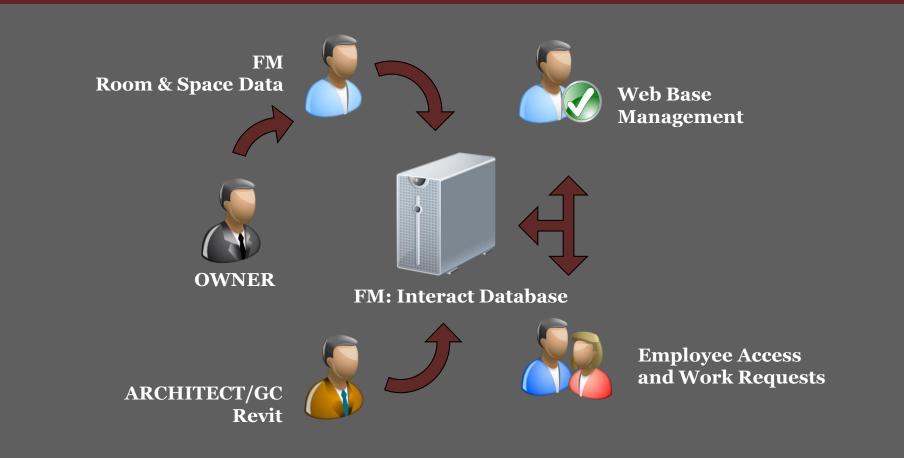
- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation
- III. BIM Utilization
 - I. Identifying Uses

 - III. GC & FM Benefits
 - IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Proposed Solution

- - Asset Management
 - Maintenance Scheduling

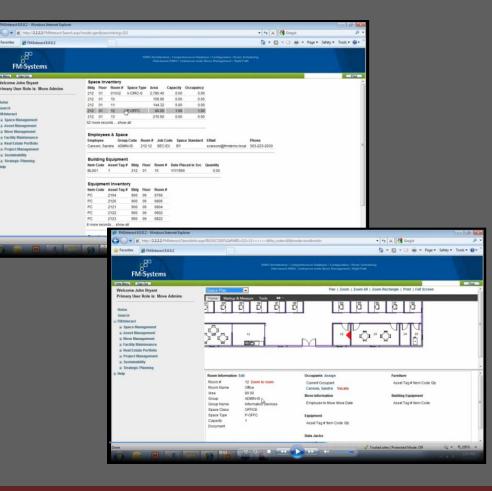
Utilizing Existing Information


BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• FM: Systems' FM: Interact Workplace Management Suite Transition Planning and Space Management

• GSA currently has Room Data Sheets with general information on the facility • Grunley has completed a phase filtered Revit Model with existing and new conditions



PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

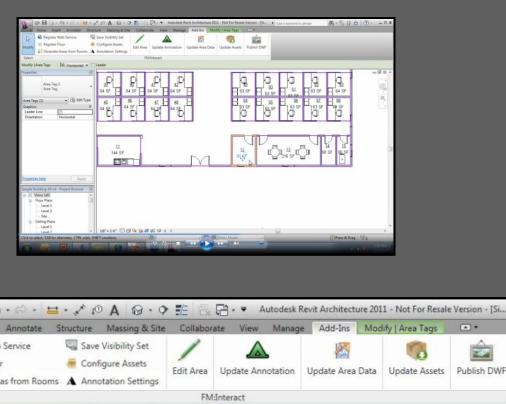
III. BIM Utilization

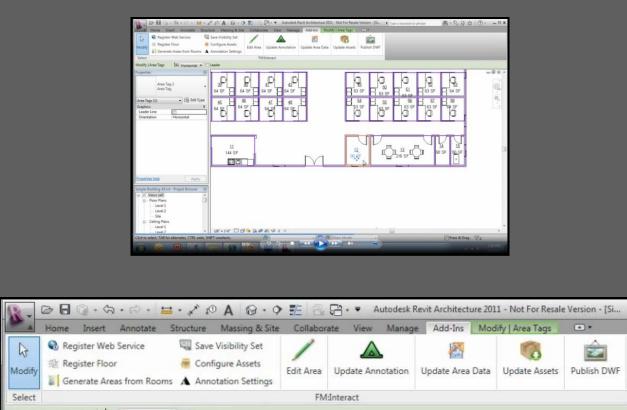
- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Applying FM:Interact

- Web-based information database

Room Data and Information

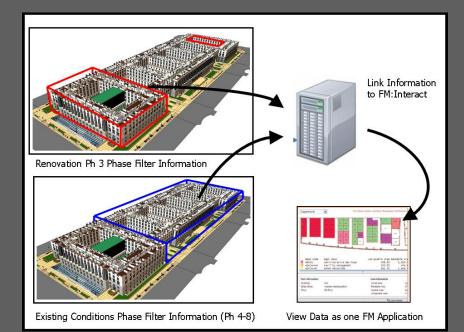

- Occupant Information
- Furniture and Building Equipment
- Move Status and Information


BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Bi-lateral updating- Revit Model information and Room Data input • Extensive interface with custom views and reports

• Room Number, Name, Capacity, and Total Area



PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

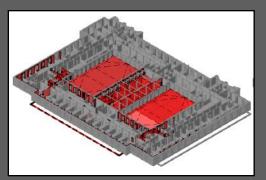
III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

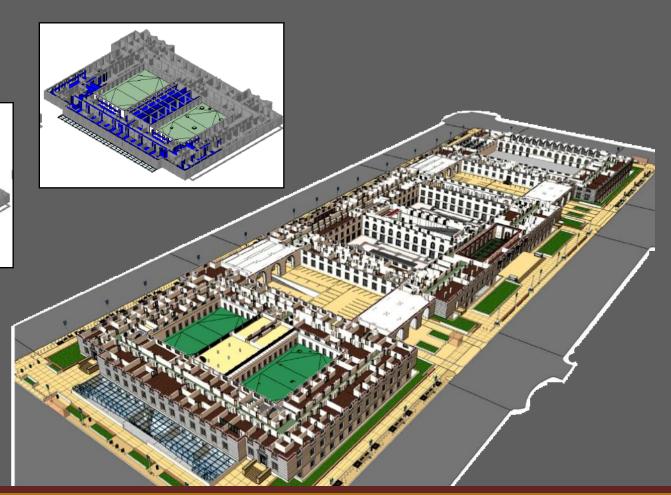
Phase Planning

Space and Asset Management

Maintenance Scheduling


BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT


• Coordinate Move dates with Facility Management and Building Occupants Communicate information through web notifications Provide visual of existing and new occupant location

• Data input can begin with Revit Model (Room Numbers, area, equipment) • User friendly interface for easy information searches

• Communicate work orders directly through web service • Visual aid for coordinating building maintenance schedule

PRESENTATION OUTLINE:

I. Project Background

II. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

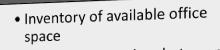
III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Lessons Learned
- V. Acknowledgements

Implementation Process

- Configure web and data links
- Import CAD data
- Train FM Users and System Testing
- Maintenance

Timeline for Implementation


BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Establish Goals and Information to Include

• Expected implementation time is 3-6 months Phase 3 originally scheduled to begin in December 2011 (8 Months) • Similar case study presented implementation time of 2 months (including training and move)

- Decrease move time between phases
- Room Space and Numbers
- Occupants and employees
- Cataloged Inventory of Assets
- Phase filter of new and existing spaces
- Accurate room numbers and square footage

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Criticisms for Improvement

- Limited interoperability with bar-codes or enterprise resource planning (ERP) systems
- Quantitative data and in depth case studies is extremely limited

Final Conclusions and Recommendations

- GGJV to implement FM:Interact with facility management during the Phase 3 transition period • Quantitative data to compare software benefits • GGJV can become industry leader in developing life-cycle models for renovations with FM:Interact

BIM UTILIZATION

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- Significant data entry required before utilizing FM: Interact
- No 4D phase planning capabilities- Information can not be linked to a schedule

800 FM:Systems

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. **BIM Utilization**

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- V. Acknowledgements

Analysis 1

Analysis 2

Analysis 3 (Photovoltaic Feasibility Study)

LESSONS LEARNED

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

Precast Hollow Core planks significantly increase on site productivity • Penetrations and Coordination are crucial elements in a successful precast design • Crane use has great impact on production and schedule coordination

• BIM is much more than clash detection and 3D modeling • Implementing construction models to the operations phase of a building is feasible • BIM technologies are still new- it is difficult to find quantitative data illustrating results

 Photovoltaic systems are cost effective over their lifetime • Installation and system tie in are major issues to consider • Rebates and Incentives make on-site renewable energy more endising

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

PRESENTATION OUTLINE:

- I. Project Background
- II. Precast Plank Application
 - I. Design & Structural Impact
 - II. Schedule/Cost Impact
 - III. Implementation

III. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- IV. Lessons Learned
- VI. Acknowledgements

Academic Acknowledge

- Dr. Robert Leicht -
- Dr. David Riley
- Dr. John Messner

Industry Acknowledge

- Gilbane- Grunley Jo
- General Services Adu
- Group Goetz Archite

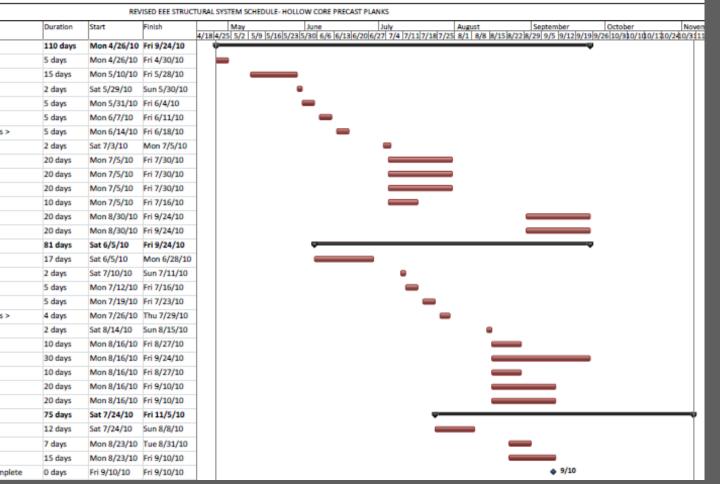
Special Thanks

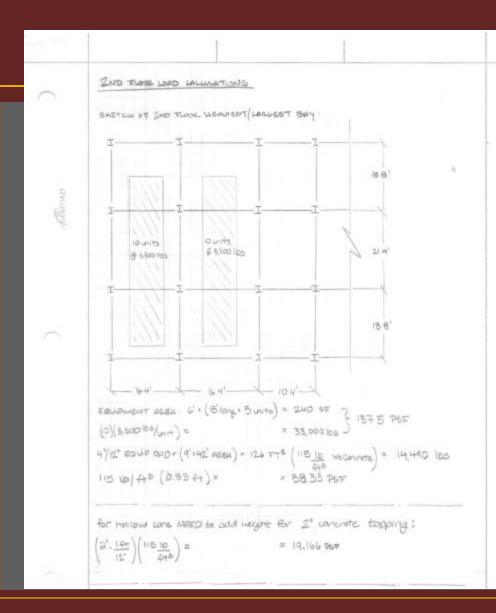
- Steve Monroe, Chris
- Mark Taylor
- Gerad Johnson

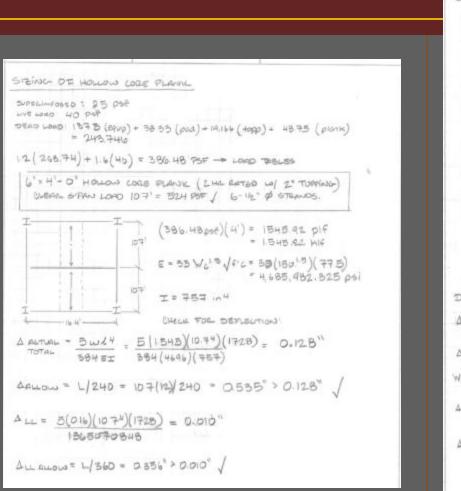
ACKNOWLEDGEMENTS

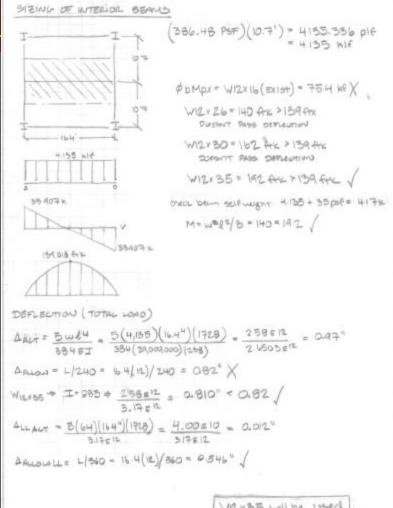
OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

nents	
Thesis Advisor	
nents	
nt Venture ninistration cts	 Nitterhouse Concrete Products FM: Systems
Chacey, Jeremy Thibodeau	Andy MackeyMatt Dabrowski, Eric Fedder

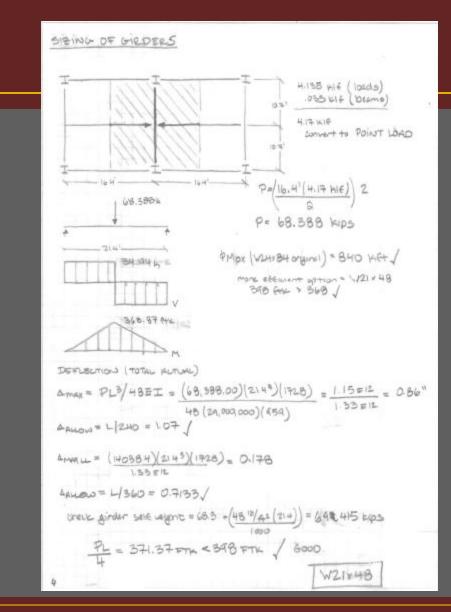

OFFICE RENOVATION BUILDING Northeast, United States Anthony Jurjevic | Construction Management

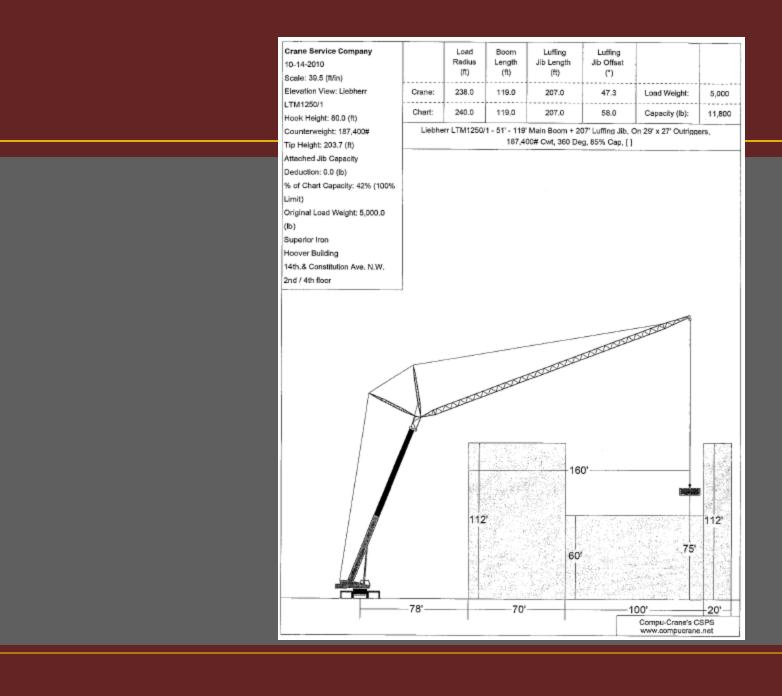

OFFICE RENOVATION BUILDING Northeast, United States Anthony Jurjevic | Construction Management


APPENDICES (Q&A)

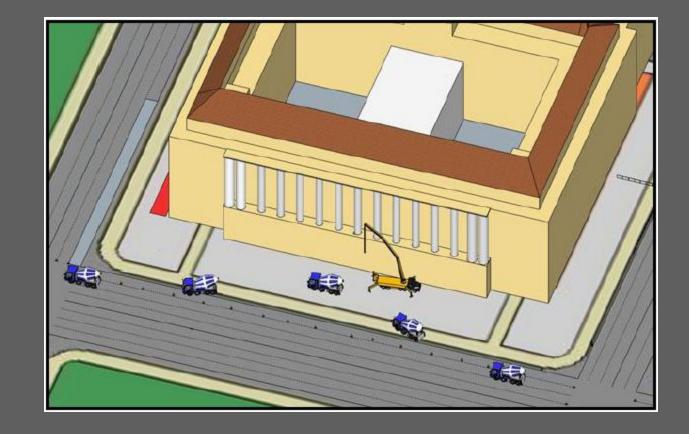

Appendices Pages For Q&A

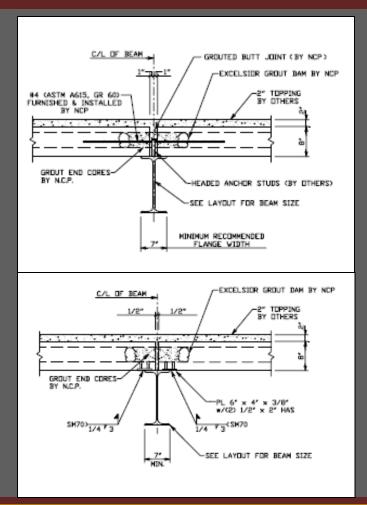
Task Name	Duration	Start	Finish	201									2011										
Basement	193 days	Map 1/25/10	Wed 10/20/10		Feb	Mar A	Apr Ma	nut ye	Jul	Aug Sep	Oct	Nov Dec	Jan Fe	:b M	Mar Apr	May Jun	Jul Au		ID		Task	Task Name	
Dust Partitions (Basement)	5 days	Mon 1/25/10 Mon 1/25/10																	15		Mod		
Empity Basement Storage Area	20 days	Mon 1/25/10 Mon 1/25/10			<u> </u>															1	*	2nd Floor	
Cut & Cap EEE	10 days	Mon 3/22/10																		2	*	Salvage Roof Pavers for Reuse	e
Demo AHU EEE	20 days	Thu 6/3/10	Wed 6/30/10																	3		Steel Framing 2nd Floor EEE	
Demo EEE (Basement Existing)	60 days	Thu 7/29/10	Wed 10/20/10																	-			
nd Floor	174 days	Mon 4/26/10	Thu 12/23/10				• —													4	1	< Set Hollow Core Planks >	
Salvage Roof Pavers for Reuse	5 days	Mon 4/26/10	Fri 4/30/10																	5	*	< Precast Grouting and Conne	actions >
Steel Framing 2nd Floor EEE	15 days	Mon 5/10/10	Fri 5/28/10																	6	*	< Pour and Cure 2 " Topping >	>
Concrete 2nd Floor EEE	7 days	Tue 6/1/10	Wed 6/9/10																_	7	-		
Concrete up to Strength	15 days		Wed 6/30/10																			< Form, Cast, and Cure Equipr	
Set Equipment Pads	5 days	Thu 7/1/10																		8	1	Rigg Switchgear & Transforme	ers
Set/Connect Parl Switchgear	20 days		Mon 8/30/10																	9	*	Set/Connect Parl Switchgear	
Set/Connect MV Switchgear North	20 days		Mon 8/30/10																	10	*	Set/Connect MV Switchgear M	North
Set/Connect MV Switchgear South	20 days		Mon 8/30/10																	11	-	•	
Rigg Switchgear & Transformers	2 days		Wed 8/4/10							_												Set/Connect MV Switchgear S	
Assemble & Protect Switchgear	10 days		Wed 8/18/10																	12	1	Assemble & Protect Switchge	ar
Set/Connect 5KV Chiller SWGR NW	20 days		Thu 12/23/10																	13	*	Set/Connect 5KV Chiller SWG	RNW
Set/Connect 5KV Chiller SWGR NW h Floor	20 days	Fri 11/26/10																		14	*	Set/Connect 5KV Chiller SWG	P NW
n Hoor Steel Framing 4th Floor EEE	151 days	Thu 6/10/10	Wed 6/30/10										-								- Ca-		
Concrete 4th Floor EEE	15 days 7 days	Thu 6/10/10 Thu 8/5/10																		15	× .	4th Floor	
Concrete 4th Floor EEE Concrete up to Strength	7 days 15 days	Mon 8/16/10								_										16	*	Steel Framing 4th Floor EEE	
Set Equipment Pads	5 days		Mon 9/13/10							— .										17	*	< Set Hollow Core Planks >	
Rigg Generator & Switchgear	2 days		Wed 9/29/10																	18		< Precast Grouting and Conne	actions >
Assemble & Protect Generator	10 days		Wed 10/13/10								_											0	
Set/Connect Generators 1.2.3	30 days		Wed 11/24/10									_								19	1	< Pour and Cure 2 " Topping >	*
Set Generator EEE	10 days		Wed 11/10/10									_								20	*	< Form, Cast, and Cure Equipr	ment Pads >
Set/Connect SWGR#1 NW Transf	20 days		Thu 12/23/10								_									21	*	Rigg Generator & Switchgear	
Set/Connect LVDO SWGR#1	20 days	Fri 12/10/10																		22	-	Assemble & Protect Generato	
loof	98 days	Tue 9/7/10								-			— - -										
Steel Framing Roof EEE	15 days	Tue 9/7/10	Mon 9/27/10																	23	1	Set/Connect Generators 1,2,3	1
Install Louver Framing EEE	15 days	Tue 9/28/10	Mon 10/18/10																	24	*	Set Generator EEE	
Concrete Roof EEE	7 days	Tue 10/19/10	Wed 10/27/10																	25	*	Set/Connect SWGR#1 NW Tra	ansf
Spray Fireproofing EEE	20 days	Thu 10/28/10	Wed 11/24/10																	_	- Ca	Set/Connect LVDO SWGR#1	
Install Membrane & GR Components E	EE 30 days	Fri 12/3/10	Thu 1/13/11																	26	<u> </u>		
Install Roof Plantings EEE	5 days	Fri 1/14/11																		27	3	Roof	
All Floors	237 days	Wed 9/29/10																÷		28	*	Steel Framing Roof EEE	
Install Stairs EEE	10 days		Tue 10/12/10																	29	*	Concrete Roof EEE	
Masonry EEE	30 days	Wed 9/29/10																		_	-		
Storm Piping	10 days		Wed 11/10/10)								30		Install Louver Framing EEE	
Conduit & Cable Generator EEE	35 days	Thu 11/11/10	Wed 12/29/10																	31	1	Crane Use and Structural Acti	vities Comple

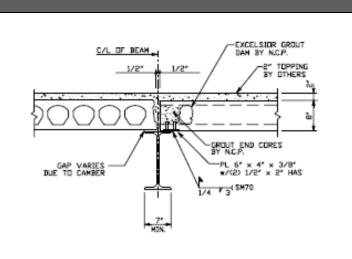


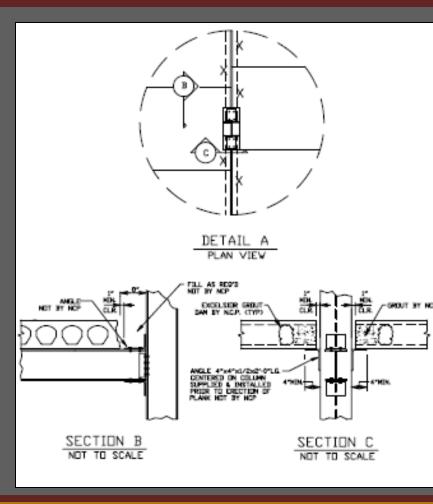


WILV35 will be used

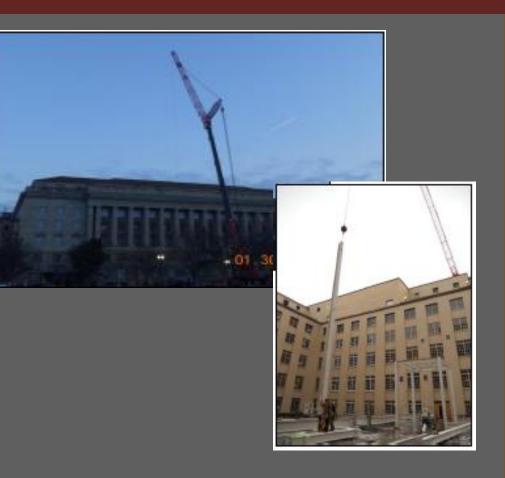








Estimated Actvity Durations (RS Means	Cost Data 2	2011)	
Activity	Unit	Daily Output	Quantity	Duration (Days)
2nd Floor				
" Topping- self level dry 3000 psi, pumped	SF	12000	6585	0.548
opping Cure Time				2.0
orms in Place for Equipment Pads (4 use)	SFCA	205	109	0.532
et Equipment Pads- 4" Elevated Pad	SF	2613	1152.9	0.44
quipment Pad Cure Time				2.0
tripping of Equipment Pad Formwork	SFCA	205	109	0.532
4th Floor				
" Topping- self level dry 3000 psi, pumped	SF	12000	6585	0.548
opping Cure Time				2.0
orms in Place for Equipment Pads (4 use)	SFCA	205	133	0.648
et Equipment Pads- 4" Elevated Pad	SF	2613	1114.575	0.42
quipment Pad Cure Time				2.0
tripping of Equipment Pad Formwork	SFCA	205	133	0.548



PHOTOVOLTAIC FEASIBILITY ANALYSIS

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

Photovoltaic Analysis Slides (Not Presented)

PRESENTATION OUTLINE:

- I. Project Background
- II. Photovoltaic Analysis
 - I. Sizing the System
 - II. Grid Tie-In
 - III. Energy Production/Cost

III. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

IV. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- V. Lessons Learned
- VI. Acknowledgements

PV ARRAY PARAMETERS							
Available Roof Area	5,760 SF						
Slope of Roof	3:5 (31 Degrees)						
Orientation	Directly South						
Optimum Tilt Angle	31 Degrees						
Summer	24 Degrees						
Fall/Spring	39 Degrees						
Winter	54 Degrees						
Sun Hours/Day	4.9						

Background Information

Research Goal

• Perform a photovoltaic feasibility study

PHOTOVOLTAIC ANALYSIS

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Renovation project in pursuit of LEED Gold Certification- LEED V2.2 • No current initiative to obtain credits for On-Site Renewable Energy • Roof Orientation and pitch ideal for PV array

• Examine life cycle costs and payback period

PRESENTATION OUTLINE:

- I. Project Background
- II. Photovoltaic Analysis
 - I. Sizing the System
 - II. Grid Tie-In
 - III. Energy Production/Cost

III. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

IV. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation

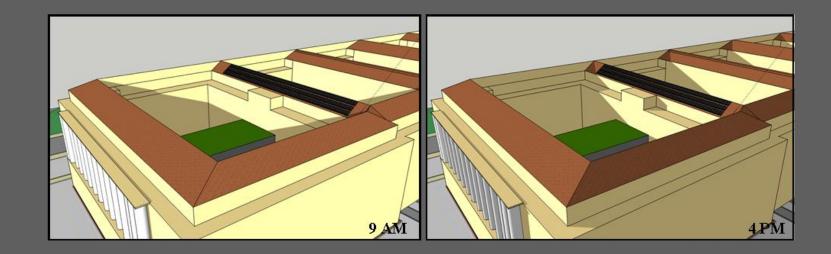
V. Lessons Learned

VI. Acknowledgements

	KYOCERA - Calculation for the Electrical Equipment Enclosure										
Step	Value	Comment / Description									
1	4.9	sun hours per day									
2	91224	watt-hours energy load (5% Waste Factor Included)									
3	18617	watts/hour of sunlight									
4	102.7	amperage x charging voltage for model KD210GX-LP									
5	181.3	# of models required									
	190	Units Required									

Electrical Equipment Enclosure Lighting Loads

Design Process


- Kyocera Solar Panel Design Process utilized • 5 Step Process for determining the number of panels needed to power load • Kyocera KDL210GX-LP panels were utilized

- 192 59"x39" will be laid out in three rows across the length of the roof

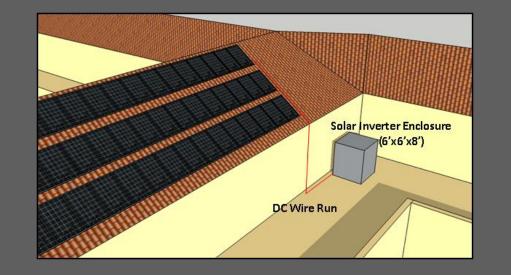
PHOTOVOLTAIC ANALYSIS

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

- 2nd Floor: (37) 48 Watt 2 Lamp Pendant Mounted Fluorescent Industrial Luminaries-•15 Hours/Day operation: 53.28 kWh
- 4th Floor: (40) 28 Watt 2 Lamp Pendant Mounted General Purpose Industrial Luminaries-■ 15 Hours/Day operation: 33.6 kWh
- 91,224 Total Watt-Hours Energy Load (5% Waste Factor Included)

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

PRESENTATION OUTLINE:


- I. Project Background
- II. Photovoltaic Analysis
 - I. Sizing the System
 - II. Grid Tie-In
 - III. Energy Production/Cost

III. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

IV. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- V. Lessons Learned
- VI. Acknowledgements

System Tie-In

- PV Array will be tied into the facility's energy provider grid
- System will not be directly powering EEE's lighting loads
- Balance of Systems equipment will provide disconnects for AC and DC wire runs, ground and overcurrent protection
- (6) SB-6000 US in into the grid
- System will be connected to the main distribution panel in the EEE

PHOTOVOLTAIC ANALYSIS

OFFICE RENOVATION BUILDING Northeast, united states Anthony Jurjevic | Construction Management

• (6) SB-6000 US inverters will be housed near the system to convert DC power into AC power to tie

PRESENTATION OUTLINE:

- I. Project Background
- II. Photovoltaic Analysis
 - I. Sizing the System
 - II. Grid Tie-In
 - III. Energy Production/Cost

III. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

IV. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- V. Lessons Learned
- VI. Acknowledgements

Northeast, United States			
Program	Incentive Type	Amount	
Utility Company: Existing Buildings Energy Efficient Program	Grant	\$ 20,000.00	
Net Metering	Performance Incentive	\$140/ MWh	
PSC Solar Renewable Energy Certificates	Performance Incentive	\$460/ MWh	

Energy Production

System Cost and Renewable Energy Incentives

PHOTOVOLTAIC ANALYSIS

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• The panels combine to produce a total of 40.3 kW (DC) • Referencing PVWatts V.1 Calculator: Annual AC Energy produced is 49,766 kWh • At \$0.08/kWh, the system produces \$3,981.00 of energy annually

 Research shows similar systems cost approximately \$7.60 per watt of energy produced (\$7.80) • The 40.3 kW system will cost approximately \$314,340.00 • Federal buildings are applicable to limited incentives for on-site renewable energy systems

PRESENTATION OUTLINE:

- I. Project Background
- II. Photovoltaic Analysis
 - I. Sizing the System
 - II. Grid Tie-In
 - III. Energy Production/Cost

III. Precast Plank Application

- I. Design & Structural Impact
- II. Schedule/Cost Impact
- III. Implementation

IV. BIM Utilization

- I. Identifying Uses
- II. Software Application
- III. GC & FM Benefits
- IV. Implementation
- V. Lessons Learned

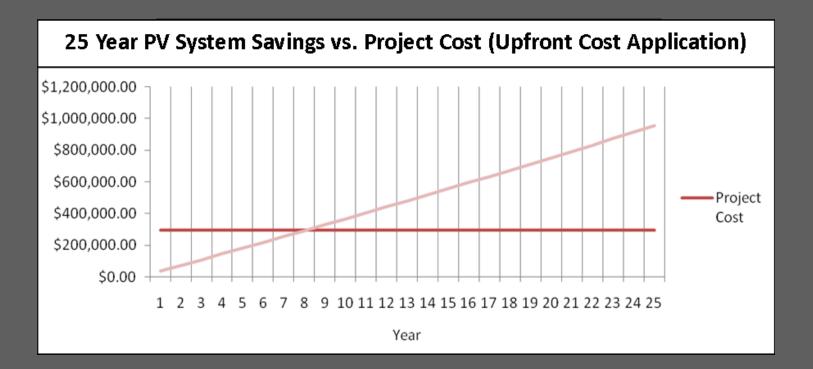
VI. Acknowledgements

Market			
Retail Cost of Electricity	0.13	\$/kWh	
Elec. Rate increase	2.50%		
AECs Value	590	\$/MWh	
Loan			
Percentage Borrowed	0.00%		
Loan Value	\$0.00		
Interest rate	3.00%	APY	
Period	25	Years	
CRF	0.004742113		

Summary of System Cost and Savings		
Upfront Cost	\$ 294,390.00	
Average Monthly Savings	\$ 2,980.00	
Pay Back Period	8 Years, 2 Months	
Total Savings (25 Years)	\$ 660,007.89	

Payback Analysis

- Payback Calculator created by Andy Mackey M.S. Construction Management • Calculation based on owner supplying upfront costs for system Payback period just over 8 years


Final Conclusion and Recommendations

PHOTOVOLTAIC ANALYSIS

OFFICE RENOVATION BUILDING NORTHEAST, UNITED STATES ANTHONY JURJEVIC | CONSTRUCTION MANAGEMENT

• Lifetime savings of \$660,000.00 over the course of 25 years

 Project owner should invest in applying photovoltaic system • Visually represents owner investment in sustainable practices Investment returns life time savings greater than \$660,000.00

