2011

Drexel University Recreation Center Philadelphia, PA

Final Thesis Report

Britnei Godusky | Lighting/Electrical Faculty Consultants: Professor Ted Dannerth Dr. Kevin Houser 4/7/2011

the drexel university recreation center philadelphia, pa

britnei godusky | lighting + electrical

size | 84,400sf levels | three stories above grade cost | \$40.2 million construction dates | summer.2008-winter.2009 delivery method design-bid-build

> drexel university | owner sasaki associates, inc. | architecture/interiors ewingcole | electrical/lighting ewingcole | structural ewingcole | mechanical turner construction | contractor

1500kva 480Y/277 3θ dual supply from existing campus substation. indoor diesel 350kw 480/277 3θ 4W emergency generator. dry-type step-down transformers on each floor for appliance and lighting panels. primarily fluorescent lighting at 4100K, metal halide for accent in hall of fame. public and circulation spaces switched via relay-based building wide controls. energy efficient exterior induction lighting with integral photocell control.

strong lines and sharp angles are emphasized on glazing/aluminum panel façade, combining for a modern play on transparency and concealment. athletic center addition includes sports bar, gymnasium with elevated track, fitness centers, rock-climbing wall, racquetball courts and group fitness rooms. exposed concrete ceilings and columns create exposed, spacious impression.

mechanical system operates at full occupancy 24/7 and is composed of: seven rooftop air handling units, four VAV and three CV, ranging from 1880cfm for lobby to 32,550cfm in fitness/weight room. three parallel boilers providing hot water for gas heating system. air cooled condensers in AHUs feeding blower coil air conditioning. system controls monitored by supervisory network on Drexel campus.

structural system based entirely on reinforced concrete including: concrete caissons founded on rock auger refusal. one-way slab on grade ground floor with perimeter foundation walls. exposed concrete columns throughout building interior. additional stories and roof of structural concrete flat plate slabs. gymnasium roof supported by truss system, the only completely steel structure.

http://www.engr.psu.edu/ae/thesis/portfolios/2011/bjg5004

lighting electrical

team

building

statistics

project

architecture

mechanical

structural

executive summary

This report provides a comprehensive overview of all work and analysis completed during the AE 897G Senior Thesis and includes four lighting and four electrical depth topics, as well as three additional breadth topics resulting in a re-design of several systems present in the Drexel Recreation Center. This study does not conclude that there are actual problems with the existing designs, but was simply intended to investigate and approach alternative solutions.

The lighting depth follows the design process through schematic design, design development, and construction documentation of four spaces: the exterior courtyard, lobby, fitness center, and restaurant. All three of the interior spaces selected span the Market Street façade, allowing the lighting design to greatly influence the aesthetics of the facility and to directly influence the experience of the passing pedestrians and drivers. The facility is fueled by the energy of the occupants as they move within the space just as the body is fueled by core energy during a workout. The minimalist design of the architecture with its structurally exposed concrete, straight lines, clean materials, and strong angles allow the energy and active users to become the feature of the space, which they are with the interactive LED element in the fitness center that allows the exerciser to generate kinetic energy which is harvested and converted into a color changing design that allows the energy to be visible from the exterior.

The electric depth modified the branch circuit distribution for each space listed above in response to the lighting redesign, and feeders and panels were analyzed for coordination and voltage drop. A protective device coordination study was performed along with short circuit analysis for a path originating at the utility entrance through the main switchboard to distribution panel DP-1-1, and down to panel AP-1-1. A system to convert kinetic energy from the cardio machines into DC power for an interactive LED lighting load was designed and implemented in the fitness center. A cost comparison will be completed of an alternative solution to the existing PVC conduit distribution system located within the concrete slab of MC cable run through solid bottom cable trays on the ceiling below utilizing poke-throughs to distribute power to branch circuit loads.

An MAE focus of daylighting integration into the gymnasium using skylights in turn initiated the two out-of-option breadths of study: acoustical and structural. To incorporate daylight the dropped panel ceiling in the gymnasium was removed, and resulting load distribution adjustments required an analysis of the existing spacing and loading of steel truss system, as well as reverberation time calculations and consideration of echo and noise within the gymnasium. The structural and acoustic studies within prove that not only are daylights beneficial for the electric power consumption, they are also completely feasible without negatively impacting other scopes of the project.

table of contents

executive summary	3
table of contents	4
background	5
building statistics	6
lighting depth	11
exterior space courtyard	11
large workspace fitness center	21
circulation space lobby	32
special purpose space restaurant	41
electrical depth	50
branch circuit distribution	51
protective device coordination study and short circuit analysis	
kinetic energy harnessing system	
branch circuit cabling comparison	91
breadth one (MAE): daylighting	97
breadth two: acoustical	119
breadth three: structural	122
summary and conclusions	127
references	128
acknowledgements	129
appendix a: lighting fixture schedule and cut sheets	130
appendix b: ballast and driver cut sheets	166
appendix c: control schedule and cut sheets	183
appendix d: lighting plans	193

background

5

Centrally located in the heart of Drexel's Campus in Philadelphia PA, the 84,000sf University Recreation Center is a \$41 million state of the art addition to Drexel's existing athletic facility. Doors opened in January 2010, providing students and faculty with ID swipe card access to athletic areas including a rock climbing wall, group exercise center, and gymnasium with elevated track. The western half of the southern Market Street façade is dedicated to a restaurant and sports bar, contributing an exciting new venue to University City.

The building façade is the highlight and focal point of the Drexel Recreation Center design, reinforcing the main design goal for designer Sasaki Associates: to give the university a strong, modern presence along Market Street, the main thoroughfare directly into Center City. A result of extensive energy studies, the strong lines and sharp angles of the glazing/aluminum panel façade utilize daylighting in the most energy efficient way to create a bold presence with a modern play on transparency and concealment. Exposed concrete interiors interact with the extensive glazing on the southern façade to create an exposed, bright, spacious impression in interior spaces.

building statistics

general building information

location | NW Corner of 33rd and Market Streets Philadelphia, PA

building occupant | Drexel University faculty and students

occupancy type | Gymnasium/Lounge Café

size | The entire athletic center is 250,000sf but the addition covered by this investigation is 84,000sf

total levels | Three levels above grade

dates of construction | June 2008-December 2009

actual cost | \$41 million

project delivery method | Design-bid-build with a gross maximum price

primary project team

Drexel University	owner
Sasaki Associates	architecture interiors landscaping
EwingCole	mechanical/electrical/plumbing structural fire protection
Pennoni Associates	civil site design geotechnical/environmental engineering
Turner Construction	contractor
restaurant fit-out	
LDL Studio Inc.	architect
FXBonnes Associates Inc.	mechanical/electrical/plumbing fire protection

architecture

Intended to give a new face to Drexel's presence on Market Street in downtown Philadelphia, the Drexel University Athletic Center is a state of the art facility with ID swipe card access to athletic areas including a rock climbing wall, group exercise center, and gymnasium with elevated track. The western half of their southern Market Street façade is dedicated to a restaurant and sports bar, contributing an exciting new venue to University City. Exposed concrete interiors and floor to ceiling glazing on the southern façade create an exposed, bright, spacious impression.

national code models:

2006 International Building Code with Philadelphia Amendments 2006 International Fire Code 2006 International Fuel Gas Code 2006 International Mechanical Code 2006 International Energy Conservation Code 2006 International Existing Building Code Pennsylvania Uniform Construction Code National Electrical Code, 2002 Edition 2006 International Mechanical Code NFPA Standards 13, 14, 20, 72

zoning requirements:

occupancy | A-3 gymnasium, A-2 Lounge Café usage| mixed use non-separated occupancy building occupant | Drexel University faculty and students construction type | type IIA allowable height | 3 stories, 85' allowable area | 151,125'

building enclosure:

envelope | The athletic center uses a thermal envelope system including an exterior air/vapor barrier system (726), cavity insulation (72), and membrane flashing (76).

Façade materials:

architectural concrete exterior wall (333) slate shingle wall system (73A) metal plate wall panel system (74A) solid phenolic exterior wall system (742A) aluminum window system including metal flashings (84A) **roofing** | roofing materials include Zinc-coated steel, aluminum sheet, extruded aluminum, semirigid glass fiberboards, asphaltic roofing cement, and bituminous mastic isolation coating on a concrete flat plate slab.

construction

The Daskalakis expansion wraps around the existing Athletic Center, adding 84,000sf to the existing building and more than doubling the amount of recreation space in Drexel's athletic center. Turner Construction won the design-bid-build project with a Guaranteed Maximum Price. The GMP budget for construction was \$31 million with the total final project cost coming in at \$42 million. The project broke ground in June 2008, and as an initiative to be environmentally conscious, for every tree that was removed in the facility's construction a new tree was planted elsewhere on Drexel's campus.

electrical

The DAC's overall electrical system is a radial system with one point of 13.2 kV service entrance in the main electrical room in the basement of the Fitness Center. This service entrance is fed from existing PECO service switchgear in the Nesbit Building. The entrance is powered by a 1500kVA transformer that steps down the voltage from 13.2kV to a 480Y/277V, 3P, 4W voltage system located in a newly constructed substation to feed the new addition as well as the existing substation in the DAC. A 2500A main distribution system provides power 480Y/277V power to all loads. Dry-type, step-down transformers feed 208Y/120V, 3P, 4W power to receptacles and appliance loads, while lighting panels use 277V power. For backup power to emergency branches powering emergency/egress lighting, sewage ejector pumps, existing sump pumps, and boiler controls, the DAC utilizes an indoor diesel emergency generator rated at 350kW, 480Y/277P, 3P, 4W.

lighting

The lighting throughout the Daskalakis Athletic Center successfully creates a bright, energetic space that interacts and responds directly to the architecture and aesthetic intent of the façade and the building within. Direct and reflected glare is avoided and an attractive rendering of people and objects in the space is achieved by the use of mostly indirect lighting to illuminate the task plane. The lighting design was ASHRAE 90.1 compliant using the total building method, and all of the spaces met or exceeded IESNA's recommended illuminance values. Just as the glazing on the southern and eastern building façades demands attention in each space in the facility, the continuity of both a cool color temperature of 4100K and the linear response to the façade creates cohesion when transitioning from space to space.

mechanical

Drexel's Athletic Center is conditioned by seven direct expansion rooftop air-handling units ranging from 1,880cfm for the lobby to 32,550cfm in the fitness/weight rooms. Three parallel BHP hot water heaters are located below the gymnasium partner with the 3,000 gallon fuel oil tank located

in an underground vault to power the duel heating system. Four AHUs are variable air volume and three are constant volume, utilizing an associated supply, return, and exhaust duct distribution. Shell space was provided in the mechanical room for a future water cooled chiller.

structural

The structural system for the facility is based entirely on reinforced concrete. The one-way slab on grade foundation rests on concrete caissons, with cast-in-place perimeter foundation walls formed above concrete grade beams. Exposed concrete columns are prevalent throughout the building interior, with additional stories and roof composed of structural concrete flat plate slabs. The gymnasium roof is supported by a steel truss system designed to support air handling equipment and cooling towers. The lateral system consists of concrete shear walls in the four gymnasium corners as well as in the space south of the existing DAC.

fire protection

The Athletic Center is utilizes a full sprinkler system supplied by the city's water supply and designed in accordance with NFPA 13. The floor control stations are located in stair towers 3 and 4 and served from a combination sprinkler riser including floor control valve assemblies, test valves, and drains. A manual fire alarm system is installed with an interfaced control system tied into a campus supervising system. Activation initiates an emergency voice/alarm communication system with using speaker strobes that are white in color. Smoke detection is provided in electrical/telecom rooms, above doors controlled by the system, in elevator lobbies, elevator machine rooms, and in HVAC ducts.

transportation

Two hydraulic elevators serve the first through third floors of the DAC. The main stairway is accessed just through the swipe card entrance, and is the primary means of vertical transport between the lobby, gymnasium, and second and third level fitness areas. Additional staircases are located at the north- and south-eastern corners of the fitness areas, and are primarily used for egress.

telecommunications

Voice and data are provided to the conference rooms, offices, and retail space via 4" PVC sleeves in cable trays mounted within the structural concrete slabs. Emergency phones are located in the elevator lobbies, equipment issue room, gymnasium, retail café, and recreation spaces to provide quick response in case of injury during physical activity. A fire alarm annunciator with live voice capability is located at the security desk at the east lobby entrance.

AV

The audiovisual system in the athletic center incorporates an audio/paging system through pendant speakers throughout the lobby and fitness area, as well as ceiling mounted speakers in the gymnasium. LCD screens are located in the climbing lounge, at the east and west lobby entrances, with a total of twenty screens mounted on each floor of the fitness area. AV equipment rooms are

provided on the second and third floors with the second floor space feeding the LCD screens and speakers on the first floor.

security

Electronic security control modules are located in the main security room east of the electrical room on the ground level beneath the gymnasium. Each main entrance is controlled by electronic locks with an emergency override located at the security desk. Electronic locks also guard the gymnasium entrance and each stairway. A pole mounted security camera monitors the exterior on the eastern and alternate north entrance to the new facility, with interior cameras located in the athletics gallery. Swipe card access is required to enter the recreation center, and is located beyond the security desk.

introduction

The Drexel Recreation Center uses its transparent façade to prominently establish Drexel's visual presence in an energy efficient way. Constructed by linear panels of floor-to-ceiling glazing along a majority of the streetscape, the façade is lit almost completely by the interior lighting. The four spaces to be analyzed and redesigned include:

exterior space | courtyard large workspace | fitness center circulation space | lobby special purpose space | restaurant

All three of the interior spaces selected span the Market Street façade, allowing the lighting design to greatly influence the aesthetics of the facility and to directly influence the experience of the passing pedestrians and drivers. Sasaki Associates took care to expose the core energy of the building. The facility is fueled by the energy of the occupants as they move within the space just as the body is fueled by core energy during a workout. The minimalist design of the architecture with its structurally exposed concrete, straight lines, clean materials, and strong angles allow the energy and active users to become the feature of the space. In addition to accentuating the architecture and core concept, the lighting must be designed to meet established design criteria that are outlined for each space, which includes guidelines from both the IESNA handbook and ASHRAE energy Standard 90.1. Included in the lighting analysis are a summary of the space, design concepts criteria and considerations, equipment and controls schedules, and all technical documentation of the design and its performance.

exterior space | courtyard

overall design goals

To reinforce the perception of energy from within the facility, the core of the building appears glowing from the courtyard, and minimalist fixtures were chosen to highlight the architectural features of the area.

The athletic center's courtyard and plaza will feel welcoming while balancing the feeling of a public space during the day and a more private, enjoyable shortcut across campus after dark. Keeping the central area dimmer and guiding the pedestrians through the space with light can transform this space from its current state as a scarecely lit, unnoticeable space to an inviting, engaging spot in which to walk.

figure 1 - Orientation of courtyard to building site

description

The exterior courtyard space is located on the northern side of the Athletic Center addition, and is bordered on the west by the existing athletic center. Measuring 123' x 117', the courtyard covers close to 15,000sf. Providing access to both the gymnasium and the Hall of Fame entrance to the facility, the space is an important circulation space and is the first impression portrayed to visitors approaching the DAC from the north side. Due to the dynamic functions of the space during the day, no fixtures can obstruct the colored rubber pavement tiles, providing a challenging aspect to the design in order to ensure that facial recognition is heightened to promote a feeling of safety.

Materials and Finishes							
Surface	Description	Reflectance					
asphalt shingles	-	0.24					
brick façade	existing brick façade of DAC	0.38					
grass	-	0.24					
railing and mullions	metal	0.27					
rubber pavement	Panorama eggshell 3/8" rubber tiles	0.57					
rubber pavement	Panorama light blue 3/8" rubber tiles	0.47					
rubber pavement	Panorama blue 3/8" rubber tiles	0.32					
rubber pavement	Panorama orange 3/8" rubber tiles	0.23					
sidewalk/stairs	concrete	0.25					
glazing	insulating laminated Viracon glazing	t = .46					

table 1 - exterior materials and finishes

tasks/activities

For a majority of the day, this space is simply a space in which students cut through on their way to class, and a visibly engaging courtyard for the secondary northern entrance to the workout facility. The springy rubber tiles allow yoga, martial arts, and other physical tasks typically needing an indoor practice space performed on wrestling mats to take advantage of this open outdoor space for group activity.

design criteria and considerations

desired illuminance levels and design considerations- **IESNA 2000** *Parks, Plazas, and Pedestrian Malls*

quantity of light

general lighting: **0.5fc** paths/steps leading away from building: **1fc** active entrances: **5fc** vertical: **0.3fc**

ASHRAE/IESNA 90.1: Building grounds- Plaza areas 0.2W/sf

quality of light

Very Important Criteria

Color Appearance (and Color Contrast)- In low light levels especially, color rendering plays an important role in the appearance of both individuals and objects throughout the space. To complement the glow from within the gymnasium and also to play on the yellows and blues of the courtyard itself, a cooler temperature will interact in a more pleasing manner with the space.

Direct and Reflected Glare- Glare can be avoided by positioning fixtures outside the direct line of sight of a pedestrian. The expansive glazing on the façade of the gymnasium as well as the glass vestibule the hall of fame have the potential to cause reflected glare if up lighting luminaires are reflecting into the façade.

Light Pollution/Trespass- Specifying shielding or cutoff fixtures can minimize light pollution and trespass. Located in downtown Philadelphia, this is less of an issue and more of a general consideration. Pathway lighting should follow the path, and general luminaires should only send illuminance to the space intended for lighting.

Modeling of Faces or Objects- Due to the levels of foot traffic on campus at night, the modeling of both faces and objects is important within this space to promote a general feeling of safety.

Peripheral Detection- The courtyard is open on two sides to the campus, but both the southeast and northwest entrances to the space are well lit by the entrances to the DAC. However, the location of Drexel on the outskirts of west Philly still make this an important design consideration.

Shadows- The courtyard is a small enough space that shadows should add to the guidance of pedestrians throughout the space. Shadow in the trees and on the plaza will actually add a dramatic and aesthetically pleasing effect for those to view when passing the Rec Center.

Important Criteria

Appearance of Space and Luminaires- The openness of the area makes both the space itself and the luminaires within it on display to the public. To avoid light trespass, luminaires should be placed so as not to be visible from someone not directly inside the boundaries of the space.

Light Distribution on Surfaces- Guided pathways both between entrances and through the space are important and pedestrians are encouraged to walk along them. To counteract the uniform glow from within, the lighting on either side of the façade and on any objects within the space should be dynamic and interesting.

Points of Interest- The gymnasium with its glow from within is automatically highlighted as a main focal point of the space. Interesting patterns could be brought out of the rubber tile at night by grazing the ground's surface. In addition to guiding pedestrians around the building, a clear path into the Hall of Fame entrance should be set by the lighting.

fixtures and equipment

Luminaire Schedule							
Тур	e	Description	Manufacturer				
	M1	13.7' indirect pole-top ceramic metal halide luminaire with square top reflector and asymmetrical distribution	Bega				
P	M2	Aluminum alloy bollard fixture with 180° distribution with crystal glass optical lens	Bega				
·	N1	Recessed LED step luminaire with aluminum housing and white safety glass	Bega				
	N2	4' linear fluorescent wet location listed surface mounted steplight with aluminum housing and white safety glass	Bega				
	N3	4000K Linear LED cove mounted strip fixture with 110° beam spread	Winona				
	N4	Bega					
	Z1	4" gasketed metal halide floodlight with 20° beam spread, aluminum housing and clear safety glass	Bega				

table 2: exterior luminaire schedule

Note: for full luminaire schedule including lamp and power source information and specification, see Appendix A.

Light Loss Factors									
Lamp Type	LLD	LDD	BF	Total					
M1	0.82	0.8	1.0	0.66					
M2	0.85	0.82	1.1	0.77					
N1	0.85	0.82	1.0	0.70					
N2	0.92	0.82	1.08	0.81					
N3	0.7	0.82	-	.574					
N4	0.74	0.82	1.0	.61					
Z1	0.7	0.82	-	.57					

table 3: exterior light loss factors

*The above light loss factors were calculated using the new method in the 2010 IESNA handbook. The Room Surface Dirt Depreciation (RSDD) was neglected and the Luminaire Dirt Depreciation (LDD) was calculated using the updated calculation outlined in the book. A lamp maintenance schedule of twenty-four months was assumed.

controls

All of the exterior lighting utilizes controllable breakers by photocell.

renderings

figure 4: aerial psuedocolor rendering of exterior space

figure 5 – perspective rendering of exterior facing southwest

figure 6 – perspective rendering of exterior facing southeast

calculation summary

figure 7 – courtyard illuminance values

Courtyard Calculation Summary								
Ground (0') Vertica								
average illuminance	2.13fc	2.09fc						
maximum illuminance	6.4fc	3.2fc						
minimum illuminance	0.2fc	1.2fc						
design criteria	0.5fc	0.3fc						

table 4 – courtyard calculation summary

	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.5	
Ð	3.6	2.5	2.4	2.3	2.4	2.4	2.4	2.4	2.8	6.5	Ð
D	4.9	2.9	2.6	2.5	2.5	2.5	2.6	2.7	3.4	8.5	Ð
ß					2.1						
ß	4.4	2.6	2.2	2.1	2.1	2.1	2. 3	2.7	3. 3	9.3	Ð
G	4.1	2.5	2.1	2.0	2.0	2.1	2.2	2.5	3.5	1 0.	7 E
G	4.0	1.9	1.6	1.5	1.5	1. 6	1 .7	2.0	3.2	1 0.2	2 Đ
ß	4.6	• 2. 0	1 .6	1.5	1.6	1.6	1 .7	2.1	3.2	6 .1	Ð
D I	4.5	1.9	1.5	1.5	1.5	1.4	1.4	1.6	2.2	•7.4	Ð

figure 8- staircase illuminance values

4.6	• 4.8	4.5	4.4	10.7	• 34.0	. 19.9	6.8	• 4.9	• 4.4	• 4.8	4.9	4.5	4.5	4.8	6.7	20.1	34.4	10.1	• 4.4	4.1	4.2	• 4.0
4.3	• 4.3	4.2	• 4.1	• 4.4	7.9	6 .8	4.2	4.2	4.3	4.6	• 4 . 4	• 4 . 4	• 4 . 4	4.2	4 .1	6.6	•7.7	4.3	3.8	3 .8	3 .9	• 3.9
3.6	3 .6	3.6	• 3.5	• 3.4	• 3.4	2.4	2.4	2.6	2.8	2.7	2.8	2.7	2.6	2.6	2.7	2,5	* 3.2	• 3.2	3.3	• 3.3	• 3.3	3 .3
*3.6 *3.3	* 3.2	• 3.2	• 3.2	• 3.0	•2.9 [₽]	3	.6	2.5	* 2.4	2.3	* 2.4	3.2 2.4	3.2 2.4	* 2.4	2.8	3.5 €.5 0	* 2.7	• 2.9	• 2.9	• 2.9	3 .0	2.9

figure 9- entrance illuminance values

Entrance Calculation Summary					
Ground (0					
average illuminance	5.26fc				
maximum illuminance	34.3fc				
minimum illuminance	2.6fc				
design criteria	5fc				

table 5 – entrance calculation summary

Stairway Calculation Summary						
	Ground (0')					
average illuminance	3.15fc					
maximum illuminance	10.9fc					
minimum illuminance	1.4fc					
design criteria	1fc					

table 6 – stairway calculation summary

	Lighting Power Density							
Fixture	Input	Quantity	Total					
Туре	Wattage	Quantity	Watts					
M1	78	14	1092					
M2	36	36 7						
N1	10	17	170					
N2	36	864						
N3	3.9W/ft	52ft	202.8					
N4	43	9	387					
Z1	17	12	204					
	Total Watts							
Se	Selected Lighting Area							
	Watts/SF							
ASHRA	ASHRAE Std. 90.1 compliance?							

table 7- exterior lighting power density

evaluation

The lighting design in the exterior courtyard successfully creates a visibly engaging, welcoming outdoor space that balances the public feel of the space throughout the day with a private, safe, enjoyable environment created in the evening. Indirect pole mounted fixtures enhance a feeling of safety and security by enabling high levels of vertical footcandles for facial recognition. The perimeter of the rubber courtyard is illuminated to higher levels, creating layers of light that guide the pedestrians through the space without obstructing the central activity space with fixtures. The design reinforces that the first layer of light to the pathway comes from the building itself, from the steplights and cove fixture and also from the gymnasium and vestibule themselves. The very directional fixtures that are mounted on the building, as well as the LED fixtures uplighting the trees create visual interest in the space. Visitors can enjoy the space while either traveling through the courtyard or entering the secondary Hall of Fame entrance.

A cooler color temperature was used for this space both because of the exterior nature of the courtyard but additionally to tie in with the 4100CCT used throughout the building to compliment the cool cement gray and ice blue color scheme within the fitness center. The design is compliant to both the IESNA recommended light levels for horizontal and vertical illuminance, and also to ASHRAE's standard for linear power density.

21

large workspace | fitness center

overall design goals

The fitness area should feel spacious, and help to energize and uplift the occupants during their workouts. Expansive windows in the Drexel fitness center allow lots of daylight into the space, providing bright, uniform light levels throughout the day. The lighting layout can help to create an energetic, uplifting impression. Peripheral emphasis and clean, uncluttered walls will add to an open space that encourages focus. High illuminance levels on the ceiling and on the workplane will reinforce visual clarity. A bright open space also reinforces safety and cleanliness, which are important within a workout facility. This space is where the energy is actually exerted and returned to the building from the occupants, and so where the most dynamic and representative lighting design is actualized.

description

figure 10 – fitness center location in building plan

The fitness and weight lifting areas are located on the second and third floors of the DAC spanning the 140' southern façade. Sections for free weights and strength machines extend along the Eastern façade of the building. A primary focus of the facility, the floor-to-ceiling windows and 13' ceiling heights make the space an open, inviting, energizing place for cardio workouts and strength training.

Materials and Finishes							
Surface	Reflectance						
north, east, and west walls	gypsum wall board painted in Sherwin Williams Dovetail	0.6					
south wall	gypsum wall board painted in Sherwin Williams Ceiling Bright White	0.8					
flooring	Panorama 3/8" rubber tiles	0.20					
base	6" Johnsonite rubber base in Moon Rock	0.2					
ceiling	exposed concrete	0.60					
framing, trim, railings, desk area	Prodema wood veneer paneling in Pale	0.45					
glazing	Viracon insulated glazing	t = .46					

table 8 – fitness center materials and finishes

Cardio, strength training, and free weight workouts will take place in this space (see figure 11 below for a detailed equipment layout). It also functions as a vertical circulation path from the lower lobby level into the gymnasium, group exercise rooms, rock climbing wall, and various spaces throughout the facility.

figure 11- fitness equipment layout

design criteria and consideration

desired illuminance levels and design considerations- IESNA 2000 Sports and Recreation

quantity of light

weight training:

horizontal – **20fc** vertical – **2fc**

ASHRAE/IESNA 90.1: Gymnasium/exercise center playing area – 0.9W/sf

quality of light

Design Considerations

Very Important Criteria

Appearance of Space and Luminaires- The fitness area is entirely visible to Market Street and so is an integral factor in determining the building's initial impression to the public. In addition to the luminaires being completely exposed due to the exposed concrete ceiling, the façade lighting takes place almost entirely from within, making the appearance of both the space and the luminaires crucial in contributing to the sharp lines and strong angles of the glazing and aluminum paneled exterior. Luminaires are consistent with the architectural concepts, with no soft forms or round edges.

The space has an overall appearance of cleanliness and order, and help to encourage activity and efficiency.

Color Appearance (and Color Contrast)- The color appearance throughout all of the workout spaces is consistent to facilitate effortless visual transitions between activities. The fundamental black, white, and grey color scheme would be better accentuated with a cooler color temperature of 4100K. A color rendering index of at least 85 is specified in order to render a pleasant appearance of skin tones and objects with the space to create a more inviting and pleasant place to work out.

Daylighting Integration and Control- A view of the outdoors has positive psychological effects on occupants, and can help to energize those working out during the day. Daylighting used as an overall ambient lighting for the workout space increases overall energy levels and provide a more energetic and dynamic lighting system.

Luminances of Room Surfaces- To reinforce the feelings of spaciousness and energy, brightness levels can be elevated by directly illuminating the ceiling and walls.

Modeling of Faces or Objects- People are continually interacting with both each other and the objects in the fitness area. Objects should be rendered accurately to ensure the safe and proper usage of equipment. Facial recognition as well as visibility of muscles and muscle function is necessary for spotting and correct performance of various exercises.

Important Criteria

Direct and Reflected Glare- Glare is a particular issue in this space because the occupants will have a variable line of site throughout their workouts. This not only causes distractions but also can hinder safety as being blinded can inhibit the ability to use equipment correctly. Glare can be avoided by limiting the use of luminaires that aim directly down, instead using perimeter or indirect lighting.

Light Distribution on Surfaces- Distribution of light on the ceiling and walls should be uniform in order to provide both a more energetic and spacious feeling but also to provide a more luminous glow to the exterior at night. The exposed columns are an interesting architectural feature that could be highlighted to provide visual interest.

Light Distribution on Task Plane (Uniformity)- The task plane within the fitness space is variable and can be located on the floor, the treadmill, or at changing heights throughout strengthening routines. This makes the overall uniformity of the light levels throughout the space important for the effective performance of physical fitness tasks.

Source/Task/Eye Geometry- Placement of luminaires needs to be considered in order to enable proper rendering of machinery as well as electronic displays on cardio equipment and to avoid direct light from the source into the range of vision.

fixtures and equipment

Luminaire Schedule					
Туре		Description	Manufacturer		
\nearrow	A1 3"x4' recessed linear fluorescent luminaire with extruded aluminum finish and frosted acrylic flush lens.		Focal Point		
	4" square 4100K LED downlight with remote phosphor lens, color mixing chamber, and integrated heat sink and power supply.				
Co	J1	Flexible RGB LED colortape with RGB LEDs integrated into each LED package mounted on self-adhesive tape. See figure below for mounting details.	Osram		
	P4- 16	3'' wide direct/indirect continuous linear fluorescent luminaire with titanium silver finish, flush satin lens and integrated daylighting sensor. Luminaire length indicated in type and on drawings (I.E. P4 = 4'-0" long).	Focal Point		

table 9 – fitness center luminaire schedule

*Note: for full luminaire schedule including lamp and power source information and specification, see Appendix A.

Light Loss Factors							
Lamp Type	Lamp Type LLD LDD BF Total						
A1	0.92	0.92	1.08	0.91			
C1	0.70	0.92	-	0.64			
P4-16	0.92	0.92	1.0	0.85			

table 10 - fitness center light loss factors

*The above light loss factors were calculated using the new method in the 2010 IESNA handbook. The Room Surface Dirt Depreciation (RSDD) was neglected and the Luminaire Dirt Depreciation (LDD) was calculated using the updated calculation outlined in the book. A lamp maintenance schedule of twenty-four months was assumed.

figure 12 - detail of P4-16 with integrated LED light tape

controls

The façade of the Drexel Recreation Center is a product of an extensive energy study to maximize daylighting and minimize solar gain. Since the fenestration faces directly south, desired light levels are met solely with daylight for a majority of the day. The Wattstopper digital lighting management control system will be utilized in the space to enable dimming to 1%, providing energy savings throughout the year. Using natural daylight in place of electric light during the day will not only save energy and money, but will have positive psychological effects on occupants. Daylighting used as an overall ambient lighting for the workout space will increase overall energy levels and provide a more energetic and dynamic lighting system. The selected Focal Point luminaires have been specified to incorporate the available integrated daylight sensor compatible with the Wattstopper controls. The daylighting sensor will be calibrated using a sliding setpoint algorithm in order to maintain the desired minimum of 20fc on the workplane (measured at cardio machine standing level of 1.5') at all times.

A dynamic component of the lighting in the fitness center is an Osram-Sylvania LED light tape component integrated into each of the linear pendant fixtures. This lighting is not included in the calculations and is strictly an addition to the fluorescent lighting. Power for this component will use the ReRev system to harness kinetic energy generated by the cardio equipment in the space in the form of DC power. The LEDs will use the Osram Sylvania ______ power modulator to provide consistent voltage to the LED component in each luminaire. This blue strip will create a blue glow to visibly show from the exterior where the power is being generated within the space, and will not be daylight controlled.

	Fitness Center Control Schedule						
Туре	Manufacturer	Product	Description				
LC-100 Wattstopper		Intelligent Power Pack	Power pack delivers 0-10V dimming control to lighting				
LC-100	Wattstopper	Intelligent Fower Fack	loads.				
LMLS-305	Wattstopper	LightSaver Photocell	Closed loop photosensor provides the daylight data				
LML5-505			necessary for operation.				
	01 Wattstopper LightSaver Room Dimming Controller	Provides automatic dimming control for fluorescent					
LMRC-201		ner g	fixtures. Closed loop control utilizes a photocell for				
			single-zone dimming.				
LMSW-100	Wattatappar	Wattstopper LightSaver Wall Switches	Allows occupants to temporarily override the daylighting				
LINISW-100	Wattstopper	Lightsaver wall switches	control systems.				

table 11 – fitness center control schedule Note: for full control schedule see Appendix C.

renderings

figure 13 - aerial psuedocolor/color rendering of fitness center

figure 14 - south view of fitness center

figure 15 -perspective view from within fitness center

calculation summary

figure 16 - isolines of workplane calculation points (1.5')

figure 17- isolines of ceiling calculation points for uniformity

Fitness Center Calculation Summary						
Workplane (1.5') Ceiling Vertical						
average illuminance	23.90fc	18.77fc	9.81fc			
maximum illuminance	42.4fc	65fc	12.9fc			
minimum illuminance	9.4fc	2.0fc	7.5fc			
uniformity coefficient	0.24	0.89	-			
design criteria	20 fc	-	2fc			

table 12 - fitness center calculation summary

Lighting Power Density – 2 nd floor					
Fixture	Input	0	Total		
Туре	Wattage	Quantity	Watts		
A1	36	6	216		
C1	33	12	396		
P4	63	7	441		
P8	126	4	504		
P12	189	16	3,024		
P16	252	11	2,772		
	7,353				
Se	8,448sf				
	0.86				
ASHRA	0.9 - yes				

Lighting Power Density – 3 rd floor					
Fixture	Input		Total		
Туре	Wattage	Quantity	Watts		
A1	36	6	216		
C1	C1 33 12				
P4 63 7		441			
P8	126	4	504		
P12 189		16	3,024		
P16 252 11			2,772		
	7,353				
Se	8,448sf				
	0.86				
ASHRA	0.9 - yes				

table 13 and 14 – fitness center lighting power densities

evaluation

The bright, uniform lighting layout gives the fitness center an open, inviting, and energizing place in which to work out. The high, even pattern of illuminance on the ceiling reinforces the already straight lines and angles that enhance the 13' ceiling and give the impressions of cleanliness and focus. The fitness center is lit primarily with daylight through a majority of the day, and the linear fluorescents are dimmed with a WattStopper system to provide maximum energy savings. The LED component makes this space the most interactive element of the building's design, allowing users to both change the way the space appears from the outside, but have tangible evidence of all of the energy that their workout is creating! The uniformity on the floor is interrupted only near the stairwell, where the linear fixtures and LED downlights used for vertical circulation guidance add extra light to call attention to the exit and stair. A high CRI of over 85 is required for the fluorescent fixtures to ensure proper rendering of skintones in the space, and the uplighting component minimizes shadows on the individual, making them not only look better, but work out safer.

This design successfully meets ASHRAE and IESNA standards, and additionally provides a way that the students can give back to their gym, and the environment!

circulation space | lobby

overall design goals

The lobby is the first space that a majority of the people will see, and should reflect the overall design goals of the building. People should have an impression of the public space upon entering the facility, followed by visual clarity and cleanliness. This can be achieved with bright uniformity. Because of the dynamic functions of the building and the precise lines of the space, the lobby should also be visually interesting, playing with punctuations of light. The lobby is also the daylight feature space, and so the LEDs in the ceiling will be switched in order to provide maximum energy savings in the space.

The security desk is an important focus of the space as this is where everyone is either granted or denied access to the rec center. A bright, indirect lighting system avoids shadows and provides the illuminance necessary to perform any tasks necessary.

description

figure 18- orientation of lobby within recreation center

The lobby and main circulation entrance is the daylight feature space of the Drexel Recreation Center. As the initial impression to anyone entering the sporting facility, the lobby orients both to the circulation within the space but also to the feel and aesthetics of the building itself. To check into the athletic facility, visitors must use the key-card accessibility entry past the security desk on the eastern end. The entrance is also accessible from this space at the western side. This makes this corridor the most traveled space in the project. The lobby measures approximately 180' x 20' and has a ceiling height of 13'.

33

Materials and Finishes - lobby					
Surface	Reflectance				
north, east, and	gypsum wall board painted in Sherwin Williams	0.6			
west walls	Dovetail	0:0			
south wall	gypsum wall board painted in Sherwin Williams Ceiling Bright White	0.9			
accent wall	gypsum wall board painted in Sherwin Williams Blue Bauble	0.69			
flooring	1' x 2' Logica stone source tile in Grigio	0.46			
base	1" x 1" Dal tile in Suede Grey	0.32			
ceiling	exposed concrete	0.60			
framing, trim, railings, desk area	Prodema wood veneer paneling in Pale	0.45			
glazing	glazing Viracon insulated glazing				

table 15 – lobby materials and finishes

Materials and Finishes – security desk					
Surface	Reflectance				
back wall	wood veneer Prodema paneling in Pale	0.45			
flooring	1' x 2' matte finish porcelain Stone Source tile in Sand Beige	0.46			
base	6" Johnsonite rubber base in Moon Rock	0.33			
ceiling	Armstrong suspended ceiling tiles in White	0.9			

table 16 - security desk materials and finishes

tasks/activities

The main purpose of the corridor is purely circulation, although it does double as a student study/lounge area because of its convenient operating hours and brightness during the daylight hours. Security staff perform administrative duties such as paperwork and camera monitoring, as well as provides services to the students. The northern wall of the lobby has screened windows providing interesting views into the racquetball courts and central staircase.

design criteria and considerations

desired illuminance levels and design criteria- IESNA 2000: Lobby Space

quantity of light

security desk- *lobby: front desk* horizontal – **30fc**

circulation space- *lobby: general lighting* horizontal – **10fc**

ASHRAE/IESNA 90.1: Lobby- 1.3W/sf

quality of light

Important

Appearance of Space and Luminaires- Important in every space on the southern side, this is most important in the lobby. In addition to establishing the athletic center's presence on Market Street and on the campus, the lobby is the primary space which presents the architectural concepts to observers. The space should is punctuated with sharp lines and angles of light to complement the sharp dimensions of the façade.

Daylight Integration and Control- The glazing composure of the southern façade makes daylighting a prominent focus of the DAC. The design will need to integrate and respond to the full exposure of daylight to the space during the entirety of the day. Philadelphia is overcast for a good portion of the winter, so photosensors should be incorporated into the system to ensure proper light levels throughout the space in any sky condition.

Direct and Reflected Glare- Transitioning through this space and into the building will be disrupted if occupants experience uncomfortable glare and reflections. The high exposed ceilings will draw eyes upwards and the façade glazing presents a potential for reflected glare. Luminaire position should be considered so that this is avoided. No light should be aimed directly at the glazing.

Light Distribution on Surfaces- The most important surfaces to the occupants are those that will guide them through the space: either through the space to the restaurant or through the security desk and into the fitness center. A uniform light pattern on the walls and ceiling and a non-uniform pattern on the floor will help to direct visitors as well as to reinforce the public aspect of the space.

Luminances of Room Surfaces- The high ceiling should be accentuated by illuminating the perimeter, and high levels of brightness on the walls will help to keep the visual contrast between the walls and the daylight entering through the glazing comfortable.

Design Considerations- Security Desk

Very Important

Direct and Reflected Glare- Both direct and reflected glare can limit the ability of workers to read and write, as well as reduce the contrast of computer screens. The monitoring of security cameras, as well as ID scans and other computer work will take place at the security desk. Luminaire placement is not be in line of sight of the eye or directly behind the seats so as not to reflect in the screens.

Modeling of Faces or Objects- Because a majority of the athletic center is controlled access, facial recognition is crucial to maintaining the integrity of the security ID check station. Visible threats need to also be readily identifiable so all aspects of an individual must be clearly rendered.

Important

Appearance of Space and Luminaires- The security desk should present an initially welcoming aesthetic impression followed by one of control and cleanliness. This can be achieved with high illuminance values and an overall uniformly high ambient light level behind the desk.

Light Distribution on Surfaces- The security desk is open on three sides with a dropped ceiling, making uniform distribution of the space difficult. The linear lines on the back wall could be uniformly accented to reinforce the impression of control and cleanliness while still adding visual interest.

Luminances of Room Surfaces- The luminance ratios between the task (in this case the computer or desk) should not exceed 10:1. This is an important consideration for this area because some of the employees directly face the windowed façade while behind their computer. This can cause unnecessary eye strain and lower productivity in the space.

Source/Eye/Task Geometry- The majority of the work at this desk takes place on computers, making luminaire placement an important aspect of design. Luminaires should be placed to the sides of rather than behind to limit reflections.

fixtures and equipment

	Luminaire Schedule					
Туре		Description	Manufacturer			
	4" square 4100K LED downlight with remote phosphor lens, color mixing chamber, and integrated heat sink and power supply.		Indy			
	C2	Color Kinetics				
	J2A2x2 3form Chroma® square suspended customJ2ALED luminaire with HF2 Narrow Stick LEDs and aluminum housing. Color: chroma white out.		Osram/3form			
	J2B	2x2 3form Chroma® square suspended custom LED luminaire with HF ² Narrow Stick LEDs and aluminum housing. Color: chroma surf.	Osram/3form			
	J2C	2x2 3form Chroma® square suspended custom LED luminaire with HF2 Narrow Stick LEDs and aluminum housing. Color: chroma cobalt.	Osram/3form			
Ŋ	S1	2'x2' tubular fluorescent suspended fixture with textile lensing for symmetrical distribution, PVC base and steel housing.	DeltaLight			

table 17 - lobby luminaire schedule

*Note: for full luminaire schedule including lamp and power source information and specification, see Appendix A.

Light Loss Factors							
Lamp Type	Lamp Type LLD LDD BF Total						
C1	0.70	0.92	-	0.64			
C2	0.70	0.92	-	0.64			
S1	.95	0.92	1.0	.87			

table 18 - lobby light loss factors

*The above light loss factors were calculated using the new method in the 2010 IESNA handbook. The Room Surface Dirt Depreciation (RSDD) was neglected and the Luminaire Dirt Depreciation (LDD) was calculated using the updated calculation outlined in the book. A lamp maintenance schedule of twenty-four months was assumed.

controls

The façade of the Drexel Recreation Center is a product of an extensive energy study to maximize daylighting and minimize solar gain. The lobby is the daylighting feature space of the rec center, and so is provided with consistent levels of daylight throughout the day, especially given the low lighting level requirement of 10fc. For a more consistent lighting level and in order to minimize possible issues involved with dimming the LEDs, the Wattstopper switching control system will be used on the LEDs, with dimming taking place only over the security desk. The daylighting sensor will be calibrated in order to maintain the desired minimum of 10fc on the ground at all times.
	Fitness Center Control Schedule								
Туре	Manufacturer	Product	Description						
LC-100 Wattstopper Intelligent Power Pack		Intelligent Power Pack	Power pack delivers 0-10V dimming control to lighting						
LC-100	interingent i ower rack		loads.						
LMLS-305 Wattstopper LightS		LightSaver Photocell	Closed loop photosensor provides the daylight data						
LML5-303	Wattstopper	Lightsaver i notocen	necessary for operation.						
LightCourse Doom Dimming		LightSaver Room Dimming	Provides automatic step-dimming control for LED						
LMRC-202	2 Wattstopper	Controller	fixtures. Closed loop control utilizes a single photocell						
		Controller	for dual –channel dimming.						
LMSW-100	Wattstopper	LightSaver Wall Switches	Allows occupants to temporarily override the daylighting						
1013 10-100	wattstopper	Lightsaver Wall Switches	control systems.						

table 19 – lobby control schedule

renderings

figure 19 - aerial color/psuedocolor rendering of lobby

figure 20 – southern elevation of lobby

figure 21 – perspective view of lobby

calculation summary

figure 22 - lobby isoline calculation

Lobby Calculation Summary							
	Workplane (0')						
average illuminance	14.64fc						
maximum illuminance	21.9fc						
minimum illuminance	7.2fc						
uniformity coefficient	2.03						
design criteria	10 fc						

table 20 – lobby calculation summary

figure 23 – security desk isoline diagram

Security Desk Calcu	Security Desk Calculation Summary							
	Workplane (2.5')							
average illuminance	32.33fc							
maximum illuminance	38.5fc							
minimum illuminance	19.4fc							
uniformity coefficient	1.20							
design criteria	30 fc							

table 21 - security desk calculation summary

	Lighting Power Density								
Fixture	Input	Quantity	Total						
Туре	Wattage								
C1	C1 33 8								
C2	C2 15 147								
J2	10.6	73	773.8						
S1	S1 108 5								
	Total Watts		3,782.8						
Se	lected Lighting A	rea	8,448sf						
	Watts/SF		0.45						
ASHRA	E Std. 90.1 com	oliance?	1.3 - yes						

table 22 - lobby lighting power density

evaluation

The design for the lobby took into consideration not only the lobby design goals and criteria, but also the need to be complimentary both to the façade of the building and to the lighting design in the fitness center. Uniform light levels are present on the floor, with the LED fixtures blending into the exposed concrete ceiling to create the impression of floating spots of light. To counteract the closing effect that downlighting can have on a space, the custom LED and Chroma fixtures give the desired impression of a high, evenly luminous ceiling while harmonizing with the angles on the façade. To blend with the design in the lobby and also to provide comfortable indirect lighting for those working the security desk, an evenly luminous cube fixture creates a bright glow in the security desk, both calling attention to it as the space is entered and sufficiently lighting the key area to the building.

Through a majority of the day, the electric light will be switched off, controlled by photosensors within the space. This, coupled with the extremely low linear power density make this the perfect complement to the energy efficient and highly visual presence that Drexel wanted for the Rec Center.

41

special purpose space | restaurant

overall design goals

The sports bar and restaurant is a multi-faceted space that can be an exciting, engaging place to watch a football game or can be a more relaxing, intimate place to take a break and enjoy dinner and drinks with friends. The lighting throughout the space needs to be adjustable in order to establish the desired atmosphere and impression for specific events. In either mode, a restaurant/lounge area should utilize a non-uniform lighting design with lower light levels immediately surrounding the guest with higher levels away from the guest, providing a sensation of watching without being watched. A highlight or focal point is beneficial in creating this impression.

The sports bar should create intimacy between sports fans, so the guests feel connected to those around them and also to help encourage new relationships between those drinking at the bar. The restaurant portion of the space should create the feeling of a private dinner while still being connected to the other surrounding tables. In contrast to the rest of the fitness center, the lighting can help to differentiate the function and ambience of the restaurant by using a non-uniform lighting mode and warmer temperature lamps while still bringing in the design concepts of minimalist fixtures and the exposed core energy of the building.

description

figure 24 – orientation of restaurant within rec center

Centrally located in the heart of Drexel's campus, the Daskalakis Athletic Center dedicated the western half of their southern Market Street façade to a restaurant and sports bar. Windows extending to the ceiling provide a street view to almost every table in the restaurant, with flat screen TVs located throughout facing all directions. A full bar spans the north wall of the main restaurant space, creating a concealed space for an intimate dinner experience shielded from the commotion of the sports bar.

figure 25 – enlarged bar plan

figure 26 – bar elevation

Materials and Finishes								
Surface	Description	Reflectance						
walls	GWB painted Benjamin Moore Soft Chamois	0.8						
wall accent strips	back painted tempered glass in Yellow Rain Coat	0.68						
flooring	18" x 18" Spartan Surfaces Carpet Tile in Cork	0.22						
ceiling	2'x4' USG ATC ceiling tile in Flat Black	0.05						
ceiling soffits/columns	ceiling soffits/columns GWB painted Benjamin Moore Soft Chamois							
glazing	insulating laminated Viracon glazing	t = .46						

table 23 - restaurant materials and finishes

design criteria and consideration

desired illuminance levels and design considerations – **IESNA Handbook 2000**: *Entertainment and food service spaces*

quantity of light

dining/bar: horizontal – **10fc**

ASHRAE/IESNA 90.1: Dining Area for bar lounge/leisure area- 1.4W/sf

*An increase in the interior lighting power allowance for spaces in which lighting is specified to be installed in addition to the general lighting for the purpose of decorative appearance, such as chandelier-type luminaires... provided that the additional lighting power shall not exceed **1.0W/sf** of such spaces.

quality of light

Very Important Criteria

Color Appearance (and Color Contrast)- The use of lighting with a high CRI is essential to the task of desirable and appetizing food and drinks, especially with the low lighting levels typical of a bar or late-night restaurant. The appearance and rendering of skin tones is particularly important in a social setting where dating and intermingling with the opposite sex occur. The restaurant is the should be a consistent color temperature as the rest of the project in order to present a uniform façade front during evening hours.

Point(s) of Interest- There are several points of interest in the bar and restaurant. The color intensive accent walls along the northern side of the space as well as behind the bar should be accented, including the patterned decorative panels on the northern side of the private lounge area. The custom luminaires throughout the space are currently a focal point, and the televisions located throughout the bar need to be considered when placing light within the space. The columns and ceiling soffits are interesting architectural features that should be additionally highlighted.

Important Criteria

Appearance of Space and Luminaires- As one of the only venues located directly on Drexel's campus, the appearance of the bar is especially important given the total exposure to Market Street. Guests walking by should see the space and be drawn inside to watch the game or have a drink. The bold colors within should be effectively portrayed, and the luminaires should highlight the lines of the building.

Final Lighting/Electrical Thesis Report | 04.07.2011

Direct and Reflected Glare- Direct and reflected glare can make guests inadvertently anxious and uncomfortable. No one wants light reflected in their eyes when trying to interact with others. Glare can also be a significant issue by causing veiling reflections when attempting to read a menu in low light levels.

Sparkle/Desirable Reflected Highlights- Sparkle is desirable on glassware, silverware, and decorative objects worn by guests to draw attention such as jewelry.

fixtures and equipment

	Luminaire Schedule								
Туре		Description	Manufacturer						
B1		24' x 8' ceiling mounted decorative indirect halogen over-bar fixture with polished chrome finish.	Artemide						
C3		2" low voltage halogen adjustable directional flush mount pinhole downlight with 40° beam spread.	Kurt Versen						
D1		Linear fluorescent high performance perimeter open wall wash fixture with extruded aluminum finish and reflector.	Focal Point						
F 1		Low voltage halogen cable light system with adjustable ring mounting, integral louver, and satin aluminum finish.	Tech Lighting						
J3		.75" linear surface mounted LED accent fixture with aluminum housing and 45° beam spread.	Cooper io						
	J4	1.3" linear LED cove fixture with 130° beam spread, extruded aluminum body and nylon mount clip.	Winona						

table 24 – restaurant luminaire schedule

*Note: for full luminaire schedule including lamp and power source information and specification, see Appendix A.

Light Loss Factors									
Lamp Type	LLD	LDD	BF	Total					
B1	.94	0.85	-	0.80					
C3	.90	0.92	-	0.83					
D1	.95	0.85	0.95	.87					
F1	.90	0.92	-	.83					
J3 0.70		0.92	0.90	.64					
J4	0.70	0.92	0.90	.64					

*The above light loss factors were calculated using the new method in the 2010 IESNA handbook. The Room Surface Dirt Depreciation (RSDD) was neglected and the Luminaire Dirt Depreciation (LDD) was calculated using the updated calculation outlined in the book. A lamp maintenance schedule of twenty-four months was assumed.

controls

The bar and lounge are open for both lunch and dinner, as well as for sporting events and offevenings. The lighting needs to have different scenes, as well as be highly reactive to the daylight that will influence the space through the glazing that makes up almost the entirety of the southern façade. An additional scene with high light levels needs to exist in order to facilitate the wait staff' in cleaning up at the end of the night.

	Restaurant Control Schedule								
Туре	Type Manufacturer Product		Description						
LMLS-305 Wattstopper Ligh		LightSaver Photocell	Closed loop photosensor provides the daylight data						
EME5-505	wattstopper	Lightsaver i notocen	necessary for operation.						
LMRC-301	Wattstopper	LightSaver Room Dimming	Provides automatic dimming control for multi-zone						
LMRC-301		Controller	dimming control.						
LMSW-105	LightSaver Digital 5-Button		Allows occupant control by accessing four of the 16						
LM3W-103	Wattstopper	Scene Switch	scenes available on the local DLM network.						

figure 26 - restaurant control diagram

renderings

figure 29 - greyscale and psuedocolor aerial views of restaurant

figure 30 - perspective view of restaurant facing east

figure 31 – perspective psuedocolor of restaurant facing east

figure 32 -perspective view of restaurant facing west

calculation summary

Restaurant Calculation Summary									
	Workplane (0')	Tables							
average illuminance	13.83fc	fc							
maximum illuminance	41fc	12.9fc							
minimum illuminance	2.5fc	7.5fc							
uniformity coefficient	0.60	-							
design criteria	10 fc	2fc							

table 25 – restaurant calculation summary

49

	Lighting Power Density								
Fixture	Input	Input							
Туре	Wattage	0							
B1	1,200	1,200							
C3	C3 50 39								
D1	36	38	1,368						
F1	35	48	1,680						
J3	J3 5.3W/ft		265						
J4	J4 4.5W/ft 595ft								
	Total Watts		9,140.5						
Se	lected Lighting A	rea	8,448sf						
	Watts/SF		1.08						
ASHRA	E Std. 90.1 comj	pliance?	1.4 - yes						

table 26 - lighting power density

evaluation

Flexibility is of utmost importance in a hospitality environment, and the controllability and color rendering of halogen fixtures makes them the ideal choice for lighting the restaurant. Power density is met by using LED and fluorescent coves to highlight the architectural ceiling was well as to wash the exposed concrete walls, which simultaneously creates an impression of intimacy and relaxation while tying into the overall building concept of exposed industrial materials, strong lines and angles, and exposed core energy. The LED cove highlighting the ceiling soffit makes the light appear to come from within the building itself. The chrome polished fixture over the bar and the blue frosted glass grazed by hidden linear LEDs create a focal point behind the bar. The warmer color temperature of 3000K helps to delineate the restaurant from the high energy fitness center, and the nonuniform lighting levels and round, soft light created by what are still industrial, clean fixtures completes the effect.

introduction

The electric depth includes a modification of the branch circuit distribution for four spaces in response to the lighting redesign. These spaces include the exterior courtyard, lobby, fitness center, and restaurant. The redesign of the lighting for each space required a recalculation of the loads on each circuit, resulting in the resizing of the affected lighting circuits, panelboards, and feeders. A protective device coordination study is included along with a short circuit analysis.

The electrical depths consist of a system design to retrofit existing cardio equipment to convert kinetic energy from the cardio machines into power for LED lighting, as well as a cost comparison of MC cable trays as an alternative to the existing PVC conduit distribution system located within the poured concrete slab.

The following table highlights which panels in the Drexel Recreation Center were affected by the lighting redesign.

	Modified Panelboards									
Panel Tag	Voltage Normal/ Emergency		Courtyard	Fitness	Lobby	Restaurant				
ELP-1-1	480Y/277V, 3P, 4W	Emergency	Х		Х					
ELP-2-1	480Y/277V, 3P, 4W	Emergency		Х						
GDP-L	208/120V, 3P, 4W	Emergency				Х				
LP-1-1	480Y/277V, 3P, 4W	Normal	Х		Х					
LP-2-1	480Y/277V, 3P, 4W	Normal		Х						
NDP-L	208/120, 3P, 4W	Normal				Х				

exterior space | courtyard

lighting redesign

The exterior lighting is designed to reinforce the lighting concept of exposed core energy while highlighting the lines and angles of the space and promoting a feeling of safety. The daytime uses of the plaza restrict the placement of luminaires on the rubber tiles, and so following the core energy representation the steplights and linear cove feature add to the impression of a glowing building. The indirect pole-top luminaires highlight facial recognition and add a comfortable feel to the plaza, separating the walkway area to enhance a feeling of separation and creating a sense of space.

electrical redesign

Both the emergency and normal lighting panels that serve the exterior lighting are 480Y/277V 3phase 4-wire panels, with the emergency sized at 60A and the normal sized at 80A. The addition of energy efficient LED, HID, and fluorescent lighting fixtures in bollard, landscape lighting, and steplighting applications greatly increases the load to the space, therefore increasing the loading to the panelboards.

controls

All of the exterior lighting utilizes controllable breakers by photocell.

panelboards

existing

On the following pages are the existing panelboard schedules for 480Y/277V normal lighting panel LP-1-1 and 480Y/277V emergency lighting panel ESLP-1-1. LP-1-1 is located on the first floor of the DRC in Electrical Switchgear Room 132, and ESLP-1-1 is located on the first floor in the Emergency Generator Room 133. Modified circuits are indicated with a pink box.

PANEL:		LP-1-1				LTAGE:					XNE	
SECTION		1 OF 1				WIRE:						ISTING
LOCATIC			SWITCHGEAR ROOM 132		MAIN (AMPS);	60A,	M.C.B.		KAIC R		
			FLOOR								POLE	
NOTES	CKT NO.	C.B. A P	DESCRIPTION	LOAD (KVA)	A	В	С	LOAD (KVA)	DESCRIPTION	C.B		NOTES
2	1	20 1	LTG - LOBBY 100 UPLIGHTS	1.88	3.67			1.79	LTG - LOCKER ROOMS	20	1 2	2 1
2	3	20 1	LTG - LOBBY 100 DOWNLIGHTS	1,88		2,01		0,13	LTG - RETAIL CAFÉ 104	20	1 4	4 1
	5	20 1	LTG - OC SENSORS	2.33			2.77	0.45	LTG - GEN. STORAGE 130	20	1 6	ŝ 1
1	7	20 1	LTG - SECURITY RM 110	0.29	0.68			0.38	LTG - ELEC, RM 132	20	1 8	3 1
1	9	20 1	LTG - COR 111, 112, RM 108, 120	2.90		3.09		0.19	LTG - SHELL SPACE 122/SQ CT	20	1 1	
1	11	20 1	LTG - FUT, CHILLER RM 137	0.51			1.09	0.58	LTG - BOILER RM 136	20	1 1	2 1
3	13	20 1	LTG - EXTERIOR BENCHES	1,00	2,50			1,50	LTG - SITE	20	1 1	4 3
	15	20 1	SPARE			0.00			SPARE	20	1 1	ô
	17	20 1	SPARE				0.00		SPARE	20	1 1	8
	19	20 1	SPARE		0,00				SPARE	20	1 2	0
	21	20 1	SPARE			0.00			SPARE	20	1 2	2
	23	20 1	SPARE				0,00		SPARE	20	1 2	4
	25		SPACE		0.00				SPACE		2	6
	27		SPACE			0.00			SPACE		2	8
	29		SPACE				0,00		SPACE		3	ð
			LOAD SUMMARY PER PHAS	E (KVA)	6.85	5.10	3.86]				
			TOTAL CONNECTED LOA	D (KVA)		15.81]				
			OPTIONS A	AND ACC	CESSO	RIES – (X) ND	CATES	SELECTION			
]		MULTIPLE SECTION PANEL						CONTACTOR CONT			
		L	RECESSED						FEED THR			
		X	SURFACE						SUB FEED MAIN LUGS (DOUBL	,		
	1	L	200% RATED NEUTRAL						CONTROLLABLE CIRCUIT BREAKER			
		L	ISOLATED GROUND BUS							OTHER		

NOTES: 1. CONTROLLABLE BREAKER

2. CONTROLLABLE BREAKER CONTROLLED BY PHOTOCELL

3. CONTROLLABLE BREAKER CONTROLLED BY ROOF TOP PHOTOCELL

PANEL: SECTION		ESLP- 1 OF 1		P			480/27 3 PH,				XN	EW XIST	ING
LOCATIO	N:	EMER	GENCY GENERATOR ROOM 133 FLOOR				60A,			KAIC I		NG:	35 30
	СКТ			LOAD				LOAD			B. C		
	NO.	A P	DESCRIPTION	(KVA)	Α	В	С	(KVA)	DESCRIPTION			10.	NOTE
	1	20 1	EMR, LTG- LOB 100 EXT SNS	0.52	1.39			0.87	EMR LTG- LOBBY 100 UPLGHTS	20	1	2	2
	3	20 1	EMR. LTG- STR S3, RM 102, 103	0.29		1.16		0.87	EMR LTG- LOBBY 100 DWNLGHTS	20	1	4	2
	5	20 1	EMR. LTG- CORR, RM 108-110, 122	1,89			2,41	0,51	EMR LTG- LKR RM, BTHRMS	20	1	6	
	7	20 1	EMR. LTG- ELEC/MECH RMS	1.88	2.66			0.79	EMR LTG- SHELL SPACE	20	1	8	
1	9	20 1	EMR, LTG- EXTERIOR	1.60		1.60			SPARE	20	1.1	10	
	11	20 1	SPARE		and the second sec		0,00		SPARE	20		12	
	13	20 1	SPARE		0.00				SPARE	20		14	
	15	20 1	SPARE			0,00			SPARE	20		16	
	17	20 1	SPARE				0.00		SPARE	20	1.1	18	
	19	20 1	SPARE		0.00				SPARE	20		20	
	21	20 1	SPARE			0,00			SPARE	20		22	
	23	20 1	SPARE				0.00		SPARE	20		24	
	25		SPACE		0,00				SPACE			26	
	27		SPACE			0.00			SPACE			28	
	29		SPACE			and a second	0.00		SPACE			30	
			LOAD SUMMARY PER PHAS	SE (KVA)	4.06	2 76	2,41						
			TOTAL CONNECTED LOA	AD (KVA)		9,22]					
			OPTIONS	AND ACC	CESSO	RIES - (X) INDI	CATES	SELECTION				
MULTIPLE SECTION PANEL CONTACTOR CONTROLLED FEED THRU LUGS													
			SURFACE						SUB FEED MAIN LUGS (DOUBL		<u> </u>	Ļ	
200% RATED NEUTRAL CONTROLLABLE CIRCUIT BREAKER PANEL X CONTROLLABLE CIRCUIT BREAKER OTHER													

NOTES: 1. CONTROLLABLE BREAKER BY PHOTOCELL. 2. CONTROLLABLE BREAKER BY ROOFTOP PHOTOCELL.

53

circuiting calculations

Each circuit was recalculated based on the new lighting load. For a voltage of 277 on 20A circuits, recommended engineering practice designates 3.55 KVA per circuit. All three of the exterior circuits adhere to these guidelines.

Emergency Lighting Panel ELP-1-1								
Circuit #	Туре	Quantity	KVA					
9	M1	14	1.11					
9	M2	7	.25					
9	N1	16	.39					
9	N4	9	.16					
	1.91							

Norm	Normal Lighting Panel LP-1-1									
Circuit #	Туре	Quantity	KVA							
13	13 M2		.25							
13	N1	16	.39							
13	13 N2		.91							
13	N3	52ft	.25							
13	N4	9	.16							
	Total KVA		1.91							
14	M1	14	1.11							
14	14 Z1		.26							
	Total KVA		1.37							

The redesigned panelboard schedule for Panels LP-1-1 and ESLP-1-1 are provided below with their corresponding panelboard sizing worksheets. Modified circuits are indicated with a pink box.

VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		I,4W		PANEL 1 NEL LOCATI IEL MOUNT	ION:	ELE	C. SI		1. 132		THROUGH LUGS RD 1L1B	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LINEAR UPLTS	LOBBY	1786	20A/1P	1	*			2	20A/1P	1701	LKR RMS	FLUORESCENT
LINEAR DWNLTS	LOBBY	1786	20A/1P	3		*		4	20A/1P	124	RETAIL	DWNLTS
OC SENSOR	1ST FL	2214	20A/1P	5			*	6	20A/1P	428	STOR 130	INDUSTRIAL
FLUORESCENT	SEC 110	276	20A/1P	7	*			8	20A/1P	361	ELEC 132	INDUSTRIAL
DWNLTS	CORR	2755	20A/1P	9		*		10	20A/1P	181	SHELL 122	INDUSTRIAL
INDUSTRIAL	CHILL 137	485	20A/1P	11			*	12	20A/1P	551	BLR 136	INDUSTRIAL
LED/CFL	EXTR	1853	20A/1P	13	*			14	20A/1P	1343	EXTR	POLES
SPARE	-	2375	20A/1P	15		*		16	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	17			*	18	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	19	*			20	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	21		*		22	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	23			*	24	20A/1P	2375	-	SPARE
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE
CONNECTED LOAD (KW) - A Ph.	12.07								TOTAL DESIGN I	.OAD (KW)	49
CONNECTED LOAD (KW) - B Ph.	14.35								POWER FACTOR		
CONNECTED LOAD (KWD - C Ph	13.18								TOTAL DESIGN I	OAD (AMPS)	

			PANE	LBOARD S	IZING W	ORKS	HEE	Г			
		Panel Tag		->	LP-1-1	Pane	l Locat	ion:	ELEC. S	WTCHGR	RM. 132
	No	minal Phase to Neutral			277	1	Phase:		3		
		minal Phase to Phase V	•		480		Wires:		4		
			voitage	/	400		r	1		1	
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	LINEAR UPLTS	1	LOBBY	1.88	KVA	0.95	1786	1880		
2	Α	FLUORESCENT	1	LKR RMS	1.79	KVA	0.95	1701	1790		
3	В	LINEAR DWNLTS	1	LOBBY	1.88	KVA	0.95	1786	1880		
4	В	DWNLTS	1	RETAIL	0.13	KVA	0.95	124	130		
5	С	OC SENSOR	1	1ST FL	2.33	KVA	0.95	2214	2330		
6	С	INDUSTRIAL	1	STOR 130	0.45	KVA	0.95	428	450		
7	Α	FLUORESCENT	1	SEC 110	0.29	KVA	0.95	276	290		
8	Α	INDUSTRIAL	1	ELEC 132	0.38	KVA	0.95	361	380		
9	В	DWNLTS	1	CORR	2.9	KVA	0.95	2755	2900		
10	В	INDUSTRIAL	1	SHELL 122	0.19	KVA	0.95	181	190		
11	С	INDUSTRIAL	1	CHILL 137	0.51	KVA	0.95	485	510		
12	С	INDUSTRIAL	1	BLR 136	0.58	KVA	0.95	551	580		
13	Α	LED/CFL	1	EXTR	1.91	KVA	0.97	1853	1910		
14	Α	POLES	1	EXTR	1.37	KVA	0.98	1343	1370		
15	В	SPARE	2		2.5	KVA	0.95	2375	2500		
16	В	SPARE	2		2.5	KVA	0.95	2375	2500		
17	С	SPARE	2		2.5	KVA	0.95	2375	2500		
18	С	SPARE	2		2.5	KVA	0.95	2375	2500		
19	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
20	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
21	В	SPARE	2		2.5	KVA	0.95	2375	2500		
22	В	SPARE	2		2.5	KVA	0.95	2375	2500		
23	С	SPARE	2		2.5	KVA	0.95	2375	2500		
24	С	SPARE	2		2.5	KVA	0.95	2375	2500		
25	Α	SPACE	3		0	W	1.00	0	0		
26	Α	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	С	SPACE	3		0	W	1.00	0	0		
			PANEL TO	OTAL				39.6	41.6	Amps=	50.0
	-					1	[1 ***	1 *** 4	01	
	F	PHASE LOADING	<u> </u>					kW	kVA	%	Amps
		PHASE TOTAL	А					12.1	12.6	30%	15.2
		PHASE TOTAL	В					14.3	15.1	36%	18.2
		PHASE TOTAL	С					13.2	13.9	33%	16.7
	LC	OAD CATEGORIES		Connect	ed		De	mand			Ver. 1.04
				kW	kVA	DF	kW	kVA	PF		
1		LIGHTING		15.8	16.6		15.8	16.6	0.95		
2		SPARE	+ +	23.8	25.0		23.8	25.0	0.95		
3		SPACE	+ +	0.0	0.0		0.0	0.0	0.75		
5	Ψ-	tal Demand Loads	+	0.0	0.0						
				0504			39.6	41.6			
		Spare Capacity		25%			9.9	10.4			
	To	otal Design Loads					49.5	52.0	0.95	Amps=	62.6

		I	P A N E	LBO	A]	R I)	SCHI	E D U L	Е			
VOLTAGE:	480Y/277V,3PH	I,4W	PANEL TAG: ESLP-1-1						MIN. C/B AIC: 10K				
SIZE/TYPE BUS:	60A		PA	NEL LOCATI	ION:	EMI	ER. O	GEN. RM. 13	3	OPTIONS:	PROVIDE FEED T	HROUGH LUGS	
SIZE/TYPE MAIN:	60A/3P C/B		PAN	IEL MOUNT	ING:	SUR	FAC	E			FOR PANELBOAN	RD 1L1B	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
FLUOR/EXIT SGNS	LOBBY	494	20A/1P	1	*			2	20A/1P	827	LOBBY	LINEAR UPLTS	
FLUOR	STR, 102, 103	276	20A/1P	3		*		4	20A/1P	827	LOBBY	LINEAR DWNLTS	
DWNLTS	CORR,108-10	1796	20A/1P	5			*	6	20A/1P	485	LKR/REST	FLUORESCENT	
INDUSTRIAL	ELEC/MECH	1786	20A/1P	7	*			8	20A/1P	361	ELEC 132	INDUSTRIAL	
INDUSTRIAL	SHELL 122	751	20A/1P	9		*		10	20A/1	1853	EXTR	POLES	
SPARE	-	1425	20A/1P	11			*	12	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	13	*			14	20A/1P	1425	1425 -		
SPARE	-	1425	20A/1P	15		*		16	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	17			*	18	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	19	*			20	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	21		*		22	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	23			*	24	20A/1P	1425	-	SPARE	
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE	
CONNECTED LOAD (NNECTED LOAD (KW) - A Ph. 9.17									TOTAL DESIGN I	.OAD (KW)	36.75	
CONNECTED LOAD (NNECTED LOAD (KW) - B Ph. 9.41										POWER FACTOR		
CONNECTED LOAD (10.83								TOTAL DESIGN I	OAD (AMPS)	46		

PANELBOARD SIZING WORKSHEET

		Panel Tag		>	ESLP-1-1	Pan	el Loca	tion:	EMER. GEN. RM. 133		
	N	ominal Phase to Neutra	al Voltag	e>	277		Phase		3		
	Ν	ominal Phase to Phase	Voltage	>	480	Wires:		4			
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Remarks	
1	А	FLUOR/EXIT SGNS	1	LOBBY	0.52	KVA	0.95	494	520		
2	Α	LINEAR UPLTS	1	LOBBY	0.87	KVA	0.95	827	870		
3	В	FLUOR	1	STR, 102, 103	0.29	KVA	0.95	276	290		
4	В	LINEAR DWNLTS	1	LOBBY	0.87	KVA	0.95	827	870		
5	С	DWNLTS	1	CORR,108-10	1.89	KVA	0.95	1796	1890		
6	С	FLUORESCENT	1	LKR/REST	0.51	KVA	0.95	485	510		
7	Α	INDUSTRIAL	1	ELEC/MECH	1.88	KVA	0.95	1786	1880		
8	Α	INDUSTRIAL	1	ELEC 132	0.38	KVA	0.95	361	380		
9	В	INDUSTRIAL	1	SHELL 122	0.79	KVA	0.95	751	790		
10	В	POLES	1	EXTR	1.91	KVA	0.97	1853	1910		
11	С	SPARE	1		1.5	KVA	0.95	1425	1500		
12	С	SPARE	1		1.5	KVA	0.95	1425	1500		
13	А	SPARE	1		1.5	KVA	0.95	1425	1500		
14	Α	SPARE	1		1.5	KVA	0.95	1425	1500		
15	В	SPARE	2		1.5	KVA	0.95	1425	1500		
16	В	SPARE	2		1.5	KVA	0.95	1425	1500		
17	С	SPARE	2		1.5	KVA	0.95	1425	1500		
18	С	SPARE	2		1.5	KVA	0.95	1425	1500		
19	А	SPARE	2		1.5	KVA	0.95	1425	1500		
20	А	SPARE	2		1.5	KVA	0.95	1425	1500		
21	В	SPARE	2		1.5	KVA	0.95	1425	1500		
22	В	SPARE	2		1.5	KVA	0.95	1425	1500		

		1								1	
23	С	SPARE	2		1.5	KVA	0.95	1425	1500		
24	С	SPARE	2		1.5	KVA	0.95	1425	1500		
25	А	SPACE	3		0	W	1.00	0	0		
26	Α	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	С	SPACE	3		0	W	1.00	0	0		
PANE	L TOTA	AL				÷		29.4	30.9	Amps=	37.2
PHAS	E LOAI	DING						kW	kVA	%	Amps
		PHASE TOTAL	А					9.2	9.7	31%	11.6
		PHASE TOTAL	В					9.4	9.9	32%	11.9
		PHASE TOTAL	С					10.8	11.4	37%	13.7
											Ver.
LOAD	CATA	GORIES		Conne	cted		Der	mand			1.04
				kW	kVA	DF	kW	kVA	PF		
1		LIGHTING		15.2	15.9		15.2	15.9	0.95		
2		SPARE		14.3	15.0		14.3	15.0	0.95		
3		SPACE		0.0	0.0		0.0	0.0			
	Тс	otal Demand Loads					29.4	30.9			
		Spare Capacity		25%			7.4	7.7			
	T	otal Design Loads					36.8	38.6	0.95	Amps=	46.5

feeder sizing

LP-1-1	
Voltage	480Y/277
Design Load (KW)	49.5
Power Factor	0.95
Calculated Design Load (Amps)	63
Feeder Protection Size (Amps)	80
Sets	1
Wire Sizes	
Phase	6
Neutral	6
Ground	8
Conduit Size	1"

ESLP-1-1	
Voltage	480Y/277
Design Load (KW)	36.8
Power Factor	0.95
Calculated Design Load (Amps)	46
Feeder Protection Size (Amps)	60
Sets	1
Wire Sizes	
Phase	6
Neutral	6
Ground	10
Conduit Size	1"

voltage drop calculations

VOLTAGE DROP - LP-1-1					
Voltage (V)	480				
Ampacity (I)	85				
Power Factor (See Note 1)	.95				
Wire Size	3				
(14,12,10 1/0, 2/0 250,350) # of conductors per phase	1				
Type Conductor	C				
(A=Aluminum C=Copper)	_				
Type Conduit (P=PVC; A=Aluminum S=Steel)	S				
Length of Run (ft)	172				

 Voltage Drop
 1.06

 % Drop
 0.22

VOLTAGE DROP – ESLP-1-1					
Voltage (V)	480				
Ampacity (I)	65				
Power Factor (See Note 1)	.95				
Wire Size	(
(14,12,10 1/0, 2/0 250,350)	6				
# of conductors per phase	1				
Type Conductor	С				
(A=Aluminum C=Copper)	L				
Type Conduit	c				
(P=PVC; A=Aluminum S=Steel)	S				
Length of Run (ft)	39				
Voltage Drop	2.13				

% Drop 0.44

large work space | fitness center

lighting redesign

58

The primary goal of the lighting design in the fitness center is to expose the core energy of the building with the RGB LED component in the linear fixtures. This interactive element is fed directly by the cardio equipment kinetic generation system and does not affect the electrical redesign. The fluorescent ambient/task lighting is provided by a minimalist, clean linear fixture. Architectural wall features are highlighted by recessed LED square downlights, and the space is lit primarily with daylight for a majority of day.

electrical redesign

Both the emergency and normal lighting panels that serve the fitness center are 480Y/277V 3 phase 4 wire panels, with the emergency sized at 60A and the normal sized at 80A. The use of energy efficient fluorescent and LED lighting keeps the overall load on the panel relatively consistent, although the circuiting has been adjusted for photocell control.

controls

The façade of the Drexel Recreation Center is a product of an extensive energy study to maximize daylighting and minimize solar gain. Since the fenestration faces directly south, desired light levels are met solely with daylight for a majority of the day. The Wattstopper digital lighting management control system will be utilized in the space to enable dimming to 1%, providing energy savings throughout the year. Using natural daylight in place of electric light during the day will not only save energy and money, but will have positive psychological effects on occupants. Daylighting used as an overall ambient lighting for the workout space will increase overall energy levels and provide a more energetic and dynamic lighting system. The selected Focal Point luminaires have been specified to incorporate the available integrated daylight sensor compatible with the Wattstopper controls. The daylighting sensor will be calibrated using a sliding setpoint algorithm in order to maintain the desired minimum of 20fc on the workplane (measured at cardio machine standing level of 1.5') at all times.

A dynamic component of the lighting in the fitness center is an Osram-Sylvania LED light tape component integrated into each of the linear pendant fixtures. This lighting is not included in the calculations and is strictly an addition to the fluorescent lighting. Power for this component will use the ReRev system to harness kinetic energy generated by the cardio equipment in the space in the form of DC power. The LEDs will use the Osram Sylvania ______ power modulator to provide consistent voltage to the LED component in each luminaire. This blue strip will create a blue glow to visibly show from the exterior where the power is being generated within the space, and will not be daylight controlled.

	Fitness Center Control Schedule												
Туре	Manufacturer	Product	Description										
LMLS-305	MLS-305 Wattstopper LightSaver Photocell		Closed loop photosensor provides the daylight data necessary for operation.										
LMRC-201	Wattstopper	LightSaver Room Dimming Controller	Provides automatic dimming control for fluorescent fixtures. Closed loop control utilizes a photocell for single-zone dimming.										
LMSW-100	Wattstopper	LightSaver Wall Switches	Allows occupants to temporarily override the daylighting control systems.										

panelboards

existing

Below are the existing panelboard schedules for 480Y/277V normal lighting panels LP-2-1 and LP-3-1 and 480Y/277V emergency lighting panel ESLP-3-1. LP-2-1 is located on the second floor of the DRC in Electrical Room 202, and ESLP-3-1 is located on the first floor in the Emergency Generator Room 133. Modified circuits are indicated with a purple box.

PANEL;		LP-2-'	1		VOL	TAGE	480/27	77V		5	KNEV	/
SECTIC	N:	1 OF 1	1	PH	ASE &	WIRE:	3 PH,	4W			EXIS	TING
LOCAT	ON:	ELEC	ROOM 202	N	/AIN (A	AMPS);	60A,	M.C.B.		KAIC RA	TING	14
		SECC	ND FLOOR							P	OLES	30
NOTES	CKT NO.	C.B. AP	DESCRIPTION	LOAD (KVA)	A	В	С	LOAD (KVA)	DESCRIPTION	C.B.	CKT NO.	NOTES
1	1	20 1	LTG- UPLTS RM 215A, C, 201A, B	3,33	4.13			0.79	LTG- CLIMBING ROOM	20	1 2	2
1	3	20 1	LTG- DNLTS RM 215A, C, 201A, B	3,33		4,73		1,40	LTG- STR, COR NOT ON PC	20	1 4	2
2	5	20 1	LTG- GROUP EXERCISE ROOMS	3.26			4.09	0.83	LTG- ATHL. GALL. COVE	20	16	1
	7	20 1	SPARE		1,09			1,09	LTG- ATHL, GALL, PNDNTS	20	18	1
2	9	20 1	LTG- GYMNASIUM - UNDER TRACK	1.98		1.98			SPARE	20	1 10	
	11	20 1	SPARE				0.00		SPARE	20	1 12	
	13	20 1	SPARE		0,00				SPARE	20	1 14	
	15	20 1	SPARE			0.00			SPARE	20	1 16	
	17	20 1	SPARE				0.00		SPARE	20	1 18	
	19	20 1	SPARE		0.00				SPARE	20	1 20	
	21	20 1	SPARE			0.00			SPARE	20	1 22	
	23	20 1	SPARE				0,00		SPARE	20	1 24	
	25		SPACE		0.00				SPACE		26	
	27		SPACE			0.00			SPACE		28	
	29		SPACE				0,00		SPACE		30	
		SE	CTION 1 LOAD SUMMARY PER PHASE	(KVA)	5.22	6.72	4.09					
			TOTAL CONNECTED LOAD	D (KVA)		16.02]				
			OPTIONS AN	ID ACCE	ESSOF	RIES - (X) IND	CATES	SELECTION			
	1		MULTIPLE SECTION PANEL						CONTACTOR CONT		7	
	1		RECESSED						FEED THE		-	
	1		SURFACE						SUB FEED MAIN LUGS (DOUBL		-	
	-							00	ONTROLLABLE CIRCUIT BREAKEF		-	
	1	L	200% RATED NEUTRAL						JNTROLLABLE CIRCUIT BREAKER	OTHER	<u>`</u>	
	-										_	

PANEL;		LP-3	-1			VO	LTAGE	480/27	7V		XNE	N
SECTION	N:	1 OF	1		P	HASE 8	WIRE	3 PH,	4W		EX	STING
LOCATIO	DN:	ELEC	CROOM 3	02		MAIN (AMPS)	60A	M.C.B.		KAIC RATIN	G: 14
		THIR	D FLOOR								POLE	S: 30
NOTEO	CKT	C,B		DECODINETION	LOAD				LOAD	DECODIDITION	C,B, CK	T
NOTES	NO.	А	P	DESCRIPTION	(KVA)	Α	Б	С	(KVA)	DESCRIPTION	A P NO	NOTES
1	1	20	1 LTG -	FITNESS 301 UPLIGHTS	1.88	3.88			2.00	LTG - GYMNASIUM	20 1 2	2
1	3	20	1 LTG -	FITNESS 301 DOWNLIGHTS	1.88		3.88		2.00	LTG - GYMNASIUM	20 1 4	2
1	5	20		OC SENSORS LEVEL 3	2.26			4.26	2.00	LTG - GYMNASIUM	20 1 6	2
2	7	20	1 LTG -	LEVEL 3 GENERAL	0,50	2,50			2,00	LTG - GYMNASIUM	20 1 8	2
2	9	20		GYM UPPER TRACK	2.00		2.00			SPARE	20 1 10	
	11	20	1	SPARE				0.00		SPARE	20 1 12	
	13		1	SPARE		0,00				SPARE	20 1 14	
	15	20	1	SPARE			0.00			SPARE	20 1 16	
	17	20	1	SPARE				0,00		SPARE	20 1 18	
	19	20	1	SPARE		0.00				SPARE	20 1 20	
	21	20	1	SPARE			0.00			SPARE	20 1 22	
	23	20	1	SPARE				0,00		SPARE	20 1 24	
	25			SPACE		0.00				SPACE	26	5
	27			SPACE			0.00	and the second sec		SPACE	28	
	29			SPACE				0.00		SPACE	30	1
				LOAD SUMMARY PER PHA	SÉ (KVA)	6.38	5.88	4.26				
				TOTAL CONNECTED LO	AD (KVA)		16.52]			
				OPTIONS	AND ACC	CESSO	RIES - (X) INDI	CATES	SELECTION		
	1	٦		LE SECTION PANEL						CONTACTOR CONT		
	1	ŀ	RECES							FEED THR		
	1	ŀ	X SURFA	DE						SUB FEED MAIN LUGS (DOUBL		
	1	ŀ		ATED NEUTRAL						CONTROLLABLE CIRCUIT BREAKER	·	
	1	ŀ		ED GROUND BUS							OTHER	
	1			OLLABLE CIRCUIT BREAKER						CONTROLLABLE CB BY PHO		

PANEL: SECTION LOCATIO	N: DN:		1 . ROOM 302			HASE 8	LTAGE: WIRE: AMPS):	3 PH,	4W	к	AIC F	RAT		TING 14
NOTES	СКТ	C.B.	D FLOOR	DESCRIPTION	LOAD			-	LOAD	DESCRIPTION	C.6	З.	LES: CKT	30 NOTES
0	NO.	AF			(KVA)	A	В	С	(KVA)	EMERG LTG - FITNESS 201 UP LIGHTS		P	NO.	4
2	1	20 1		G - ATH GALL, FITNESS G - GYMNASIUM 212 - TRACK	2.00	4.00	4.00		2.00	EMERG LTG - FITNESS 201 OP LIGHTS EMERG LTG - FITNESS 201 DWN LIGHT	20	1	2	1
2	5	20 1		G - ELEC/IT/2ND & 3RD FLRS	2,00		4.00	3,00	1.00	EMERG LTG - FITNESS 201 DWN LIGHT EMERG LTG - FITNESS 301 UP LIGHTS	20	1	4	1
2	7	20		G - GYMNASIUM	1.00	2.00		3,00	1.00	EMERG LTG - FITNESS 301 DF LIGHTS		1	8	
2	9	20 1		G - GYMNASIUM	1.00	2.00	1.00		1.00	EMERG LTG - THIRD FLOOR	20	1	10	_
2	11	20 1		G - GYMNASIUM	1.00		1.00	2.00	1.00	ROOF LIGHTING	20	1	12	3
2	13	20 1		G - GYMNASIUM	1.00	1.00		2.00	1.00	SPARE	20	1	14	
-	15	20 1		SPARE		1100	0,00			SPARE	20	1	16	
	17	20 '		SPARE				0.00		SPARE	20	1	18	
	19	20 1		SPARE		0.00				SPARE	20	1	20	
	21	20 1	1	SPARE			0,00			SPARE	20	1	22	
	23	20	1	SPARE				0.00		SPARE	20	1	24	
	25			SPACE		0,00				SPACE			26	
	27			SPACE			0.00			SPACE			28	
	29			SPACE				0.00		SPACE			30	
				LOAD SUMMARY PER PHASE	E (KVA)	7,00	5,00	5,00						
				TOTAL CONNECTED LOAD) (KVA)		17,00]					
				OPTIONS A	ND ACC	CESSO	RIES - (X) IND	CATES	SELECTION				
]	E	MULTIPLE SI	ECTION PANEL				-		CONTACTOR CONTRO	LLED			
			RECESSED							FEED THRU I				
)	SURFACE							SUB FEED MAIN LUGS (DOUBLE L				
		L	200% RATED							CONTROLLABLE CIRCUIT BREAKER PA		-		
			ISOLATED G						С	ONTROLLABLE CB BY ROOFTOP PHOTO				
		2	CONTROLLA	BLE CIRCUIT BREAKER						CONTROLLABLE CB BY PHOTO	CELL	1		

The redesigned panelboard schedule for Panels LP-2-1, LP-3-1 and ESLP-3-1 are provided below with their corresponding panelboard sizing worksheets. Modified circuits are indicated with a purple box.

Norm	al Lighti	ng Panel L	.P-2-1							
Circuit #	Туре	Quantity	KVA							
1	P12	3	.611							
1	P16	8	2.17							
	Total KVA		2.78							
3	P12	9	1.83							
3	3 P16 2 .54									
	Total KVA		2.38							
7	A1	6	.23							
7	P4	1	.07							
7	P8	4	.54							
7	P12	4	.81							
7	P16	1	.27							
	Total KVA		2.53							
9	C1	12	.44							
9	P4	6	.41							
	Total KVA		.85							

Norm	al Lighti	ng Panel L	.P-3-1								
Circuit #	Туре	Quantity	KVA								
1	P12	3	.611								
1	P16	8	2.17								
	Total KVA		2.78								
3	P12	9	1.83								
3	3 P16 2 .54										
	Total KVA		2.38								
10	A1	6	.23								
10	P4	1	.07								
10	P8	4	.54								
10	P12	4	.81								
10	P16	1	.27								
	Total KVA		2.53								
11	C1	12	.44								
11	P4	6	.41								
	Total KVA		.85								

Emerger	Emergency Lighting Panel ELP-3-1												
Circuit #	Туре	Quantity	KVA										
2	P4	2	.14										
2	P8	1	.14										
2	2 P12 6 1.22												
2	P16	2	.54										
	Total KVA		2.04										
4	P4	2	.14										
4	P8	1	.14										
4	P12	6	1.22										
4	P16	2	.54										
	Total KVA		2.04										

	PANELBOARD SCHEDULE												
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		I,4W		PANEL 1 NEL LOCATI IEL MOUNTI	ON:	ELE	C. R			MIN. C/B AIC: OPTIONS:	10K PROVIDE FEED 1 FOR PANELBOAI		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
LINEAR FLUOR	FITNESS 201	2641	20A/1P	1	*			2	20A/1P	751	CLIMBING	INDUCTION	
LINEAR FLUOR	FITNESS 201	2261	20A/1P	3		*		4	20A/1P	1330	STR, CORR	FLUORESCENT	
FLUORESCENT	GRP EXER	3097	20A/1P	5			*	6	20A/1P	789	ATHL GAL	LED/CFL	
LINEAR FLUOR	FITNESS 201	1828	20A/1P	7	*			8	20A/1P	1036	ATHL GAL	HID	
LED/FLUOR	FITNESS 201	775	20A/1P	9		*		10	20A/1P	2375	0	SPARE	
SPARE	0	2375	20A/1P	11			*	12	20A/1P	2375	0	SPARE	
SPARE	0	2375	20A/1P	13	*			14	20A/1P	2375	0	SPARE	
SPARE	-	2375	20A/1P	15		*		16	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	17			*	18	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	19	*			20	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	21		*		22	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	23			*	24	20A/1P	2375	-	SPARE	
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE	
CONNECTED LOAD (KW) - A Ph.	15.75	75						TOTAL DESIGN I	62.66			
CONNECTED LOAD (KW) - B Ph.	16.24								POWER FACTOR			
CONNECTED LOAD (KW) - C Ph.	18.14	18.14 TOTAL DESIGN LOAD (AMPS)						79				

PANELBOARD SIZING WORKSHEET

		Panel Tag		>	LP-2-1	Pan	el Loca	tion:	ELI	EC. ROOM 202
	No	ominal Phase to Neut			277		Phase	:	3	
		ominal Phase to Phas		-	480		Wires	:	4	
							I.			
Pos	Ph.	Load Type	Cat.	Location	Load	Units	PF	Watts	VA	Remarks
1	А	LINEAR FLUOR	1	FITNESS 201	2.78	KVA	0.95	2641	2780	
2	Α	INDUCTION	1	CLIMBING	0.79	KVA	0.95	751	790	
3	В	LINEAR FLUOR	1	FITNESS 201	2.38	KVA	0.95	2261	2380	
4	В	FLUORESCENT	1	STR, CORR	1.4	KVA	0.95	1330	1400	
5	С	FLUORESCENT	1	GRP EXER	3.26	KVA	0.95	3097	3260	
6	С	LED/CFL	1	ATHL GAL	0.83	KVA	0.95	789	830	
7	Α	LINEAR FLUOR	1	FITNESS 201	1.924	KVA	0.95	1828	1924	
8	Α	HID	1	ATHL GAL	1.09	KVA	0.95	1036	1090	
9	В	LED/FLUOR	1	FITNESS 201	0.816	KVA	0.95	775	816	
10	В	SPARE	2		2.5	KVA	0.95	2375	2500	
11	С	SPARE	2		2.5	KVA	0.95	2375	2500	
12	С	SPARE	2		2.5	KVA	0.95	2375	2500	
13	А	SPARE	2		2.5	KVA	0.95	2375	2500	
14	Α	SPARE	2		2.5	KVA	0.95	2375	2500	
15	В	SPARE	2		2.5	KVA	0.95	2375	2500	
16	В	SPARE	2		2.5	KVA	0.95	2375	2500	
17	С	SPARE	2		2.5	KVA	0.95	2375	2500	
18	С	SPARE	2		2.5	KVA	0.95	2375	2500	
19	А	SPARE	2		2.5	KVA	0.95	2375	2500	

63

20	А	SPARE	2		2.5	KVA	0.95	2375	2500		
21	В	SPARE	2		2.5	KVA	0.95	2375	2500		
22	В	SPARE	2		2.5	KVA	0.95	2375	2500		
23	С	SPARE	2		2.5	KVA	0.95	2375	2500		
24	С	SPARE	2		2.5	KVA	0.95	2375	2500		
25	Α	SPACE	3		0	W	1.00	0	0		
26	А	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	С	SPACE	3		0	W	1.00	0	0		
PANE	L TOTA	AL						50.1	52.8	Amps=	63.5
PHAS	e loai	DING						kW	kVA	%	Amps
	F	PHASE TOTAL	А					15.8	16.6	31%	20.0
	F	PHASE TOTAL	В					16.2	17.1	32%	20.6
	F	PHASE TOTAL	С					18.1	19.1	36%	23.0
											Ver.
LOAD	O CATI	EGORIES		Connect	ted		Der	mand			1.04
				kW	kVA	DF	kW	kVA	PF		
1		LIGHTING		14.5	15.3		14.5	15.3	0.95		
2		SPARE		35.6	37.5		35.6	37.5	0.95		
3		SPACE		0.0	0.0		0.0	0.0			
	Tota	l Demand Loads					50.1	52.8			
	S	pare Capacity		25%			12.5	13.2			
	-	al Design Loads					62.7	66.0	0.95	Amps=	79.4
		-				1	1		1	-	

		F	A N E	LBO	A]	R I	D	SCHI	E D U L	E		
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		,4W		PANEL T NEL LOCATI IEL MOUNTI	ON:	ELE	C. R			MIN. C/B AIC: OPTIONS:	10K PROVIDE FEED T FOR PANELBOAF	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LINEAR FLUOR	FITNESS 201	2641	20A/1P	1	*			2	20A/1P	1900	GYMNASIUM	CFL
LINEAR FLUOR	FITNESS 201	2261	20A/1P	3		*		4	20A/1P	1900	GYMNASIUM	CFL
OCC SENSOR	LEVEL 3	3097	20A/1P	5			*	6	20A/1P	1900	GYMNASIUM	CFL
FLUORESCENT	LEVEL 3	475	20A/1P	7	*			8	20A/1P	1900	GYMNASIUM	CFL
CFL DOWN	GYM TRACK	1900	20A/1P	9		*		10	20A/1P	2404	FITNESS 201	FLUORESCENT
LED/FLUOR	FITNESS 201	760	20A/1P	11			*	12	20A/1P	2375	0	SPARE
SPARE	0	2375	20A/1P	13	*			14	20A/1P	2375	0	SPARE
SPARE	-	2375	20A/1P	15		*		16	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	17			*	18	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	19	*			20	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	21		*		22	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	23			*	24	20A/1P	2375	-	SPARE
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE
CONNECTED LOAD (KW) - A Ph.	16.42	42							TOTAL DESIGN LOAD (KW)		
CONNECTED LOAD (KW) - B Ph.	17.96	6						POWER FACTOR	0.95		
CONNECTED LOAD (KW) - C Ph.	17.63	63						TOTAL DESIGN LOAD (AMPS) 8			

PANELBOARD SIZING WORKSHEET

		Panel Tag		>	LP-3-1	Pan	el Loca	ation:	EL	EC. ROO	M 302
	No	minal Phase to Neut			277	1 un	Phase		3		
		minal Phase to Phase			480		Wires		4		
	NO		se voltag	e>	400		vvii es		4		
							I.				
Pos	Ph.	Load Type	Cat.	Location	Load	Units	PF	Watts	VA	Rei	narks
1	А	LINEAR FLUOR	1	FITNESS 201	2.78	KVA	0.95	2641	2780		
2	Α	CFL	1	GYMNASIUM	2	KVA	0.95	1900	2000		
3	В	LINEAR FLUOR	1	FITNESS 201	2.38	KVA	0.95	2261	2380		
4	В	CFL	1	GYMNASIUM	2	KVA	0.95	1900	2000		
5	С	OCC SENSOR	1	LEVEL 3	3.26	KVA	0.95	3097	3260		
6	С	CFL	1	GYMNASIUM	2	KVA	0.95	1900	2000		
7	A	FLUORESCENT	1	LEVEL 3	0.5	KVA	0.95	475	500		
8	A	CFL	1	GYMNASIUM	2	KVA	0.95	1900	2000		
9	В	CFL DOWN	1	GYM TRACK	2	KVA	0.95	1900	2000		
10	В	FLUORESCENT	1	FITNESS 201	2.53	KVA	0.95	2404	2530		
11	С	LED/FLUOR	1	FITNESS 201	0.8	KVA	0.95	760	800		
12	С	SPARE	2		2.5	KVA	0.95	2375	2500		
13	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
14	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
15	В	SPARE	2		2.5	KVA	0.95	2375	2500		
16	В	SPARE	2		2.5	KVA	0.95	2375	2500		
17	С	SPARE	2		2.5	KVA	0.95	2375	2500		
18	С	SPARE	2		2.5	KVA	0.95	2375	2500		
19	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
20	Α	SPARE	2		2.5	KVA	0.95	2375	2500		
21	В	SPARE	2		2.5	KVA	0.95	2375	2500		
22	В	SPARE	2		2.5	KVA	0.95	2375	2500		
23	С	SPARE	2		2.5	KVA	0.95	2375	2500		
24	С	SPARE	2		2.5	KVA	0.95	2375	2500		
25	Α	SPACE	3		0	W	1.00	0	0		
26	Α	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	С	SPACE	3		0	W	1.00	0	0		
PANE	L TOTA	L						52.0	54.8	Amps=	65.9
PHAS	E LOAD	ING						kW	kVA	%	Amps
		HASE TOTAL	А					16.4	17.3	32%	20.8
		HASE TOTAL	В					18.0	18.9	35%	22.8
		HASE TOTAL	C		1			17.6	18.6	34%	22.3
LOAT		GORIES		Connecte	'nd		De	mand			Ver. 1.04
<u> 10/11</u>		G O THEO		kW	kVA	DF	kW	kVA	PF		
1		LIGHTING		21.1	22.3		21.1	22.3	0.95	İ	
2	1	SPARE		30.9	32.5	1	30.9	32.5	0.95	1	1
3	1	SPACE		0.0	0.0	1	0.0	0.0		1	1
5	Total	Demand Loads		010	0.0		52.0	54.8	1		
		are Capacity		25%			13.0	13.7			
		l Design Loads		2070	1		65.0	68.4	0.95	Amps=	82.4

		I	P A N E	LBO	A]	R I	D	SCHI	E D U L	Е		
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 80A SIZE/TYPE MAIN: 80A/3P C/B			PANEL TAG: ESLP-3-1 PANEL LOCATION: ELEC. ROOM 302 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: PROVIDE FEED THROUGH LUGS FOR PANELBOARD 1L1B		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
FLUORESCENT	ATHL GALL	1900	20A/1P	1	*			2	20A/1P	1938	FITNESS 201	LINEAR FLUOR
CFL	GYM TRACK	1900	20A/1P	3		*		4	20A/1P	1938	FITNESS 201	LINEAR FLUOR
INDUSTRIAL	ELEC RMS	3097	20A/1P	5			*	6	20A/1P	2375		SPARE
CFL	GYMNASIUM	950	20A/1P	7	*			8	20A/1P	2375		SPARE
CFL	GYMNASIUM	950	20A/1P	9		*		10	20A/1P	475	LEVEL 3	FLUORESCENT
CFL	GYMNASIUM	950	20A/1P	11			*	12	20A/1P	950	ROOF	EXTERIOR
CFL	GYMNASIUM	950	20A/1P	13	*			14	20A/1P	2375	0	SPARE
SPARE	-	2375	20A/1P	15		*		16	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	17			*	18	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	19	*			20	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	21		*		22	20A/1P	2375	-	SPARE
SPARE	-	2375	20A/1P	23			*	24	20A/1P	2375	-	SPARE
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE
CONNECTED LOAD	(KW) - A Ph.	15.24								TOTAL DESIGN I	.OAD (KW)	58.5
ONNECTED LOAD	(KW) - B Ph.	14.76							POWER FACTOR			
ONNECTED LOAD	(KW) - C Ph.	16.87								TOTAL DESIGN I	LOAD (AMPS)	7

PANELBOARD SIZING WORKSHEET

Panel Tag>	ESLP-3-1	Panel Location:	ELEC. ROOM 302		
Nominal Phase to Neutral Voltage>	277	Phase:	3		
Nominal Phase to Phase Voltage>	480	Wires:	4		

					1	1	-	1		
P	Ы	I I M		T			I.		* * *	
Pos	Ph.	Load Type	Cat.	Location	Load	Units	PF	Watts	VA	Remarks
1	Α	FLUORESCENT	1	ATHL GALL	2	KVA	0.95	1900	2000	
2	Α	LINEAR FLUOR	1	FITNESS 201	2.04	KVA	0.95	1938	2040	
3	В	CFL	1	GYM TRACK	2	KVA	0.95	1900	2000	
4	В	LINEAR FLUOR	1	FITNESS 201	2.04	KVA	0.95	1938	2040	
5	С	INDUSTRIAL	1	ELEC RMS	3.26	KVA	0.95	3097	3260	
6	С	SPARE	2		2.5	KVA	0.95	2375	2500	
7	Α	CFL	1	GYMNASIUM	1	KVA	0.95	950	1000	
8	Α	SPARE	2		2.5	KVA	0.95	2375	2500	
9	В	CFL	1	GYMNASIUM	1	KVA	0.95	950	1000	
10	В	FLUORESCENT	1	LEVEL 3	0.5	KVA	0.95	475	500	
11	С	CFL	1	GYMNASIUM	1	KVA	0.95	950	1000	
12	С	EXTERIOR	1	ROOF	1	KVA	0.95	950	1000	
13	Α	CFL	1	GYMNASIUM	1	KVA	0.95	950	1000	
14	Α	SPARE	2		2.5	KVA	0.95	2375	2500	
15	В	SPARE	2		2.5	KVA	0.95	2375	2500	
16	В	SPARE	2		2.5	KVA	0.95	2375	2500	
17	С	SPARE	2		2.5	KVA	0.95	2375	2500	
18	С	SPARE	2		2.5	KVA	0.95	2375	2500	
19	Α	SPARE	2		2.5	KVA	0.95	2375	2500	
20	Α	SPARE	2		2.5	KVA	0.95	2375	2500	
21	В	SPARE	2		2.5	KVA	0.95	2375	2500	
22	В	SPARE	2		2.5	KVA	0.95	2375	2500	
23	С	SPARE	2		2.5	KVA	0.95	2375	2500	
24	С	SPARE	2		2.5	KVA	0.95	2375	2500	
25	Α	SPACE	3		0	W	1.00	0	0	

Α	SPACE	3		0	W	1.00	0	0		
В	SPACE	3		0	W	1.00	0	0		
В	SPACE	3		0	W	1.00	0	0		
С	SPACE	3		0	W	1.00	0	0		
С	SPACE	3		0	W	1.00	0	0		
L TOTA	L			•			46.9	49.3	Amps=	59.4
E LOAD	ING						kW	kVA	%	Amps
PF	HASE TOTAL	А					15.2	16.0	33%	19.3
PHASE TOTAL		В	В				14.8		31%	18.7
PF	HASE TOTAL	С					16.9	17.8	36%	21.4
O CATE	GORIES		Conne	cted		Der	nand			Ver. 1.04
			kW	kVA	DF	kW	kVA	PF		
	LIGHTING		16.0	16.8		16.0	16.8	0.95		
	SPARE		30.9	32.5		30.9	32.5	0.95		
	SPACE		0.0	0.0		0.0	0.0			
	Domandlanda					46.9	49.3			
<u>Total</u>	Demand Loads									
	are Capacity		25%			11.7	12.3			
	B C C L TOTA E LOAD PH PH PH	B SPACE B SPACE C SPACE C SPACE L TOTAL E LOADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL O CATEGORIES LIGHTING SPARE	B SPACE 3 B SPACE 3 C SPACE 3	B SPACE 3 B SPACE 3 C PHASE TOTAL A PHASE TOTAL B PHASE TOTAL D CATEGORIES Conne kW LIGHTING 16.0 SPARE 30.9	BSPACE30BSPACE30CSPACE30CSPACE30CSPACE30CSPACE30CSPACE30CSPACE30CSPACE30CSPACE30CSPACE00PHASE TOTALAPHASE TOTAL0PHASE TOTALC00O CATEGORIESConnected0CATEGORIESConnected0SPARE30.932.5	B SPACE 3 0 W B SPACE 3 0 W C SPACE 3 0 W U TOTAL 0 W W W E LOADING	B SPACE 3 0 W 1.00 B SPACE 3 0 W 1.00 C SPACE 3 0 W 1.00 PHASE TOTAL A	B SPACE 3 0 W 1.00 0 B SPACE 3 0 W 1.00 0 C SPACE 3 0 W 1.00 0 E LOADING KW KW KW KW KW PHASE TOTAL B 14.8 14.8 PHASE TOTAL C Demand KW D CATEGORIES Connected Demand </td <td>B SPACE 3 0 W 1.00 0 0 B SPACE 3 0 W 1.00 0 0 0 C SPACE 3 0 W 1.00 0 0 0 C SPACE 3 0 W 1.00 0 0 LTOTAL 46.9 49.3 46.9 49.3 46.9 49.3 E LOADING KW kW kVA 15.2 16.0 PHASE TOTAL B 14.8 15.5 16.9 17.8 O CATEGORIES Connected Demand Eucon 16.9 17.8 D CATEGORIES Connected Demand 16.0</td> <td>B SPACE 3 0 W 1.00 0 0 B SPACE 3 0 W 1.00 0 0 C SPACE 3 0 W 1.00 0 0 LIGHTING A 15.2 16.0 33% PHASE TOTAL B 14.8 15.5 31% PHASE TOTAL C Demand Demand Demand CATEGORIES Connected Demand Demand Demand Demand Demand Demand</td>	B SPACE 3 0 W 1.00 0 0 B SPACE 3 0 W 1.00 0 0 0 C SPACE 3 0 W 1.00 0 0 0 C SPACE 3 0 W 1.00 0 0 LTOTAL 46.9 49.3 46.9 49.3 46.9 49.3 E LOADING KW kW kVA 15.2 16.0 PHASE TOTAL B 14.8 15.5 16.9 17.8 O CATEGORIES Connected Demand Eucon 16.9 17.8 D CATEGORIES Connected Demand 16.0	B SPACE 3 0 W 1.00 0 0 B SPACE 3 0 W 1.00 0 0 C SPACE 3 0 W 1.00 0 0 LIGHTING A 15.2 16.0 33% PHASE TOTAL B 14.8 15.5 31% PHASE TOTAL C Demand Demand Demand CATEGORIES Connected Demand Demand Demand Demand Demand Demand

feeder sizing

LP-2-1	
Voltage	480Y/277
Design Load (KW)	62.1
Power Factor	0.95
Calculated Design Load (Amps)	79
Feeder Protection Size (Amps)	80
Sets	1
Wire Sizes	
Phase	4
Neutral	4
Ground	8
Conduit Size	1 1/4"

LP-3-1	
Voltage	480Y/277
Design Load (KW)	74.2
Power Factor	0.95
Calculated Design Load (Amps)	94
Feeder Protection Size (Amps)	100
Sets	1
Wire Sizes	
Phase	3
Neutral	3
Ground	8
Conduit Size	1 1/4"

ESLP-3-1	
Voltage	480Y/277
Design Load (KW)	58.6
Power Factor	0.95
Calculated Design Load (Amps)	74
Feeder Protection Size (Amps)	80
Sets	1
Wire Sizes	
Phase	4
Neutral	4
Ground	8
Conduit Size	1 1/4"

voltage drop calculations

VOLTAGE DROP – LP-2-1	
Voltage (V)	480
Ampacity (I)	85
Power Factor (See Note 1)	.95
Wire Size (14,12,10 1/0, 2/0 250,350)	4
# of conductors per phase	1
Type Conductor (A=Aluminum C=Copper)	С
Type Conduit (P=PVC; A=Aluminum S=Steel)	S
Length of Run (ft)	158

 Voltage Drop
 7.29

 % Drop
 1.52

VOLTAGE DROP – ESLP-3- 2	1
Voltage (V)	480
Ampacity (I)	85
Power Factor (See Note 1)	.95
Wire Size	3
(14,12,10 1/0, 2/0 250,350)	3
# of conductors per phase	1
Type Conductor	С
(A=Aluminum C=Copper)	L
Type Conduit	S
(P=PVC; A=Aluminum S=Steel)	3
Length of Run (ft)	172

 Voltage Drop
 7.47

 % Drop
 1.56

VOLTAGE DROP – LP-3-1	
Voltage (V)	480
Ampacity (I)	85
Power Factor (See Note 1)	.95
Wire Size	3
(14,12,10 1/0, 2/0 250,350)	
# of conductors per phase	1
Type Conductor	С
(A=Aluminum C=Copper)	ŭ
Type Conduit	S
(P=PVC; A=Aluminum S=Steel)	5
Length of Run (ft)	172
Voltage Drop	7.62

% Drop 1.59

circulation space | lobby

lighting redesign

The lobby typically provides the initial and final impression of the Rec Center, and the lighting needs to orient someone both to the circulation within the space as well as the feel and aesthetics of the building itself. The task and ambient light levels are provided by an apparently random but intentionally spaced surface mounted LED downlight array. To counteract the closing effect of the downlights, custom LED luminaire fixtures are provided to bring visual interest and the appearance of a bright open ceiling while reinforcing the height of the space. The security desk is lit by the linear fluorescent "flying surface" luminaire to keep continuity through the space while providing the necessary light levels for facial recognition and task performance. Orientational wall features are highlighted by recessed LED square downlights, and the space is lit primarily with daylight for a majority of day.

electrical redesign

Both the emergency and normal lighting panels that serve the fitness center are 480Y/277V 3 phase 4 wire panels, with the emergency sized at 60A and the normal sized at 80A. The replacement of linear fluorescent with even more energy efficient LED lighting to provide the ambient lighting to the space greatly lowers the lighting load on the panels.

controls

The façade of the Drexel Recreation Center is a product of an extensive energy study to maximize daylighting and minimize solar gain. The lobby is the daylighting feature space of the rec center, and so is provided with consistent levels of daylight throughout the day, especially given the low lighting level requirement of 10fc. For a more consistent lighting level and in order to minimize possible issues involved with dimming the LEDs, the Wattstopper switching control system will be used on the LEDs, with dimming taking place only over the security desk. The daylighting sensor will be calibrated in order to maintain the desired minimum of 10fc on the ground at all times.

		Fitness Center Co	ntrol Schedule
Туре	Manufacturer	Product	Description
LC-100	Wattstopper	Intelligent Power Pack	Power pack delivers 0-10V dimming control to lighting
LC 100	Wattstopper	intelligent i ower i dek	loads.
LMLS-305	Wattstopper	LightSaver Photocell	Closed loop photosensor provides the daylight data
LIVES-505	wattstopper	Lightsaver i notocen	necessary for operation.
		LightSaver Room Dimming	Provides automatic dimming control for fluorescent
LMRC-201	Wattstopper	Controller	fixtures. Closed loop control utilizes a photocell for
		Controller	single-zone dimming.
LMSW-100	Wattstopper	LightSaver Wall Switches	Allows occupants to temporarily override the daylighting
LINISW-100	wattstopper	Lightsaver Wall Switches	control systems.

panelboards

existing

Below are the existing panelboard schedules for 480Y/277V normal lighting panel LP-1-1 and 480Y/277V emergency lighting panel ESLP-1-1. LP-1-1 is located on the first floor of the DRC in Electrical Switchgear Room 132, and ESLP-1-1 is located on the first floor in the Emergency Generator Room 133. Modified circuits are indicated with an aqua box.

PANEL: SECTION LOCATIO	l: N:		-		HASE 8	LTAGE; WIRE: AMPS);	3 PH,	4W		XNEW EXISTI KAIC RATING: POLES;	ING 35 30
NOTES	CKT NO.	C.B.	DESCRIPTION	LOAD (KVA)	A	В	С	LOAD (KVA)	DESCRIPTION	C.B. CKT A P NO.	NOTES
2	1	20 '	LTG - LOBBY 100 UPLIGHTS	1.88	3.67			1.79	LTG - LOCKER ROOMS	20 1 2	1
2	3	20 1	LTG - LOBBY 100 DOWNLIGHTS	1,88		2,01		0,13	LTG - RETALL CAFÉ 104	20 1 4	1
	5	20 ′	LTG - OC SENSORS	2.33			2.77	0.45	LTG - GEN. STORAGE 130	20 1 6	1
1	7	20	LTG - SECURITY RM 110	0.29	0.68			0.38	LTG - ELEC, RM 132	20 1 8	1
1	9	20 '	LTG - COR 111, 112, RM 108, 120	2.90		3.09		0.19	LTG - SHELL SPACE 122/SQ CT	20 1 10	1
1	11	20	LTG - FUT, CHILLER RM 137	0.51			1.09	0.58	LTG - BOILER RM 136	20 1 12	1
3	13	20 1	LTG - EXTERIOR BENCHES	1,00	2,50		1	1,50	LTG - SITE	20 1 14	3
	15	20	SPARE			0.00			SPARE	20 1 16	
	17	20 1	SPARE				0.00		SPARE	20 1 18	
	19	20	SPARE		0.00				SPARE	20 1 20	
	21	20 '	SPARE			0.00			SPARE	20 1 22	
	23	20 '	SPARE			0100	0,00		SPARE	20 1 24	
	25		SPACE		0.00		0100		SPACE	26	
	27		SPACE		0.00	0.00			SPACE	28	
	29		SPACE			0.00	0.00		SPACE	30	
		>	TOTAL CONNECTED LOA OPTIONS / MULTIPLE SECTION PANEL RECESSED SURFACE 200% RATED NEUTRAL ISOLATED GROUND BUS	· ,	<u> </u>	15.81 RIES – ()	X) INDI	CATES	SELECTION CONTACTOR CONT FEED THF SUB FEED MAIN LUGS (DOUBL CONTROLLABLE CIRCUIT BREAKEF	RU LUGS E LUGS)	
	2. 3. CON	CONTR				TAGE:				X NEW EXIST	ING
OCATION	ł		GENCY GENERATOR ROOM 133 FLOOR	LOAD	MAIN (/	AMPS):	60A,	M.L.O.		KAIC RATING: POLES:	35 30
IOTES L		A P	DESCRIPTION	(KVA)	Α	В	C	(KVA)	DESCRIPTION	A P NO	NOTES

		FILM	31	FLOOR								F.	ULES:	- 30
NOTES	CKT NO.	C.E	3. P	DESCRIPTION	LOAD (KVA)	A	В	C	LOAD (KVA)	DESCRIPTION			CKT NO	NOTES
	1	20	1	EMR, LTG- LOB 100 EXT SNS	0.52	1.39			0.87	EMR LTG- LOBBY 100 UPLGHTS	20) 1	2	2
	3	20	1	EMR. LTG- STR S3, RM 102, 103	0.29		1.16		0.87	EMR LTG- LOBBY 100 DWNLGHTS	20) 1	4	2
	5	20	1	EMR. LTG- CORR, RM 108-110, 122	1,89			2,41	0,51	EMR LTG- LKR RM, BTHRMS	20) 1	6	
	7	20	1	EMR. LTG- ELEC/MECH RMS	1.88	2.66			0.79	EMR LTG- SHELL SPACE	20) 1	8	
1	9	20	1	EMR. LTG- EXTERIOR	1.60		1.60			SPARE	20) 1	10	
	11	20	1	SPARE				0,00		SPARE	20) 1	12	
	13	20	1	SPARE		0.00				SPARE	20) 1	14	
	15	20	1	SPARE			0,00			SPARE	20) 1	16	
	17	20	1	SPARE				0.00		SPARE	20) 1	18	
	19	20	1	SPARE		0.00				SPARE	20		20	
	21	20	1	SPARE			0,00			SPARE	20) 1	22	
	23	20	1	SPARE				0.00		SPARE	20) 1	24	
	25			SPACE		0,00				SPACE			26	
	27			SPACE			0.00			SPACE			28	
	29			SPACE				0.00		SPACE			30	
				LOAD SUMMARY PER PHAS	E (KVA)	4,06	2.76	2,41						
				TOTAL CONNECTED LOAI	D (KVA)		9,22]					
				OPTIONS A	ND ACC	CESSO	RIES - (X) INDI	CATES	SELECTION				
			н	MULTIPLE SECTION PANEL RECESSED						CONTACTOR CONTRO FEED THRU				
				SURFACE						SUB FEED MAIN LUGS (DOUBLE L			1	<u> </u>
				200% RATED NEUTRAL						CONTROLLABLE CIRCUIT BREAKER P		' L	-	<u> </u>
			ш	CONTROLLABLE CIRCUIT BREAKER							THEF	-	ť	

NOTES: 1. CONTROLLABLE BREAKER BY PHOTOCELL. 2. CONTROLLABLE BREAKER BY ROOFTOP PHOTOCELL.

circuiting calculations

Each circuit was recalculated based on the new lighting load. For a voltage of 277 on 20A circuits, recommended engineering practice designates 3.55 KVA per circuit. All three of the lobby circuits adhere to these guidelines.

Emerger	Emergency Lighting Panel ELP-1-1											
Circuit #	Туре	Quantity	KVA									
2	C2	22	.35									
4	C2	22	.35									
	Total KVA		.694									

Norm	Normal Lighting Panel LP-1-1										
Circuit #	Туре	Quantity	KVA								
1	C2	120	.25								
	1.89										
3	C1	8	.29								
3	C2	27	.43								
3	S1	6	.65								
	Total KVA										
4	4 J2 73										
	Total KVA										

The redesigned panelboard schedule for Panels LP-1-1 and ESLP-1-1 are provided below with their corresponding panelboard sizing worksheets. Modified circuits are indicated with an aqua box.

	PANELBOARD SCHEDULE												
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL TAG: LP-1-1 PANEL LOCATION: ELEC. SWTCHGR RM. 132 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS:					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
LED	LOBBY	1796	20A/1P	1	*			2	20A/1P	1701	LKR RMS	FLUORESCENT	
LED/FL PERIMETER	LOBBY	1302	20A/1P	3		*		4	20A/1P	770	LOBBY	DECORATIVE LED	
OC SENSOR	1ST FL	2214	20A/1P	5			*	6	20A/1P	428	STOR 130	INDUSTRIAL	
FLUORESCENT	SEC 110	276	20A/1P	7	*			8	20A/1P	361	ELEC 132	INDUSTRIAL	
DWNLTS	CORR	2755	20A/1P	9		*		10	20A/1P	181	SHELL 122	INDUSTRIAL	
INDUSTRIAL	CHILL 137	485	20A/1P	11			*	12	20A/1P	551	BLR 136	INDUSTRIAL	
LED/CFL	EXTR	1853	20A/1P	13	*			14	20A/1P	1343	EXTR	POLES	
SPARE	-	2375	20A/1P	15		*		16	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	17			*	18	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	19	*			20	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	21		*		22	20A/1P	2375	-	SPARE	
SPARE	-	2375	20A/1P	23			*	24	20A/1P	2375	-	SPARE	
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE	
CONNECTED LOAD (CONNECTED LOAD (KW) - A Ph. 12.08										TOTAL DESIGN LOAD (KW)		
CONNECTED LOAD (KW) - B Ph.	14.51								POWER FACTOR	0.95		
CONNECTED LOAD (KW) - C Ph.	13.18								TOTAL DESIGN	63		

PANELBOARD SIZING WORKSHEET

	Panel Tag>					LP-1-1 Panel Locat				SWTCHG	R RM. 132
	No	minal Phase to Neutral V	oltage	>	277		Phase		3		
	No	minal Phase to Phase Vo	ltage	>	480		Wires	:	4		
					T						
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rei	narks
1	А	LED DWNLTS	1	LOBBY	1.89	KVA	0.95	1796	1890		
2	А	FLUORESCENT	1	LKR RMS	1.79	KVA	0.95	1701	1790		
3	В	LED/FL PERIMETER	1	LOBBY	1.37	KVA	0.95	1302	1370		
4	В	DECORATIVE LED	1	LOBBY	0.81	KVA	0.95	770	810		
5	С	OC SENSOR	1	1ST FL	2.33	KVA	0.95	2214	2330		
6	С	INDUSTRIAL	1	STOR 130	0.45	KVA	0.95	428	450		
7	А	FLUORESCENT	1	SEC 110	0.29	KVA	0.95	276	290		
8	А	INDUSTRIAL	1	ELEC 132	0.38	KVA	0.95	361	380		
9	В	DWNLTS	1	CORR	2.9	KVA	0.95	2755	2900		
10	В	INDUSTRIAL	1	SHELL 122	0.19	KVA	0.95	181	190		
11	С	INDUSTRIAL	1	CHILL 137	0.51	KVA	0.95	485	510		
12	С	INDUSTRIAL	1	BLR 136	0.58	KVA	0.95	551	580		
13	А	LED/CFL	1	EXTR	1.91	KVA	0.97	1853	1910		
14	А	POLES	1	EXTR	1.37	KVA	0.98	1343	1370		
15	В	SPARE	2		2.5	KVA	0.95	2375	2500		
16	В	SPARE	2		2.5	KVA	0.95	2375	2500		
17	С	SPARE	2		2.5	KVA	0.95	2375	2500		
18	С	SPARE	2		2.5	KVA	0.95	2375	2500		
19	А	SPARE	2		2.5	KVA	0.95	2375	2500		
20	А	SPARE	2		2.5	KVA	0.95	2375	2500		
21	В	SPARE	2		2.5	KVA	0.95	2375	2500		
22	В	SPARE	2		2.5	KVA	0.95	2375	2500		
23	С	SPARE	2		2.5	KVA	0.95	2375	2500		
24	С	SPARE	2		2.5	KVA	0.95	2375	2500		
25	А	SPACE	3		0	W	1.00	0	0		
26	А	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	C	SPACE	3		0	W	1.00	0	0		
	L TOTA		0		Ŭ		2.00	39.8	41.8	Amps=	50.3
PHAS	E LOAD	ING						kW	kVA	%	Amps
		PHASE TOTAL	А					12.1	12.6	30%	15.2
		PHASE TOTAL	В					14.5	15.3	37%	18.4
		PHASE TOTAL	С					13.2	13.9	33%	16.7

LOAD	CATEGORIES	Connec	Connected						Ver. 1.04
		kW	kVA	DF	kW	kVA	PF		
1	LIGHTING	16.0	16.8		16.0	16.8	0.95		
2	SPARE	23.8	25.0		23.8	25.0	0.95		
3	SPACE	0.0	0.0		0.0	0.0			
	Total Demand Loads				39.8	41.8			
	Spare Capacity	25%			9.9	10.4			
	Total Design Loads				49.7	52.2	0.95	Amps=	62.8

		I	P A N E	LBO	A I	R I	D	S C H I	E D U L	E			
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 60A SIZE/TYPE MAIN: 60A/3P C/B			PANEL TAG: ESLP-1-1 PANEL LOCATION: EMER. GEN. RM. 133 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
FLUOR/EXIT SGNS	LOBBY	494	20A/1P	1	*			2	20A/1P	333	LOBBY	LED DWNLTS	
FLUOR	STR, 102, 103	276	20A/1P	3		*		4	20A/1P	333	LOBBY	LED DWNLTS	
DWNLTS	CORR,108-10	1796	20A/1P	5			*	6	20A/1P	485	LKR/REST	FLUORESCENT	
INDUSTRIAL	ELEC/MECH	1786	20A/1P	7	*			8	20A/1P	361	ELEC 132	INDUSTRIAL	
INDUSTRIAL	SHELL 122	751	20A/1P	9		*		10	20A/1P	1853	EXTR	POLES	
SPARE	-	1425	20A/1P	11			*	12	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	13	*			14	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	15		*		16	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	17			*	18	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	19	*			20	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	21		*		22	20A/1P	1425	-	SPARE	
SPARE	-	1425	20A/1P	23			*	24	20A/1P	1425	-	SPARE	
SPACE	-	0	20A/1P	25	*			26	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE	
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE	
CONNECTED LOAD (CONNECTED LOAD (KW) - A Ph. 8.67										TOTAL DESIGN LOAD (KW)		
CONNECTED LOAD (KW) - B Ph.	<mark>8.9</mark> 1							POWER FACTOR	0.9			
CONNECTED LOAD (KW) - C Ph.	10.83							TOTAL DESIGN LOAD (AMPS)				

PANELBOARD SIZING WORKSHEET

		Panel Tag		>	ESLP-1-1	Panel Location:			EME	EMER. GEN. RM. 133		
	Ν	ominal Phase to Neutra	al Voltag	ge>	277		Phase		3			
	N	ominal Phase to Phase	480 Wires:									
				-	1	1		r				
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Remarks		
1	Α	FLUOR/EXIT SGNS	1	LOBBY	0.52	KVA	0.95	494	520			
2	А	LED DWNLTS	1	LOBBY	0.35	KVA	0.95	333	350			
3	В	FLUOR	1	STR, 102, 103	0.29	KVA	0.95	276	290			
4	В	LED DWNLTS	1	LOBBY	0.35	KVA	0.95	333	350			
5	С	DWNLTS	1	CORR,108-10	1.89	KVA	0.95	1796	1890			
6	С	FLUORESCENT	1	LKR/REST	0.51	KVA	0.95	485	510			
7	А	INDUSTRIAL	1	ELEC/MECH	1.88	KVA	0.95	1786	1880			
8	А	INDUSTRIAL	1	ELEC 132	0.38	KVA	0.95	361	380			
9	В	INDUSTRIAL	1	SHELL 122	0.79	KVA	0.95	751	790			
10	В	POLES	1	EXTR	1.91	KVA	0.97	1853	1910			
------	--------	-------------------	---	--------	------	-----	------	------	------	-------	-----------	
11	С	SPARE	1		1.5	KVA	0.95	1425	1500			
12	С	SPARE	1		1.5	KVA	0.95	1425	1500			
13	А	SPARE	1		1.5	KVA	0.95	1425	1500			
14	А	SPARE	1		1.5	KVA	0.95	1425	1500			
15	В	SPARE	2		1.5	KVA	0.95	1425	1500			
16	В	SPARE	2		1.5	KVA	0.95	1425	1500			
17	С	SPARE	2		1.5	KVA	0.95	1425	1500			
18	С	SPARE	2		1.5	KVA	0.95	1425	1500			
19	А	SPARE	2		1.5	KVA	0.95	1425	1500			
20	А	SPARE	2		1.5	KVA	0.95	1425	1500			
21	В	SPARE	2		1.5	KVA	0.95	1425	1500			
22	В	SPARE	2		1.5	KVA	0.95	1425	1500			
23	С	SPARE	2		1.5	KVA	0.95	1425	1500			
24	С	SPARE	2		1.5	KVA	0.95	1425	1500			
25	А	SPACE	3		0	W	1.00	0	0			
26	А	SPACE	3		0	W	1.00	0	0			
27	В	SPACE	3		0	W	1.00	0	0			
28	В	SPACE	3		0	W	1.00	0	0			
29	С	SPACE	3		0	W	1.00	0	0			
30	С	SPACE	3		0	W	1.00	0	0			
PANE		•				1		28.4	29.9	Amps=	35.9	
PHAS	e loai	DING						kW	kVA	%	Amps	
		PHASE TOTAL	А					8.7	9.1	31%	11.0	
		PHASE TOTAL	В					8.9	9.3	31%	11.2	
		PHASE TOTAL	С					10.8	11.4	38%	13.7	
LOAD	CATE	GORIES		Connec	ted		Der	nand			Ver. 1.04	
				kW	kVA	DF	kW	kVA	PF			
1		LIGHTING		14.2	14.9		14.2	14.9	0.95			
2		SPARE		14.3	15.0		14.3	15.0	0.95			
3		SPACE		0.0	0.0		0.0	0.0				
	Тс	otal Demand Loads					28.4	29.9				
		Spare Capacity		25%			7.1	7.5				
	Т	otal Design Loads					35.5	37.3	0.95	Amps=	44.9	
L						1						

feeder sizing

LP-1-1								
Voltage	480Y/277							
Design Load (KW)	49.8							
Power Factor	0.95							
Calculated Design Load (Amps)	62.8							
Feeder Protection Size (Amps)	80							
Sets	1							
Wire Sizes								
Phase	4							
Neutral	4							
Ground	8							
Conduit Size	1 1/4"							

ESLP-1-1									
Voltage	480Y/277								
Design Load (KW)	44.9								
Power Factor	0.95								
Calculated Design Load (Amps)	56.9								
Feeder Protection Size (Amps)	60								
Sets	1								
Wire Sizes									
Phase	6								
Neutral	6								
Ground	10								
Conduit Size	1"								

voltage drop calculations

VOLTAGE DROP – LP-1-1							
Voltage (V)	480						
Ampacity (I)	85						
Power Factor (See Note 1)	.95						
Wire Size	4						
(14,12,10 1/0, 2/0 250,350)	4						
# of conductors per phase	1						
Type Conductor	С						
(A=Aluminum C=Copper)	C						
Type Conduit	۸						
(P=PVC; A=Aluminum S=Steel)	A						
Length of Run (ft)	23						

Voltage Drop

1.06

% Drop 0.22

VOLTAGE DROP – ESLP-1-1							
Voltage (V)	480						
Ampacity (I)	65						
Power Factor (See Note 1)	.95						
Wire Size	6						
(14,12,10 1/0, 2/0 250,350)	0						
# of conductors per phase	1						
Type Conductor	C						
(A=Aluminum C=Copper)	C						
Type Conduit	А						
(P=PVC; A=Aluminum S=Steel)	А						
Length of Run (ft)	39						
Voltago Dron	1.97						
Voltage Drop							
% Drop	0.41						

special purpose space | restaurant

lighting redesign

The sports bar and restaurant is a multi-faceted space that can be an exciting, engaging place to watch a football game or can be a more relaxing, intimate place to take a break and enjoy dinner and drinks with friends. The lighting throughout the space needs to be adjustable in order to establish the desired atmosphere and impression for specific events. In either mode, a restaurant/lounge area utilizes a non-uniform lighting design with lower light levels immediately surrounding the guest with higher levels away from the guest, providing a sensation of watching without being watched. The concept of the building's core energy is carried through the restaurant with the energy efficient LED cove. Fluorescent and LED lighting is used for energy efficiency, but halogen sources were used above tables and the above bar for color rendering of food and people.

electrical redesign

Both the emergency and normal lighting dimming panels that serve the restaurant are 208Y/120V 3 phase 4 wire panels, with the emergency and normal each sized at 175A. The removal of inefficient incandescent decorative pendants and excessive amounts of track lighting created space in which the power density was met but sufficient light levels are still present in dining and service areas.

controls

The bar and lounge are open for both lunch and dinner, as well as for sporting events and offevenings. The lighting needs to have different scenes, as well as be highly reactive to the daylight that will influence the space through the glazing that makes up almost the entirety of the southern façade. An additional scene with high light levels needs to exist in order to facilitate the wait staff in cleaning up at the end of the night.

	Restaurant Control Schedule											
Туре	Manufacturer	Product	Description									
LMLS-305	Wattstopper	LightSaver Photocell	Closed loop photosensor provides the daylight data necessary for operation.									
LMRC-301	Wattstopper	LightSaver Room Dimming Controller	Provides automatic dimming control for multi-zone dimming control.									
LMSW-105	Wattstopper	LightSaver Digital 5-Button Scene Switch	Allows occupant control by accessing four of the 16 scenes available on the local DLM network.									

figure 26 – restaurant control diagram

panelboards

Below are the existing panelboard schedules for 208Y/120V normal dimming lighting panel NDP-L and 208Y/120V emergency lighting panel GDP-L. Both panels are located in the first floor restaurant electrical room. Modified circuits are indicated with a green box.

existing

N		OLTS: 2	208/1200	/	PHASE:	3	LOC	CATION:	ELECT	RICAL ROOM	SHORT CIRCUIT RATING: 10 KAIC		
SC	HEDULE "NDP-L"	MPS: 1	175A ML()	WIRE: 4 MOUNTING: SUR		SURFA	VCE	TOTAL CONNECTED LOAD: 11.8 kVA				
CIR,	DESCRIPTION		LOAD	WIRE	CIRCU	T BKR.	CIRCU	IT BKR.	WIRE	LOAD	DESCRIPTION		
NO.	DESCRIPTION	vo	OLT AMP	SZE	AMPS	POLES	AMPS	POLES	SIZE	SIZE VOLT AMP			
1	TRACK LIGHTING - ELEC LOW VOLTAGE - PDR BAR		1417	12	20	1	20	1	#12	1200	EXTERIOR SIGNAGE - SWITCHING ONLY	13	
2	PENDANT LIGHTING - INCANDESCENT - UPPER DINING		300	12	20	1	20	1	#12	1200	EXTERIOR SIGNAGE - SWITCHING ONLY	14	
3	DOWN LIGHTING - ELEC LOW VOLTAGE - UPPER DININ	IG	450	12	20	1	20	1			SPARE	15	
4	PENDANT LIGHTING - INCANDESCENT - DINING		900	12	20	1	20	1			SPARE	16	
5	ROPE LIGHTING - LED - PATIO BAR		100	#12	20	1	20	1	#12	316	TRACK LIGHTING - ELEC LOW VOLTAGE - REAR BAR AREA	17	
6	ROPE LIGHTING - LED - PDR BAR		100	<i>∦</i> 12	20	1	20	1			SPARE	18	
7	PENDANT LIGHTING - INCANDESCENT - TOILET CORRIDOR		240	#12	20	1	20	1	#12	360	PENDANT LIGHTING - INCANDESCENT - PDR/ LOUNGE	19	
8	DOWN LIGHTING - ELEC LOW VOLTAGE - DINNIG		1800	12	20	1	20	1	# 12	211	TRACK LIGHTING - ELEC LOW VOLTAGE - PDR/ LOUNGE	20	
9	DOWN LIGHTING - ELEC LOW VOLTAGE - BAR AREA		369	12	20	1	20	1	#12	480	PENDANT LIGHTING - INCANDESCENT - BAR	21	
10	EXTERIOR SCONCES - HALOGEN - PATIO FREEZER WALL		50	# 12	20	1	20	1	#12	100	ROPE LIGHTING - LED - PDR BAR AREA COVE	22	
11	DOWN LIGHTING - ELEC LOW VOLTAGE - BAR AREA		1350	12	20	1	20	1			SPARE	23	
12	SPARE			#12	20	1	20	1	#12	900	DOWN LIGHTING - ELEC LOW VOLTAGE - BAR AREA ALCOVE	24	
PANEL	BOARD NOTES:												
1. THIS PANEL SHALL BE LUTRON "GRAFIK" SYSTEMS TYPE "LCP128" SPEC GRADE SERIES, MODEL #LCP24-1204-ML-20 WITH 20A BREAKERS (OR APPROVED EQUAL).													
2. TH	IS PANEL SHALL BE FURNISHED WITH DUAL TAP LUGS.												
3. TH	E LOAD SHOWN ON THIS PANEL INCLUDES THE LOAD FROM	PANEL "DP	°L2—L*										

		208/120			3			ELECTRICAL ROOM				
	NEL SCHEDULE "GDP-L" AMPS:	175A ML	0	WIRE:	4	MO	UNTING:	SURFA	UE	TOTAL CONNECTED LOAD: 6.1 kVA	-	
CIR.	DESODIPTION		WIRE	CIRCU	T BKR,	CIRCU	T BKR	WIRE	LOAD	DESCRIPTION	CIR.	
NO,	DESCRIPTION	VOLT AMP	SZE	AMPS	POLES	AMPS	POLES	SIZE	VOLT AMP	DESCRIPTION	NO,	
1	TRACK LIGHTING - ELEC LOW VOLTAGE - UPPER DINING	221	#12	20	1	20	1	#12	105	DOWN LIGHTING - ELEC LOW VOLTAGE - BAR AREA ALCOVE	9	
2	TRACK LIGHTING - ELEC LOW VOLTAGE - DINING	1032	∦12	20	1	20	1	#12	421	DOWN LIGHTING - ELEC LOW VOLTAGE - DINING	10	
3	TRACK LIGHTING - ELEC LOW VOLTAGE - BAR AREA	663	<i>⋕</i> 12	20	1	20	1	∦12	900	DOWN LIGHTING - ELEC LOW VOLTAGE - PATIO BAR	11	
4	TRACK LIGHTING - ELEC LOW VOLTAGE - LOBBY	111	#12	20	1	20	1	<i>#</i> 12	50	SCONCE LIGHTING - HALOGEN - PATIO BAR	12	
5	TRACK LIGHTING - ELEC LOW VOLTAGE - BAR AREA	316	#12	20	1	20	1			SPARE	13	
6	DOWN LIGHTING - ELEC LOW VOLTAGE - LOBBY	474	# 12	20	1	20	1			SPARE	14	
7	MONOPOINT LIGHTING - ELEC LOW VOLTAGE - BAR	526	#12	20	1	20	1			SPARE	15	
8	DOWN LIGHTING - ELEC LOW VOLTAGE - PDR/ LOUNGE	1326	#12	20	1	20	1			SPARE	16	
	PANELBOARD NOTES:											
	1. THIS PANEL SHALL BE LUTRON "GRAFIK" SYSTEMS TYPE "LCP128" SPEC GRADE SERIES, MODEL ∯LCP16-1204-ML-20 WITH 20A BREAKERS (OR APPROVED EQUAL).											

circuiting calculations

Each circuit was recalculated based on the new lighting load. For a voltage of 120 on 20A circuits, recommended engineering practice designates 1.54 KVA per circuit. All three of the lobby circuits adhere to these guidelines.

Emergency Dimming Panel GDP-L										
Circuit #	Туре	Quantity	KVA							
1	С3	16	.80							
	Total kVA		.80							
2	С3	15	.75							
	Total kVA		.75							
3	F1	24	.84							
	Total kVA		.84							
5	F1	24	.84							
	Total kVA		.84							

Norm	al Dimmi	ing Panel	NDP-L				
Circuit #	Туре	Quantity	KVA				
1	B1	1	1.2				
	1.2						
2	C3	8	.4				
	Total kVA		.4				
3	D1	11	.39				
	Total kVA		.39				
4	D1	11	.39				
	Total kVA		.39				
8	D1	16	.58				
	Total kVA		.58				
9	J3	50'	.27				
	Total kVA		.27				
11	J4	198'	.89				
	Total kVA		.89				
21	J4	198'	.89				
	Total kVA		.89				
24	24 J4 199'						
	Total kVA		.90				

The redesigned panelboard schedule for Panels NDP-L and GDP-L are provided below with their corresponding panelboard sizing worksheets. Modified circuits are indicated with a green box.

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL TAG: NDP-L PANEL LOCATION: RESTAURANT ELEC ROOM PANEL MOUNTING: SURFACE						MIN. C/B AIC: 10K OPTIONS:					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
HAL PENDANT	BAR	1200	20A/1P	1	*			2	20A/1P	333	BAR	HAL DWNLT
FLUOR COVE	REST PER	371	20A/1P	3		*		4	20A/1P	333	REST PER	FLUOR COVE
LED ROPE LTG	PATIO	950	20A/1P	5			*	6	20A/1P	950	PATIO	LED ROPE LTG
INCAN PENDANT	RESTROOM	240	20A/1P	7	*			8	20A/1P	551	REST PER	FLUOR COVE
LED COVE	DAN	237	ZUA/1F	9		*		10	20A/1P	500	PATIO	HAL SCONCES
LED ACCENT COVE	REST CEILING	846	20A/1P	11			*	12	20A/1P	618	-	SPARE
SIGNAGE	EXTERIOR	1140	20A/1P	13	*			14	20A/1P	1140	EXTERIOR	SIGNAGE
SPARE	-	618	20A/1P	15		*		16	20A/1P	618	-	SPARE
TRACK LIGHTING	REAR BAR	1500	20A/1P	17			*	18	20A/1P	618	-	SPARE
INCAN PENDANT	PDR/LOUNGE	360	20A/1P	19	*			20	20A/1P	1500	PDR/LOUNGE	LV TRACK LTG
LED ACCENT COVE	REST CEILING	840	ZUA/1P	21		*		22	204/1P	05	PDR/LOUNCE	LED ROPE LTC
CDARE		619	204/1P	23			*	24	00A/1D	055	DECT CEILINC	LED ACCENT COVE
CDACE		0	20A/1P	25	*			26	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	27		*		28	20A/1P	0	-	SPACE
SPACE	-	0	20A/1P	29			*	30	20A/1P	0	-	SPACE
CONNECTED LOAD (TOTAL DESIGN LOAD (KW)		21.45			
CONNECTED LOAD (CONNECTED LOAD (KW) - B Ph. 3.67											0.97
CONNECTED LOAD (KW) - C Ph.	6.95							TOTAL DESIGN LOAD (AMPS)			

PANELBOARD SIZING WORKSHEET

	Panel Tag>						Panel Location:			RESTAURANT ELEC ROOM		
	1	Nominal Phase to Neutra			120	Phase:			3			
	l	Nominal Phase to Phase	Voltage	>	208	V	Vires:		4			
						1	1	r				
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Remarks		
1	А	HAL PENDANT	1	BAR	1.2	KVA	1.00	1200	1200			
2	А	HAL DWNLT	1	BAR	0.4	KVA	1.00	400	400			
3	В	FLUOR COVE	1	REST PER	0.39	KVA	0.95	371	390			
4	В	FLUOR COVE	1	REST PER	0.39	KVA	0.95	371	390			
5	С	LED ROPE LTG	1	PATIO	1	KVA	0.95	950	1000			
6	С	LED ROPE LTG	1	PATIO	1	KVA	0.95	950	1000			
7	Α	INCAN PENDANT	1	RESTROOM	0.24	KVA	1.00	240	240			
8	А	FLUOR COVE	1	REST PER	0.58	KVA	0.95	551	580			
9	В	LED COVE	1	BAR	0.27	KVA	0.95	257	270			
10	В	HAL SCONCES	1	PATIO	0.5	KVA	1.00	500	500			
11	С	LED ACCENT COVE	1	REST CEILING	0.89	KVA	0.95	846	890			
12	С	SPARE	2	-	0.65	KVA	0.95	618	650			
13	А	SIGNAGE	1	EXTERIOR	1.2	KVA	0.95	1140	1200			
14	А	SIGNAGE	1	EXTERIOR	1.2	KVA	0.95	1140	1200			

15	В	SPARE	2	_	0.65	KVA	0.95	618	650		
16	B	SPARE	2	-	0.65	KVA	0.95	618	650		
17	С	TRACK LIGHTING	1	REAR BAR	1.5	KVA	1.00	1500	1500		
18	С	SPARE	2	-	0.65	KVA	0.95	618	650		
19	А	INCAN PENDANT	1	PDR/LOUNGE	0.36	KVA	1.00	360	360		
20	А	LV TRACK LTG	1	PDR/LOUNGE	1.5	KVA	1.00	1500	1500		
21	В	LED ACCENT COVE	1	REST CEILING	0.89	KVA	0.95	846	890		
22	В	LED ROPE LTG	1	PDR/LOUNGE	0.1	KVA	0.95	95	100		
23	С	SPARE	2	-	0.65	KVA	0.95	618	650		
24	С	LED ACCENT COVE	1	REST CEILING	0.9	KVA	0.95	855	900		
25	А	SPACE	3		0	W	1.00	0	0		
26	А	SPACE	3		0	W	1.00	0	0		
27	В	SPACE	3		0	W	1.00	0	0		
28	В	SPACE	3		0	W	1.00	0	0		
29	С	SPACE	3		0	W	1.00	0	0		
30	С	SPACE	3		0	W	1.00	0	0		
PANE	L TOTA	AL						17.2	17.8	Amps=	49.3
					1	1	1				1
PHAS	E LOAI							kW	kVA	%	Amps
		PHASE TOTAL	Α					6.5	6.7	38%	18.6
		PHASE TOTAL	В					3.7	3.8	22%	10.7
		PHASE TOTAL	С					7.0	7.2	41%	20.1
											Ver.
LOAD	CATE	GORIES		Connected	Г			mand			1.04
	kW		kVA	DF	kW	kVA	PF				
1		LIGHTING 14.1			14.5		14.1	14.5	0.97		
2		SPARE		3.1	3.3		3.1	3.3	0.95		
3		SPACE		0.0	0.0		0.0	0.0			
	Т	otal Demand Loads					17.2	17.8			
		Spare Capacity		25%			4.3	4.4			
	1	Fotal Design Loads					21.4	22.2	0.97	Amps=	61.7

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL TAG: GDP-L PANEL LOCATION: RESTAURANT ELEC ROOM PANEL MOUNTING: SURFACE				MIN. C/B AIC: 10K OPTIONS:							
DESCRIPTION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
HAL DWNLT	REST	800	20A/1P	1	*			2	20A/1P	333	REST	HAL DWN LT
HAL CABLE	REST PER	840	20A/1P	3		*		4	20A/1P	333	LOBBY	LV TRACK
HAL CABLE	REST PER	840	20A/1P	20A/1P 5 * 0 ZUA/		ZUA/IP	480	LOBRI	LV DWNLTS			
SPARE		610	20A/1P	7	*			8	20A/1P	1300	PDR/LOUNGE	LV DWNLTS
SPARE	-	618	20A/1P	9		*		10	20A/1P	618	-	SPARE
LV DWNLTS	REST CEILING	650	20A/1P	11			*	12	20A/1P	500	-	HAL SCONCE
SPARE	EXTERIOR	618	20A/1P	13	*			14	20A/1P	618	EXTERIOR	SPARE
SPARE	-	618	20A/1P	15		*		16	20A/1P	618	-	SPARE
CONNECTED LOAD (KW) - A Ph. 4.75			s						TOTAL DESIGN LOAD (KW)		13.30	
CONNECTED LOAD (2						POWER FACTOR					
CONNECTED LOAD (KW) - C Ph.	2.47	7						TOTAL DESIGN LOAD (AMPS) 33			

Final Lighting/Electrical Thesis Report | 04.07.2011

PANELBOARD SIZING WORKSHEET

		Panel Tag			GDP-L		Locati	on:		ANT ELEC	ROOM
Nominal Phase to Neutral Voltage>					120 208		hase:		3		
	Nominal Phase to Phase Voltage>					V	Vires:		4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rema	arks
1	А	HAL DWNLT	1	REST	0.8	KVA	1.00	800	800		
2	А	HAL DWNLT	1	REST	0.8	KVA	1.00	800	800		
3	В	HAL CABLE	1	REST PER	0.84	KVA	1.00	840	840		
4	В	LV TRACK	1	LOBBY	0.11	KVA	1.00	110	110		
5	С	HAL CABLE	1	REST PER	0.84	KVA	1.00	840	840		
6	С	LV DWNLTS	1	LOBBY	0.48	KVA	1.00	480	480		
7	А	SPARE	1	-	0.65	KVA	0.95	618	650		
8	А	LV DWNLTS	1	PDR/LOUNGE	1.3	KVA	1.00	1300	1300		
9	В	SPARE	2	-	0.65	KVA	0.95	618	650		
10	В	SPARE	2	-	0.65	KVA	0.95	618	650		
11	С	LV DWNLTS	1	BAR	0.65	KVA	1.00	650	650		
12	С	HAL SCONCE	1	PATIO	0.5	KVA	1.00	500	500		
13	А	SPARE	2	-	0.65	KVA	0.95	618	650		
14	А	SPARE	2	-	0.65	KVA	0.95	618	650		
15	В	SPARE	2	-	0.65	KVA	0.95	618	650		
16	В	SPARE	2	-	0.65	KVA	0.95	618	650		
PANE	L TOTA	L						10.6	10.9	Amps=	30.2
PHAS	E LOAD	ING						kW	kVA	%	Amps
_		ASE TOTAL	A					4.8	4.9	45%	13.5
		ASE TOTAL	В					3.4	3.6	33%	9.9
		ASE TOTAL	С					2.5	2.5	23%	6.9
											Ver.
LOAD	CATEG	ORIES	+	Connected				mand			1.04
1		LIGHTING		kW 6.9	kVA 7.0	DF	kW 6.9	kVA 7.0	PF 1.00		
2		SPARE		3.7	3.9		3.7	3.9	0.95		
3		SPACE		0.0	0.0		0.0	0.0	0.75		
5	Total F	Demand Loads		0.0	0.0		10.6	10.9			
		re Capacity		25%			2.7	2.7			1
	•	Design Loads		2370			13.3	13.6	0.98	Amps=	37.7

feeder sizing

NDP-L	
Voltage	208Y/120
Design Load (KW)	21.4
Power Factor	0.97
Calculated Design Load (Amps)	61.7
Feeder Protection Size (Amps)	80
Sets	1
Wire Sizes	
Phase	4
Neutral	4
Ground	8
Conduit Size	1 1/4"

voltage drop calculations

VOLTAGE DROP – NDP-L							
Voltage (V)	208						
Ampacity (I)	85						
Power Factor (See Note 1)	.95						
Wire Size	4						
(14,12,10 1/0, 2/0 250,350)	4						
# of conductors per phase	1						
Type Conductor	С						
(A=Aluminum C=Copper)	Ľ						
Type Conduit	S						
(P=PVC; A=Aluminum S=Steel)	3						
Length of Run (ft)	20						

Voltage Drop0.92% Drop0.44

GDP-L	
Voltage	208Y/120
Design Load (KW)	13.3
Power Factor	0.98
Calculated Design Load (Amps)	37.7
Feeder Protection Size (Amps)	60
Sets	1
Wire Sizes	
Phase	6
Neutral	6
Ground	10
Conduit Size	1"

VOLTAGE DROP – GDP-L	
Voltage (V)	208
Ampacity (I)	65
Power Factor (See Note 1)	.95
Wire Size	6
(14,12,10 1/0, 2/0 250,350)	0
# of conductors per phase	1
Type Conductor	С
(A=Aluminum C=Copper)	Ľ
Type Conduit	А
(P=PVC; A=Aluminum S=Steel)	А
Length of Run (ft)	20
Voltage Dron	1 00

Voltage Drop 1.09 % Drop 0.53

protective device coordination study and short circuit analysis

A protective device coordination study was conducted along a single path of the electrical distribution system, extending from the utility entrance through the main switchboard to distribution panel DP-1-1, and down to panel LP-1-1 (see Figure below). For the 2500A, two 600A, and 60A circuit breakers, the trip curves were superimposed to determine whether the devices were correctly coordinated. Calculation of the short circuit current at each step along the distribution path and determined standard AIC rating are shown in the tables on the following pages.

		Fault Current Analysis (Per Unit)	Method)				
Utility Tran	sformer E		13,200				
Available U			100,000	ΣΧ	ΣR	ΣZ	I _{sc} (A)
System kV			0.48				
		Utility Transformer Prima	ry	1		1	
		X(p.u.) = KVAbase / Utility S.C. KVA =	0.132				4 0 7 0
		R(p.u.) =	0				4,373
		Utility Transformer Second	ary				
%Z =	5.175	X(p.u.) = %X * kVAbase / 100 * kVA _{xfrmr} =	0.326	0.400	0.110	0.460	27.020
Avg. $X/R =$	2.9	$R(p.u.) = \%R * kVAbase / 100 * kVA_{xfrmr} =$	0.112	0.426	0.112	0.463	27,038
%X =	4.89						
%R =	1.68						
kVA _{xfrmr} =	1,500						
	,	Unit Substation SS-1					
Wire =	500	X = (L/1,000) * XL * (1/sets) =	0.0162				
Length =	32'	R = (L/1,000) * RL * (1/sets) =	0.0102	0.442	0.123	0.464	13,234
Sets =	4			1	1	1	
X =	0.0466						
R =	0.0294						
		Main Distribution Panel DP-	1-1				
Wire =	350	X = (L/1,000) * XL * (1/sets) =	0.0426	0.458	0.133	0.483	8,431
Length =	40'	R = (L/1,000) * RL * (1/sets) =	0.0328	0.450	0.155	0.405	0,431
Sets =	2						
X =	0.0491						
R =	0.0378						
		Branch Circuit Lighting Panel I					
Wire =	6	X = (L/1,000) * XL * (1/sets) =	0.0594	0.518	0.563	0.918	5,130
Length =	20'	R = (L/1,000) * RL * (1/sets) =	0.5178	0.010	0.000	0.710	0,200
Sets =	1						
X =	0.0685						
R =	0.496						

Fault Current Analysis Summary									
Switchgear	Available Fault (A)	Standard Breaker Rating (A)							
Utility Transformer Secondary	27,038	35,000							
Substation SS-1	13,234	18,000							
Distribution Panel DP-1-1	8,431	14,000							
Lighting Panel LP-1-1	5,130	14,000							

conclusion

According to the over-current protection analysis, the breakers along the selected path are coordinated correctly. For an instantaneous fault there is some overlap, however they are offset enough that they should still trip in consecutive order. If there is a spike high enough to instantaneously trip all devices along this distribution, all of the equipment will be taken out regardless. Two 600A breakers of the same size between two switchgear elements could cause some shortage overlap, but no matter which one trips first, the equipment upstream will be protected.

depth one: kinetic energy harnessing system

Kinetic energy is being constantly generated. Most circumstances make it uneconomical to harness due to inconsistent generation or difficult collection. At a fitness center, people are there specifically to create kinetic energy, providing the perfect opportunity to capture a large amount of kinetic energy. The proposed system will harness human energy and convert it into usable electricity to power an LED component of the lighting system. Additional energy will be transferred directly to the utility grid via a utility interactive and the AC main panel.

design concept

Sasaki Associates took care to expose the core energy of the building. The facility is fueled by the energy of the occupants as they move within the space just as the body is fueled by core energy during a workout. The minimalist design of the architecture with its structurally exposed concrete, straight lines, clean materials, and strong angles allow the energy and active users to become the feature of the space.

A bright, uniform lighting layout will create a spacious, energizing environment for the occupants within the fitness center. To further reinforce the energy of the building, a blue uplight LED component will be added to the linear fixtures throughout the space so that the energy being exerted is actually visible both to those creating it and to those viewing the fitness center from the exterior. The fluorescent component is controlled by photocell, but the glowing energy created by the exercisers will be visible even during the day when the remainder of the lighting is turned off in the space.

system overview

ReRev[™] is a patent-pending system that converts human energy into a usable form of renewable energy. It substitutes the typical fan that disperses excess heat from cardio equipment into the space with a small generator and CPU that converts the power to utility grade electricity. Each outfit feeds through a central processing unit which then feeds through the inverter tapped directly into the AC mains panel. The processing units are prepared to handle up to twenty-five machines without overload, so there will be separate processor on each floor of the fitness center. ReRev is currently designed to equip Precor elliptical machines and Ecomill self-powered treadmills with a converter to harness, regulate, and disperse the power in a practical electric form that will be used to power the LEDs. The sample wiring diagram on the following page shows a configuration in which DC power will be tied directly to the LEDs before carrying the remaining power to the grid. A Nextek Power Server Module can accept 24-24.5VDC at a maximum of 65A and provides modulated consistent quality power to the LED lighting load.

The average 30 minute elliptical workout produces 50 watt-hours of energy, while the average treadmill workout produces up to 100 watt-hours. The blue LEDs will only be lit while the energy is being produced, and so all excess energy will be utilized elsewhere throughout the power system.

Sylvania LINEARlight FLEX Top Colormix, a flexible colormixing LED module, will be fixed directly to the linear Lightolier fixtures. Full cutsheets for both the lighting tape and linear fixture are found in Appendix A.

LINEARlight FLEX[®] Top Colormix Flexible Colormixing LED Module

Key Features & Benefits

- Flexible circuit board with selfadhesive backing allows for easy installation in complex contours
- Low profile module enables mounting in compact spaces
- Each Multi LED contains an individually powered red, green and blue chip; this unique method of colormixing achieves excellent color consistency and uniformity
- 13 foot module decreases complexity of wiring and programming simplifying installation for long linear runs
- Modules can be field cut to 7.9 inches (20mm) to achieve a customized fit
- LEDs are closely spaced to minimize hot spots in shallow installations
 - Dimmable by pulse width modulation, a method that maintains consistent lumen output and color

Spectral H-Profile Direct/Indirect Lens

The maximum luminaire length is 16', so at 4w/ft the maximum LED power a machine would need to produce during a workout is 32 watt-hours (enough to illuminate the LEDs for the duration of the 30 minute workout) plus ten additional hours to power the machine itself.

If a treadmill workout were used at maximum capacity to produce 150 watt-hours, a workout could produce up to 112 watt-hours of power for usage elsewhere throughout the building!

conclusion

44 machines on the second floor and 20 machines on the floor will be installed using ReRev technology to power the colored component of the lighting fixtures. Remaining unutilized power will return energy to the power grid. Not only will this save Drexel money and provide an interesting and exciting visible component of energy production within this space, it will also give back to the students knowing that they are not only getting in shape, but helping the environment in a tangible way.

depth two: branch circuit cabling comparison

The existing branch circuiting distribution system in the DRC's fitness center utilizes PVC conduit with combination power and telecommunications boxes located within the floor slab. In order to provide flexibility in the fitness equipment layout, an economic analysis was performed comparing an alternative solution of exposed unventilated metal cable tray on the floors below with poke throughs in place of the floor boxes for the two cardio equipment circuits on the second and third floors. All costs are based on the RS Means Building Construction Cost Data 2011. The following pages show a detailed comparison of PVC conduit and unventilated metal cable tray.

design concept

Two panels on each floor handle all of the treadmill and cardio equipment loads: the figures below denote the locations of these panels and the respective conduit they feed. Additional equipment that is fed by wall-mounted receptacles is not considered in this analysis. Existing Wiremold floor boxes are cost compared with Wiremold recessed poke-thru devices for use with cable tray.

Panel AP-2-1	
Distance	160'
Elbow joints	3
Floor boxes	9
Cardio circuits served	13
Panel AP-2-3	
Distance	210'
Elbow joints	3
Floor boxes	13
Cardio circuits served	17

Panel AP-3-1	
Distance	160'
Elbow joints	3
Floor boxes	8
Cardio circuits served	10
Panel AP-3-2	
Distance	210'
Elbow joints	3
Floor boxes	12
Cardio circuits served	10

	LP-2-1										
Circuit	# of sets	Wire size - Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Conduit Cost/LF	Total Cost	
7	1	12AWG	12AWG	10AWG	80	\$48.45	\$48.45	\$59.50	-	\$ 125.12	
8	1	12AWG	12AWG	10AWG	97	\$48.45	\$48.45	\$59.50	-	\$ 151.71	
9	1	12AWG	12AWG	10AWG	90	\$48.45	\$48.45	\$59.50	-	\$ 140.76	
10	1	12AWG	12AWG	10AWG	97	\$48.45	\$48.45	\$59.50	-	\$ 151.71	
11	1	12AWG	12AWG	10AWG	90	\$48.45	\$48.45	\$59.50	-	\$ 140.76	
12	1	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22	
13	2	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22	
14	3	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22	
15	4	12AWG	12AWG	10AWG	116	\$48.45	\$48.45	\$59.50	-	\$ 181.42	
17	5	12AWG	12AWG	10AWG	116	\$48.45	\$48.45	\$59.50	-	\$ 181.42	
19	6	12AWG	12AWG	10AWG	159	\$48.45	\$48.45	\$59.50	-	\$ 248.68	
21	7	12AWG	12AWG	10AWG	132	\$48.45	\$48.45	\$59.50	-	\$ 206.45	
23	8	12AWG	12AWG	10AWG	132	\$48.45	\$48.45	\$59.50	-	\$ 206.45	
PVC Conduit in Concrete Slab: 13 sets of .5"				159	-	-	-	\$2.21	\$4,568.07		

Cost Analysis #1 : Existing Branch	Circuiting in PVC Conduit
------------------------------------	---------------------------

					AP-2-3					
Circuit	# of sets	Wire size - Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Conduit Cost/LF	Total Cost
1	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
2	1	12AWG	12AWG	10AWG	93	\$48.45	\$48.45	\$59.50	-	\$ 145.45
3	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
4	1	12AWG	12AWG	10AWG	93	\$48.45	\$48.45	\$59.50	-	\$ 145.45
5	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
6	1	12AWG	12AWG	10AWG	84	\$48.45	\$48.45	\$59.50	-	\$ 131.38
7	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
8	1	12AWG	12AWG	10AWG	84	\$48.45	\$48.45	\$59.50	-	\$ 131.38
9	1	12AWG	12AWG	10AWG	77	\$48.45	\$48.45	\$59.50	-	\$ 120.43
10	1	12AWG	12AWG	10AWG	77	\$48.45	\$48.45	\$59.50	-	\$ 120.43
11	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
13	1	12AWG	12AWG	10AWG	68	\$48.45	\$48.45	\$59.50	-	\$ 106.35
14	1	12AWG	12AWG	10AWG	32	\$48.45	\$48.45	\$59.50	-	\$ 50.05
16	1	12AWG	12AWG	10AWG	32	\$48.45	\$48.45	\$59.50	-	\$ 50.05
19	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
20	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
21	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
22	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
PVC Condu	uit in Conc	rete Slab: 1	8 sets of .5	"	221	-	-	-	\$2.21	\$8,791.38

					AP-3-1					
Circuit	# of sets	Wire size - Phase	Wire Size – Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Conduit Cost/LF	Total Cost
3	1	12AWG	12AWG	10AWG	107	\$48.45	\$48.45	\$59.50	-	\$ 167.35
5	1	12AWG	12AWG	10AWG	113	\$48.45	\$48.45	\$59.50	-	\$ 176.73
7	1	12AWG	12AWG	10AWG	113	\$48.45	\$48.45	\$59.50	-	\$ 176.73
9	1	12AWG	12AWG	10AWG	158	\$48.45	\$48.45	\$59.50	-	\$ 247.11
11	1	12AWG	12AWG	10AWG	130	\$48.45	\$48.45	\$59.50	-	\$ 203.32
13	1	12AWG	12AWG	10AWG	130	\$48.45	\$48.45	\$59.50	-	\$ 203.32
PVC Cond	uit in Conc	rete Slab: 6	sets of .5"		158	-	-	-	\$2.21	\$2,095.08

					AP-3-2					
Circuit	# of sets	Wire size - Phase	Wire Size – Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Conduit Cost/LF	Total Cost
1	1	12AWG	12AWG	10AWG	121	\$48.45	\$48.45	\$59.50	-	\$ 189.24
2	1	12AWG	12AWG	10AWG	37	\$48.45	\$48.45	\$59.50	-	\$ 57.87
3	1	12AWG	12AWG	10AWG	121	\$48.45	\$48.45	\$59.50	-	\$ 189.24
4	1	12AWG	12AWG	10AWG	37	\$48.45	\$48.45	\$59.50	-	\$ 57.87
5	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
6	1	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
7	2	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
8	3	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
9	4	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
10	5	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
11	6	12AWG	12AWG	10AWG	70	\$48.45	\$48.45	\$59.50	-	\$ 109.48
12	7	12AWG	12AWG	10AWG	98	\$48.45	\$48.45	\$59.50	-	\$ 153.27
PVC Cond	uit in Conc	rete Slab: 1	2 sets of .5	"	219	-	-	-	\$2.21	\$5,807.88

Total Cost: \$21,262.41

Cost Analysis #2 : Closed bottom 6" aluminum cable tray

					LP-2-1					
Circuit	# of sets	Wire size - Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Conduit Cost/LF	Total Cost
7	1	12AWG	12AWG	10AWG	80	\$48.45	\$48.45	\$59.50	-	\$ 125.12
8	1	12AWG	12AWG	10AWG	97	\$48.45	\$48.45	\$59.50	-	\$ 151.71
9	1	12AWG	12AWG	10AWG	90	\$48.45	\$48.45	\$59.50	-	\$ 140.76
10	1	12AWG	12AWG	10AWG	97	\$48.45	\$48.45	\$59.50	-	\$ 151.71
11	1	12AWG	12AWG	10AWG	90	\$48.45	\$48.45	\$59.50	-	\$ 140.76
12	1	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
13	2	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
14	3	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
15	4	12AWG	12AWG	10AWG	116	\$48.45	\$48.45	\$59.50	-	\$ 181.42
17	5	12AWG	12AWG	10AWG	116	\$48.45	\$48.45	\$59.50	-	\$ 181.42
19	6	12AWG	12AWG	10AWG	159	\$48.45	\$48.45	\$59.50	-	\$ 248.68
21	7	12AWG	12AWG	10AWG	132	\$48.45	\$48.45	\$59.50	-	\$ 206.45
23	8	12AWG	12AWG	10AWG	132	\$48.45	\$48.45	\$59.50	-	\$ 206.45
Galvanize	d Steel Clo	sed-Bottom	Cable Tra	y: 6"	159	-	-	-	\$ 19.15	\$3,044.85

					AP-2-3					
Circuit	# of sets	Wire size – Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Cable Tray Cost/LF	Total Cost
1	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
2	1	12AWG	12AWG	10AWG	93	\$48.45	\$48.45	\$59.50	-	\$ 145.45
3	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
4	1	12AWG	12AWG	10AWG	93	\$48.45	\$48.45	\$59.50	-	\$ 145.45
5	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
6	1	12AWG	12AWG	10AWG	84	\$48.45	\$48.45	\$59.50	-	\$ 131.38
7	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
8	1	12AWG	12AWG	10AWG	84	\$48.45	\$48.45	\$59.50	-	\$ 131.38
9	1	12AWG	12AWG	10AWG	77	\$48.45	\$48.45	\$59.50	-	\$ 120.43
10	1	12AWG	12AWG	10AWG	77	\$48.45	\$48.45	\$59.50	-	\$ 120.43
11	1	12AWG	12AWG	10AWG	119	\$48.45	\$48.45	\$59.50	-	\$ 186.12
13	1	12AWG	12AWG	10AWG	68	\$48.45	\$48.45	\$59.50	-	\$ 106.35
14	1	12AWG	12AWG	10AWG	32	\$48.45	\$48.45	\$59.50	-	\$ 50.05
16	1	12AWG	12AWG	10AWG	32	\$48.45	\$48.45	\$59.50	-	\$ 50.05
19	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
20	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
21	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
22	1	12AWG	12AWG	10AWG	50	\$48.45	\$48.45	\$59.50	-	\$ 78.20
Galvanize	d Steel Clo	sed-Bottom	Cable Tra	y: 6"	221	-	-	-	\$ 19.15	\$4,232.15

					AP-3-1					
Circuit	# of sets	Wire size – Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Cable Tray Cost/LF	Total Cost
3	1	12AWG	12AWG	10AWG	107	\$48.45	\$48.45	\$59.50	-	\$ 167.35
5	1	12AWG	12AWG	10AWG	113	\$48.45	\$48.45	\$59.50	-	\$ 176.73
7	1	12AWG	12AWG	10AWG	113	\$48.45	\$48.45	\$59.50	-	\$ 176.73
9	1	12AWG	12AWG	10AWG	158	\$48.45	\$48.45	\$59.50	-	\$ 247.11
11	1	12AWG	12AWG	10AWG	130	\$48.45	\$48.45	\$59.50	-	\$ 203.32
13	1	12AWG	12AWG	10AWG	130	\$48.45	\$48.45	\$59.50	-	\$ 203.32
Galvanize	d Steel Clo	sed-Bottom	ı Cable Tra	y: 6"	158	-	-	-	\$ 19.15	\$3,025.70

					AP-3-2					
Circuit	# of sets	Wire size – Phase	Wire Size - Neutral	Wire Size- Ground	Distance	Phase Cost/100'	Neutral Cost/100'	Ground Cost/100'	Cable Tray Cost/LF	Total Cost
1	1	12AWG	12AWG	10AWG	121	\$48.45	\$48.45	\$59.50	-	\$ 189.24
2	1	12AWG	12AWG	10AWG	37	\$48.45	\$48.45	\$59.50	-	\$ 57.87
3	1	12AWG	12AWG	10AWG	121	\$48.45	\$48.45	\$59.50	-	\$ 189.24
4	1	12AWG	12AWG	10AWG	37	\$48.45	\$48.45	\$59.50	-	\$ 57.87
5	1	12AWG	12AWG	10AWG	102	\$48.45	\$48.45	\$59.50	-	\$ 159.53
6	1	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
7	2	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
8	3	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
9	4	12AWG	12AWG	10AWG	105	\$48.45	\$48.45	\$59.50	-	\$ 164.22
10	5	12AWG	12AWG	10AWG	46	\$48.45	\$48.45	\$59.50	-	\$ 71.94
11	6	12AWG	12AWG	10AWG	70	\$48.45	\$48.45	\$59.50	-	\$ 109.48
12	7	12AWG	12AWG	10AWG	98	\$48.45	\$48.45	\$59.50	-	\$ 153.27
Galvanize	Galvanized Steel Closed-Bottom Cable Tray: 6"					-	-	-	\$ 19.15	\$4,193.85

Total Cost: \$14,496.52

conclusion

Not only does specifying cable tray instead of conduit within the slab save money, it is also provides flexibility for the upgrade and/or rearranging of the fitness equipment on both the second and third floors. An architectural concern, six inch cable tray run along the windown will not be noticeable or unattractive, especially when considering the high ceiling heights and newly designed lighting in the lobby.

Gymnasiums are an ideal design space for daylight integration into the lighting system. Daylight is primarily introduced into the Drexel gymnasium by the façade glazing on the Northern wall. A redesign of the daylighting in the space created additional energy savings by incorporating skylights to increase uniformity and increase daylight penetration further in the space. The integration of daylighting into my gymnasium is the study that involves coursework specific to the M.A.E. program. Techniques and information learned in AE 565 – "Daylighting", taught by Dr. Richard Mistrick, will be applied to the study and analysis of the daylight in the space. The Daysim computer software is able to perform annual energy studies and calculate energy savings from a dimming system utilizing daylight sensors, taking into account real-time annual sky condition data.

description

The bi-level gymnasium is located on the second and third floors of the Northern face of the Athletic Center addition and can be entered from the fitness area, or for special events from the courtyard. The space serves as the practice facility for the Drexel Dragons basketball team and has an elevated running track around the perimeter of the second level. The northern wall is composed almost entirely of glass providing natural light to the space. The gymnasium measures 103 x 130' and spans a total of 13,420sf.

figure d.1 – orientation of gymnasium in building

figure d.2 – gymnasium plan

	Materials and Finishes	
Surface	Description	Reflectance
floor	Northern Hard Maple wood flooring system	0.24
ceiling	exposed structural steel painted white	0.60
track	12mm Mondo light blue rubber track	0.25
walls above track	GWB painted Sherwin Williams Useful Grey	0.24
walls below track	CMU painted Sherwin Williams Useful Grey	0.27
glazing	Viracon insulating laminated glass VRE 1-54	t = 0.46
skylights	OldCastle Building Envelope insulated N-series	t = 0.57

table d.1 – gymnasium materials and finishes

system overview

desired illuminance levels and design goals

A gymnasium is the perfect place in which to integrate and control the amounts of daylighting within a space. Daylighting can be tricky in a space where uniformity is desired, so a northern facing façade is preferred in order to avoid strong shadows and bright spots in the early and late parts of the day. Dimming of the luminaires using a photocell to monitor the light levels within the space is the most successful way to utilize daylight to control both light levels and energy costs. The desired high illuminance levels in a multi-purpose gymnasium make this a space in which daylight addition and dimming can be produce substantial energy cost savings.

gymnasium- basketball class III, training facility: horizontal – **50fc**

gymnasium- volleyball class III, training facility: horizontal – **50fc**

This multi-purpose space should always feel public and open, giving an impression of visual clarity both for the players and anyone who is watching from the track or from one of the fitness centers. A bright, uniform lighting layout is appropriate, with the possibility of some perimeter lighting to accentuate ceiling height and push out the walls. Light finishes should be used to make the space appear brighter and provide a comfortable environment where players can feel energized and focused at practice.

The existing lighting design employs compact fluorescent high-bay fixtures, and provides an even illumination to the gymnasium floor. Electric light levels provided in the gymnasium are above the desired level, making energy savings possible even during non-daylight hours.

		Lum	inaire Sch	edu	le				
Туре	Description	Manufacturer	Catalog Number	No	Lamp Type	v	Power Supply	Input Watts	PF
C2	10" compact fluorescent down light with recessed housing and impact resistant polycarbonate lens.	Gotham	AF-232TRT- 10AR-PCL- 277	2	PLT-32 4100 85 MIN CRI	277	GE T5 HE Ballast 99655- GE228MVPPS-A	36	.95
GP1	Compact fluorescent highbay sports lighting pendant fixture with drop lens and wireguard.	Sportlite	LX800-T42- 35K-21PRL- 21DLCP-277- 4SL-3PEN- 21XWG-21AL	8	PLT-32 4100 85 MIN CRI	277	Integral universal LED driver	33	.9

table d.2 – gymnasium luminaire schedule

	Light Loss Factors						
Lamp Type	LLD	LDD	BF	Total			
C6	.86	.90	1.0	.75			
PB1	.86	.90	1.0	.75			

table d.3 – gymnasium light loss factors

*The above light loss factors were calculated using the new method in the 2010 IESNA handbook. The Room Surface Dirt Depreciation (RSDD) was neglected and the Luminaire Dirt Depreciation (LDD) was calculated using the updated calculation outlined in the book. A lamp maintenance schedule of twelve months was assumed.

skylight layout and design

The OldCastle Building Envelope "N"Series Skylight System triple glazed skylight units are ENERGY STAR certified and provide optimal performance with minimal heat gain, and provide opportunities not only to maximize energy savings, but to receive ENERGY STAR rebates.

	Skylight Data
Manufacturer	OldCastle Building Envelope
System	"N" Series insulated Skylight System
Total Number	12
Dimensions	8' x 10' x 6"
t	.34
U	.27
SHGC	.20
Skylight/floor	6.8%- ratio dictated by SkyCalc
ratio	results

table d.4 – skylight data

figure d.4 – gymnasium skylight example

SkyCalc software was used as a guide to select an efficient skylight-to-floor ratio. A skylight size of 8' x 10' was selected based on the analysis of energy and cost savings. A lower ratio would have saved more heating energy but less money overall, and so 6.8% was determined ideal. (*See figures below for description of SkyCalc results*).

The final skylight layout was determined based on truss location and position of the existing lighting system. Although the maximum energy savings would be resultant of a skylight-to-floor ratio of 4%, the maximum energy cost savings is a higher priority to the owner, and so a ratio of proximately seven percent was achieved based on the results of the SkyCalc study.

figure d.5 –isometric of skylight design

controls

The gymnasium lighting will be controlled using three separate zones. The first zone is the perimeter lighting below the suspended track, which will be always on throughout the day to provide consistent light levels and avoid shadows on the floor, as well as to regulate the luminance levels on the wall surfaces as the daylight condition changes. The high-bay fluorescent lighting is dimmed in two separate zones to maximize energy savings and uniformity, as the northern half of the gymnasium has higher light levels throughout the day due to the fenestration that makes up a majority of the Northern façade.

A Wattstopper daylighting control dimming system is specified for automatic dimming control of the fluorescent luminaires. Each zone has a separate daylight sensor on the ceiling, facing down to optimize energy savings and provide consistent light levels throughout the space.

Gymnasium Control Schedule							
Туре	Manufacturer	Product	Description				
LMLS-305	Wattstopper	cstopper LightSaver Photocell Closed loop photosensor provides the day necessary for operation.					
LMRC-202	Wattstopper	LightSaver Room Dimming Controller	Provides automatic dimming control for fluorescent fixtures. Closed loop control utilizes a single photocell for multi-zone dimming.				
LMSW-100	Wattstopper	LightSaver Wall Switches	Allows occupants to temporarily override the daylighting control systems.				

table d.5 – gymnasium control schedule

Zoning diagram and skylight layout plan. Please note that in order to provide consistency with Daysim graphics, North is depicted at the bottom of the drawing, instead of the traditional orientation.

performance analysis - DAYSIM

Using DAYSIM to perform an hour by hour year-long analysis, a two-zone dimming analysis was performed to calculate energy savings per zone. To get the most accurate results possible, Zone 1 and 2 were tested separately. Zone 1, the interior zone was tested with Zone 2 turned off to minimize interference because for the majority of the day the northern façade provides enough daylight to the northern half of the gymnasium. Zone 2, the exterior zone near the window was tested with the interior zone turned on, because the dimming level is almost always lower in Zone 1, and the electric light will be affecting the calculations. Zone 3 was left on for all calculations.

occupancy

The Drexel Recreation Center has extensive hours throughout the year- operating from 6ammidnight throughout the school year and from 8am-10pm in the summer. For this analysis, I wanted to see how much savings the daylight would provide for the daylight hours, and so the analysis is only for operated daylight hours of 8am-8pm.

photo sensor placement

The photocells for each zone were placed on the exposed trusses, at a height of 25', facing down in order to effectively monitor the daylight levels.

figure d.6- daylight photosensor placement

critical point selection

The critical point is exactly as it sounds: critical to a well-designed daylight dimming system. To locate that perfectly placed critical point, the analysis point was selected where the highest dimming level for that zone of electric light was needed. For the interior zone, Zone 1, the critical point was selected with Zone 2 off, and for the exterior zone, Zone 2, it was selected with Zone 1 on as the dimming levels are typically higher and will contribute to the light that Zone 2 sees throughout the day. See below for the locations of the critical points for zones one and two.

figure d.7- Critical point placement for Zone 1, left and Zone 2, right

control algorithm settings

The photo sensors were calibrated selected using a closed loop proportional algorithm. An overcast Philadelphia sky on January 12 was selected in order to provide the most accurate signals to the sensor. A target value of 500 lux was set, and for additional energy savings the luminaires are set to turn off when they reach the lowest ballast output of 5%.

Control Algorithm Settings (Values are for Critical Point)

-Calibrate Sensor - (Closed Loop Proportional	(Values are for Critica	l Point) —	
Night Condition	Illuminance (Elec)	612.4		Month/Day/Time: 1/12 2:00PM
	Target	500.0	Update	Chun Weathan Tana
	Signal @ Target	10.2		Sky: Weather Tape
Daylight Condition	Daylight Illum.	164.0	Save	
	Daylight Signal	104.0		Reset Daylight Condition
	Non-Dimmed	91.0	Cancel	Reset Daylight Condition
	Target	500.0		
	Dimming Level	0.469		
	Signal	114.2		
	Off Condition			

figure d.8- control algorithm settings for Zone 1

Control Algorithm Settings (Values are for Critical Point)

Closed Loop Proportional	(Values are for Critical	l Point) — — — — — — — — — — — — — — — — — — —	
Illuminance (Elec) 778.2		Month/Day/Time: 1/12 2:00PM	
Target	500.0	Update	
Signal @ Target	151.1		Sky: Weather Tape
Daylight Illum.	239.0	Save	
Daylight Signal	104.0		Deast Deulisht Condition
Non-Dimmed	198.4	Cancel	Reset Daylight Condition
Target	500.0		
Dimming Level	0.107		
Signal	196.0		
Off Condition	\checkmark		
	Illuminance (Elec) Target Signal @ Target Daylight Illum. Daylight Signal Non-Dimmed Target Dimming Level Signal	Illuminance (Elec) 778.2 Target 500.0 Signal @ Target 151.1 Daylight Illum. 239.0 Daylight Signal 104.0 Non-Dimmed 198.4 Target 500.0 Dimming Level 0.107 Signal 196.0	Target500.0UpdateSignal @ Target151.1UpdateDaylight Illum.239.0SaveDaylight Signal104.0SaveNon-Dimmed198.4CancelTarget500.0Dimming LevelDimming Level0.107Signal196.0

figure d.9- control algorithm settings for Zone 2

results

Hour by hour calculations show you exactly how a space is affected by daylight at each hour of the day. Below are hour by hour results for each zone on the spring/fall equinox, the summer solstice, and winter solstice.

spring/fall equinox hour by hour results

Figure E.1 – 8am Zone 1 dimmed to .787, Zone 2 dimmed to .341

Figure E.2 – 9am Zone 1 dimmed t o.236, Zone 2 off

Figure E.3 – 10am Zone 1 dimmed to .173, Zone 2 off

Figure E.4 – 11am Zone 1 off, Zone 2 off

Figure E.5 – 12pm Zone 1 dimmed t o.051 , Zone 2 off

Figure E.6 – 1pm Zone 1 off, Zone 2 off

Figure E.7 – 2pm Zone 1 dimmed to .056, Zone 2 off

Figure E.8 – 3pm Zone 1 dimmed t o .227, Zone 2 off
109

Figure E.9 – 4pm Zone 1dimmed to 0.385, Zone 2 off

Figure E.10 – 5pm Zone 1 dimmed to .619, Zone 2 dimmed to .167

Figure E.11 – 6pm Zone 1 dimmed t o .813 , Zone 2 dimmed to .452

summer solstice hour by hour results

The Northern façade receives high levels of light throughout the summer, and so the exterior zone is able to be switched off for the entirety of the day. For this reason, only the calculations from Zone 1 are shown as they are calculated with Zone 2 switched off.

Figure E.12 – 8am Zone 1 off, Zone 2 off

Figure E.13 – 9am Zone 1 dimmed t o .227, Zone 2 off

Figure E.14 – 10am Zone 1 off, Zone 2 off

Figure E.13 – 11am Zone 1 off, Zone 2 off

Figure E.14 – 12pm Zone 1 off, Zone 2 off

Figure E.15 – 1pm Zone 1 off, Zone 2 off

Figure E.16 – 2pm Zone 1 off, Zone 2 off

Figure E.17 – 3pm Zone 1 off, Zone 2 off

113

Figure E.18 – 4pm Zone 1 off, Zone 2 off

Figure E.19 – 5pm Zone 1 off, Zone 2 off

Figure E.20 – 6pm Zone 1 dimmed to .273, Zone 2 off

winter solstice hour by hour results

Figure E.21 – 8am Zone 1 dimmed to .754, Zone 2 dimmed to .468

Figure E.22 – 9am Zone 1 dimmed t o .62, Zone 2 dimmed to .274

Figure E.23 – 10am Zone 1 dimmed to 0.348, Zone 2 dimmed to .171

115

Figure E.24 – 11am Zone 1 dimmed to .2, Zone 2 dimmed to .05

Figure E.25 – 12pm Zone 1 of, Zone 2 off

Figure E.26 – 1pm Zone 1 dimmed to 0.212, Zone 2 off

Figure E.27 – 2pm Zone 1 dimmed to .403, Zone 2 off

Figure E.28 – 3pm Zone 1 dimmed to .448, Zone 2 off

Figure E.29 – 4pm Zone 1 dimmed to 0.636, Zone 2 dimmed to .321

Figure E.28 – 5pm Zone 1 dimmed to .766, Zone 2 dimmed to .488

Figure E.29 – 6pm Zone 1 dimmed to .784, Zone 2 dimmed to .52

daylight autonomy

Daylight autonomy and continuous daylight autonomy are useful annual daylight performance metrics that are used to evaluate the performance of daylight in a space. Daylight autonomy shows the fraction of occupied hours that the daylight levels are sufficient in a space to eliminate the need for electric lighting, and is an effective metric when considering whether to use a switching system in the design space. Continuous daylight autonomy allows partial credit, so if a point is daylit to half of the desired illuminance level, half an hour credit is given. This metric is particularly useful for estimating the energy savings for a dimming system. The figures below show daylight autonomy and continuous daylight autonomy for 500 lux, or 50fc.

Figure – daylight autonomy and continuous daylight autonomy at 50fc (500lux)

conclusion

Although the light levels appear to be very bright throughout the spring and fall, in order to accurately calculate multi-zone dimming in DAYSIM, both dimmed zones must be calculated separately. This means that for example, in E.11 above, at 6pm, the illuminance levels throughout the gymnasium would be uniform and consistent. When Zone 2 is switched off, the left image of Zone 1 is the accurate portrayal of what is taking place within the space. Although illuminance levels can reach over 100fc during the day, occuppants have a much higher tolerance for daylight than electric light and will improve and brighten the ambient energy level in the gymnasium.

Light levels remain high enough in the gymnasium throughout the summer to almost eliminate the need for electric light during daylight hours. The addition of skylights increases daylight penetration into the space enough to keep Zone 1 almost completely dimmed during the day as well. Although there is some direct sunlight penetration in the summer, this will actually be appreciated by the occupants. Philadelphia is very humid through the summer and this way, they can experience the sunshine and summery environment while exercising and playing sports with their friends in a pleasant way, in the air conditioning.

Not only does adding skylights to the gymnasium increase the aesthetic experience in the space, it also saves over 50% of the energy that would be supplied to the electric lighting system.

breadth two: acoustical

The existing gymnasium ceiling height in the Drexel Recreation Center is 27' with a reflective, high performance acoustical ceiling. Incorporating the new daylight design required the removal of the perforated co-polymer panels, which altered the acoustic performance of the space. The ceiling height is increased from 27' to 35' with the removal of the dropped panels, exposing the structural steel ceiling composed of trusses and metal decking. The following calculations determined whether the acoustical performance resulted in desirable reverberation times and echo levels and investigated the need for sound absorbing or reflecting materials.

space description

The bi-level gymnasium is located on the second and third floors of the Northern face of the Athletic Center addition and can be entered from the fitness area or for special events from the courtyard. The space serves as the practice facility for the Drexel Dragons basketball team and has an elevated running track around the perimeter of the second level. A divider is enclosed within the dropped ceiling to section off the gymnasium for classes and different sports teams practice times. The northern wall is composed almost entirely of glass providing natural light to the space.

dimensions

The gymnasium measures 103 x 130' and spans a total of 13,420sf.

acoustic criteria

Reverberation time is the most common method of measuring the acoustic performance in an environment. The size of the space and the amount of reflective and absorptive materials determine the length of time it takes for sound to be absorbed in a space. The preferred value of reverberation time at mid-frequency (the average of reverberation time at 500 and 1,000Hz) is under 2 seconds. Because the Drexel gymnasium is used for a variety of sports practices and functions, a slightly lower reverberation time of 1.8 is the acoustic performance goal of this study.

calculation methods

Using the Sabine method, the absorptive co-efficients of materials applied across the space were compiled by unit surface area in order to obtain the reverberation time for common frequencies. The formula following formula was then used to calculate the reverberation time for each frequency.

$$T = 0.05 * \frac{v}{\alpha}$$

where T= reverberation time required for sound to decay 60db after time has stopped (seconds) v = room volume (cf) a = total sf of room absorption (sabins)

These values and results are shown in the table below.

Gymnasium Reverberation Analysis														
Surface	Description	Area	Sα - sabins by Frequency (Hz)											
Surface		(sf)	125Hz		250Hz		500Hz		1,000Hz		2,000Hz		4,000Hz	
east and west walls	high performance painted gypsum wall board	466	0.55	256.3	0.14	65.2	0.08	37.3	0.04	18.6	0.12	55.9	0.11	51.3
north and south walls	high performance painted gypsum wall board	769	0.55	423.0	0.14	107.7	0.08	61.5	0.04	30.8	0.55	423.0	0.55	423.0
north wall	Viracon insulated laminated glazing	710	0.35	248.5	0.25	177.5	0.18	127.8	0.12	85.2	0.07	49.7	0.09	63.9
elevated track level	12 mm rubber track surface	3,200	0.02	64.0	0.02	64.0	0.03	96.0	0.03	96.0	0.03	96.0	0.02	64.0
gymnasium flooring	bio channel wood flooring system	13,390	0.02	0.0	0.14	1,874.6	0.08	1,071.2	0.04	535.6	0.55	7,364.5	0. 55	7,364.5
ceiling beneath track	painted gypsum wall board	3,200	0.55	1,760.0	0.14	448.0	0.08	256.0	0.04	128.0	0.55	1,760.0	0. 55	1,760.0
gymnasium ceiling	exposed structural steel painted white	12,430	0. 73	9,073.9	0.69	8,576.7	0.99	12,305.7	0.89	11,062.7	0.52	6,463.6	0.31	3,853.3
skylights	OldCastle Builing Envelope insulated skylights	1,152	0.35	403.2	0.25	288.0	0.1 8	207.4	0.12	138.2	0. 07	80.6	0.04	46.1
air	values per 1000cf	469	0.09	42.2	0.2	93.8	0.49	229.8	1.2	562.8	2.9	1,360.1	7.4	3,470.6
people	values per 1/10 person	250	0.25	62.5	0.35	87.5	0.42	105.0	0.46	115.0	0.5	125.0	0.5	125.0
Total Sα				12,333.6		11,783.0		14,497.7		12,772.9		17,778.4		17,221.6
Reverberation Time				1.90		1.99		1.62		1.83		1.32		1.36

conclusion

All reverberation times are below the recommended level of 2 seconds. The additional criteria of 1.8 seconds based on the average of 500 and 1,000Hz is also met with a value of 1.71 seconds. The removal of the dropped tile ceiling to incorporate daylight into the space will successfully increase energy savings and the aesthetics and environment in the gymnasium without sacrificing acoustic performance.

breadth three: structural

The modification of the ceiling for daylight integration adjusted the structural loading on the steel truss system supporting the roof. The loading distribution due to design modifications, including the rearranging of the mechanical equipment was be recalculated using STAAD, and the resulting stresses on the truss were analyzed to ensure that the existing truss was sufficiently designed to support the distributed weight.

breadth scope

The existing mechanical equipment layout needed to be adjusted as the rooftop air handling units and their mounting pads were distributed across the center of the space, hindering a uniform skylight layout.

figure s.1- Existing rooftop mechanical layout

The rooftop air handling units and their supporting concrete mounting pads were manipulated in order to accommodate the centralized skylight layout allowing maximum uniform daylight in the space. This required the displacement of the rooftop condensing units to make room along the perimeters for the AHUs and their mounting pads.

figure s.2 -Updated Roof Mechanical Equipment Plan

All four trusses shown above are identical, with a 26.5' spacing. The truss highlighted above with two red arrows is the most heavily loaded after the mechanical equipment shifts, and so was the one selected for analysis.

figure s.1 - Structural Profile of Existing Trusses

loading calculation

A combination of loads provided by the structural engineer, assumptions from ASCE 7-05 and IBC 2006, and actual calculations based on the weight of actual Trane mechanical equipment from cut sheets were used to determine the loading on the selected truss. Outlined below is a breakdown by load type.

snow load- criteria

snow exposure factor, C_e	1
roof exposure	partially
exposure category	В
snow thermal factor, Ct	1
snow importance factor, Is	1.1
ground snow load, P_g	30

$Pf = 0.7C_eC_tI_sP_g = 23.1$

For general design, a snow load of 25psf was selected.

live load

A superimposed live load of 25psf was assumed, taken from ASCE 7-05, table 4-1.

dead load

roof deck: 3" 20-gage galvanized roof deck	5 psf
Oldcastle Building Envelope insulated skylights	12 psf
ceiling/mechanical	13 psf
AHU concrete mounting pads	145csf
AHUs, Trane Intellipak 55-75 tons	44,550lbs
condensing units, rooftop	138.9lbs

The applied load case was **(1.6)** *live/snow* + **(1.2)** *dead* which resulted in the following loadings when considering the tributary area of 26.5'

Unified loading of (1.6)*622.5plf + (1.2)*477plf across the entire beam, with the dead load increasing to (1.2)*622.5 at skylight locations. Point loads of 138.9lbs and 557 lbs at 30' and 98.5' respectively. Distributed loads of 232plf for the concrete mounting pads and 3,205plf for the two AHUs.

figure s.2 - Diagram of load application in STAAD

truss analysis

supports

Support one was modeled as a pinned connection, fixed but released for moments in z, and support two was modeled as a roller, fixed but released for moments in z and forces in x.

members

top chord: *W14x120* bottom chord: *W12x106* end supports: *W12x65* truss members: *W8x28 and W8x15, as designed.*

spot checks

top chord- compression member available strength in axial compression (Fy=50ksi) maximum axial compression from load	807kips 587kips
bottom chord- tensile member available shear strength in tension (Fy=50ksi) maximum shear forces in y from load	236kips 48kips

Figure s.3-Displacement diagrom from resulting loads

max stress checks

beam 18: W8x28 available shear strength (Fy=50ksi) maximum shear forces in y from load available moment maximum moment from load case	68.9kips .41kips 102kip-ft 41.2kip-ft
beam 25: W8x28 available shear strength (Fy=50ksi) maximum shear forces in y from load available moment maximum moment from load case	68.9kips 13.1kips 102kip-ft 61.1kip-ft
beam 13: W8x15 available shear strength (Fy=50ksi) maximum shear forces in y from load available moment maximum moment from load case	59.6kips 4.3kips 51kip-ft 27.9kip-ft
beam 29: W8x28 available shear strength (Fy=50ksi) maximum shear forces in y from load available moment maximum moment from load case	68.9kips 21.5kips 102kip-ft 78kip-ft

conclusion

Based on the above calculations and analysis, the truss does not need to be redesigned for the addition of skylights. Even with the new layout of the system, the existing truss is sized substantially to support the mechanical loading on the roof with skylights both in tensile and compressive stresses.

summary and conclusions

The purpose of the AE senior thesis is not only to perform design and analysis in lighting and electrical studies, but to further comprehend the integration of all building systems and their effects on the total energy consumption, cost savings, system efficiency, and aesthetics and other effects on a project. The result of extensive research, design development, and analysis, this thesis presents a set of new concepts and ideas that enhance the sustainability, aesthetics, and performance of the Drexel Recreation Center.

The exterior space was transformed into a courtyard full of visual interest and safety. The fitness center utilizes the core energy of the building by interacting with the energy created by the user and exposing the source of the power generation to the exterior. The lobby provides a highly energy efficient lighting solution while directly complementing the lines of the architecture. The restaurant creates an enticing new venue in University City, continuing the design concepts of the fitness center while differentiating itself as a separate space entirely.

To incorporate the new lighting designs, the electrical system was also redesigned at the branch circuit level, with a short circuit and protective device coordination study to guarantee the safety of the overcurrent protection through the distribution center. An alternative to cast-in-place distribution to the fitness equipment branch circuits, an option of cable tray was presented as a cost-effective and feasible solution providing future flexibility.

Introducing skylights into the gymnasium enhanced the ambient energy within the space and provided over 50% electricity cost savings throughout the year. A structural and acoustical analysis of this solution concluded that the addition of skylights is in fact a feasible and beneficial addition to the delighting in the space.

The structural design of the Recreation Center presented the primary lighting challenges in that no fixtures could be recessed into the architecture in the fitness center or lobby, but this resulted in lighting designs that fully fulfilled the goal of exposing the energy of the building by exposing the lighting and providing innovative, aesthetically pleasing solutions to a complex design problem.

texts

ASHRAE Standard 90.1-2007. Atlanta, GA: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., 2007

CMD Group. RSMeans Building Construction Cost Data, 66th Annual Addition 2011. Kingston, MA: R.S. Means Company, Inc. 2011.

Houser, Mistrick, and Stefy (2011) The IESNA Lighting Handbook: Reference & Application (10th ed.).Illuminating Engineering Society of North America. New York, NY.

Hughes, S. David. Electrical Systems in Buildings. Albany, NY: Delmar Inc., 1988.

National Electric Code 2008, Quincy, MA: National Fire Protection Association, Inc., 2008

Rea, Mark S. (2002). The IESNA Lighting Handbook: Reference & Application (9th ed.). Illuminating Engineering Society of North America. New York, NY.

software

3DStudioMAX, Adobe Photoshop CS5, AGI32, Autodesk AutoCAD 2011, DAYSIM 2.1, STAAD.Prov8i

acknowledgements

129

I'd like to thank the following individuals: without each and every one of you I never would have finally finished my thesis project.

My professors:

Dr. Kevin Houser Dr. Richard Mistrick Professor Ted Dannerth Professor Sean Good Professor Robert Holland

All of the amazing designers and engineers at EwingCole, but especially Mary Alcaraz, Mike Ginder, Don Jones, Bob Ghisu

My FABULOUS, incredible, and supporting family and friends, and especially all of my lighting girls, without whom I never would have made it through all of these crazy all nighters in the lab <3