OFFICE BUILDING-G

Eastern United States

Final Report

Carl Hubben

Structural Option Advisor: Dr. Ali Memari April 7, 2011

Abstract

Advisor: Dr. Ali Memari

OFFICE BUILDING Eastern United States

Architect: HO+K General Contractor: Turner Construction Structural Engineers: SK&A Engineers MEP: GHT Limited Civil Engineer: Loiederman Soltesz Associates

General Information:

Architecture:

Curved glass curtain wall on the southern façade Open floor office space ready for tenant fit outs Upscale entrance with elegant stone flooring Street level retail space LEED Silver Certification

Mechanical:

3 VSD chillers provide chilled water to AHUs VAV and CAV fans provide airflow to spaces Fully integrated building automation system (DDC)

Construction:

Logistical Issues:

Neighboring existing metro station On the corner of major roadways Construction Concerns:

4 story sub-grade parking garage Geotechnical complications Vibration effects from trains

Size: 649,461 SF

Stories: 14 levels above grade Garage: 4 levels below grade Delivery Method: Design-Bid-Build Construction: Summer 2010 – July 2011 Project Cost: \$75,000,000

Electrical:

Power provided by Pepco Stepped down by interior transformer to 277/480 3 phase, 3 wire system

Structure:

Post-tensioned girders with 7" thick one-way slabs for floors 4-13
Lateral resistance provided by internal shear walls spanning in both the major and minor axis
Columns ranging from 24" x24" 10,0000 psi in garage to 30" Ø 6000psi in upper floors
4 levels of concrete substructure used for parking
Spread footings supporting loads between 64k to 1025k and range in size between 4' x 4' to 15' x 15'

CARL HUBBEN

STRUCTURAL OPTION

http://www.engr.psu.edu/ae/thesis/portfolios/2011/cjh5105/index.html

Advisor: Dr. Ali Memari

Acknowledgements

I would like to extend my deepest thanks and appreciation to the following companies and individuals:

Turner Construction Company:	Carlos Flores
Ryan-Biggs Associates:	Chris Latreille
The Pennsylvania State University	Dr. Ali Memari
	Dr. Linda Hanagan
	Dr. Louis Geschwindner
	Robert Holland
	Kevin Parfitt

I would also like to give a special thanks to my friends and family for their help and support throughout the year.

Advisor: Dr. Ali Memari

Table of Contents

Abstract	2
Acknowledgements	
Executive Summary	6
Existing Design	7
Existing Structural System	
Gravity System	
Lateral System	11
Foundation System:	
Structural Materials	15
Code and Design Requirements	16
Design Codes:	
Thesis Codes:	
Proposal	
MAE Work	
Structural Depth	
New Loads	
Gravity	
Wind	
Seismic:	
Load Cases	
Floor System	25
Framing Plan	26
Castellated Beams	
Composite Beams	
Columns	
Lateral System	
Geometry	
Design	
Direct Loads	
Torsional Loads	
Displacement and Drift	

Advisor: Dr. Ali Memari

Carl Hubben Arch Mec

Overturning Moment	55
Architectural Breadth	57
Mechanical Breadth	61
Conclusion	64
Appendix A:	65
Appendix B:	74
Appendix C:	
Appendix D:	
Appendix E:	
Appendix F:	

Advisor: Dr. Ali Memari

Executive Summary

The purpose of this report is to analyze the structural impacts of creating an open floor space for Office Building-G. Office Building-G is a 14-story office building located in the Eastern United States. The redesign of the structure was performed following the provisions set forth by the IBC, local building codes, ASCE and AISC Manuals. Changes to the structural system affected the mechanical and architectural designs and these implications were investigated as part of this report.

Office Building-G's current gravity system is a series of cast-in-place concrete columns located on the interior and perimeter of the floor plan. A concrete shear wall core is also responsible for carrying some of the gravity loads but the main purpose of the core is to resist all of the lateral loads which Office Building-G may experience. The floor system is a 7" one way slab which spans 20' between posttensioned concrete girders.

The goal of the proposed change is to create a column free space in which the structural system would not impact the design of the tenant fit out spaces. The redesign was performed as if the only core elements were those used for vertical transportation. These criterions were addressed in the redesign by creating an external structural system capable of resisting both gravity and lateral loads. Internal columns were positioned around the elevator shafts and stairwells and were designed to take a portion of the gravity loads. The design process was based on strength and serviceability requirements.

ETABS, RAM Structural System and SAP 2000 models were created to aid in the design of the new structure for Office Building-G. Components of the analysis given by these programs were checked through hand calculations to confirm correct modeling techniques were used. AISC design guides were referenced for the design of castellated beams and braced frames.

The final redesign of Office Building-G makes use of structural steel members. Composite castellated beams distribute gravity loads to the W-Flange interior and exterior columns. Lateral loads are distributed to the braced frames through the floor diaphragm which consists of lightweight concrete on composite metal decking. Two story chevron frames, alternating between normal and inverted frames, resist the lateral forces and distribute them to the foundation.

This new structural system is capable of resisting the design loads and provides a column free space available for tenant fit outs. Through adjusting the way in which the cavity space between floors was used, the floor to floor height and overall building height was not affected. Due to the external braced frame, the existing façade architecture was affected and these changes were considered.

Advisor: Dr. Ali Memari

Existing Design

Due to owner restrictions, the building name, location and tenant of Office Building-G cannot be disclosed. Neighboring an existing metro station, this 14 story building will become one the tallest of the modest skyline. Beneath the superstructure is a below grade, 4-story parking garage with space for 662 cars. On the first two floors of the building, a larger floor plan is used to accommodate the rentable space for retail, a restaurant, a bank and a loading dock. Typical floors have a square footage of 25,376 sf with a floor to floor height of 12'-3". The roof of the mechanical penthouse is 195 ft above grade and the gross square footage of the superstructure and garage combined is 649,461 sf.

The majority of the building façade is precast concrete panels but the southern façade is a curved glass curtain wall. On the first and second floor there is a restaurant which has a glass façade with concrete pilasters between the panes of glass. Figures 1 is a view of the South-West corner of the building. The orange lines outline the restaurant while the blue show the extents of the parking garage.

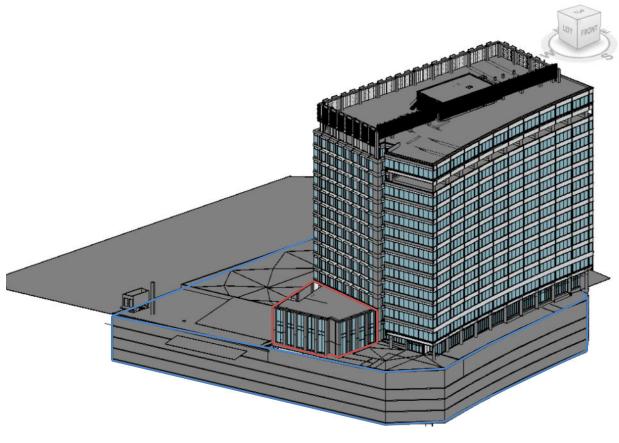


Figure 1

Directly to the right of the restaurant in Figure 1 is the main entrance of the building. The upscale lobby, along with the entire first floor, has a 17 ft floor to floor height, compared to the typical height of 12 ft 3 in. Figure 1 also shows how the perimeter columns supporting the glass façade are on the exterior of the building on the first floor due to a setback on the first floor.

Advisor: Dr. Ali Memari

Figure 2 is a view of the North-East corner of Office Building-G. Again, the extents of the below grade parking garage are outlined in blue. Other building aspects displayed in this figure are the bank in green, the loading dock in red, architectural screen wall in purple and the mechanical penthouse in orange.

Figure 2

Figure 3 is a typical floor plan which is followed for the majority of the structure. On the 12th and 13th floors of the building the exterior columns slope in, creating a slightly smaller square footage for the 13th and 14th floors. Other building features are described throughout the report as needed.

Advisor: Dr. Ali Memari

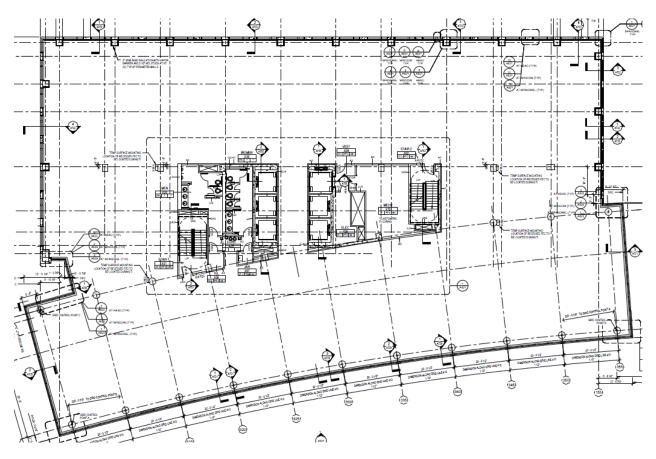
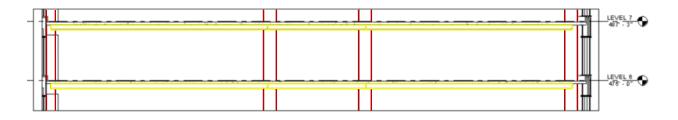


Figure 3

Advisor: Dr. Ali Memari

Existing Structural System


Office Building-G is uses cast-in-place concrete for the main structural members. The superstructure relies on a shear wall core and gravity columns to transfer the gravity loads to the foundation. All of the lateral forces are resisted and transferred to the foundation through the shear wall core. The concrete strength ranges between 5,000 psi and 10,000 psi depending on the story level.

The typical floor system is a 7", 5000 psi concrete one-way slab spanning between 18" deep, 5000 psi post-tensioned girders with ½" diameter strand with strength of 270 ksi. The typical bay size is 20' X 45'. The system was chosen to efficiently span the 45' length while minimizing the structural depth.

Gravity System

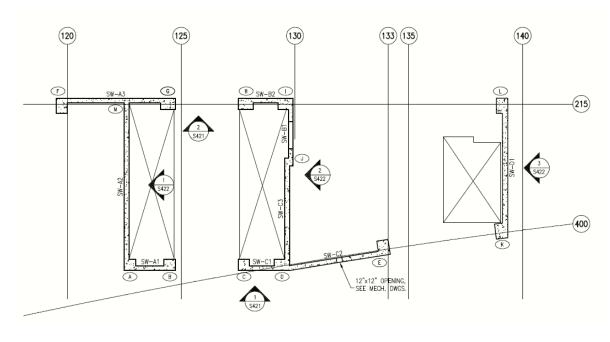
Gravity loads are carried down the building through a combination of interior and perimeter concrete columns and a shear wall core. The typical floor system is a cast-in-place concrete one-way slab. Thickness changes based on loading conditions but the typical floor is a 7", 5000 psi normal weight concrete slab. On the first floor, there is a 12" concrete slab designed for fire separation between the parking garage and superstructure. The slab system carries the loads to post-tensioned concrete beams with spans between 41'-5" and 45'-1 1/4".

The post tensioned girders range in width from 18" to 48" and have a maximum depth of 24". Forces in the girders are between 162 kips to 675 kips. These beams collect the floor loads from the slab and distribute their reactions to the columns supporting them. Figure 4 and 5 below highlights the post-tensioned beams in yellow, the reinforced beams in purple, and the columns in red.

Figure 4

Rectangular and round concrete columns then transfer the loads down the strictly followed grid. Typical floors have columns sizes of 24" x 24", 24" x 30", and 30" diameter. Smaller columns are used in the mechanical penthouse due to the much lower loads they are carrying. On above grade floors, higher strength concrete is placed below columns and shear walls in the slab to accommodate for any possibility of punching shear. In the parking garage, 8" drop panels are used instead of the different concrete strengths. The typical floor plan shown in Figure 5 highlights the post-tensioned beams in yellow, the reinforced beams in purple, shear walls in green and blue, and the columns in red.

Advisor: Dr. Ali Memari



Lateral System

Wind and seismic forces are resisted by an internal shear wall core. The core is made of reinforced concrete walls which have a consistent floor plan from the bottom floor of the parking garage up to the slab of the roof. Basement shear walls were designed with f'c = 10,000 psi, levels 1-4 use f'c = 8,000 psi, and levels 5-14 use f'c = 5,000 psi. Precast concrete beams attached to concrete columns using precast lateral connections provide the required resistance for the mechanical penthouse and elevator machine room. Figure 6 below displays the plan of the shear wall core which is typical for all of the floors of Office Building-G.

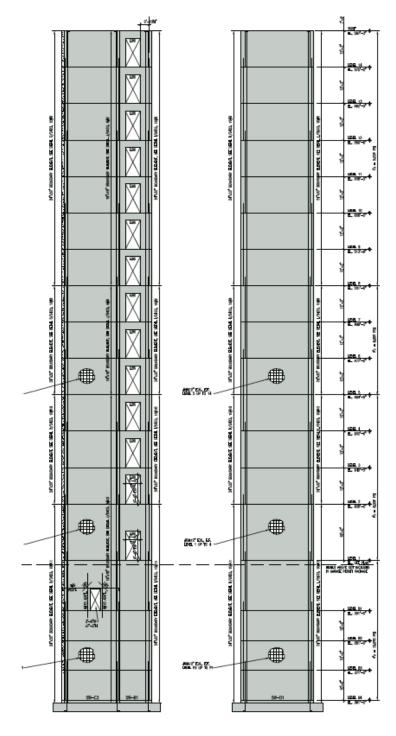

Advisor: Dr. Ali Memari

Figure 6

Lateral forces are engaged by the shear walls through the use of floor diaphragms. The building façade collects wind forces that are then transferred to the respective floor diaphragm. Forces then travel through the diaphragm until the shear walls are engaged, at which point the forces are distributed based on the relative stiffness of the walls. Figure 7 is an elevation view of shear wall core.

Advisor: Dr. Ali Memari

Foundation System:

Schnabel engineering performed a geotechnical study for the location of Office Building-G which determined the possible foundation systems as spread footings, caissons or geopiers. The structural engineers of SK&A decided to use a system of spread footings under the columns, shear walls and along the perimeter concrete bearing wall. Square footage and depth

of the footings are based on the load carrying capability of the soil and the vertical load on the column.

Service loads on the columns ranged greatly depending on whether or not the column extended up into the superstructure of the building. Based on the structure above the foundation, the load capacity of soil was determined to support a range of 3,000 psf to 10,000 psf. Loads on the footings varied between 60 kips to 3075 kips, once again depending on which part of Office Building-G they are supporting. Figure 8 is a plan view of the foundation system. The elements outlined in blue are the foundation for the superstructure while those outlined in green only support the below grade parking structure.

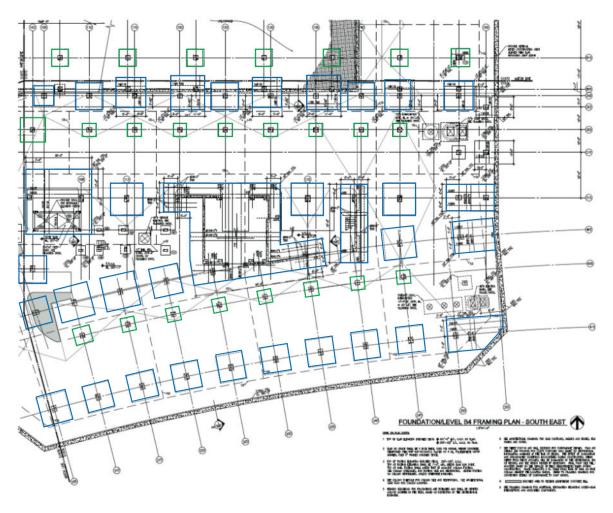


Figure 8

Advisor: Dr. Ali Memari

Structural Materials

	Structural Materials									
Material	Element	Strength								
Cast-in-Place Concrete	Spread Footings	Foundation	f' _c = 10,000 psi f' _c = 6,000 psi f' _c = 3,000 psi							
	Foundation Walls	B4 B3-B1	f' _c = 5,000 psi f' _c = 4,000 psi							
		B4-B1	f' _c = 10,000 psi							
	Shear Walls	L1-L4	f' _c = 8,000 psi							
	Shear walls	L5-L7	f' _c = 6,000 psi							
		L8-L14	f' _c = 5,000 psi							
		B4-B1	f' _c = 10,000 psi							
	Columns	L1-L4	$f'_{c} = 6,000 \text{ psi}$ $f'_{c} = 10,000 \text{ psi}$ $f'_{c} = 8,000 \text{ psi}$ $f'_{c} = 6,000 \text{ psi}$							
		L5-L7	f' _c = 6,000 psi							
		L8-Roof	f' _c = 5,000 psi							
	Reinforced Beams	ALL	f' _c = 5,000 psi							
	Post-Tensioned Beams	ALL	f' _c = 5,000 psi							
Tendons	Post-Tensioned Beams	ALL	F _u = 270 ksi							
Reinforcing Steel	Concrete	ALL	F _y = 60 ksi							
Structural Steel	Elevator Framing - A36	ALL	F _y = 36 ksi							
	Bolts - A325	ALL	F _u = 120ksi							

Advisor: Dr. Ali Memari

Code and Design Requirements

Design Codes:

National Model Code:

Local building code based on the 2006 International Building Code Sections: 1603.1.1-1603.1.7, 1603.2, 1607.11, 1608.1, 1608.7, 1608.8, 1609.1

Design Codes:

American Concrete Institute (ACI) 318-08, Building Code Requirements for Structural Concrete and Commentary

ACI 301, Specifications for Structural Concrete for Buildings

ACI 347, Standard Recommended Practice for Concrete Formwork

American Institute for Steel Construction (AISC), Specification for the design, fabrication and erection of structural steel for buildings

Thesis Codes:

National Model Code:

International Building Code, 2006

Design Codes:

ACI 318-08, Building Code Requirements for Structural Concrete and Commentary

American Institute for Steel Construction (AISC), Specification for the design, fabrication and erection of structural steel for buildings

Structural Standards:

American Standards of Civil Engineers (ASCE), ASCE 7-10 Minimum Design Loads for Buildings and Other Structures

Design Guides:

Design of Castellated and Cellular Beams, Dinehart, Coulson, Fares

Advisor: Dr. Ali Memari

Proposal

When the construction of Office Building-G is complete the majority of the space will be used as office space. The floor plan was designed with anticipation of tenant fit out spaces. With exception to the building core, which includes the vertical transportation, bathrooms, mechanical and janitorial spaces, the floor plan is open. However, the existing structure of Office Building-G interferes with the space available for tenant fit outs.

All of the concrete columns are exposed, limiting the possibilities of the future tenant fit outs. An external structure designed as part of the building façade would create an entirely open floor plan. However, simply moving the columns to the façade of a building does not create an open floor space. In the case of Office Building-G, the interior location of restrooms and mechanical spaces allowed the structural engineer an opportunity to use an interior shear wall core. Had the restroom location varied with the story levels, the shear wall score would have interfered with the open floor plan. As part of the proposed redesign of Office Building-G, the only elements which will be considered as constant for every level is the location of the elevator shafts and stairwells.

Removal of the shear wall core forces the eternal structure to be capable of resisting the lateral forces which Office Building-G will experience. Braced frames will be used as the lateral force resisting system due to their efficiency and potential for an aesthetically pleasing design.

The structural depth study of this thesis is defined by creating an open floor plan allowing for the maximum freedom of design of the tenant fit outs with the assumption that the only elements impeding the open floor space is the elevator shafts and stairwells. In addition to opening the floor space of Office Building-G, the existing building height and floor to ceiling height will remain as originally designed.

Maintaining the original building height and floor to ceiling height of Office Building-G with the redesigned structure will cause interference between the mechanical duct work and structural members. This issue will be addressed through the work performed as part of a Mechanical Breadth Study.

Integrating the lateral system of a building with the façade has a drastic impact on the façade architecture of the structure. As part of an Architectural Breadth, the aesthetics of the exposed structure will be considered and will have weight in the decision to the type of lateral system designed.

Based on the proposed changes of Office Building-G, it was assumed that the typical floor plan was consistent for every story of the buildings.

Advisor: Dr. Ali Memari

MAE Work

To satisfy the requirements of the MAE program the coursework learned in *AE 534 Steel Connections* and *AE 597A Computer Modeling of Building Structures* will be applied. The knowledge learned in AE 534 will be used to design two typical connections used in the braced frame design. A series of computer models will be created using RAM Structural System, SAP 2000 and ETABS and used integrally in the redesign of Office Building-G.

Structural Depth

An entirely new structural system must be designed in order to determine the feasibility of the proposed external structure. Changing from a concrete based design to steel will have large impacts on the gravity and lateral loads, the size of members, and the way in which the building responds to these loads. The following sections of the report lay out the way in which Office Building-G was redesigned.

New Loads

The occupancy spaces of Office Building-G are not changing so the live loads are consistent with the original design values. However, the self-weight of the structure, wind loads, and seismic forces are influenced by the change in the building structure.

Gravity

The live loads for Office Building-G are listed below. A uniform live load of 100 psf was used throughout Office Building-G to allow for flexibility in floor plan design. For members permitting Live Load Reduction the reduced value was used in design.

Floor Live Loads									
Load Description Load Location ASCE 7-10 Load (psf) Design Load (psf)									
Office	Levels 1-14	80	80 20 - Partitions						

Live Load Reduction was limited to the restrictions of ASCE 7-10 section 4.8 and only used for column and beam design. The reduction of the live load was limited to $0.5L_0$ for members supporting one floor and $0.4L_0$ for members supporting two or more floors. The equation used was:

 $L = L_o(0.25 + 15/(K_{LL}A_T))$ K_{LL} = 2 for beams and girders K_{LL} = 4 for columns

The dead loads associated with the structure self-weight of Office Building-G are affected due to switching from a concrete building to a steel one. New self-weights of structural members and curtain wall were estimated and later checked to ensure a conservative value was used. The calculation of the new floor slab can be found in the Floor Slab section. The superimposed dead loads have been taken from the assumed values used in the original design and include the weights associated with MEP equipment and any floor and ceiling finishes.

Dead Loads									
Load Description Load Location Design Load (psf)									
Superimposed (MEP)	Levels 1-14	15							
Composite Deck	Levels 1-14	37							
Curtain Wall	Perimeter	20							

Advisor: Dr. Ali Memari

Wind

ASCE 7-10 was used for the determination of the wind loads for the Main Wind-Force Resisting System (MWRFS) of Office Building-G. Loads were calculated in the North-South and in the East-West direction due to the roughly rectangular shape of the building. The forces were determined using the Chapter 27 guidelines for Enclosed and Partially Enclosed Rigid Buildings.

The first step in calculating wind loads is determining if the building is flexible or rigid. This classification is based on the natural frequency of the structure. ASCE 7-10 allows for an estimation of a buildings frequency based on relationships between the building height and characteristics of the lateral force resisting system. Through this estimation it was determined that the natural frequency of Office Building-G is less than 1, defining the building as flexible. The gust factored cannot be assumed to be 0.85 for flexible buildings so it was calculated based on the resonant response factor, the fundamental natural frequency, damping ratio and the mean hourly wind speed. The coefficients and values used can be found in Appendix A.

The building is fairly square on three sides but the curved southern façade creates a scenario where the West wall has a greater length than the East wall. If the curvature had been so severe that the West wall was wider than the North wall is deep, an additional wind load would have needed to be calculated. Since this is not the case and L/B < 1 a single wind load calculation can be used for both the East and West loads. For the same reason, the North-South wind loads were calculated using the worst case for the different geometries of the building. The building receives the largest wind force in the North-South directions, as these are the longer façades of the building normal to the wind loading.

Figure 9 shows the geometry of Office Building-G in plan and Figure 10 is a list of the values obtained for the wind forces acting in either direction. Figure 10 shows the wind pressures but a complete list of story shears and base shears based on ASCE 7-10 load cases can be found in Appendix A.

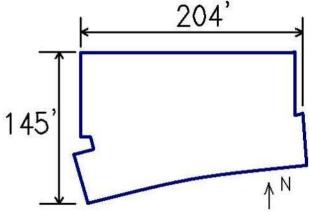


Figure 9

Advisor: Dr. Ali Memari

	North-South									
Story Level	Story Height (ft)	Windward p _z (psf)	Leeward p _h (psf)							
1	0	12.26	-11.86							
2	19	12.26	-11.86							
3	31.25	14.22	-11.86							
4	43.5	15.62	-11.86							
5	55.75	16.74	-11.86							
6	68	17.72	-11.86							
7	80.25	18.69	-11.86							
8	92.5	19.44	-11.86							
9	104.75	20.09	-11.86							
10	117	20.70	-11.86							
11	129.25	21.30	-11.86							
12	141.5	21.96	-11.86							
13	153.75	22.45	-11.86							
14	166	22.95	-11.86							
ROOF	178.25	23.44	-11.86							
EL, MR	186	23.69	-11.86							
SCREEN WALL	195	23.96	-11.86							

	East-West									
Story Level	Story Height (ft)	Windward p _z (psf)	Leeward p _h (psf)							
1	0	11.66	-14.25							
2	19	11.66	-14.25							
3	31.25	13.52	-14.25							
4	43.5	14.86	-14.25							
5	55.75	15.92	-14.25							
6	68	16.86	-14.25							
7	80.25	17.78	-14.25							
8	92.5	18.49	-14.25							
9	104.75	19.11	-14.25							
10	117	19.69	-14.25							
11	129.25	20.26	-14.25							
12	141.5	20.89	-14.25							
13	153.75	21.36	-14.25							
14	166	21.83	-14.25							
ROOF	178.25	22.30	-14.25							
EL, MR	186	22.54	-14.25							
SCREEN WALL	195	22.79	-14.25							

Figure 10

Advisor: Dr. Ali Memari

Seismic:

The Equivalent Lateral Force Procedure of ASCE 7-10 was referenced during the calculation of the seismic loads for Office Building-G. General design parameters of the building are a site classification of type D, a seismic design category of B, and a seismic importance factor of 1.0.

The first step taken in determining the seismic forces of the building was to determine the seismic response coefficient; C_s . C_s is based on a variety of factors that take into account the lateral system of the building as well as its geographical. The new lateral system of the building is classified as ordinary concentrically steel braced frames, corresponding to a response modification factor of R=3.25. When determined, C_s can then be multiplied by the total dead load weight of the building to yield the seismic base shear.

The next step was to consider all of the possible areas that could contribute to the dead weight of the building. A typical floor plan was used to determine the dead load of the structure. The building elements considered were: slabs, beams, columns, exterior walls, partitions, and imposed MEP loads. These loads were either a pound per square foot or a total per floor, depending on the nature of the element. It should be noted that partitions are included in a 100 psf live load for office space but since they are secured to the floor of the structure it was assumed that they will not move freely in the instance of an earthquake, becoming a dead load.

Shear forces for each floor were then calculated. Since the lateral system is the same for both loading directions, the seismic forces are the same for the North-South and East-West load cases. When the lateral forces are entered into the load cases, the more severe loads acting on Office Building-G will be used in design. The unfactored seismic forces can be found in Figure 11 below and a complete list of coefficients used can be found in Appendix A.

	Seismic Forces										
Story Level	Height (ft)	w _x (k)	w _x *h ^k	f _i (k)	V _i (k)						
1	0	3700	0	0.0	1444.1						
2	19	2038	295304	6.8	1444.1						
3	31.25	1882	632324	14.5	1437.3						
4	43.5	1645	966252	22.2	1422.7						
5	55.75	1645 1469594		33.8	1400.5						
6	68	1645	2055813	47.3	1366.7						
7	80.25	1645	2719917	62.6	1319.4						
8	92.5	1645	3457985	79.5	1256.9						
9	104.75	1645	4266816	98.1	1177.4						
10	117	1645	5143724	118.3	1079.2						
11	129.25	1645	6086410	140.0	960.9						
12	141.5	1645	7092869	163.1	820.9						
13	153.75	1645	8161333	187.7	657.8						

Technical Report 3

Advisor: Dr. Ali Memari

14	166	1645	9290225	213.7	470.1			
ROOF	178.25	1549	9869137	227.0	256.4			
EL, MR	186	187	1280514	29.5	29.5			
Figure 11								

Load Cases

ASCE 7-10 section 2.3, Combining Factored Loads Using Strength Design, was used in determining which load cases would be applied to Office Building-G. The load combinations considered are listed below.

- 1) 1.4(D+F)
- 2) 1.2(D+F+T) + 1.6(L+H) + 0.5(Lr or S or R)
- 3) 1.2D + 1.6(Lr or S or R) + (L or 0.5W)
- 4) 1.2D + 1.0W + L + 0.5(Lr or S or R)
- 5) 1.2D + 1.0E + L + 0.2S
- 6) 0.9D + 1.0W
- 7) 0.9D + 1.0E

Typically, when only gravity loads are being considered, load case 2 will control. However, when lateral forces are being analyzed, cases 4-7 may control based on the magnitude of the forces and whether overturning moment is considered.

Figure 27.4-8 of ASCE 7-10 describes the different loading conditions for wind on a building. All four of the cases for the Main Wind Force Resisting System must be considered in the analysis of the lateral system. These cases account for the effects that wind has on a structure when wind blows from two different directions and are applied slightly off access. As shown in Figure 12, Cases 2 and 4 consider the torsional loads that can be induced by wind loading.

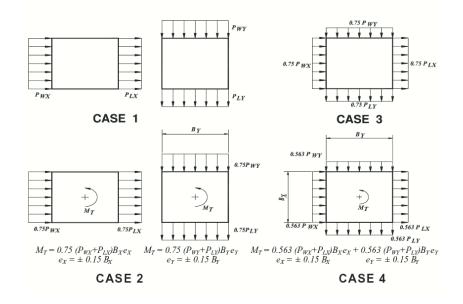


Figure 12

Advisor: Dr. Ali Memari

In total, there are 12 different wind loads that Office Building-G can expect to experience. To account for these possibilities, 12 iterations of each of the above load combinations which included a wind component were input into ETABS. The multiple loads cases for wind and earthquake forces changed the number of load combinations from 7 to 43. A complete list of the load combinations, forces used and the confirming wind calculations for Office Building-G can be found in Appendix A.

Advisor: Dr. Ali Memari

Carl Hubben

Floor System

Lightweight concrete on composite metal deck was chosen for the redesigned floor system of Office Building-G. The existing 7" one way slab design would have been sufficient for the proposed system but metal deck was determined to be more economical based on weight, materials, and construction costs. The deck chosen was Vulcraft 2VLI19 and the strength values are shown in Figure 13. The loads accounted for in the design of the floor system were an unreduced live load of 100 psf and a superimposed dead load of 15 psf. The 2VLI19 system can support up to 151 psf and can span 11'-7" unshored during construction, eliminating costs associated with shored construction.

TOTAL		SD	Max. Unshe	ored						Su	perimpo	sed Live	Load, P	SF						1
SLAB	DECK	Clear Span				Clear Span (ft,-in,)							1							
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	
	2VLI22	8'-1	10'-3	10'-7	238	209	186	167	152	120	108	98	90	82	75	69	64	59	55	
4.00	2VLI20	9'-6	11'-8	12'-1	268	235	209	187	169	153	140	129	101	92	84	78	72	66	61	
(t=2.00)	2VLI19	10'-10	13'-0	13'-2	297	260	230	206	185	168	153	141	130	121	93	86	79	73	68	
30 PSF	2VLI18	11'-7	13 '-7	13'-7	324	285	253	227	205	1 87	171	158	146	136	127	119	92	86	80	
	2VLI16	12'-3	14-3	14'-4	377	330	292	261	235	214	195	1 7 9	165	153	143	133	118	98	91	0
	2VLI22	7'-8	9'-10	10'-2	276	243	216	194	155	139	126	114	104	96	88	81	75	69	64	Ιŏ
4.50	2VLI20	9'-0	11'-3	11-7	312	273	243	217	196	178	163	128	117	107	98	90	83	77	72	Ž
(t=2.50)	2VLI19	10'-3	12'-5	12-9	346	302	268	239	215	195	178	164	151	118	108	100	92	85	79	Ň
35 PSF	2VLI18	11'-2	13'-1	13'-1	376	331	294	264	238	21 7	199	183	170	158	14 7	116	107	100	93	
	2VLI16	11'-7	13'-8	13'-10	400	384	340	303	273	248	227	208	192	178	166	155	123	114	106	<u>()</u>
	2VLI22	7'-4	9'-5	9'-9	315	277	247	197	176	159	143	130	119	109	100	92	85	79	73	FIS
5.00	2VLI20	8'-7	10'-9	11'-2	355	312	276	248	224	203	161	146	133	122	112	103	95	88	82	П
(t=3.00)	2VLI19	9'-9	11'-11	12'-4	394	345	305	272	245	223	203	18 7	147	135	124	114	105	97	90	

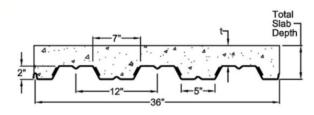

(N=14.15) LIGHTWEIGHT CONCRETE (110 PCF)

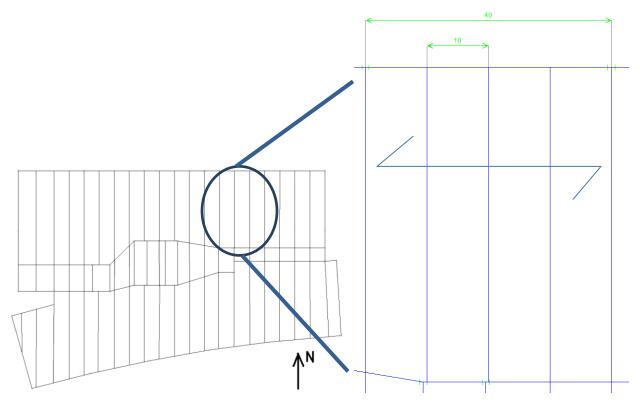
Figure 13

The self-weight of the lightweight concrete is 35 psf. This weight is added to the 2.30 psf weight of the metal deck, resulting in total system load of 37.3 psf.

2 VLI

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 ICBO Approved (No. 3415)

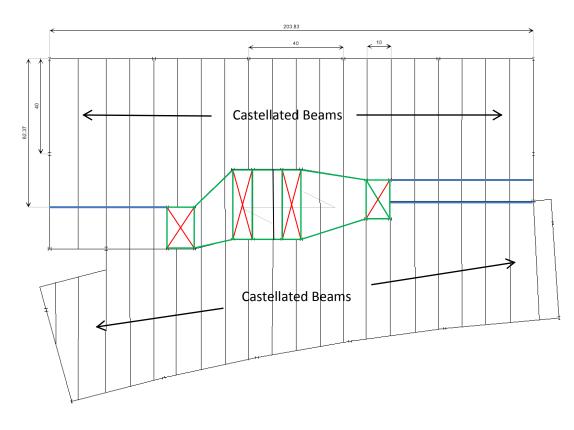
Interlocking side lap is not drawn to show actual detail.


STEEL SECTION PROPERTIES

	Design	Deck		Section I				
Deck	Thickness	Weight	I _p	Sp	l _n	Sn	Va	Fy
Туре	in	psf	in ⁴ /ft	in ³ /ft	in ⁴ /ft	in ³ /ft	bs/ft	ksi
2VLI22	0.0295	1.62	0.324	0.263	0.321	0.266	1832	50
2VLI20	0.0358	1 97	0.409	0.341	0.406	0.346	2698	50
2VLI19	0.0418	2.30	0.492	0.420	0.489	0.426	3190	50
2VLI18	0.0474	2.61	0.559	0.495	0.558	0.504	3608	50
2VLI16	0.0598	3,29	0.704	0,653	0.704	0.653	3618	40

Advisor: Dr. Ali Memari

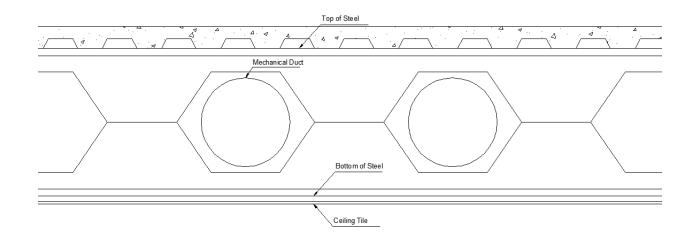
Framing Plan


The composite metal deck distributes the floor loads between the framing elements of Office Building-G. As shown in Figure 15 the metal deck spans East-West across the framing members spaced at 10' OC.

Each story of Office Building-G follows a typical plan which allows a single framing plan to be used for every level. The majority of the framing members are composite castellated beams, span in the North-South direction of Office Building-G and are supported by composite edge beams and core framing. Transfer girders were used on the East and West ends of the building to reduce the span of the main framing members. The castellated beams are spaced at 10 ft on-center, limiting their tributary width in an effort to create manageable bending forces. Figure 16 is a typical floor plan. Green lines represent the core framing elements; blue lines are the transfer girders and red x's show penetrations through the floor for vertical transportation.

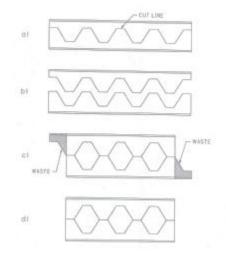
Advisor: Dr. Ali Memari

Figure 16


Castellated Beams

The main framing elements of Office Building-G are composite castellated beams. This system was chosen because it is able to fit within the existing ceiling cavity of Office Building-G as well as accommodate the long spans of the structure. The spans and high floor loads were resulting in very deep and heavy members when conventional composite design was used. The castellated beams are roughly the same depth as the typical composite designs but they are able to achieve the necessary bending strength with a lower weight per foot. The voids of castellated beams allow for MEP equipment to pass through the web of the beam, creating an efficient use of the ceiling cavity. Due to serviceability requirements of the duct, the beam designs were based on the opening size rather than required strength, creating a less structurally economical design. Figure 17 is a typical section of a composite castellated beam design showing the mechanical duct work pass through the beam opening.

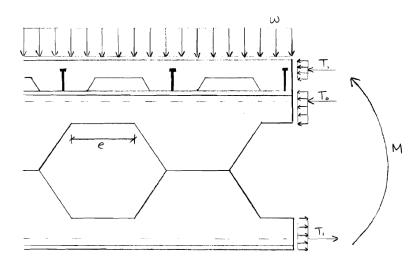
Technical Report 3


Carl Hubben

Advisor: Dr. Ali Memari

Figure 17

Figure 18 displays the process in which castellated beams are created. Drawing a) shows the original beam with the line in which it is going to be cut. The beam is then separated and realigned to create a deeper member as shown in Drawing b) and c). As depicted in the figure, the shaded region at the end of the beam is discarded as waste. Finally, the two beam halves are then welded together to create the final shape as shown in Drawing d).



Castellated beams designs are controlled by the effects of Vierendeel Bending. Vierendeel bending occurs when the global bending moment causes a localized compressive and tensile force in the top and bottom cords of the member, known as a primary force. At the location of the opening, secondary forces are created by the shear on the beam. The secondary forces increase the stress experienced by the top and bottom of the beam sections. The castellated beam must be able to withstand the combination of both primary and secondary forces. These forces change at every opening so each must

Advisor: Dr. Ali Memari

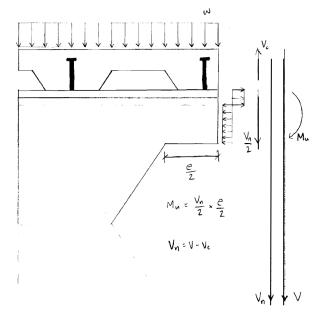

be analyzed to determine the interaction between shear and moment on the section. Figure 19 shows the primary forces acting on a generic composite castellated beam.

Figure 19

Global moments, M, are calculated based on the net shear at the opening multiplied by the distance from the closest support to the centerline of the opening. The global moments are summed at every opening, resulting in the maximum moment at the midspan of the beam. Local axial forces in the top and bottom tee sections are then calculated to determine the effective depth of the concrete section.

Figure 20 is a larger detail of the top section of a generic castellated beam, displaying the way in which secondary forces act. These forces are calculated over the centerline of the openings. The top and bottom sections resist half of the net shear acting on the beam. Net shear is calculated by subtracting the shear resisted by the concrete from the total. The reduced section is effectively acting as a beam spanning between the solid sections. Thus, the vertical force acting on the reduced section creates a local moment which maximized at the midspan of the opening. The local moment is calculated by the equation shown on Figure 13.

Primary and secondary forces must be calculated at every opening of a castellated beam due of the relationship between total shear and global moment. At the end of a simply supported beam with a uniformly distributed load there is a large shear force but a negligible global moment. A large shear force on a castellated beam creates large secondary forces while a small moment creates minimal primary forces. At midspan, the beam must resist a large global moment but a very small shear. Figure 21 is an example calculation of how global forces and local forces change for the openings of a castellated beam. Since a single beam section was used for the creation of the castellated beams, the local forces experienced by the top and bottom beam sections are identical. If the design used different beam sections, the forces would be distributed based on the relative stiffness of the elements.

Primary and Secondary Forces						
Hole #	Net Shear	Global Moment	Local Moment			
	Vu	M (kip-ft)	M _u -top (kip-in)			
End	55.5	0.0	138.7			
1	52.2	98.0	130.6			
2	47.4	234.8	118.4			
3	42.5	359.5	106.2			
4	37.6	472.0	94.1			
5	32.8	572.3	81.9			
6	27.9	660.4	69.7			
7	23.0	736.3	57.5			
8	18.1	800.1	45.3			
9	13.3	851.7	33.2			
10	8.4	891.1	21.0			
11	3.5	918.3	8.8			

Advisor: Dr. Ali Memari

12	0.0	933.3	0.0			
CL	0.0	936.1	0.0			
Figure 21						

The above diagrams and forces represent the way in which the beam section is affected by Vierendeel bending. A composite castellated beam must then be checked for: tension, moment, lateral torsional buckling, flange local buckling, web post buckling, shear, and deflection. A complete set of these calculations can be found in Appendix B.

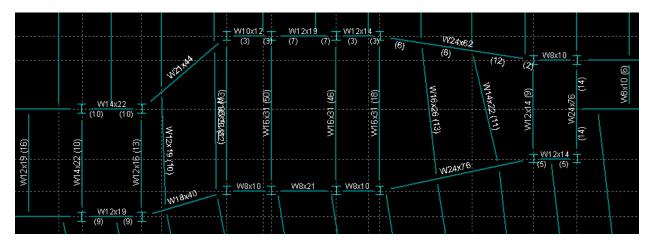
Due to the relationship between shear and moment in castellated beams described above, large point loads acting on a beam often create too great of secondary forces and result in an uneconomical design. This is why castellated design was not used for the transfer girders, edge beams or interior framing members.

Multiple castellated beams were designed based on the required span of the beam. Slight differences in length did not change the original W shape so beams were designed in 5 foot increments. Figure 22 is a list of the castellated designs with their original size, adjusted depth, size of opening and length.

Castellated Beam Designs							
Design #	Max Length (ft)	# Beams/Floor	Size	Final Depth (in)	Opening Height (in)	Max Deflection (in)	
1	65	7	W18X158	29.9	20.4	0.29	
2	60	3	W18X143	30	21	0.23	
3	55	11	W18X130	30.1	21.6	0.18	
4	50	19	W18X119	29.5	21	0.14	

Figure 22

Composite Beams


At the ends of the castellated beam spans, there are large shear reactions. As mentioned above, point loads create uneconomical castellated designs. For this reason composite design was used for the transfer girders, edge beam or interior framing members.

The initial design of these members was performed by RAM Structural System with no depth limitation applied. The design was then checked by hand with the aid of Tables 3-19 and 3-20 of the AISC Steel construction manual. These hand calculations verified the process taken by RAM Structural system. Due to the depth limitation of the ceiling cavity, the most economical beam size could not be utilized so RAM was used to check the designs of shallower, heavier members. Sample calculations can be found in Appendix B.

RAM Structural System was used to design all of the regular composite framing members. Due to modeling limitations of RAM the beam layout is not identical to that of the final design but the load path is accurate and this limitation did not have an effect on the design of these members. The RAM model shown in Figure 23 only shows the core of Office Building-G because the edge beams are typical and the

Advisor: Dr. Ali Memari

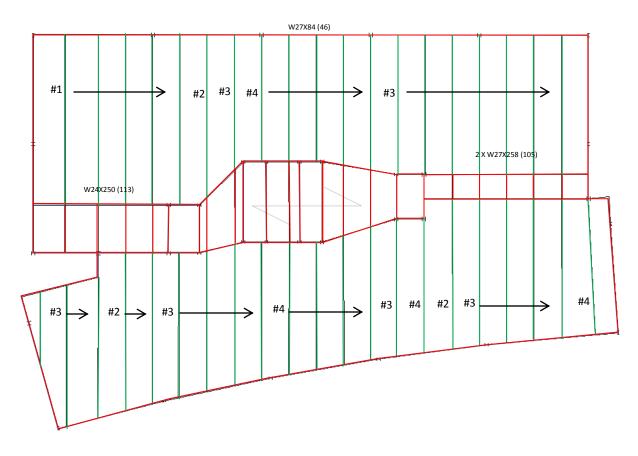
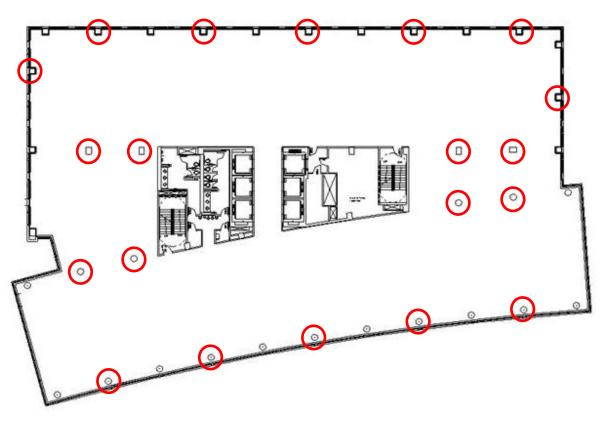

longer span members were designed by hand using the castellated design methods described above. The hand calculations and values given by RAM Structural System can be found in Appendix B.

Figure 23

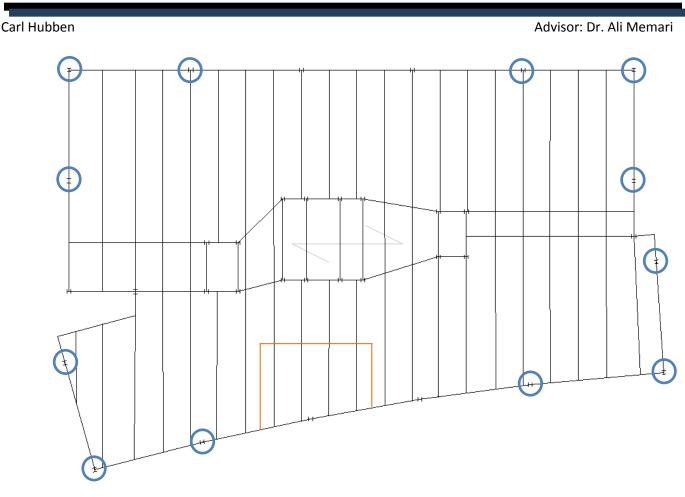
Figure 24 below is a typical floor plan which depicts which beams were designed as castellated in green and those which are regular composite in red. Also shown are the designs of typical edge beams and the transfer girders controlled by the depth limitation.

Advisor: Dr. Ali Memari



All of the castellated beams were designed to allow for an 18" diameter duct with 1" insulation to pass through them. This limited the factors controlling the design and allowed the beams to be laid out based solely on the span between supports.

Columns


In order to create a column free space for tenant fit outs, all of the exposed interior columns in the original design were removed. Additionally, roughly half of the columns which were on the perimeter were removed and the remaining columns were relocated to the façade of Office Building-G. Figure 25 is the original floor plan which shows the columns which were removed circled in red.

Advisor: Dr. Ali Memari

The original design had 29 perimeter columns, 8 interior columns and a shear wall core resisting the gravitational forces. The final design has 19 perimeter columns and 16 interior columns with no structural walls. Figure 26 is a typical floor plan of Office Building-G and displays the new column layout. Columns circled in blue represent columns which are part of the lateral system so they were designed based on gravity and lateral load cases. The remaining columns are strictly gravity members. The orange perimeter represents the tributary area used to check base column loads.

Figure 26

Gravity columns were initially sized through the use of RAM Structural System based on purely axial loads. The summation of loads calculated by RAM was checked through hand calculations to confirm the load path, reduction of live load, and column sizes. These can be found in Appendix C. The initial sizes were then put into ETABS to analyze the influence of p-delta effects on the gravity columns. It was determined through the ETABS analysis and hand calculations that the small story displacements limit the secondary moment applied by the columns and have little effect on the design of the members. The controlling load case on gravity columns was 1.2D + 1.6L.

Columns which are part of lateral force resisting fame were also put into ETABS and resized based on the axial forces they could experience. The controlling load cases for lateral members depended on the direction of the frame but each direction was controlled by 1.2D + 1.0L + E. These members are discussed in greater detail in the Lateral System Section.

Based on the length of steel allowable for transportation speed of construction, columns were designed for a splice every 4 stories. The 14 story design of Office Building-G leaves a 2 column design for the 13th and 14thfloor. In an effort to avoid interference of pouring the concrete and column connections the splicing between columns should be done at 48 inches above the story level. Additionally, columns were designed to be W14 sections to create simple splice details. Figure 27 is a list of the columns used in the redesign of Office Building-G.

Advisor: Dr. Ali Memari

Columns				
Section	NumPieces			
W14X53	40			
W14X61	48			
W14X68	22			
W14X74	14			
W14X82	50			
W14X90	40			
W14X99	32			
W14X109	42			
W14X120	16			
W14X132	38			
W14X145	38			
W14X159	28			
W14X176	14			
W14X193	8			
W14X211	4			
W14X233	24			
W14X257	12			
W14X283	4			
W14X311	4			
W14X342	4			
W14X370	8			
Figure 27				

As seen in the framing plan in Figure 26, there are sixteen (16) centrally located columns. These columns are essential for the redesign of Office Building-G's structure to be integrated with the existing architecture. Without interior column the span of the castellated beams would be too large to design a member capable maintaining the existing depth of the cavity space. The interior columns were placed at the corners of the existing vertical transportation shafts in order to be integrated with the existing floor plan. The columns reduce the span of the main framing elements while eliminating the mass of the shear walls.

Advisor: Dr. Ali Memari

Lateral System

Geometry

In an effort to create an open floor plan for Office Building-G, it was proposed to implement a system of external steel braced frames. In the initial design stages, a variety of different braced frame geometries were considered. These initial designs made use of different column spacing and frame type. Due to the large architectural impact the exterior frame was going to have on the building, the final design was chosen based on aesthetics. Figures 28 through 31 are images of the different brace designs considered for the North Façade of Office Building-G. Figure 32 is the final design geometry.

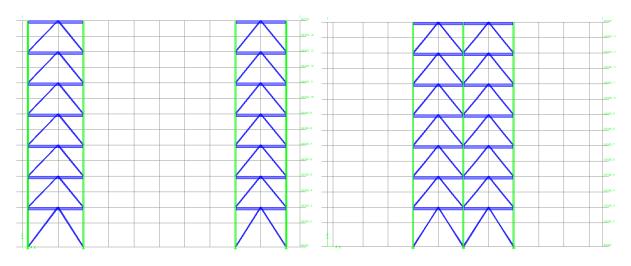


Figure 29

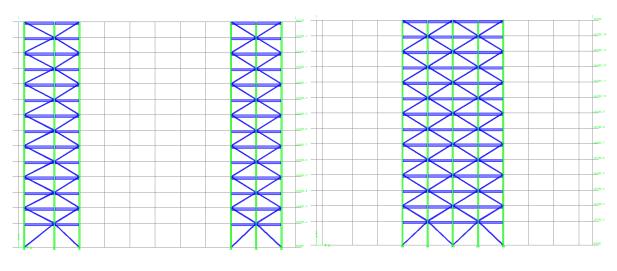
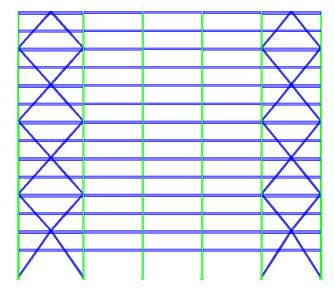



Figure 30

Figure 31

Advisor: Dr. Ali Memari

The lateral redesign of Office Building-G uses a system of two-story chevron braces which span 40 feet between columns and alternate between normal and inverted frames, creating an X every four stories. The frames are located at the corners of the building, creating a total of 8 frames, shown in 3D in Figure 33 and highlighted in plan in Figure 34.

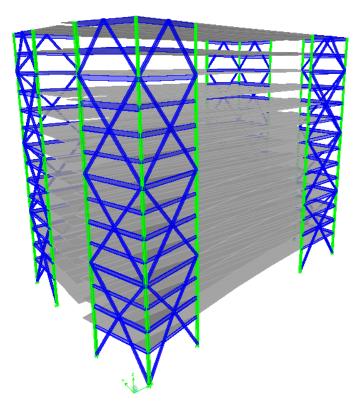
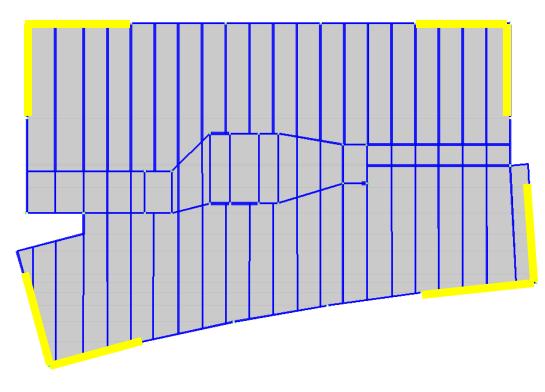
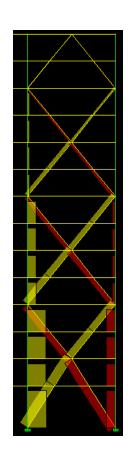
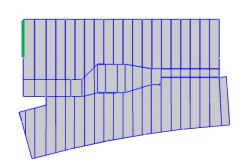


Figure 33

Advisor: Dr. Ali Memari

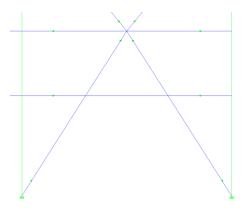

Figure 34

Design

When a chevron frame is loaded with a horizontal force, the load enters the beam of the frame through the shear studs which were engaged by the floor diaphragm. The load is then distributed to the braces and based on the direction of the loading one brace is put in tension while the other is in compression. The tension and compression axial forces of the braces are then transferred to the columns as a gravity load. Figure 35 displays the axial loads on the braces and columns of the highlighted frame due to wind loads on the North Elevation. The yellow force is tension and red is compression.

Advisor: Dr. Ali Memari

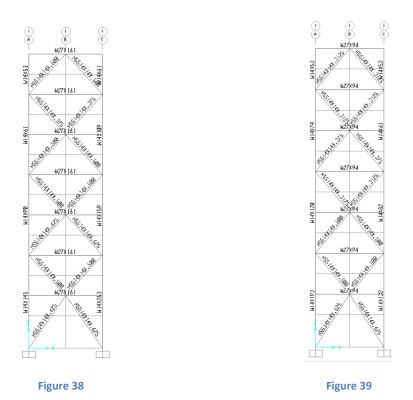
To determine initial member sizes of frame members, a bottom story frame was designed by hand following the provisions described in the AISC Seismic Manual. Columns and beams were designed using W shape members and braces were designed as square HSS. Tributary area estimates were used to determine the gravity loads resisted by the frame and the 1/4th of the seismic base shear was applied as the lateral load. The hand calculations checked the applicable members for compression, tension, axial, local buckling, slenderness and moment capacity. These calculations can be found in the Appendix D.


These initial member sizes were then put into an ETABS model for every frame. A design check within ETABS was performed with the horizontal seismic overstrength factor (Ω_o) and redundancy factor (ρ) included. For the design conditions of Office Building-G these are 2.0 and 1.0 respectively. This check resulted in many of the members being oversized. This was expected because the shear at the bottom floor is much higher than that of the floors above. The oversized members were then resized to create and efficient design. Brace sizes were checked with the aid of ETABS which ran interaction checks for combination loading on each member. Seismic forces control the design forces of the braces in both directions. The controlling load case in either direction is 1.2D + 0.5L + 0.5Lr + 1.0E. A sample of the results given by ETABS for one of the brace designs is shown below in Figure 36.

Advisor: Dr. Ali Memari

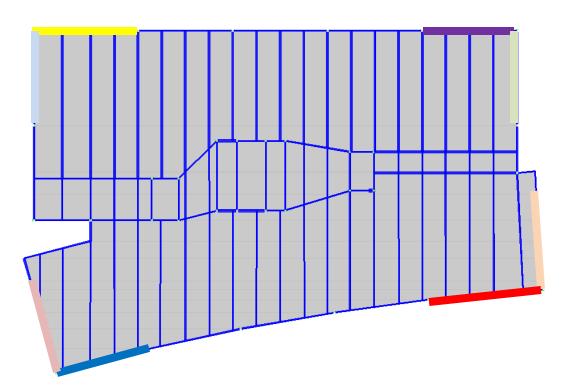
evel: LEVEL 4 El	ement: D211	Station Lo	c: 15.81	3 Secti	on ID:	HSS14X	14X.!	500			
lement Type: Mor	ent Resistin	q Frame C	lassific	ation:	Non-Com	pact					
=15.813											
=0.171 i22=0.036	i33=0.036	z22=0.072	z33=0.0	72							
22=0.061 533=0.0	61 r22=0.45	8 r33=0.45	8							3 <	
=4176000.000 fy=	7200.000										
LLF=1.000											
-M33-M22 Demand/C	apacity Ratio	o is 0.73	8 = 0.71	4 + 0.02	1 + 0.0	02					
TRESS CHECK FORCE	S & MOMENTS										
	P	M33		M22	U2		1	13			
Combo DSTLS72	-684.261	-11.009	1.	151	1.238		-0.0	73			
XIAL FORCE & BIAX	IAL MOMENT D	ESIGN (H1	-1a)								
XIAL FORCE & BIAX	IAL MOMENT D	ESIGN (H1 phi*Pnc	-1a) phi*	Pnt							
XIAL FORCE & BIAX											
XIAL FORCE & BIAX Axial	Pu	phi*Pnc	phi*	gth							
	Pu Load	phi*Pnc Strength	phi* Stren	gth 000							
	Pu Load 684.261 Mu	phi*Pnc Strength 958.221 phi*Mn	phi* Stren	gth 000 B1	B2		K		Cb		
Axial	Pu Load 684.261	phi*Pnc Strength 958.221	phi* Stren 1107.	gth 000	B2 Factor			L	Cb Factor		
Axial Major Bending	Pu Load 684.261 Mu Moment 11.009	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873	phi* Stren 1107. Cm Factor 1.000	gth 000 B1 Factor 1.131	Factor 1.000	Fact 1.0	or 00	1.000			
Axial	Pu Load 684.261 Mu Moment	phi*Pnc Strength 958.221 phi*Mn Capacity	phi* Stren 1107. Cm Factor	gth 000 B1 Factor	Factor	Fact 1.0	or 00		Factor		
Axial Major Bending Minor Bending	Pu Load 684.261 Mu Moment 11.009	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873	phi* Stren 1107. Cm Factor 1.000	gth 000 B1 Factor 1.131	Factor 1.000	Fact 1.0	or 00	1.000	Factor		
Axial Major Bending Minor Bending	Pu Load 684.261 Mu Moment 11.009 1.151	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873 459.873	phi* Stren 1107. Cm Factor 1.000 0.600	gth 000 Factor 1.131 1.000	Factor 1.000	Fact 1.0	or 00	1.000	Factor		
Axial Major Bending Minor Bending	Pu Load 684.261 Mu Moment 11.009 1.151 Vu	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873 459.873 9.873	phi* Stren 1107. Cm Factor 1.000 0.600 Str	gth 800 B1 Factor 1.131 1.000 ess	Factor 1.000	Fact 1.0	or 00	1.000	Factor		
Axial Major Bending Minor Bending HEAR DESIGN	Pu Load 684.261 Mu Moment 11.009 1.151 Uu Force	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873 459.873 459.873 Phi*Un Strength	phi* Stren 1107. Cm Factor 1.000 0.600 Str Ra	gth 000 B1 Factor 1.131 1.000 ess tio	Factor 1.000	Fact 1.0	or 00	1.000	Factor		
Axial Major Bending	Pu Load 684.261 Mu Moment 11.009 1.151 Vu	phi*Pnc Strength 958.221 phi*Mn Capacity 459.873 459.873 9.873	phi* Stren 1107. Cm Factor 1.000 0.600 Str Ra 0.	gth 800 B1 Factor 1.131 1.000 ess	Factor 1.000	Fact 1.0	or 00	1.000	Factor		

Figure 36


It is important to note a modeling technique used in the analysis of the two story frame in ETABS. In braced frames, the lateral loads enter the frame through the beam. However, the chevron frames of Office Building-G span two stories so the interstory forces have no way of entering the frame. Because of this, a moment connection between the HSS braces and the interstory edge beam was modeled. Figure 37 is a picture of a typical chevron brace with the end moment releases displayed. Note the connection between the interstory edge beam and brace members have no releases.

Due to the large amount of symmetry in the design of Office Building-G, there are typical brace and beam sizes for frames which resist loads in the same direction. Column sizes used as part of the frames change throughout the building based on the load path of the framing system. Figures 38 and 39 show a typical frame design for resisting loads in the East-West direction and North-South direction respectively.

Advisor: Dr. Ali Memari



The greatest difference in member sizes of the frame designs are the beam members. Due to the orientation of the castellated beams, the frames on the North and South façade take a much larger gravity load than those of the East and West facade.

Direct Loads

When horizontal forces are applied to a structure, the lateral resisting elements are loaded with direct shear. The distribution of these forces is based on the relative stiffness of the elements. The frames in Office Building-G are designed with minimal differences in them so it is expected that they have similar stiffness's. The stiffness of each frame was calculated with the use of the analysis program SAP 2000. The as designed frames were put into SAP and a 1000 kip force was applied to the top of the frame, causing the frame to deflect. The stiffness was then calculated by dividing the 1000 kip load by the total deflection. Figure 40 is color coded to show the stiffness as well as relative stiffness of the frames in Office Building-G.

Advisor: Dr. Ali Memari

		Stiffne	ess and F	Relative Stiffne	SS	
	Bra		Load	Deflection (in)	к	K Rel.
	Elevation	Location	(k)	. ,		
S	North	NW	1000	20.7	48.30918	0.267468
Force	North	NE	1000	26.95	37.10575	0.205439
E-W		SW	1000	24.2	41.32231	0.228785
Resisting E-W Forces	South	SE	1000	18.56	53.87931	0.298308
Re				Total	180.6166	1
	West	NW	1000	27.23	36.7242	0.269429
N-S Forces	vvest	SW	1000	27.98	35.73981	0.262207
	East	NE	1000	29.81	33.54579	0.246111
Resisting	EdSL	SE	1000	1000 33.01		0.222253
R				Total	136.3037	1
			Fig	ure 40		

As mentioned above, the frames are made of similar members and have roughly the same dimensions so it is expect that they have similar stiffness's. Those frames with larger k values, such as the frame

Advisor: Dr. Ali Memari

highlighted in red, have a larger span between columns. The brace members are still connected at mid span of the beam and thus have become more horizontal, allowing the maximum horizontal component of the axial force to increase.

When a lateral load is applied to Office Building-G, the majority of the resultant force in the frames is due to direct shear. The actual distribution of forces can be estimated by the relative stiffness of the frame members. Figure41 is a chart which takes the direct wind loads of Office Building-G and compares the expected forces to the actual.

	Wind Loading: E-W Direction, 1st Story								
Brace		Relative	Predicted Load (k)	Actual Load	%				
Elevation	Location	Stiffness	Fredicted Load (K)	(k)	Difference				
North	NW	0.27	210	189	10.80				
North	NE	0.21	161	171	5.44				
Couth	SW	0.23	180	174	3.29				
South	SE	0.30	234	207	12.59				

Total Applied Shear (k)	786.00
Total Resisted Shear (k)	740.00

	Wind Loading: N-S Direction, 1st Story								
Brace		Relative	Predicted Load (k)	Actual Load	%				
Elevation	Location	Stiffness		(k)	Difference				
West	NW	0.27	286	264	7.86				
west	SW	0.26	278	257	7.83				
Fact	NE	0.25	261	254	2.67				
East	SE	0.22	236	255	7.91				

Total Applied Shear (k)	1060.00
Total Resisted Shear (k)	1030.00

Figure 41

As expected, the distribution of the force was proportional to the relative stiffness of the frame members. However, there are differences in the expected value versus actual as well as the total applied shear versus the total resisted shear. These differences in values can be explained through the effects of inherenet torsional loads.

Torsional Loads

Inherent torsion occurs when the center of mass and center of rigidity do not directly line up, creating an eccentricity. The center of rigidity is based on the location and relative stiffness of the lateral resisting members. Figure 42 compares the location of center of mass and center of rigidity and calculated the eccentricity in each direction. The hand calculations of center of rigidity can be found in Appendix D.

Advisor: Dr. Ali Memari

Center of Mass vs. Center of Rigidity							
CM		CR					
v	N N		nd	ETABS			e _y (ft)
^	ř	Х	Υ	Х	Y		
100.4	83.3	102 70 106.6 80.7		6.2	2.6		
			El ann	10 10			

Figure 42

Loads applied in the East-West (ie the X) direction are applied at the center of mass and multiplied by the e_y length which is acting as a moment arm extended from the center of rigidity. A torsional moment acts on the structure which induces a shear on every frame in Office Building-G. These induced shears can act in the same direction as the direct shear, creating an additive force or in an opposite direction which reduces the shear seen by the brace. Figure 43 shows an example of direct shear outlined in blue with the reactions as solid blue arrows. The inherent torsion is the outlined orange arrow with the induced shears shown as solid orange arrows.

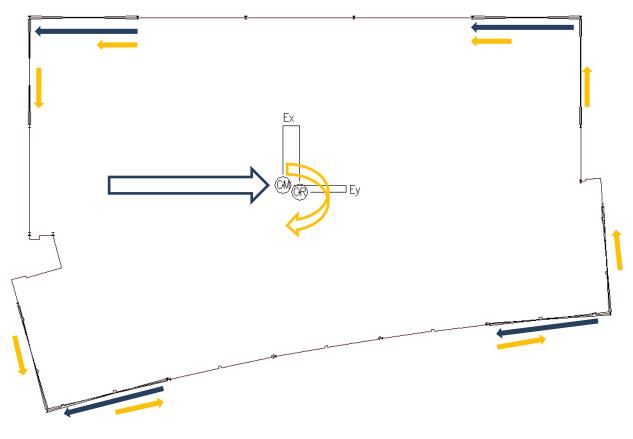


Figure 43

As mentioned above, torsional loading had little effect on the redesign of Office Building-G. Due to the symmetry of the floor plan and the lateral system, the floor center of mass and the structure center of rigidity are very close to each other limiting the effect of eccentric loading.

Displacement and Drift

Total displacement of building is considered a serviceability requirement due to the undesirable sensation of a building swaying back and forth. Wind drift limitations are not directly addressed in building requirements but have been limited to H/400, based on standard engineering practice. Figure 44 is a summary of the allowable story drift compared to the maximum drift values of the load cases acting on Office Building-G. The actual deflections were calculated by ETABS.

	Story Deflections (in)										
				Deflections: East-West Loading				Deflections: North-South Loading			
Story	Height (in)	H/400	Seism	ic Max		d Max	Seismi		Wind	Max	
			UX	UY	UX	UY	UX	UY	UX	UY	
ROOF	2139	5.35	3.75	-0.39	1.34	-0.22	-0.30	5.18	-0.16	2.44	
LEVEL 14	1992	4.98	3.54	-0.34	1.27	-0.19	-0.27	4.83	-0.15	2.30	
LEVEL 13	1845	4.61	3.16	-0.30	1.15	-0.17	-0.24	4.33	-0.13	2.10	
LEVEL 12	1698	4.25	2.84	-0.25	1.06	-0.14	-0.21	3.89	-0.12	1.93	
LEVEL 11	1551	3.88	2.47	-0.21	0.94	-0.12	-0.18	3.40	-0.10	1.72	
LEVEL 10	1404	3.51	2.18	-0.18	0.85	-0.10	-0.15	3.00	-0.09	1.55	
LEVEL 9	1257	3.14	1.85	-0.15	0.74	-0.08	-0.13	2.51	-0.07	1.33	
LEVEL 8	1110	2.78	1.52	-0.11	0.63	-0.06	-0.09	2.02	-0.05	1.11	
LEVEL 7	963	2.41	1.20	-0.08	0.52	-0.04	-0.07	1.55	-0.04	0.88	
LEVEL 6	816	2.04	0.98	-0.06	0.44	-0.03	-0.05	1.23	-0.03	0.72	
LEVEL 5	669	1.67	0.76	-0.04	0.35	-0.02	-0.03	0.93	-0.02	0.56	
LEVEL 4	522	1.31	0.52	-0.02	0.25	-0.01	-0.02	0.61	-0.01	0.39	
LEVEL 3	375	0.94	0.29	0.00	0.15	0.00	0.00	0.32	0.00	0.22	
LEVEL 2	228	0.57	0.12	0.00	0.07	0.00	0.00	0.13	0.00	0.11	
				Figure 44	ļ.						

ASCE 7-10 directly addresses the interstory displacements due to the seismic loads of a building as a function of the story height. The allowable deflection by code is calculated as $\Delta_a = 0.02h_{sx}$. This value is compared to the amplified displacement of each story which is calculated as $\delta_x = \frac{C_{d\delta_{xe}}}{I_e}$. For Office Building-G, C_d (the deflection amplification factor) is equal to 3.25 and I_e (the importance factor) is equal to 1.0. δ_{xe} was calculated as per ASCE section 12.8.6 which states: story drift shall be computed as the difference of the deflections at the centers of mass at the top and bottom of the story under consideration. Figure 45 shows the calculated values for each of the building stories and demonstrates how the amplified deflection of δ is well below the allowable value Δ_a .

Story Drift									
East-West Direction (in)				North-South Direction (in)			on (in)		
Story	H (in)	δ_{e}	δ	Δ	Δ _a	δ _e	δ	Δ	Δ _a
ROOF	2139	3.75	12.19	0.70	42.78	5.18	16.85	1.14	42.78

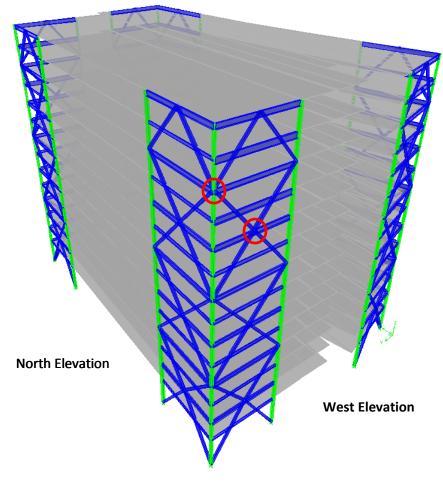
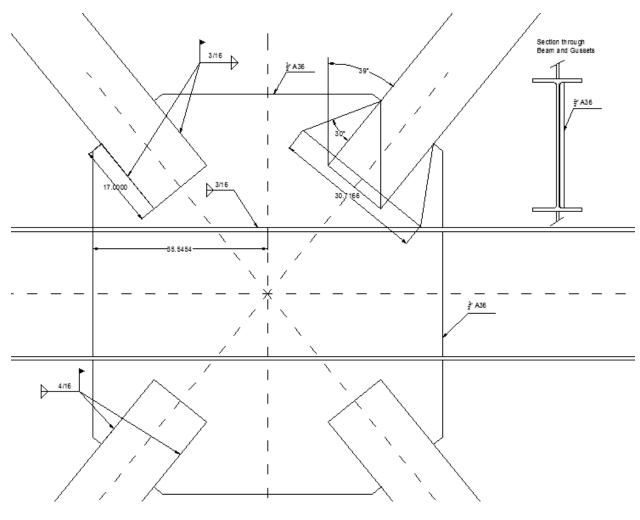

-						-			
LEVEL 14	1992	3.54	11.50	1.22	39.84	4.83	15.71	1.63	39.84
LEVEL 13	1845	3.16	10.28	1.05	36.90	4.33	14.08	1.44	36.90
LEVEL 12	1698	2.84	9.23	1.19	33.96	3.89	12.64	1.60	33.96
LEVEL 11	1551	2.47	8.04	0.95	31.02	3.40	11.04	1.31	31.02
LEVEL 10	1404	2.18	7.09	1.07	28.08	3.00	9.73	1.57	28.08
LEVEL 9	1257	1.85	6.02	1.08	25.14	2.51	8.17	1.61	25.14
LEVEL 8	1110	1.52	4.94	1.03	22.20	2.02	6.56	1.53	22.20
LEVEL 7	963	1.20	3.91	0.73	19.26	1.55	5.02	1.04	19.26
LEVEL 6	816	0.98	3.18	0.70	16.32	1.23	3.98	0.96	16.32
LEVEL 5	669	0.76	2.48	0.80	13.38	0.93	3.02	1.06	13.38
LEVEL 4	522	0.52	1.68	0.75	10.44	0.61	1.97	0.94	10.44
LEVEL 3	375	0.29	0.93	0.54	7.50	0.32	1.02	0.62	7.50
LEVEL 2	228	0.12	0.39	0.39	4.56	0.13	0.41	0.41	4.56
				Eigung /					

Figure 45	Fi	gu	re	45	
-----------	----	----	----	----	--

Advisor: Dr. Ali Memari

Connections


As part of the MAE requirements, two typical frame connections were designed. The connections designed were the brace-to-beam connection referred to as the X-Connection and a connection between a column, two beams and four braces, referred to as the Corner Connection. All of the connections were designed as pinned. The specific connections designed are circled in Figure 46 below.

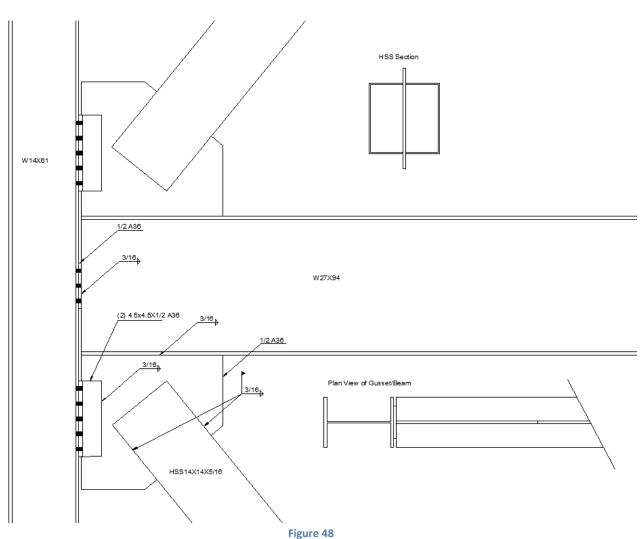
When designing the X-Connection it was broken into four sections, each with a brace framing into it. This was done to ensure the strength of the materials in the connection would not be double counted in resisting the applied load. Figure 47 shows the division of the connection shown by dashed lines in the detail of the designed X-Connection.

Advisor: Dr. Ali Memari

Braces in chevron frames can be in tension or compression based on the direction of the lateral load. This reversal of load direction and magnitude created a symmetrical connection about the vertical axis. Due to slightly higher tension experienced by the bottom braces, the weld size was increased in order to keep the dimensions of the plates used consistent.

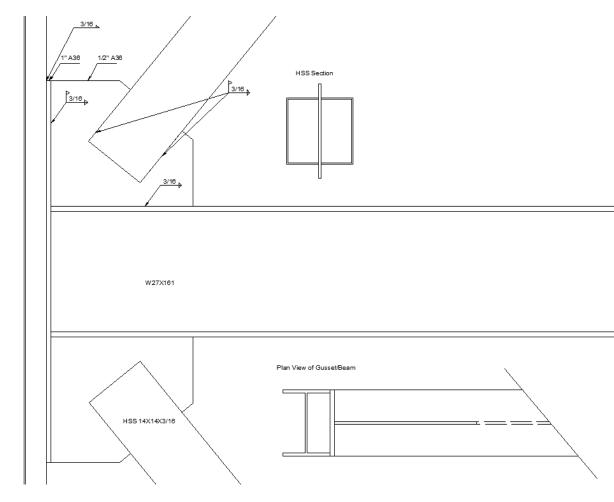
The limit states checked for the X-Connection are listed below:

- Brace Limit States:
 - Tension Yielding
 - Tension Rupture
- Brace/Gusset Limit States:
 - Weld Rupture
 - Base Metal Strength
 - Brace
 - Gusset
- Gusset Limit States


Advisor: Dr. Ali Memari

- o Tension Yielding
- Tension Rupture
- Local Buckling
- Gusset/Beam Limit States
 - o Weld Rupture
 - Base Metal Strength
 - Gusset
 - Beam
- Beam Limit States
 - Web Tension Yielding
 - Web Crippling
 - Web Buckling

The Uniform Force Method was used to prevent any moments from being created by the connection. Hand calculations for this connection can be found in Appendix E.


As in the design of the X-Connection, the corner connection was also broken up into four sections. Figure 48 is a detail of the East Elevation elements which frame into the Corner Connection. Due to the similarity of the loads and member size, the top and bottom members were designed with the maximum forces for either member. This simplified the design of the connection as well as created a symmetrical design on either side of the beam.

Advisor: Dr. Ali Memari

The connection members on the North Elevation were designed similarly to those of the East Elevation. The geometry of the W14X61 column and W27X161 beam resulted in a large end plate being welded to the flanges of the column. This is unique to the specific connection designed because of the column size in the connection. Figure 49 is a detail of the North Elevation elements which frame in to Corner Connection.

Advisor: Dr. Ali Memari

Once both sides of the corner connection were designed they were combined and the column limit states were considered. Again, the Uniform Force Method was used to prevent any moments being imposed on the connection design. Hand calculations and drawing with dimension of the Corner Connection can be found in Appendix E.

The limit states checked for the entire connection are listed below:

- Brace Limit States:
 - o Tension Yielding
 - o Tension Rupture
- Brace/Gusset Limit States:
 - Weld Rupture
 - o Base Metal Strength
 - Brace
 - Gusset
- Gusset Limit States
 - Tension Yielding
 - o Tension Rupture

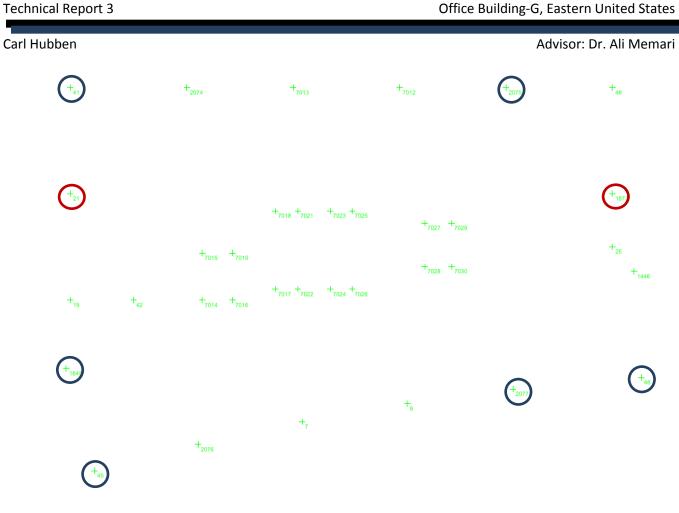
- Local Buckling
- Gusset/Beam Limit States
 - Weld Rupture
 - o Base Metal Strength
 - Gusset
 - Beam
- Beam
 - Web Tension Yielding
 - Web Crippling
 - Web Buckling
 - Shear Yielding
- Beam/End Plate
 - Weld Rupture
 - Base Metal Strength
 - Beam
 - End Plate
- End Plate Limit States
 - o Gross Shear
 - Net Shear
 - o Block Shear
- Angle Limit States
 - Prying Effects
 - Shear Yielding
 - Shear Rupture
 - o Block Shear
- Bolt
 - o Shear
 - o Tension
 - Bearing and Tear Out
- Gusset/Plate
 - Weld Rupture
 - Base Metal Strength
 - Gusset
 - Plate
- Plate
 - Plate bending
- Plate/Column
 - o Weld Rupture
 - Base Metal Strength
 - Plate
 - Column

Advisor: Dr. Ali Memari

- Column
 - o Local Flange Yielding
 - $\circ\quad \text{Local Flange Bending}$
 - o Local Flange Crippling

The material strengths of both connections were: A992 Steel for columns and beams, A500 Grade B HSS sections, A36 Steel plates and angles, A325 N bolts and E 70xx welds.

Foundation Impact


The structural redesign of Office Building-G was focused on the superstructure but impacts on the existing below grade parking garage and foundation were considered. The column layout of the redesign was based on the existing locations so the columns in the parking garage and the spread footings would not need to be altered. Despite an overall reduction of weight for Office Building-G, the columns are spaced further apart, creating larger axial loads. The foundation design would have to be adjusted for these larger forces.

The reduction in weight of Office Building-G is due to a smaller dead load associated with the steel frame redesign. A reduced dead load on the structure creates a greater likelihood of overturning forces affecting the design.

Overturning Moment

With large horizontal forces and a small width to height ratio, buildings have a risk of overturning. This can occur when an upward reaction at the base of a building is greater than a reduced dead load over that column line. Figure 50 is a plan view of the base reaction locations of Office Building-G as well as a list of the reactions which experience an uplift force. This uplift force is compared to a reduced dead load case of (0.9-.2S_{DS})D. At the locations in which the dead load is smaller than the uplift force, overturning effects must be considered. Point 21 and 1873 are circled in red.

	Overturning Moment							
Point	Reaction	Dead Load	Overturning					
21	-692.53	631.16	Yes					
1873	-655.58	550.31	Yes					
45	-341.51	645.33	No					
2075	-309.53	716.07	No					
2077	-184.58	817.16	No					
41	-120.81	629.69	No					
46	-59.73	570.66	No					
1645	-57.68	480.39	No					

Although the uplift forces are larger than the dead load acting on two of the base reactions, overturning is not a concern for Office Building-G. Below the superstructure there is a four story reinforced concrete parking garage and spread footings. The weight of these concrete elements is more than enough to overcome the slight difference in dead load and uplift force.

Advisor: Dr. Ali Memari

Architectural Breadth

Maximizing the open floor space for tenant fit outs was the central focus of the redesign of Office Building-G. Figure 51 is a plan view of the existing design which only shows the façade, elevator shafts, stairwells and structure. Figure 52 is a plan view of the redesign with the same building elements shown.

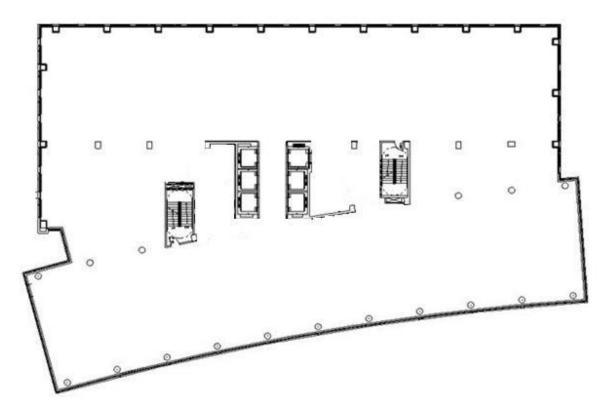


Figure 51

Advisor: Dr. Ali Memari

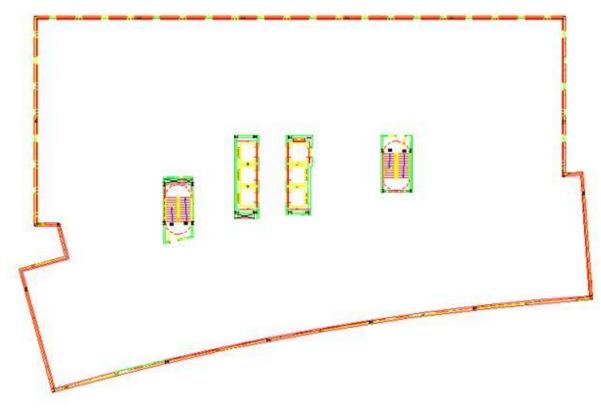


Figure 52

It is clear that the redesigned structure fits well within the permanent building elements while creating an open floor space. The column free space will allow for a greater flexibility for the tenant fit out designs of the office space.

In addition to creating an open floor plan for Office Building-G, the new floor structure was designed to fit within the existing ceiling plenum. This allowed for the original floor-to-ceiling height of building to be maintained, eliminating the need to increase the building height. Coordination between the structure and mechanical duct work was necessary to accomplish this and is discussed in more detail in the Mechanical Breadth section.

The façade of Office Building-G was greatly affected by creating an external structure. Compared to the original design in which none of the structure was exposed, the bracing and perimeter columns are now a major architectural feature. Based on the designed structure, preliminary architectural renderings were made to show the geometry of the building and the change in the exterior view of the building. Figure 54 is an image of the existing structure and Figures 55 and 56 are images of the proposed building.

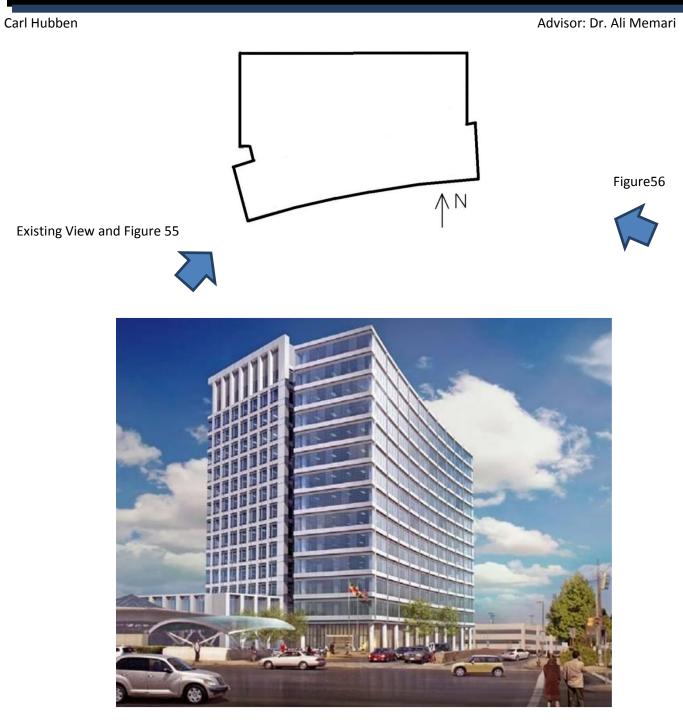


Figure 53

Advisor: Dr. Ali Memari

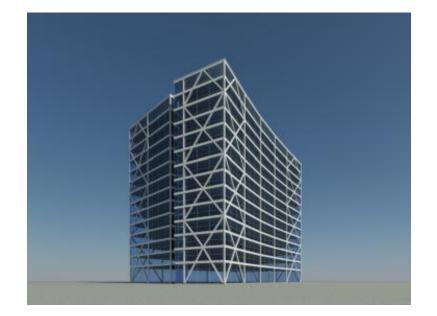


Figure 54

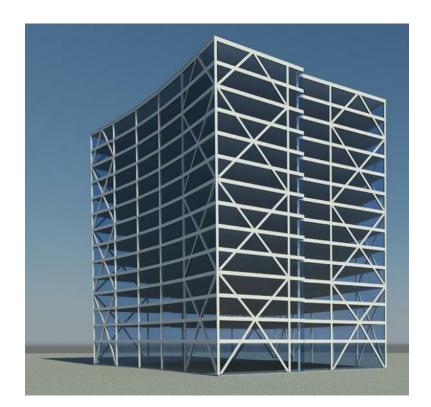


Figure 55

Advisor: Dr. Ali Memari

Mechanical Breadth

In the existing design of Office Building-G, the mechanical ducts have a maximum size of 40" wide by 13" deep. The shallow structural depth of 18" allows for this system to fit well within the 36" plenum space. The structural redesign has much deeper framing members which cut into the allowable space for the ducts. As mentioned in the framing plan, the existing ducts were resized to fit through the openings with the castellated beams. This was done by adjusting the original rectangular ducts to circular ducts capable of supplying the same volume of air. When the redesign was finished, pressure drop was checked to ensure that the same air handling units could be used on the floors.

The resizing of ducts was performed with the aid of a Duct Calculator. Duct Calculators relate the needed CFM and duct dimensions to a friction loss. Using the existing CFM values and duct sizes of Office Building-G the as designed pressure drops were solved for. Using this same pressure drop and the needed CFM, round member sizes were calculated. However, creating a single round duct to replace the existing rectangular design was resulting in too great of diameters to fit within the castellated beams. To resolve this issue the space on each floor of Office Building G was broken into interior and perimeter spaces and different duct lines access these spaces. This essentially broke a single duct line into two. Figure 57 is an image of the existing duct layout and Figure 58 is an image of the redesign.

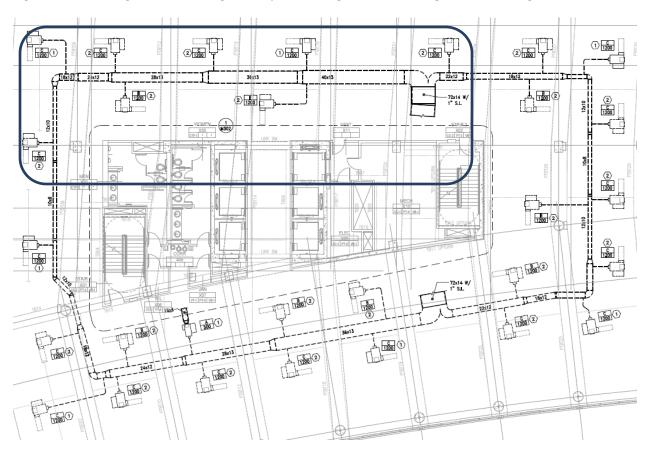


Figure 56

Advisor: Dr. Ali Memari

Figure 57

Figure 59 is the section of the mechanical design highlighted in the Figure 57 above. The four VAV boxes circled in green are supplied by one of the new ducts and the remaining VAV boxes (circled in orange) are supplied by a separate duct. The new design is shown in Figure 60.

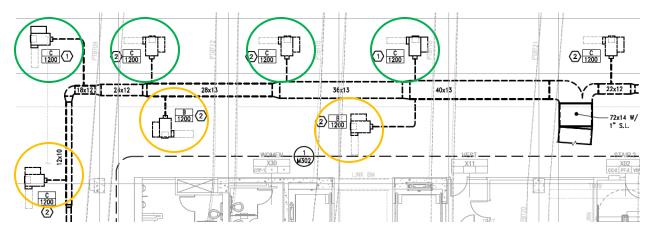
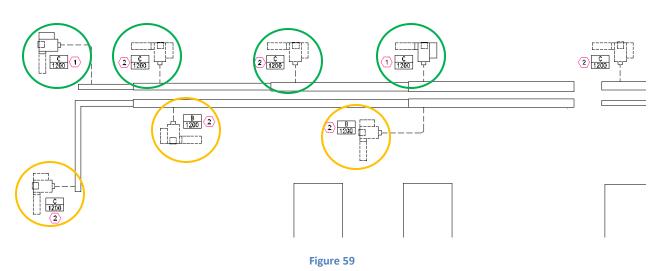
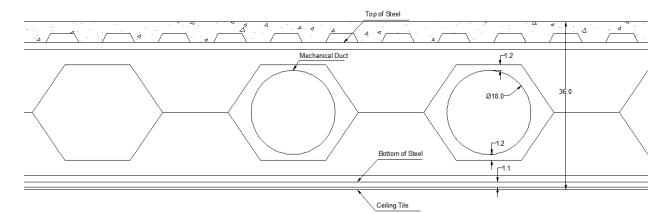



Figure 58

Advisor: Dr. Ali Memari



Calculations were performed to estimate the pressure drop due to friction of the straight runs of the ducts. The values for the redesigned system of Figure 60 are shown below in Figure 61. Calculations for the other spaces can be found in Appendix F.

			Peri	meter				Interio	or	
	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss
	18	4800	30	0.55	0.17	18.5	3600	30	0.3	0.09
NW	18	3600	55	0.3	0.17	17	2400	80	0.14	0.11
	15.5	2400	80	0.3	0.24	13	1200	208	0.18	0.37
	11.5	1200	120	0.35	0.42					

Figure 60

Limiting the diameter of the ducts allowed for 1" of insulation, creating total diameter of 18". The openings within the castellated beams were designed to have an opening with a minimum diameter of 20". The larger beam opening was required in the design due to construction implications. The larger beam opening also prevent the beam and duct work from colliding with each other when the building is reacting to lateral forces. A section detail is provided below in Figure 62 to show how the cavity space between floors is used.

Advisor: Dr. Ali Memari

Conclusion

The proposed structural redesign of Office Building-G was focused on creating an open floor plan which allows architectural freedom for the future tenant fit outs. This created the need for a complete redesign of the existing building superstructure. During the redesign process, elements of the architecture and mechanical design were affected. The effects on these components of the building design were addressed through breadth studies. Through the use of an external structure, interior columns and castellated beams, the proposed change to Office Building-G was accomplished.

In every building design, structurally efficiency should be addressed by the structural engineer. Based on the limitations and goals of the proposed change, the redesign is an efficient design and if the proposed changes were a design criteria set forth by the owner the final design would be a viable option for Office Building-G.

Appendix A:

Seismic Values:

Building Dead Loads

		Floor W	eight		
story	Area (ft²)	Metal Deck	steel weight (psf)	floor weight (psf)	total (k)
1	27187	37	10	47.0	1278
2	29487	37	10	47.0	1386
3	29628	37	10	47.0	1393
4	25774	37	10	47.0	1211
5	25774	37	10	47.0	1211
6	25774	37	10	47.0	1211
7	25774	37	10	47.0	1211
8	25774	37	10	47.0	1211
9	25774	37	10	47.0	1211
10	25774	37	10	47.0	1211
11	25774	37	10	47.0	1211
12	25774	37	10	47.0	1211
13	25774	37	10	47.0	1211
14	25774	37	10	47.0	1211
ROOF	25774	37	10	47.0	1211
EL, MR	2020	37	10	47.0	95
SCREEN WALL					
				Total =	18688

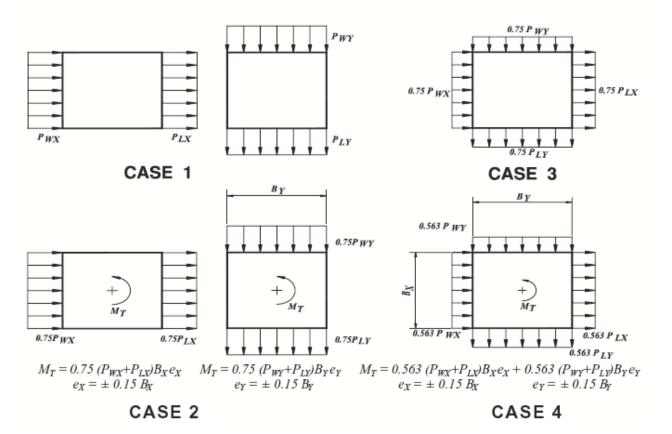
	Façade weight						
story	effective height	perimeter	wall weight (psf)	story weight (k)			
1	9.50	755	20	143			
2	15.63	803	20	251			
3	12.25	804	20	197			
4	12.25	708	20	173			
5	12.25	708	20	173			
6	12.25	708	20	173			
7	12.25	708	20	173			
8	12.25	708	20	173			
9	12.25	708	20	173			
10	12.25	708	20	173			

Technical Report 3

Carl Hubben

11	12.25	708	20	173
12	12.25	708	20	173
13	12.25	708	20	173
14	12.25	708	20	173
ROOF	10.00	708	20	142
EL,				
MR	8.38	198	20	33
	4.50			
			Total =	2674

	Superimposed					
story	Area (ft ²)	S.I. (psf)	Total (k)			
1	27187	15	407.805			
2	29487	15	442.305			
3	29628	15	444.42			
4	25774	15	386.61			
5	25774	15	386.61			
6	25774	15	386.61			
7	25774	15	386.61			
8	25774	15	386.61			
9	25774	15	386.61			
10	25774	15	386.61			
11	25774	15	386.61			
12	25774	15	386.61			
13	25774	15	386.61			
14	25774	15	386.61			
ROOF	25774	15	386.61			
EL, MR	2020	15	30.3			
SCREEN WALL						
		Total =	5964.15			


Coefficients and References					
Factor	Coefficient	Reference			
Site Class	D	Geo. Report			
Design					
Category	В	T 11.6-1			
Importance	1	T 1.5-2			
Ss	16	USGS Website			
S ₁	5.1	USGS Website			

Fa	1.6	T 11.4-1
Fv	2.4	Т 11.4-2
S _{ms}	0.256	11.4-1
S _{m1}	0.1224	11.4-2
S _{ds}	0.171	11.4-3
S _{d1}	0.0816	11.4-4
Ct	0.028	T 12.8-2
х	0.8	T 12.8-2
h _n	186	Bldg Drawings
Ta	1.83	12.8-7
TL	8	F 22-12
R	3.25	Т 12.2-1
Cs	0.0526	E 12.8-2
W	27435	12.7.2
V _b	1444	12.8-1

			N-S	E-W					
Story	Height,	h _i	Length	Length	W _x	w _x *h ^k	Cv	f _i (k)	V _i (k)
Story	h (ft)								
1	0.00	9.50	324.5	303.5	1836	0	0.0000	0.0	1444
2	19.00	15.63	267	145	2086	302339.1	0.0044	6.4	1444
3	31.25	12.25	267	145	2041	685775.5	0.0101	14.5	1437
4	43.50	12.25	220.5	145	1779	1045098	0.0154	22.2	1423
5	55.75	12.25	220.5	145	1779	1589513	0.0234	33.7	1400
6	68.00	12.25	220.5	145	1779	2223568	0.0327	47.2	1367
7	80.25	12.25	220.5	145	1779	2941863	0.0432	62.4	1320
8	92.50	12.25	220.5	145	1779	3740157	0.0550	79.3	1257
9	104.75	12.25	220.5	145	1779	4614989	0.0678	97.9	1178
10	117.00	12.25	220.5	145	1779	5563453	0.0818	118.0	1080
11	129.25	12.25	220.5	145	1779	6583063	0.0967	139.6	962
12	141.50	12.25	220.5	145	1779	7671649	0.1127	162.7	822
13	153.75	12.25	220.5	145	1779	8827301	0.1297	187.2	659
14	166.00	12.25	220.5	145	1779	10048310	0.1477	213.1	472
ROOF	178.25	10.00	220.5	145	1747	11130145	0.1636	236.1	259
EL, MR	186.00	8.38	204	81.75	158	1084540	0.0159	23.0	23
SCREEN									
WALL	195.00	4.50	204	81.75	0	0	0.0000	0.0	0
				Total =	27435	68051766	1.0000	1444	

Wind Values:

Load Cases

Coefficients:

	Effective Length Considerations							
		Leng	Length (ft)		Σh _i L _i		L _{eff}	(ft)
Story	Height (ft)	N-S	E-W	N-S	E-W	Σh _i	N-S	E-W
1	0	324.5	303.5	0	0	0	0	0
2	19	267	145	5073	2755	19	267.0	145.0
3	31.25	267	145	13416.75	7286.25	50.25	267.0	145.0
4	43.5	220.5	145	23008.5	13593.75	93.75	245.4	145.0
5	55.75	220.5	145	35301.375	21677.5	149.5	236.1	145.0
6	68	220.5	145	50295.375	31537.5	217.5	231.2	145.0
7	80.25	220.5	145	67990.5	43173.75	297.75	228.3	145.0
8	92.5	220.5	145	88386.75	56586.25	390.25	226.5	145.0
9	104.75	220.5	145	111484.125	71775	495	225.2	145.0
10	117	220.5	145	137282.625	88740	612	224.3	145.0
11	129.25	220.5	145	165782.25	107481.25	741.25	223.7	145.0
12	141.5	220.5	145	196983	127998.75	882.75	223.1	145.0
13	153.75	220.5	145	230884.875	150292.5	1036.5	222.8	145.0
14	166	220.5	145	267487.875	174362.5	1202.5	222.4	145.0
ROOF	178.25	220.5	145	306792	200208.75	1380.75	222.2	145.0
EL, MR	186	204	81.75	344736	215414.25	1566.75	220.0	137.5
SCREEN WALL	195	204	81.75	384516	231355.5	1761.75	218.3	131.3

Advisor:	Dr. Ali	Memari
----------	---------	--------

Exposure

0

19

31.25

43.5

68

55.75

80.25

92.5

117

104.75

129.25

141.5

166

186

195

153.75

178.25

k_z

0

0.61

0.7075

0.7775

0.833

0.882

0.93

1.03

1.06

1.093

1.1175

1.142

1.1665

1.1925

1

0.9675

Height

	Gust Facto	r
	N-S	E-W
n1 = na	0.326833	0.326833
ga	3.4	3.4
gv	3.4	3.4
g _R	3.913861	3.913861
R _n	0.098815	0.098815
l i	320	320
ε	0.333333	0.333333
Z	117	117
Lz	487.9485	487.9485
Q	0.798367	0.816018
b	0.45	0.45
α	0.25	0.25
Vz	95.09358	95.09358
N1	1.677058	1.677058
ղ _հ	3.08295	3.08295
η _в	2.29245	3.4782
ղլ	11.64441	7.674724
R _h	0.298117	0.298117
R _B	0.389129	0.26686
RL	0.084034	0.126053
β	0.01	0.01
R	0.807975	0.680605
с	0.3	0.3
l _z	0.242946	0.242946
G _f	1.046962	0.995905

Natural F	requency	
h	195	
n _a	0.326833	
n _a	0.384615	
$n_a = 22.2/h^{0.8}$		

				Wall Coe	efficients				
		N-S					E-W		
			C	р				C	p
В	L	L/B	Windward	Leeward	В	L	L/B	Windward	Leeward
145	220.5	1.52069	0.8	-0.396	220.5	145	0.657596	0.8	-0.5
				Roof Coe	efficients				
		N-S					E-W		
			С	р				C	p
h	L	h/L	0 - h	h - 2h	h	h L		0 - h/2	>h/2
195	220.5	0.884354	-0.75	-0.65	195	145	1.344828	-1.3	-0.7

Values:

			Case 1:	EW NO ECC			
Floor		psf		Story Height	plf	Bldg. Width	Shear
		Windward	Leeward				
1	1	11.7	-14.2	15.6	404.8	145.0	58.
2	1	11.7	-14.2	12.3	317.3	145.0	46.0
3	1	13.5	-14.2	12.3	340.2	145.0	49.
4	1	14.9	-14.2	12.3	356.6	145.0	51.
5	1	15.9	-14.2	12.3	369.6	145.0	53.
6	1	16.9	-14.2	12.3	381.0	145.0	55.
7	1	17.8	-14.2	12.3	392.3	145.0	56.
8	1	18.5	-14.2	12.3	401.0	145.0	58.
9	1	19.1	-14.2	12.3	408.7	145.0	59.
10	1	19.7	-14.2	12.3	415.7	145.0	60.
11	1	20.3	-14.2	12.3	422.7	145.0	61.
12	1	20.9	-14.2	12.3	430.4	145.0	62.4
13	1	21.4	-14.2	12.3	436.2	145.0	63.
14	1	21.8	-14.2	12.3	441.9	145.0	64.
ROOF	1	22.3	-14.2	6.1	223.8	145.0	32.

		Ca	se 2: NS NC	FCC		
Floor	psf		Story Heig		Bldg. Width	Shear
	Windward	Leeward	,			
1	12.3	-11.9	15.6	376.8	204.0	76.9
2	12.3	-11.9	12.3	295.4	204.0	60.3
3	14.2	-11.9	12.3	319.4	204.0	65.2
4	15.6	-11.9	12.3	336.7	204.0	68.7
5	16.7	-11.9	12.3	350.3	204.0	71.5
6	17.7	-11.9	12.3	362.4	204.0	73.9
7	18.7	-11.9	12.3	374.2	204.0	76.3
8	19.4	-11.9	12.3	383.4	204.0	78.2
9	20.1	-11.9	12.3	391.4	204.0	79.9
10	20.7	-11.9	12.3	398.8	204.0	81.4
11	21.3	-11.9	12.3	406.2	204.0	82.9
12	22.0	-11.9	12.3	414.3	204.0	84.5
13	22.5	-11.9	12.3	420.4	204.0	85.8
14	22.9	-11.9	12.3	426.4	204.0	87.0
ROOF	23.4	-11.9	6.1	216.2	204.0	44.1

					Case 3 &	4:0.15Bx EW	ECC					
Floor		ps	sf	Story Height	plf	Bldg. Width	Shear	CM	CR	0.15Bx	Mz (3)	M7 (4)
		Windward	Leeward								IVIZ (3)	Mz (4)
1	0.75	8.7445292	-10.6843	15.625	303.575	145	44.0	72.8	80	21.75	-640	1274
2	0.75	8.7445292	-10.6843	12.25	238.0028	145	34.5	72.8	80	21.75	-502	999
3	0.75	10.14222	-10.6843	12.25	255.1246	145	37.0	72.8	80	21.75	-538	1071
4	0.75	11.145691	-10.6843	12.25	267.4171	145	38.8	72.8	80	21.75	-564	1123
5	0.75	11.9413	-10.6843	12.25	277.1633	145	40.2	72.8	80	21.75	-585	1163
6	0.75	12.643729	-10.6843	12.25	285.768	145	41.4	72.8	80	21.75	-603	1200
7	0.75	13.331823	-10.6843	12.25	294.1972	145	42.7	72.8	80	21.75	-621	1235
8	0.75	13.869397	-10.6843	12.25	300.7825	145	43.6	72.8	80	21.75	-635	1263
9	0.75	14.335294	-10.6843	12.25	306.4897	145	44.4	72.8	80	21.75	-647	1287
10	0.75	14.765353	-10.6843	12.25	311.7579	145	45.2	72.8	80	21.75	-658	1309
11	0.75	15.195411	-10.6843	12.25	317.0261	145	46.0	72.8	80	21.75	-669	1331
12	0.75	15.668476	-10.6843	12.25	322.8212	145	46.8	72.8	80	21.75	-681	1355
13	0.75	16.019691	-10.6843	12.25	327.1236	145	47.4	72.8	80	21.75	-690	1373
14	0.75	16.370905	-10.6843	12.25	331.4259	145	48.1	72.8	80	21.75	-699	1391
ROOF	0.75	16.72212	-10.6843	6.125	167.8642	145	24.3	72.8	80	21.75	-354	705

					Case 5 8	6: NS 0.15By	ECC					
Floor		psf		Story Height	plf	Bldg. Width	Shear	СМ	CR	0.15By	Mz (5)	Mz (6)
	Multiplier	Windward	Leeward									
1	0.75	9.2	-8.9	15.6	282.6	204.0	57.7	105.3	103	30.6	-1896.9	1631.7
2	0.75	9.2	-8.9	12.3	221.6	204.0	45.2	105.3	103	30.6	-1487.2	1279.3
3	0.75	10.7	-8.9	12.3	239.6	204.0	48.9	105.3	103	30.6	-1608.0	1383.2
4	0.75	11.7	-8.9	12.3	252.5	204.0	51.5	105.3	103	30.6	-1694.7	1457.8
5	0.75	12.6	-8.9	12.3	262.8	204.0	53.6	105.3	103	30.6	-1763.5	1516.9
6	0.75	13.3	-8.9	12.3	271.8	204.0	55.4	105.3	103	30.6	-1824.2	1569.2
7	0.75	14.0	-8.9	12.3	280.7	204.0	57.3	105.3	103	30.6	-1883.7	1620.3
8	0.75	14.6	-8.9	12.3	287.6	204.0	58.7	105.3	103	30.6	-1930.1	1660.3
9	0.75	15.1	-8.9	12.3	293.6	204.0	59.9	105.3	103	30.6	-1970.4	1694.9
10	0.75	15.5	-8.9	12.3	299.1	204.0	61.0	105.3	103	30.6	-2007.6	1726.9
11	0.75	16.0	-8.9	12.3	304.7	204.0	62.2	105.3	103	30.6	-2044.8	1758.9
12	0.75	16.5	-8.9	12.3	310.8	204.0	63.4	105.3	103	30.6	-2085.6	1794.0
13	0.75	16.8	-8.9	12.3	315.3	204.0	64.3	105.3	103	30.6	-2116.0	1820.1
14	0.75	17.2	-8.9	12.3	319.8	204.0	65.2	105.3	103	30.6	-2146.4	1846.3
ROOF	0.75	17.6	-8.9	6.1	162.2	204.0	33.1	105.3	103	30.6	-1088.4	936.2

					Case 7:	NS & EW NO	ECC					
Floor		EW	psf	NS p	sf	Story Height	р	lf	Bldg.	Width	Sh	ear
	Multiplier	Windward	Leeward	Windward	Leeward		EW	NS	EW	NS	EW	NS
1	0.75	8.7	-10.7	9.2	-8.9	15.6	303.6	282.6	145.0	204.0	44.0	57.
2	0.75	8.7	-10.7	9.2	-8.9	12.3	238.0	221.6	145.0	204.0	34.5	45.
3	0.75	10.1	-10.7	10.7	-8.9	12.3	255.1	239.6	145.0	204.0	37.0	48.
4	0.75	11.1	-10.7	11.7	-8.9	12.3	267.4	252.5	145.0	204.0	38.8	51.
5	0.75	11.9	-10.7	12.6	-8.9	12.3	277.2	262.8	145.0	204.0	40.2	53.
6	0.75	12.6	-10.7	13.3	-8.9	12.3	285.8	271.8	145.0	204.0	41.4	55.
7	0.75	13.3	-10.7	14.0	-8.9	12.3	294.2	280.7	145.0	204.0	42.7	57.
8	0.75	13.9	-10.7	14.6	-8.9	12.3	300.8	287.6	145.0	204.0	43.6	58.
9	0.75	14.3	-10.7	15.1	-8.9	12.3	306.5	293.6	145.0	204.0	44.4	59.
10	0.75	14.8	-10.7	15.5	-8.9	12.3	311.8	299.1	145.0	204.0	45.2	61.
11	0.75	15.2	-10.7	16.0	-8.9	12.3	317.0	304.7	145.0	204.0	46.0	62.
12	0.75	15.7	-10.7	16.5	-8.9	12.3	322.8	310.8	145.0	204.0	46.8	63.
13	0.75	16.0	-10.7	16.8	-8.9	12.3	327.1	315.3	145.0	204.0	47.4	64.
14	0.75	16.4	-10.7	17.2	-8.9	12.3	331.4	319.8	145.0	204.0	48.1	65.
ROOF	0.75	16.7	-10.7	17.6	-8.9	6.1	167.9	162.2	145.0	204.0	24.3	33.

								Case	8: NS (+.1	5) EW(+.15)									
Floor		EW	psf	NS p	sf	Story Height	р	lf	Bldg.	Width	Sh	iear		СМ	C	R	0.1	15B	Mz
	Multiplier	Windward	Leeward	Windward	Leeward		EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	
1	0.563	6.6	-8.0	6.9	-6.7	15.6	227.9	212.2	145.0	204.0	33.0	43.3	72.8	105.3	80	103	21.75	30.6	-1904.7
2	0.563	6.6	-8.0	6.9	-6.7	12.3	178.7	166.3	145.0	204.0	25.9	33.9	72.8	105.3	80	103	21.75	30.6	-1493.3
3	0.563	7.6	-8.0	8.0	-6.7	12.3	191.5	179.8	145.0	204.0	27.8	36.7	72.8	105.3	80	103	21.75	30.6	-1611.1
4	0.563	8.4	-8.0	8.8	-6.7	12.3	200.7	189.5	145.0	204.0	29.1	38.7	72.8	105.3	80	103	21.75	30.6	-1695.7
5	0.563	9.0	-8.0	9.4	-6.7	12.3	208.1	197.2	145.0	204.0	30.2	40.2	72.8	105.3	80	103	21.75	30.6	-1762.7
6	0.563	9.5	-8.0	10.0	-6.7	12.3	214.5	204.0	145.0	204.0	31.1	41.6	72.8	105.3	80	103	21.75	30.6	-1821.9
7	0.563	10.0	-8.0	10.5	-6.7	12.3	220.8	210.7	145.0	204.0	32.0	43.0	72.8	105.3	80	103	21.75	30.6	-1879.9
8	0.563	10.4	-8.0	10.9	-6.7	12.3	225.8	215.9	145.0	204.0	32.7	44.0	72.8	105.3	80	103	21.75	30.6	-1925.3
9	0.563	10.8	-8.0	11.3	-6.7	12.3	230.1	220.4	145.0	204.0	33.4	45.0	72.8	105.3	80	103	21.75	30.6	-1964.5
10	0.563	11.1	-8.0	11.7	-6.7	12.3	234.0	224.5	145.0	204.0	33.9	45.8	72.8	105.3	80	103	21.75	30.6	-2000.8
11	0.563	11.4	-8.0	12.0	-6.7	12.3	238.0	228.7	145.0	204.0	34.5	46.7	72.8	105.3	80	103	21.75	30.6	-2037.0
12	0.563	11.8	-8.0	12.4	-6.7	12.3	242.3	233.3	145.0	204.0	35.1	47.6	72.8	105.3	80	103	21.75	30.6	-2076.9
13	0.563	12.0	-8.0	12.6	-6.7	12.3	245.6	236.7	145.0	204.0	35.6	48.3	72.8	105.3	80	103	21.75	30.6	-2106.5
14	0.563	12.3	-8.0	12.9	-6.7	12.3	248.8	240.1	145.0	204.0	36.1	49.0	72.8	105.3	80	103	21.75	30.6	-2136.1
ROOF	0.563	12.6	-8.0	13.2	-6.7	6.1	126.0	121.7	145.0	204.0	18.3	24.8	72.8	105.3	80	103	21.75	30.6	-1082.8

Technical Report 3

Advisor: Dr. Ali Memari

Carl Hubben

								Case	9: NS (15	5) EW(+.15)									
Floor		EW	psf	NS p	sf	Story Height	р	lf	Bldg.	Width	Sh	lear		СМ	С	R	0.1	15B	Mz
	Multiplier	Windward	Leeward	Windward	Leeward		EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	
1	0.563	6.6	-8.0	6.9	-6.7	15.6	227.9	212.2	145.0	204.0	33.0	43.3	72.8	105.3	80	103	21.75	30.6	-467.4
2	0.563	6.6	-8.0	6.9	-6.7	12.3	178.7	166.3	145.0	204.0	25.9	33.9	72.8	105.3	80	103	21.75	30.6	-366.4
3	0.563	7.6	-8.0	8.0	-6.7	12.3	191.5	179.8	145.0	204.0	27.8	36.7	72.8	105.3	80	103	21.75	30.6	-403.1
4	0.563	8.4	-8.0	8.8	-6.7	12.3	200.7	189.5	145.0	204.0	29.1	38.7	72.8	105.3	80	103	21.75	30.6	-429.5
5	0.563	9.0	-8.0	9.4	-6.7	12.3	208.1	197.2	145.0	204.0	30.2	40.2	72.8	105.3	80	103	21.75	30.6	-450.4
6	0.563	9.5	-8.0	10.0	-6.7	12.3	214.5	204.0	145.0	204.0	31.1	41.6	72.8	105.3	80	103	21.75	30.6	-468.9
7	0.563	10.0	-8.0	10.5	-6.7	12.3	220.8	210.7	145.0	204.0	32.0	43.0	72.8	105.3	80	103	21.75	30.6	-487.0
8	0.563	10.4	-8.0	10.9	-6.7	12.3	225.8	215.9	145.0	204.0	32.7	44.0	72.8	105.3	80	103	21.75	30.6	-501.1
9	0.563	10.8	-8.0	11.3	-6.7	12.3	230.1	220.4	145.0	204.0	33.4	45.0	72.8	105.3	80	103	21.75	30.6	-513.3
10	0.563	11.1	-8.0	11.7	-6.7	12.3	234.0	224.5	145.0	204.0	33.9	45.8	72.8	105.3	80	103	21.75	30.6	-524.6
11	0.563	11.4	-8.0	12.0	-6.7	12.3	238.0	228.7	145.0	204.0	34.5	46.7	72.8	105.3	80	103	21.75	30.6	-535.9
12	0.563	11.8	-8.0	12.4	-6.7	12.3	242.3	233.3	145.0	204.0	35.1	47.6	72.8	105.3	80	103	21.75	30.6	-548.4
13	0.563	12.0	-8.0	12.6	-6.7	12.3	245.6	236.7	145.0	204.0	35.6	48.3	72.8	105.3	80	103	21.75	30.6	-557.6
14	0.563	12.3	-8.0	12.9	-6.7	12.3	248.8	240.1	145.0	204.0	36.1	49.0	72.8	105.3	80	103	21.75	30.6	-566.8
ROOF	0.563	12.6	-8.0	13.2	-6.7	6.1	126.0	121.7	145.0	204.0	18.3	24.8	72.8	105.3	80	103	21.75	30.6	-288.0

								Case	10: NS (+.1	.5) EW(15)									
Floor		EW	psf	NS p	sf	Story Height	p	lf	Bldg.	Width	Sh	ear		СМ	C	R	0.1	L5B	Mz
	Multiplier	Windward	Leeward	Windward	Leeward		EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	
1	0.563	6.6	-8.0	6.9	-6.7	15.6	227.9	212.2	145.0	204.0	33.0	43.3	72.8	105.3	80	103	21.75	30.6	744.1
2	0.563	6.6	-8.0	6.9	-6.7	12.3	178.7	166.3	145.0	204.0	25.9	33.9	72.8	105.3	80	103	21.75	30.6	583.4
3	0.563	7.6	-8.0	8.0	-6.7	12.3	191.5	179.8	145.0	204.0	27.8	36.7	72.8	105.3	80	103	21.75	30.6	634.3
4	0.563	8.4	-8.0	8.8	-6.7	12.3	200.7	189.5	145.0	204.0	29.1	38.7	72.8	105.3	80	103	21.75	30.6	670.8
5	0.563	9.0	-8.0	9.4	-6.7	12.3	208.1	197.2	145.0	204.0	30.2	40.2	72.8	105.3	80	103	21.75	30.6	699.8
6	0.563	9.5	-8.0	10.0	-6.7	12.3	214.5	204.0	145.0	204.0	31.1	41.6	72.8	105.3	80	103	21.75	30.6	725.3
7	0.563	10.0	-8.0	10.5	-6.7	12.3	220.8	210.7	145.0	204.0	32.0	43.0	72.8	105.3	80	103	21.75	30.6	750.4
8	0.563	10.4	-8.0	10.9	-6.7	12.3	225.8	215.9	145.0	204.0	32.7	44.0	72.8	105.3	80	103	21.75	30.6	770.0
9	0.563	10.8	-8.0	11.3	-6.7	12.3	230.1	220.4	145.0	204.0	33.4	45.0	72.8	105.3	80	103	21.75	30.6	786.9
10	0.563	11.1	-8.0	11.7	-6.7	12.3	234.0	224.5	145.0	204.0	33.9	45.8	72.8	105.3	80	103	21.75	30.6	802.6
11	0.563	11.4	-8.0	12.0	-6.7	12.3	238.0	228.7	145.0	204.0	34.5	46.7	72.8	105.3	80	103	21.75	30.6	818.2
12	0.563	11.8	-8.0	12.4	-6.7	12.3	242.3	233.3	145.0	204.0	35.1	47.6	72.8	105.3	80	103	21.75	30.6	835.5
13	0.563	12.0	-8.0	12.6	-6.7	12.3	245.6	236.7	145.0	204.0	35.6	48.3	72.8	105.3	80	103	21.75	30.6	848.3
14	0.563	12.3	-8.0	12.9	-6.7	12.3	248.8	240.1	145.0	204.0	36.1	49.0	72.8	105.3	80	103	21.75	30.6	861.0
ROOF	0.563	12.6	-8.0	13.2	-6.7	6.1	126.0	121.7	145.0	204.0	18.3	24.8	72.8	105.3	80	103	21.75	30.6	436.9

	Case 11: NS (15) EW(15)																		
								Case	11: NS (1	.5) EW(15)									
Floor		EW	psf	NS p	sf	Story Height	р	lf	Bldg.	Width	Sh	ear		СМ	CI	R	0.1	5B	Mz
	Multiplier	Windward	Leeward	Windward	Leeward		EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	
1	0.563	6.6	-8.0	6.9	-6.7	15.6	227.9	212.2	145.0	204.0	33.0	43.3	72.8	105.3	80	103	21.75	30.6	2181.5
2	0.563	6.6	-8.0	6.9	-6.7	12.3	178.7	166.3	145.0	204.0	25.9	33.9	72.8	105.3	80	103	21.75	30.6	1710.3
3	0.563	7.6	-8.0	8.0	-6.7	12.3	191.5	179.8	145.0	204.0	27.8	36.7	72.8	105.3	80	103	21.75	30.6	1842.2
4	0.563	8.4	-8.0	8.8	-6.7	12.3	200.7	189.5	145.0	204.0	29.1	38.7	72.8	105.3	80	103	21.75	30.6	1937.0
5	0.563	9.0	-8.0	9.4	-6.7	12.3	208.1	197.2	145.0	204.0	30.2	40.2	72.8	105.3	80	103	21.75	30.6	2012.1
6	0.563	9.5	-8.0	10.0	-6.7	12.3	214.5	204.0	145.0	204.0	31.1	41.6	72.8	105.3	80	103	21.75	30.6	2078.4
7	0.563	10.0	-8.0	10.5	-6.7	12.3	220.8	210.7	145.0	204.0	32.0	43.0	72.8	105.3	80	103	21.75	30.6	2143.4
8	0.563	10.4	-8.0	10.9	-6.7	12.3	225.8	215.9	145.0	204.0	32.7	44.0	72.8	105.3	80	103	21.75	30.6	2194.1
9	0.563	10.8	-8.0	11.3	-6.7	12.3	230.1	220.4	145.0	204.0	33.4	45.0	72.8	105.3	80	103	21.75	30.6	2238.1
10	0.563	11.1	-8.0	11.7	-6.7	12.3	234.0	224.5	145.0	204.0	33.9	45.8	72.8	105.3	80	103	21.75	30.6	2278.7
11	0.563	11.4	-8.0	12.0	-6.7	12.3	238.0	228.7	145.0	204.0	34.5	46.7	72.8	105.3	80	103	21.75	30.6	2319.3
12	0.563	11.8	-8.0	12.4	-6.7	12.3	242.3	233.3	145.0	204.0	35.1	47.6	72.8	105.3	80	103	21.75	30.6	2364.0
13	0.563	12.0	-8.0	12.6	-6.7	12.3	245.6	236.7	145.0	204.0	35.6	48.3	72.8	105.3	80	103	21.75	30.6	2397.1
14	0.563	12.3	-8.0	12.9	-6.7	12.3	248.8	240.1	145.0	204.0	36.1	49.0	72.8	105.3	80	103	21.75	30.6	2430.3
ROOF	0.563	12.6	-8.0	13.2	-6.7	6.1	126.0	121.7	145.0	204.0	18.3	24.8	72.8	105.3	80	103	21.75	30.6	1231.7

Load Cases:

	oad Combinations
COMB1	1.4D
COMB2	1.2D+1.6L
COMB3	1.2D+1.6L+0.5Lr
COMB4	1.2D+1.6Lr+0.5W1
COMB5	1.2D+1.6Lr+0.5W2
COMB6	1.2D+1.6Lr+0.5W3
COMB7	1.2D+1.6Lr+0.5W4
COMB8	1.2D+1.6Lr+0.5W5
COMB9	1.2D+1.6Lr+0.5W6
COMB10	1.2D+1.6Lr+0.5W7
COMB11	1.2D+1.6Lr+0.5W8
COMB12	1.2D+1.6Lr+0.5W9
COMB12	1.2D+1.6Lr+0.5W10
COMB13	1.2D+1.6Lr+0.5W11
COMB14	1.2D+1.6Lr+0.5W12
COMB15	1.2D+1.0U1+0.5W12
COMB18	1.2D+1.0W2+1.0L+0.5Lr
COMB17	1.2D+1.0W3+1.0L+0.5Lr
COMB19	1.2D+1.0W4+1.0L+0.5Lr 1.2D+1.0W5+1.0L+0.5Lr
COMB20	1.2D+1.0W6+1.0L+0.5Lr
COMB21	
COMB22	1.2D+1.0W7+1.0L+0.5Lr
COMB23	1.2D+1.0W8+1.0L+0.5Lr
COMB24	1.2D+1.0W9+1.0L+0.5Lr
COMB25	1.2D+1.0W10+1.0L+0.5Lr
COMB26	1.2D+1.0W11+1.0L+0.5Lr
COMB27	1.2D+1.0W12+1.0L+0.5Lr
COMB28	1.2D+1.0Ex+1.0L
COMB29	1.2D+1.0Ey+1.0L
COMB30	0.9D+1.0W1
COMB31	0.9D+1.0W2
COMB32	0.9D+1.0W3
COMB33	0.9D+1.0W4
COMB34	0.9D+1.0W5
COMB35	0.9D+1.0W6
COMB36	0.9D+1.0W7
COMB37	0.9D+1.0W8
COMB38	0.9D+1.0W9
COMB39	0.9D+1.0W10
COMB40	0.9D+1.0W11
COMB41	0.9D+1.0W12
COMB42	0.9D+1.0Ex
COMB43	0.9D+1.0Ey

Advisor: Dr. Ali Memari

Appendix B:

Unfact	Unfactored Linear Loads							
wDL	723	plf						
WLL	676	plf						
WTL	1399	plf						
WCL	973	plf						
Compos	site Slab Pr	operties						
Deck Height	1.5	in						
Conc. Topping	2.5	in						
f'c	3	ksi						
b _{eff}	67.5	in						

Example Castellated Beam Calculation

Beam Properties						
Original Beam	W16X100					
d	17					
tw	0.585					
bf	10.4					
tf	0.985					
Ix	1490					
Sx	175					
Zx	198					
А	29.5					
Es	29000					
f'c	3000					
Ec	3155.924					
span	62					

Resultant Shape					
e	10.0				
b	5.0				
dt	5.0				
h	7.0				
ho	14.0				
dg	24.0				
Φ	54.5				
S	30.0				
At/2	6.3				
Yd	0.6				
Net Sect	ion				
Anet	25.2				
ybs	12.0				
yts	12.0				
deff 22.					
Ixnet	3102.2				
Sx-net-top 258.					
Sx-net-bot	258.5				

Composite Section						
n	9.189067					
beff	93					
Aconc	232.5					
Actr	25.30181					
Кс	0.501151					
ec	2.75					
усс	6.775671					
ус	7.391982					
Ix-comp	6006.337					
Sx-comp-conc	697.7607					
Sx-comp-steel	309.733					
deff-comp	26.41621					

Calculate shear capacity of concrete deck					
ΦvVn	4.9				
Vallow	3.3				

Advisor: Dr. Ali Memari

		Global	shear and mom	ent at each openi	ng		
		Global Shear			Global Mon	nent	
Hole #	X (ft)	DL (kips)	LL (kips)	Vu	DL (kip-ft)	LL (kip-ft)	Mu (kip-ft)
End	0.0	22.4	21.0	55.5	0.0	0.0	0.0
1	1.7	21.2	19.8	52.2	36.4	34.0	98.0
2	4.2	19.4	18.1	47.4	87.1	81.4	234.8
3	6.7	17.6	16.4	42.5	133.4	124.7	359.5
4	9.2	15.8	14.8	37.6	175.1	163.7	472.0
5	11.7	14.0	13.1	32.8	212.3	198.5	572.3
6	14.2	12.2	11.4	27.9	245.0	229.0	660.4
7	16.7	10.4	9.7	23.0	273.1	255.4	736.3
8	19.2	8.6	8.0	18.1	296.8	277.5	800.1
9	21.7	6.7	6.3	13.3	315.9	295.4	851.7
10	24.2	4.9	4.6	8.4	330.5	309.0	891.1
11	26.7	3.1	2.9	3.5	340.6	318.5	918.3
12	29.2	1.3	1.2	0.0	346.2	323.7	933.3
CL	31.7	-0.5	-0.5	0.0	347.2	324.7	936.1
,							

					Effec	tive Depth of	concrete							
Hole #	X (ft)	Ma	T1(i)	xc(i+1)	deff-comp	T1(i+1)	T1(i)/T1(i+1)	xc(i+2)	deff-comp	T1(i+2)	T1(i)/T1(i+2)	xc(i+3)	deff-comp	T1(i+3)
End	0.00	0.00	0.00	0.00	27.04	0.00	N/A	0.00	27.04	0.00	N/A	0.00	27.04	0.00
	1 1.67	98.00	44.52	0.19	26.95	43.64	1.02	0.18	26.95	43.64	1.02	1.25	26.42	44.52
	2 4.17	234.85	106.68	0.45	26.82	105.09	1.02	0.44	26.82	105.08	1.02	1.25	26.42	106.68
	3 6.67	359.51	163.31	0.69	26.70	161.60	1.01	0.68	26.70	161.57	1.01	1.25	26.42	163.31
	4 9.17	471.99	214.41	0.90	26.59	213.02	1.01	0.90	26.59	212.99	1.01	1.25	26.42	214.41
	5 11.67	572.29	259.97	1.10	26.49	259.22	1.00	1.09	26.49	259.20	1.00	1.25	26.42	259.97
	6 14.17	660.41	300.00	1.27	26.41	300.09	1.00	1.27	26.41	300.09	1.00	1.25	26.42	300.00
	7 16.67	736.35	334.50	1.41	26.34	335.52	1.00	1.41	26.33	335.54	1.00	1.25	26.42	334.50
	8 19.17	800.10	363.46	1.53	26.27	365.41	0.99	1.54	26.27	365.47	0.99	1.25	26.42	363.46
	9 21.67	851.67	386.89	1.63	26.23	389.70	0.99	1.64	26.22	389.79	0.99	1.25	26.42	386.89
1	10 24.17	891.06	404.78	1.71	26.19	408.31	0.99	1.72	26.18	408.43	0.99	1.25	26.42	404.78
1	1 26.67	918.27	417.14	0.82	26.63	413.80	1.01	1.74	26.17	421.08	0.99	1.25	26.42	417.14
1	2 29.17	933.29	423.96	1.82	26.13	428.62	0.99	1.81	26.14	428.48	0.99	1.25	26.42	423.96
CL	31.67	936.14	425.26	2.82	25.63	438.31	0.97	1.85	26.12	430.13	0.99	1.25	26.42	425.26

Number of stud	ls for full o	omposite action
V	592.875	kips
V	1259.278	kips
V	592.875	
Qn	21	kips/stud
N	28.23214	studs
N	29	studs
Ntotal	58	
spacing	1.068966	

75

		Local Axi	al Force at each (Opening		
Hole #	X (ft)	T1 = T1(i+2)	NQn (kips)	Status	To (kips)	T1-new (kips)
End	0	0	0	N/A	N/A	N/A
1	1.7	44.5	32.7	Partial	14.1	46.8
2	4.2	106.7	81.9	Partial	29.7	111.6
3	6.7	163.3	131.0	Partial	38.7	169.7
4	9.2	214.4	180.1	Partial	41.1	221.1
5	11.7	260.0	229.2	Partial	36.8	266.0
6	14.2	300.0	278.3	Partial	26.0	304.3
7	16.7	334.5	327.4	Partial	8.5	335.9
8	19.2	363.5	376.5	Full	0.0	363.5
9	21.7	386.9	425.6	Full	0.0	386.9
10	24.2	404.8	474.8	Full	0.0	404.8
11	26.7	417.1	523.9	Full	0.0	417.1
12	29.2	424.0	573.0	Full	0.0	424.0
CL	31.7	425.3	622.1	Full	0.0	425.3

		Loc	al Moment at eac	h Opening	
Hole #		X (ft)	Vu (kips)	Mu-top (kip-in)	Mu-bot (kip-in)
End		0.00	55.49	138.74	138.74
	1	1.67	52.25	130.61	130.61
	2	4.17	47.37	118.43	118.43
	3	6.67	42.50	106.25	106.25
	4	9.17	37.63	94.07	94.07
	5	11.67	32.75	81.89	81.89
	6	14.17	27.88	69.70	69.70
	7	16.67	23.01	57.52	57.52
	8	19.17	18.14	45.34	45.34
	9	21.67	13.26	33.16	33.16
	10	24.17	8.39	20.97	20.97
	11	26.67	3.52	8.79	8.79
	12	29.17	0.00	0.00	0.00
CL		31.67	0.00	0.00	0.00

			Lateral Tara	in a line of the second second	
			Lateral fors	ional Buckling	
			L	3.577351	
			В	-5.84456	
				5.844563	
	1		Mcr	4233.587	
Tens	ion capacity of b	ottom tee			
Pn	629.6388	kips	Design T	ensile strength	of bottom tee
			ΦcPn	566.6749	kips
N	Noment Capacity	of tee			
Мр	197.0362	kip-in	De	esign Flexural S	trength
	16.41968	kip-ft	ΦbMn	177.3325	kip-in

			Int	teraction Values	at Each Oper	ning				
		Top Tee			Bottom Tee					
Hole #	X (ft)	Pu (kip)	Mu (kip-in)	Mu/ΦMn	Pu (kip)	Mu (kip-ft)	Pr/Pc	H1-1a	H1-1b	Interaction
End	0	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A
1	1.67	0.00	130.61	0.74	46.83	130.61	0.08	0.74	0.78	0.78
2	4.17	0.00	118.43	0.67	111.56	118.43	0.20	0.79	0.77	0.77
3	6.67	0.00	106.25	0.60	169.66	106.25	0.30	0.83	0.75	0.83
4	9.17	0.00	94.07	0.53	221.15	94.07	0.39	0.86	0.73	0.86
5	11.67	0.00	81.89	0.46	266.01	81.89	0.47	0.88	0.70	0.88
6	14.17	0.00	69.70	0.39	304.26	69.70	0.54	0.89	0.66	0.89
7	16.67	0.00	57.52	0.32	335.89	57.52	0.59	0.88	0.62	0.88
8	19.17	0.00	45.34	0.26	363.46	45.34	0.64	0.87	0.58	0.87
9	21.67	0.00	33.16	0.19	386.89	33.16	0.68	0.85	0.53	0.85
10	24.17	0.00	20.97	0.12	404.78	20.97	0.71	0.82	0.48	0.82
11	26.67	0.00	8.79	0.05	417.14	8.79	0.74	0.78	0.42	0.78
12	29.17	0.00	0.00	0.00	423.96	0.00	0.75	0.75	0.37	0.75
CL	31.67	0.00	0.00	0.00	425.26	0.00	0.75	0.75	0.38	0.75

		Horizontal shear	force		Calculate W	eb Post Bud	kling Moment
Post #	X (ft)	Vu (i-1)	Vu (i+1)	Vu(i)	Vu	47.73657	kip
103111					Mu-top	601.1359	in-kip
1	2.9	52.2	47.4	49.8	Mu-bot	601.1359	in-kip
2	5.4	47.4	42.5	44.9			
3	7.9	42.5	37.6	40.1	Momen	t Capacity of	f Web Post
4	10.4	37.6	32.8	35.2	Mp-top	2925	
5	12.9	32.8	27.9	30.3	2h/e	1.4	
6	15.4	27.9	23.0	25.4	e/tw	17.09402	
7	17.9	23.0	18.1	20.6	Mocr/Mp	0.98301	
8	20.4	18.1	13.3	15.7			
9	22.9	13.3	8.4	10.8	Desig	n Flexural S	trength
10	25.4	8.4	3.5	6.0	Φb(Mocr/Mp)*	Mp	2587.77405
11	27.9	3.5	0.0	1.8			
12	30.4	0.0	0.0	0.0	Web Post E	Buckling	
CL	32.9	0.0	0.0	0.0	Imax-top	0.232298	

Check Horizonta	l & Vertica	l Shear		Cv
e/tw	17.09402		29.01999311	1
C/ CW	17.05402	-	25.01555511	
29.01999311	<	17.09401709	<	36.14308233
17.09401709	>	36.14308233		
Cv	1			
Vn-Horiz	175.5	kips		
ΦvVn	157.95	kips		
Vertical Shear				
Vu	26.12284			Cv
h/tw	6.350427	<	29.01999311	1
Vn-top	175.5	kips		
ΦvVn	157.95	kips		
Shear at full sec	tions			Cv
h/tw	36.63248	<	59.23681288	1
		<	53.94634371	1
Vn-full	421.2			
ΦvVn	421.2	king		
ΨννΠ	421.2	kips		

Advisor: Dr. Ali Memari

Carl Hubben

RAM Comp	osite Bea	am Desig	gn:								
East Edge B	leam										
Floor Typ	e: Typica	ıl	Bea	m Nun	nber = 118						
SPAN INF	ORMAT	TION (ft): I-En	d (203.4	5,84.00)	J-End (2	203.45,104	4.00)			
	Size (Opt							Fy =	= 50.0 ks	si	
Total I	Beam Ler	ıgth (ft)		= 20	.00						
COMPOS	ITE PRO	OPERTI	ES (Not	Shored):						
						Left		Righ			
	ete thickn					2.50		2.50			
	eight con	crete (po	1)			115.00		115.00			
fc (ksi Deckir	ı) 1g Orienta	ation			nemen	3.00 dicular		3.00 erpendicula			
	ig Offenia 1g type	ation		VI	JLCRAFT			AFT 2.0VI			
beff (in		-	-	31.00		r(in)	=		5.14		
	cip-ft)	=		050.03		(kip-ft)	=				
C (kip		=		155.07		(in)					
Ieff (in		-	= 3	065.78		n4)		319	0.28		
	ength (in)			4.00		diam (in)		(0.75		
					= 1.00	-	0				
# of st	uds per st	ud segm			=	13,13					
			Part		=	9,9					
Numb	er of Stud	Powe -	Act		= Full Comp	9,9 ocite Activ	on - 78 47	,			
			I FCI	cent of	run comp	USIIC ACIIC	JII - 70.47				
POINT LO				D 10/		C/ 11	D 10/	D	D 10/	D (7	CT T
Dist 0.250	DL	50.42		38.6	NonRLL			RoofLL	Red%	PartL	CLL 14.02
9.250			74.67	58.0	0.00	0.00	0.0	0.00	Snow	14.93	14.93
LINE LOA		*				-	_		~	-	
Load	Dist	D		DL	LL	Red%	Туре	PartL			
1	0.000 20.000	0.30		306 306	0.000 0.000	0.0%	Red	0.000 0.000			
2	0.000			178			NonR				
2	9.250			178			Nome	0.000			
3	0.000	0.07		075	0.500	38.6%	Red	0.100	0.10		
	9.250	0.07		075	0.500			0.100	0.10	00	
4	9.250	0.17		176	0.000		NonR	0.000	0.00	00	
	20.000	0.17	6 0.	176	0.000			0.000	0.00	00	
5	9.250	0.07		074	0.495	38.6%	Red	0.099	0.09		
	20.000	0.07		074	0.495			0.099	0.09		
6	0.037	0.00		003	0.000		NonR	0.000	0.00		
7	20.000	0.00		003	0.000	20 60/	Det	0.000	0.00		
7	0.037 20.000	0.00		001 001	0.008	38.6%	Red	0.002 0.002	0.00		
8	0.000	0.00 0.00		000	0.008		NonR	0.002	0.00		
0	0.000	0.00		003	0.000		NOIII	0.000	0.00		
9	0.000	0.00		000	0.000	38.6%	Red	0.000	0.00		
	0.036	0.00		001	0.008		_	0.002	0.00		

Technical Report 3

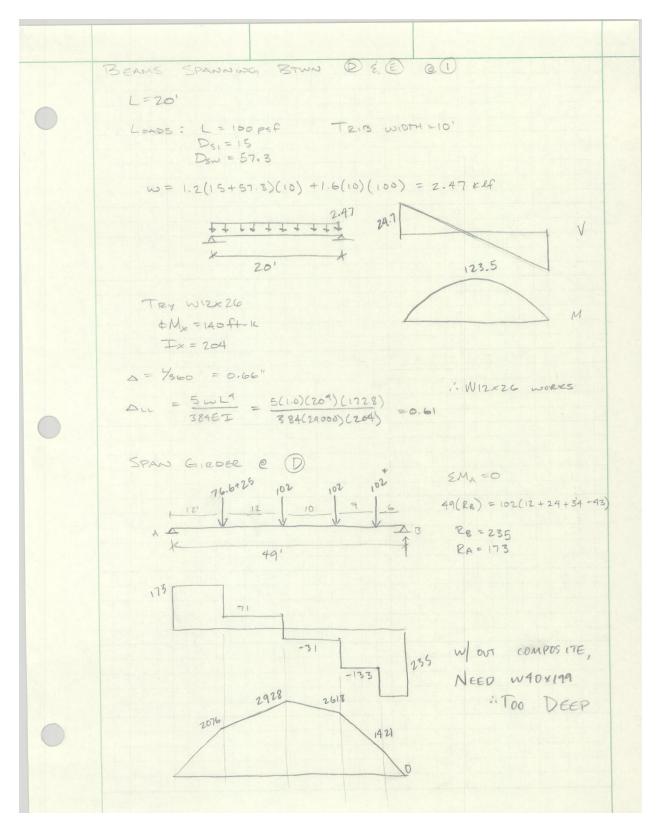
-

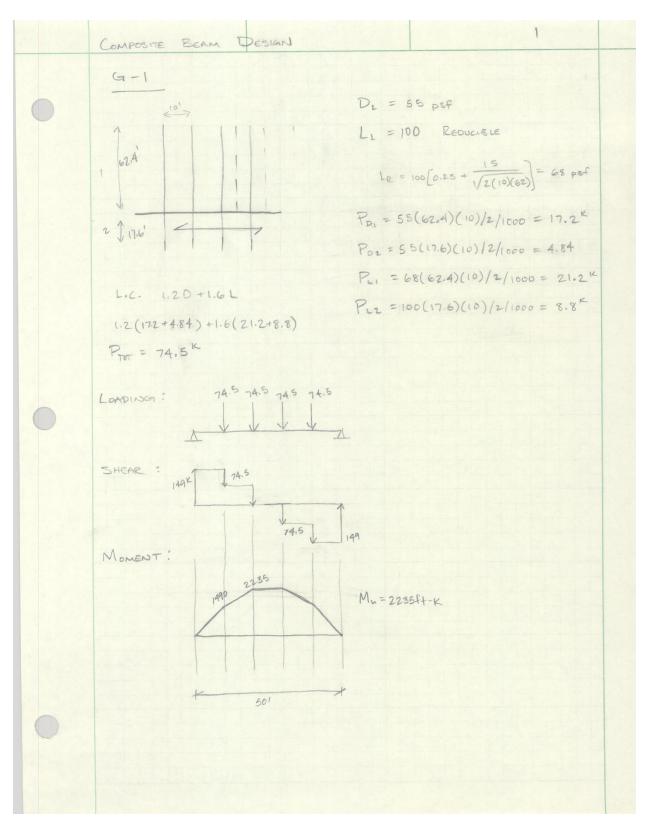
Load Academic License, Not Feb Commercial Use Red% Type PartL NonR CLL 10 0.000 0.076 0.076 0.000 NonR 0.000 0.000 20.000 0.076 0.076 0.000 NonR 0.000 0.000 Span Cond LoadCombo Ma @ Lb Cb Ω Mn / Ω Span Cond LoadCombo Ma @ Lb Cb Ω Mn / Ω Init DL DL 282.4 9.3 Max + DL+LL 605.2 9.3 1.67 607.08 Controlling DL+LL 605.2 9.3 1.67 607.08 Reaction 42.52 37.61 DL+LL 605.2 9.3 Initial reaction 42.52 <th colspan<="" th=""><th>Carl Hul</th><th>bben</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>A</th><th>dvisor: Dr.</th><th>Ali Memari</th></th>	<th>Carl Hul</th> <th>bben</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>A</th> <th>dvisor: Dr.</th> <th>Ali Memari</th>	Carl Hul	bben								A	dvisor: Dr.	Ali Memari
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.000	0.076	0.076	0.000	^{Use} Red			0.000	0.000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SHEAR: 1	Max Va (DI	L+ LL) = 7	0.29 kip	s Vn/1.50	= 210.32	2 kips					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MOMENT	rs:										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Span	Cond	Load	Combo					Cb	Ω		
Init DL 282.4 9.3 Max + DL+LL 605.2 9.3 1.67 607.08 Controlling DL+LL 605.2 9.3 1.67 607.08 REACTIONS (kips): Initial reaction 42.52 37.61 DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131												-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Center	-		L				0.0	1.00	1.67	499.00	
Controlling DL+LL 605.2 9.3 1.67 607.08 REACTIONS (kips): Left Right Initial reaction 42.52 37.61 DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131													
REACTIONS (kips): Left Right Initial reaction 42.52 37.61 DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131													
Left Right Initial reaction 42.52 37.61 DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131		Controlling	5	DL+I	L	605.2	9	.3			1.67	607.08	
Initial reaction 42.52 37.61 DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131		REACTIO	NS (kips):										
DL reaction 33.48 29.69 Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131						Left	Right						
Max +LL reaction 36.81 32.23 Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at $9.80 \text{ ft} = -0.274$ $L/D = 875$ Live load (in) at $9.80 \text{ ft} = -0.212$ $L/D = 1131$ Post Comp load (in) at $9.80 \text{ ft} = -0.212$ $L/D = 1131$		Initial 1	reaction			42.52	37.61						
Max +total reaction (factored) 70.29 61.92 DEFLECTIONS: Initial load (in) at 9.80 ft = -0.274 L/D = 875 Live load (in) at 9.80 ft = -0.212 L/D = 1131 Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131													
DEFLECTIONS: Initial load (in) at $9.80 \text{ ft} = -0.274$ $L/D = 875$ Live load (in) at $9.80 \text{ ft} = -0.212$ $L/D = 1131$ Post Comp load (in) at $9.80 \text{ ft} = -0.212$ $L/D = 1131$													
Initial load (in)at $9.80 \text{ ft} =$ -0.274 $L/D =$ 875 Live load (in)at $9.80 \text{ ft} =$ -0.212 $L/D =$ 1131 Post Comp load (in)at $9.80 \text{ ft} =$ -0.212 $L/D =$ 1131		Max +	total reaction	n (factored	.)	70.29	61.92						
Live load (in)at $9.80 \text{ ft} =$ -0.212 $L/D =$ 1131 Post Comp load (in)at $9.80 \text{ ft} =$ -0.212 $L/D =$ 1131		DEFLECT	IONS:										
Post Comp load (in) at 9.80 ft = -0.212 L/D = 1131		Initial 1	load (in)		at	9.80 ft	=	-0.274		L/D =	875		
		Live lo	ad (in)		at	9.80 ft	=	-0.212		L/D =	1131		
				1)	at	9.80 ft	=	-0.212		L/D =	1131		
			-		at	9.80 ft	=	-0.486		L/D =	493		

Advisor: Dr. Ali Memari

North Edge Beam:

SPAN IN	FORMAT	TION (f	t): I-En	d (45.25	,144.00)	J-End (84.15,144.	00)			
Beam	Size (Use	r Selecte	eđ)	= W2	27X102			Fy =	= 50.0 ksi	i	
Total	Beam Ler	ıgth (ft)		= 38.	90						
сомро	SITE PRO	OPERT	ES (Not	Shored)	:						
						Left		Righ	t		
	rete thickn					2.50		2.50			
	veight con	icrete (p	cf)		1	115.00		115.00			
fc (ks						3.00		3.00			
	ing Orienta	ation			-	oarallel		paralle			
	ing type				LCRAFT			AFT 2.0VI			
beff (*		= _ 1	59.35	Y ba		=		8.18		
C (kij	kip-ft)			685.91 106.10	PNA	kip-ft)	=	1419	5.61		
Ieff (i				858.16	Itr (i		=	595			
	length (in)		=	4.00		diam (in)			0.75		
						Rp = 0.7					
	tuds per st		-	-		1,12,11					
	•	0	Part		=	3,3,3,3					
			Act	ual 👘	=	3,3,3,3					
Numb	per of Stud	l Rows =	=1 Per	cent of]	Full Compo	osite Actio	on = 28.04				
POINT L	OADS (k	ips):									
Dist	DL		RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL	CLL
10.000	17.48	17.48	29.24	37.6	0.00	0.00	0.0	0.00	Snow	5.85	5.85
19.500	16.33	16.33	27.58	37.6	0.00			0.00	Snow	5.52	5.52
29.500	13.46	13.46	23.37	37.6	0.00	0.00	0.0	0.00	Snow	4.67	4.67
LINE LO	ADS (k/f	t):									
Load	Dist	D	DL C	DL	LL	Red%	Туре	PartL	CLI	L	
1	0.000	0.30	06 0.	306	0.000	0.0%	Red	0.000	0.00	0	
	38.900	0.30		306	0.000			0.000	0.00	0	
2	0.000	0.00		003	0.000		NonR	0.000	0.00		
	38.900	0.00		003	0.000			0.000	0.00		
3	0.000	0.00		001	0.008	37.6%	Red	0.002	0.00		
	38.900	0.00		001	0.008		N D	0.002	0.00		
	0.000	0.10		102	0.000		NonR	0.000	0.00		
4	38.900	0.10		102	0.000			0.000	0.00	0	
) = 66.41	kips V	Vn/1.50 = 2	279.13 kij	ps				
	Max Va	(DL+LI	.) - 00.41	-							
		(DL+LI	_) = 00.41								
SHEAR:			LoadCom	ibo	Ma	@	Lb	Съ	Ω	Mn/	Ω
SHEAR: MOMEN	TS:		-	ibo	Ma kip-ft	@ ft	Lb ft	Ср	Ω	Mn / kip	
SHEAR: MOMEN	TS: Cond PreCi	mp+	LoadCom DL+LL	ibo	kip-ft 492.6	ft 19.5		Сь 1.13	Ω 1.67)-ft
SHEAR: MOMEN Span	TS: Cond	mp+ 1)L 1	LoadCom	ibo	kip-ft	ft	ft			kip	98


ubben						Advisor:	Dr. Ali Mema
Span Academic Lic	en EoadCombo	ommercial d	Use.) Lb	Съ	Ω	Mn/Ω
Controlling	DL+LL	820.5	19.			1.67	849.94
REACTIONS (kips):							
		Left	Right				
Initial reaction		40.66	38.75				
DL reaction		32.40	30.91				
Max +LL reaction		34.01	32.31				
Max +total reaction	(factored)	66.41	63.22				
DEFLECTIONS:							
Initial load (in)	at	19.26 ft	=	-0.962	L/D =	485	
Live load (in)	at	19.26 ft	=	-0.793	L/D =	589	
Post Comp load (in)	at	19.26 ft	=	-0.793	L/D =	589	
Net Total load (in)	at	19.26 ft	=	-1.754	L/D =	266	


South Edge				~							
Floor Typ					nercial Us 1ber = 127						
	F ORMA Size (Opt Beam Ler	timum)	-	d (84.15 = W2 = 40	30X90	J-End (12	23.90,28.0	· ·	= 50.0 ks	si	
COMPOS	SITE PRO	OPERTI	ES (Not	Shored):	_					
C	4.4.1.1	(Left		Righ			
	ete thickn veight cor		- f			2.50 115.00		2.50 115.00			
fc (ks	<u> </u>	Icreie (p	(1)			3.00		3.0			
	ng Orient	ation			t	oarallel		paralle			
	ng type			vu	JLCRAFT		VULCR	AFT 2.0VI			
beff (i		:	=	61.38	Y ba	r(in)	=	2	0.31		
Mnf (l	cip-ft)	:	= 1	1631.70	Mn ((kip-ft)	=	133	7.73		
C (kip		:		106.10		. (in)	=		7.01		
Ieff (ii				4988.59	Itr (i		=		7.46		
	ength (in)		=	4.00		diam (in)			0.75		
	uds per st		-	-	= 1.00 = 12.1	Kp = 0.7 2,12,11	0				
<i>π</i> 01 50	uus per s	iuu segn	Pari		= 12,1 =	3,3,3,3					
			Act		=	3,3,3,3					
Numb	er of Stud	1 Rows =			Full Comp		n = 27.12				
POINT L	OADS (k	ins):									
Dist	DL		RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL	CLL
10.000	14.71	14.71	23.15	34.4	0.00	0.00	0.0	0.00	Snow	4.63	4.63
20.000	13.68	13.68	21.94	34.4	0.00		0.0	0.00	Snow	4.39	4.39
30.251	13.52	13.52	21.25	34.4	0.00	0.00	0.0	0.00	Snow	4.25	4.25
LINE LO.	ADS (k/f	t):									
Load	Dist			CDL	LL	Red%	Туре	PartL	CI	L	
1	0.000	0.30		.306	0.000	0.0%	Red	0.000			
	40.251	0.30		.306	0.000	0.00/		0.000	0.0		
2	0.000	0.28		.283	0.000	0.0%	Red	0.000	0.0		
3	10.000 0.000	0.28		.283 .000	0.000 0.000		NonR	0.000	0.0		
2	10.000	0.00		.000	0.000		NOIL	0.000 0.000	0.00		
4	0.000	0.00		.000	0.000	34.4%	Red	0.000	0.0		
	10.000	0.01		.012	0.080	-		0.016	0.0		
5	10.000	0.00		.000	0.000		NonR	0.000	0.0		
	20.000	0.02	28 0.	.028	0.000			0.000	0.0		
6	10.408	0.00		.001	0.000	0.0%	Red	0.000	0.00		
_	20.000	0.27		.271	0.000			0.000	0.00		
7	10.408	0.00		.000	0.003	34.4%	Red	0.001	0.00		
0	20.000	0.01		.012	0.080		NeeP	0.016	0.0		
8	20.000 30.251	0.00		.000 .029	0.000 0.000		NonR	0.000 0.000	0.00		
	50.251	0.02	0	.029	0.000			0.000	0.00		

Advisor: Dr. Ali Memari

	A cademic L	ironen No	I Far Co						
Load	Academic L						PartL	CLL	
9	20.000	0.000	0.000	0.000	34.4%	Red	0.000	0.000	
	30.251	0.012	0.012	0.082			0.016	0.016	
10	20.817	0.001	0.001	0.000	0.0%	ed Red	0.000	0.000	
	21.185	0.088	0.088	0.000		_	0.000	0.000	
11	21.185	0.096	0.096	0.000	0.0%	Red	0.000	0.000	
	30.251	0.306	0.306	0.000			0.000	0.000	
12	30.252	0.000	0.000	0.000		- NonR	0.000	0.000	
	40.251	0.028	0.028	0.000		_	0.000	0.000	
13	30.669	0.001	0.001	0.000	0.0%	ed Red	0.000	0.000	
	40.251	0.319	0.319	0.000			0.000	0.000	
14	30.669	0.000	0.000	0.003	34.4%	Red	0.001	0.001	
	40.251	0.012	0.012	0.080			0.016	0.016	
15	0.002	0.003	0.003	0.000		- NonR	0.000	0.000	
	40.249	0.003	0.003	0.000			0.000	0.000	
16	0.002	0.001	0.001	0.008	34.4%	Red	0.002	0.002	
	40.249	0.001	0.001	0.008			0.002	0.002	
17	0.000	0.090	0.090	0.000		- NonR	0.000	0.000	
	40.251	0.090	0.090	0.000			0.000	0.000	
SHEAR:	Max Va (Dl	L+LL) = (63.34 kip	s Vn/1.67	= 249.07	kips			
MOMEN	NTS:								
Span	Cond	Load	Combo	Ma	@) Lb	Cb	Ω	Mn / Ω
				kip-ft	_	*			kip-ft
Center	PreCmp-	+ DL+1	LL	487.6			1.10	1.67	706.09
	Init DL	DL		397.1					
	Max+	DL+1	LL	784.5				1.67	801.04
Controllin		DL+		784.5				1.67	801.04
REACT	ONS (kips):								
	(Left	Right				
Initia	1 reaction			40.63	39.35				
	eaction			33.70	32.62				
	+LL reaction			29.63	28.81				
	+total reaction		i)	63.34	61.43				
DEFLEC	TIONS:								
	l load (in)		at	20.13 ft	=	-1.070	L/D =	451	
	load (in)		at	20.13 ft		-0.743	L/D =	650	
	Comp load (in	1)	at	20.13 ft		-0.743	L/D =	650	
	Fotal load (in)		at	20.13 ft		-1.814	L/D =	266	
				20.10 1				200	

Composite Hand Calculations:

Technical Report 3

Carl Hubben

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Advisor: Dr. Ali Memari

Appendix C:

Ram Column Design:

A cadomic I	License. Not I	For Con	moretai	I.co			
Column Line 1-L	Littense. Not i		imercia	r use.			
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	45.5	15.3	13.7	1 0.50 Eq (H1-1b)	90.0	50	W14X43
Story 13	83.5	7.1	6.3	1 0.51 Eq (H1-1a)	90.0	50	W14X43
Story 12	120.3	6.8	6.0	1 0.65 Eq (H1-1a)	90.0	50	W14X43
Story 11	156.4	6.6	5.8	1 0.80 Eq (H1-1a)	90.0	50	W14X43
Story 10	192.1	6.5	5.7	1 0.94 Eq (H1-1a)	90.0	50	W14X43
Story 9	227.6	6.5	5.7	1 0.96 Eq (H1-1a)	90.0	50	W14X48
Story 8	263.0	6.5	5.6	1 0.98 Eq (H1-1a)	90.0	50	W14X53
Story 7	298.2	6.4	6.4	1 0.82 Eq (H1-1a)	90.0	50	W14X61
Story 6	333.3	6.4	6.3	1 0.90 Eq (H1-1a)	90.0	50	W14X61
Story 5	368.3	6.3	6.3	1 0.99 Eq (H1-1a)	90.0	50	W14X61
Story 4	403.3	6.3	6.3	1 0.95 Eq (H1-1a)	90.0	50	W14X68
Story 3	438.3	6.4	6.3	1 0.94 Eq (H1-1a)	90.0	50	W14X74
Story 2	473.3	7.8	7.6	1 0.93 Eq (H1-1a)	90.0	50	W14X82
Base	508.9	4.9	6.4	1 0.89 Eq (H1-1a)	90.0	50	W14X90
Column Line 1-O							
Level	Р	Mx	Mr	LC Interaction Eq.	Angle	Fy	Size
Story 14	168.5	78.4	43.7	1 0.94 Eq (H1-1a)	0.0	50	W14X74
Story 13	315.5	36.3	20.3	1 0.99 Eq (H1-1a)	0.0	50	W14X68
Story 12	471.1	36.1	26.3	1 0.88 Eq (H1-1a)	0.0	50	W14X90
Story 11	628.4	36.5	26.5	1 1.00 Eq (H1-1a)	0.0	50	W14X90 W14X99
Story 10	786.0	37.1	26.6	1 0.99 Eq (H1-1a)	0.0	50	W14X120
Story 9	943.9	37.7	20.0	1 0.99 Eq (H1-1a)	0.0	50	W14X120
Story 8	1101.9	38.0	27.8	1 0.98 Eq (H1-1a)	0.0	50	W14X159
Story 7	1260.2	38.4	27.9	1 1.00 Eq (H1-1a)	0.0	50	W14X176
Story 6	1418.9	39.4	28.1	1 0.93 Eq (H1-1a)	0.0	50	W14X211
Story 5	1577.8	40.0	28.2	1 0.92 Eq (H1-1a)	0.0	50	W14X233
Story 4	1737.1	40.7	28.3	1 0.91 Eq (H1-1a)	0.0	50	W14X257
Story 3	1896.3	40.7	28.3	1 0.99 Eq (H1-1a)	0.0	50	W14X257
Story 2	2055.9	50.2	34.6	1 0.98 Eq (H1-1a)	0.0	50	W14X283
Base	2218.5	33.6	22.6	1 0.95 Eq (H1-1a)	0.0	50	W14X342
Column Line 1-U							
Level	Р	Mx		LC Interaction Eq.			Size
Story 14	93.0	0.0	32.8	6 0.94 Eq (H1-1a)	0.0	50	W14X48
Story 13	198.3	0.0	15.2	2 0.90 Eq (H1-1a)	0.0	50	W14X53
Story 12	290.0	0.0	16.9	2 0.89 Eq (H1-1a)	0.0	50	W14X61
Story 11	382.3	0.0	16.6	2 0.99 Eq (H1-1a)	0.0	50	W14X68
Story 10	478.1	0.0	16.7	2 0.99 Eq (H1-1a)	0.0	50	W14X82
Story 9	574.1	0.0	21.6	2 0.92 Eq (H1-1a)	0.0	50	W14X90
Story 8	670.1	0.0	21.7	2 0.96 Eq (H1-1a)	0.0	50	W14X99
Story 7	766.3	0.0	21.7	2 0.98 Eq (H1-1a)	0.0	50	W14X109
Story 6	862.7	0.0	21.8	2 0.99 Eq (H1-1a)	0.0	50	W14X120

Story Scademic	License opt	ror 6.0m	mercen	Use 0.99 Eq (H1-1a)	0.0	50	W14X132	
Story 4	1055.8	0.0	22.7	2 0.97 Eq (H1-1a)	0.0	50	W14X145	
Story 3	1152.6	0.0	22.8	2 0.97 Eq (H1-1a)	0.0	50	W14X159	
Story 2	1249.6	0.0	27.9	2 0.95 Eq (H1-1a)	0.0	50	W14X176	
Base	1348.5	0.0	14.8	1 0.94 Eq (H1-1a)	0.0	50	W14X211	
Column Line 1-W								
Level	Р	Mx		LC Interaction Eq.	-	Fy	Size	
Story 14	98.7	54.6	15.2	1 1.00 Eq (H1-1a)	0.0	50	W14X43	
Story 13	186.7	25.9	7.2	1 0.93 Eq (H1-1a)	0.0	50	W14X48	
Story 12	273.0	25.3	8.1	1 0.84 Eq (H1-1a)	0.0	50	W14X61	
Story 11	358.5	25.1	8.0	1 0.93 Eq (H1-1a)	0.0	50	W14X68	
Story 10	447.7	25.4	8.1	1 0.93 Eq (H1-1a)	0.0	50	W14X82	
Story 9	537.6	25.0	10.4	1 0.87 Eq (H1-1a)	0.0	50	W14X90	
Story 8	627.5	25.0	10.4	1 1.00 Eq (H1-1a)	0.0	50	W14X90	
Story 7	717.6	25.4	10.5	1 0.93 Eq (H1-1a)	0.0	50	W14X109	
Story 6	807.9	25.7	10.5	1 0.94 Eq (H1-1a)	0.0	50	W14X120	
Story 5	898.3	25.9	10.5	1 0.94 Eq (H1-1a)	0.0	50	W14X132	
Story 4	988.9	26.1	10.9	1 0.92 Eq (H1-1a)	0.0	50	W14X145	
Story 3	1079.5	26.1	10.9	1 1.00 Eq (H1-1a)	0.0	50	W14X145	
Story 2	1170.2	32.0	13.4	1 1.00 Eq (H1-1a)	0.0	50	W14X159	
Base	1262.7	21.2	8.7	1 0.97 Eq (H1-1a)	0.0	50	W14X193	
Dasc								
Dase	1202.7		0.7	1 0.97 Eq (111-1a)				
	1202.7		0.7	1 0.97 Eq (111-1a)				
Column Line 2-A								
Column Line 2-A Level	Р	Mx	Му	LC Interaction Eq.	Angle	Fy	Size	
Column Line 2-A Level Story 14	Р 79.6	Mx 48.3	My 9.3	LC Interaction Eq. 1 0.77 Eq (H1-1a)	Angle 0.0	F y 50	Size W14X43	
Column Line 2-A Level Story 14 Story 13	P 79.6 150.2	Mx 48.3 22.7	My 9.3 4.4	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a)	Angle 0.0 0.0	Fy 50 50	Size W14X43 W14X43	
Column Line 2-A Level Story 14 Story 13 Story 12	P 79.6 150.2 219.3	Mx 48.3 22.7 22.2	My 9.3 4.4 4.3	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a)	Angle 0.0 0.0 0.0	Fy 50 50 50	Size W14X43 W14X43 W14X48	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11	P 79.6 150.2 219.3 287.9	Mx 48.3 22.7 22.2 22.0	My 9.3 4.4 4.3 4.9	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.83 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0	Fy 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10	P 79.6 150.2 219.3 287.9 355.9	Mx 48.3 22.7 22.2 22.0 21.7	My 9.3 4.4 4.3 4.9 4.8	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.99 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9	P 79.6 150.2 219.3 287.9 355.9 424.0	Mx 48.3 22.7 22.2 22.0 21.7 21.9	My 9.3 4.4 4.3 4.9 4.8 4.8	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10	P 79.6 150.2 219.3 287.9 355.9	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0	My 9.3 4.4 4.3 4.9 4.8	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.99 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9	P 79.6 150.2 219.3 287.9 355.9 424.0	Mx 48.3 22.7 22.2 22.0 21.7 21.9	My 9.3 4.4 4.3 4.9 4.8 4.8	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.88 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.88 Eq (H1-1a) 1 0.98 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fy 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X74 W14X82 W14X90 W14X90	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 9 Story 8 Story 7 Story 6 Story 5	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.9	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.3	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.9 22.0	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.3 6.3	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X99 W14X109	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.9 22.0 22.2 27.3	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.3 6.3 6.3 7.7	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a) 1 0.95 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90 W14X99 W14X109 W14X120	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.9 22.0 22.2	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.3 6.3 6.3	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X132	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.9 22.0 22.2 27.3	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.3 6.3 6.3 7.7	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a) 1 0.95 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X132	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 2 Base Column Line 4-C	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7 995.7	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.6 21.9 22.0 22.2 27.3 17.8	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.2 6.3 6.3 6.3 7.7 5.2	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a) 1 0.95 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X120 W14X132 W14X159	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 2 Base Column Line 4-C Level	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7 995.7 P	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.6 21.9 22.0 22.2 27.3 17.8 Mx	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.2 6.3 6.3 6.3 7.7 5.2 My	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a) 1 0.95 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X74 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X120 W14X132 W14X159 Size	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 4-C Level Story 14	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7 995.7 P 157.5	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.6 21.9 22.0 22.2 27.3 17.8 Mx 11.0	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.2 6.3 6.3 6.3 7.7 5.2 My 18.4	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.95 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X82 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X132 W14X159 Size W14X48	
Column Line 2-A Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 2 Base Column Line 4-C Level	P 79.6 150.2 219.3 287.9 355.9 424.0 495.0 566.0 637.1 708.3 779.7 851.1 922.7 995.7 P	Mx 48.3 22.7 22.2 22.0 21.7 21.9 22.0 21.6 21.6 21.6 21.9 22.0 22.2 27.3 17.8 Mx	My 9.3 4.4 4.3 4.9 4.8 4.8 4.8 6.2 6.2 6.2 6.3 6.3 6.3 7.7 5.2 My	LC Interaction Eq. 1 0.77 Eq (H1-1a) 1 0.83 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.99 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.98 Eq (H1-1a) 1 0.96 Eq (H1-1a) 1 0.95 Eq (H1-1a) 1 0.94 Eq (H1-1a) 1 0.94 Eq (H1-1a)	Angle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Fy 50 50 50 50 50 50 50 50 50 50 50 50 50	Size W14X43 W14X43 W14X48 W14X61 W14X61 W14X74 W14X74 W14X90 W14X90 W14X90 W14X109 W14X109 W14X120 W14X120 W14X132 W14X159 Size	

Carl Hubben	
-------------	--

Story If ademic L	icense Not	ror 6.8m	mqrcip	1059-0.92 Eq (H1-1a)	0.0	50	W14X90
Story 10	739.1	9.7	12.8	3 0.93 Eq (H1-1a)	0.0	50	W14X109
Story 9	887.6	10.0	12.8	3 0.91 Eq (H1-1a)	0.0	50	W14X132
Story 8	1036.3	10.0	13.3	3 0.94 Eq (H1-1a)	0.0	50	W14X145
Story 7	1185.1	10.1	13.4	3 0.98 Eq (H1-1a)	0.0	50	W14X159
Story 6	1334.2	10.2	13.5	3 0.99 Eq (H1-1a)	0.0	50	W14X176
Story 5	1483.5	10.4	13.5	3 1.00 Eq (H1-1a)	0.0	50	W14X193
Story 4	1633.2	10.6	13.6	3 0.91 Eq (H1-1a)	0.0	50	W14X233
Story 3	1782.9	10.6	13.6	3 0.99 Eq (H1-1a)	0.0	50	W14X233
Story 2	1933.0	13.1	16.6	4 0.97 Eq (H1-1a)	0.0	50	W14X257
Base	2085.8	0.9	10.8	1 0.96 Eq (H1-1a)	0.0	50	W14X311
Column Line 4-W							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	179.9	18.7	23.7	3 0.76 Eq (H1-1a)	0.0	50	W14X61
Story 13	335.0	16.6	10.9	3 0.99 Eq (H1-1a)	0.0	50	W14X61
Story 12	502.7	16.7	14.2	3 0.82 Eq (H1-1a)	0.0	50	W14X90
Story 11	670.7	16.8	14.3	3 0.96 Eq (H1-1a)	0.0	50	W14X99
Story 10	838.9	17.1	14.4	3 0.97 Eq (H1-1a)	0.0	50	W14X120
Story 9	1007.4	17.4	15.0	3 0.93 Eq (H1-1a)	0.0	50	W14X145
Story 8	1176.0	17.5	15.0	3 0.99 Eq (H1-1a)	0.0	50	W14X159
Story 7	1345.1	18.0	15.1	3 0.92 Eq (H1-1a)	0.0	50	W14X193
Story 6	1514.4	18.2	15.2	3 0.94 Eq (H1-1a)	0.0	50	W14X211
Story 5	1684.0	18.4	15.3	3 0.94 Eq (H1-1a)	0.0	50	W14X233
Story 4	1853.9	18.8	15.3	3 0.93 Eq (H1-1a)	0.0	50	W14X257
Story 3	2024.0	19.0	15.4	3 0.92 Eq (H1-1a)	0.0	50	W14X283
Story 2	2194.6	23.6	18.8	3 0.91 Eq (H1-1a)	0.0	50	W14X311
Base	2367.8	6.4	12.2	1 0.98 Eq (H1-1a)	0.0	50	W14X342
Column Line KK-O							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	129.2	10.7	64.6	10 0.94 Eq (H1-1a)	90.0	50	W14X68
Story 13	255.0	5.0	30.1	4 0.96 Eq (H1-1a)	90.0	50	W14X61
Story 12	377.9	5.0	29.9	4 0.93 Eq (H1-1a)	90.0	50	W14X82
Story 11	504.1	4.9	38.7	4 0.91 Eq (H1-1a)	90.0		W14X90
Story 10	630.4	5.0	38.9	4 0.99 Eq (H1-1a)	90.0	50	W14X99
Story 9	756.9	5.0	39.1	4 0.95 Eq (H1-1a)	90.0	50	W14X120
Story 8	883.7	5.1	39.1	4 0.98 Eq (H1-1a)	90.0	50	W14X132
Story 7	1010.5	5.1	40.6	4 0.99 Eq (H1-1a)	90.0	50	W14X145
Story 6	1137.8	5.2	41.0	4 0.90 Eq (H1-1a)	90.0	50	W14X176
Story 5	1265.0	5.2	41.0	4 0.99 Eq (H1-1a)	90.0	50	W14X176
Story 4	1392.5	5.3	41.0	4 0.99 Eq (H1-1a)	90.0	50	W14X193
Story 3	1520.2	5.4	41.2	4 0.98 Eq (H1-1a)	90.0	50	W14X211
Story 2	1648.1	6.6	50.4	5 0.97 Eq (H1-1a)	90.0	50	W14X233
Base	1778.6	4.4	30.7	1 0.93 Eq (H1-1a)	90.0	50	W14X283
				• • • •			

Academic L	icense. Not	For Com	mercia	Use.			
Column Line KK-R							
Level	Р	Mx		LC Interaction Eq.	Angle	Fy	Size
Story 14	149.6	10.8	73.9	10 0.98 Eq (H1-1a)	90.0	50	W14X74
Story 13	295.6	4.9	33.8	4 0.98 Eq (H1-1a)	90.0	50	W14X68
Story 12	442.9	4.9	43.8	4 0.85 Eq (H1-1a)	90.0	50	W14X90
Story 11	590.9	5.0	44.0	4 0.96 Eq (H1-1a)	90.0	50	W14X99
Story 10	739.0	5.0	44.3	4 0.95 Eq (H1-1a)	90.0	50	W14X120
Story 9	887.5	5.1	46.1	4 0.90 Eq (H1-1a)	90.0	50	W14X145
Story 8	1036.2	5.2	46.3	4 0.94 Eq (H1-1a)	90.0	50	W14X159
Story 7	1185.0	5.2	46.5	4 0.95 Eq (H1-1a)	90.0	50	W14X176
Story 6	1334.1	5.3	46.5	4 0.96 Eq (H1-1a)	90.0	50	W14X193
Story 5	1483.4	5.4	46.7	4 0.97 Eq (H1-1a)	90.0	50	W14X211
Story 4	1632.9	5.4	47.0	4 0.95 Eq (H1-1a)	90.0	50	W14X233
Story 3	1782.8	5.5	47.2	4 0.94 Eq (H1-1a)	90.0	50	W14X257
Story 2	1933.0	6.8	57.6	4 0.93 Eq (H1-1a)	90.0	50	W14X283
Base	2085.6	4.5	34.3	1 0.99 Eq (H1-1a)	90.0	50	W14X311
Column Line LL-O							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	53.9	8.2	15.2	6 0.58 Eq (H1-1a)	90.0	50	W14X43
Story 13	118.8	3.8	6.9	2 0.65 Eq (H1-1a)	90.0	50	W14X43
Story 12	171.9	3.6	6.6	2 0.86 Eq (H1-1a)	90.0	50	W14X43
Story 11	224.2	3.6	6.4	2 0.95 Eq (H1-1a)	90.0	50	W14X48
Story 10	276.2	3.5	7.2	2 0.76 Eq (H1-1a)	90.0	50	W14X61
Story 9	330.2	3.5	7.2	2 0.89 Eq (H1-1a)	90.0	50	W14X61
Story 8	385.4	3.5	7.2	2 0.92 Eq (H1-1a)	90.0	50	W14X68
Story 7	440.7	3.6	7.2	2 0.95 Eq (H1-1a)	90.0	50	W14X74
Story 6	496.2	3.6	7.2	2 0.96 Eq (H1-1a)	90.0	50	W14X82
Story 5	551.7	3.5	9.3	2 0.83 Eq (H1-1a)	90.0	50	W14X90
Story 4	607.2	3.5	9.3	2 0.91 Eq (H1-1a)	90.0	50	W14X90
Story 3	662.7	3.5	9.3	2 0.99 Eq (H1-1a)	90.0	50	W14X90
Story 2	718.4	4.4	11.4	2 0.98 Eq (H1-1a)	90.0	50	W14X99
Base	775.1	2.9	5.4	1 0.99 Eq (H1-1a)	90.0	50	W14X120
				••• /			
Column Line LL-R							
Level	Р	Mx	Mv	LC Interaction Eq.	Angle	Fy	Size
Story 14	64.6	7.8	8.7	6 0.48 Eq (H1-1a)	90.0	50	W14X43
Story 13	140.9	5.7	3.9	2 0.69 Eq (H1-1a)	90.0	50	W14X43
Story 12	195.4	5.5	6.2	7 0.96 Eq (H1-1a)	90.0	50	W14X43
Story 12 Story 11	258.5	5.4	6.3	7 0.97 Eq (H1-1a)	90.0	50	W14X53
Story 10	331.7	5.3	4.0	2 0.87 Eq (H1-1a)	90.0	50	W14X61
Story 9	398.3	5.4	4.0	2 0.92 Eq (H1-1a)	90.0	50	W14X68
Story 8	465.0	5.4	4.1	2 0.92 Eq (H1-1a) 2 0.97 Eq (H1-1a)	90.0	50	W14X74
Story 7	531.9	5.4	5.2	2 0.37 Eq (H1-1a) 2 0.79 Eq (H1-1a)	90.0	50	W14X90
Story 6	598.7	5.4	5.2	2 0.89 Eq (H1-1a)	90.0	50	W14X90
51019 0	590.1	2.4	2.2	2 0.05 Lq (111-1a)	20.0	50	1111111111

t as domin T				Tia			
				Use. 0.98 Eq (H1-1a)		50	W14X90
Story 4	732.6	5.4	5.3	2 0.98 Eq (H1-1a)			W14X99
Story 3	799.6	5.5	5.3	2 0.96 Eq (H1-1a)			W14X109
Story 2	866.9	6.7	6.4	2 0.95 Eq (H1-1a)	90.0	50	W14X120
Base	935.4	2.8	1.4	1 0.94 Eq (H1-1a)	90.0	50	W14X145
Column Line 6-P							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	62.8	8.3	28.0	1 0.88 Eq (H1-1a)	90.0	50	W14X43
Story 13	116.3	3.8	12.9	1 0.76 Eq (H1-1a)		50	W14X43
Story 12	168.2	3.7	12.5	1 0.97 Eq (H1-1a)		50	W14X43
Story 11	219.5	3.6	12.2	1 0.93 Eq (H1-1a)	90.0	50	W14X53
Story 10	270.4	3.6	13.8	1 0.82 Eq (H1-1a)		50	W14X61
Story 9	322.6	3.6	13.8	1 0.95 Eq (H1-1a)	90.0	50	W14X61
Story 8	376.5	3.6	13.8	1 0.96 Eq (H1-1a)	90.0	50	W14X68
Story 7	430.6	3.6	13.8	1 0.99 Eq (H1-1a)	90.0	50	W14X74
Story 6	484.7	3.6	13.8	1 0.99 Eq (H1-1a)	90.0	50	W14X82
Story 5	539.0	3.6	17.9	1 0.86 Eq (H1-1a)		50	W14X90
Story 4	593.2	3.6	17.9	1 0.94 Eq (H1-1a)		50	W14X90
Story 3	647.6	3.6	18.0	1 0.92 Eq (H1-1a)		50	W14X99
Story 2	702.1	4.4	21.9	1 0.91 Eq (H1-1a)		50	W14X109
Base	757.5	2.9	15.3	1 1.00 Eq (H1-1a)		50	W14X120
Dave		2.0	10.0	1 1.00 24 (111 14)	20.0	20	
Column Line 6-T	_					_	
Level	Р	Mx		LC Interaction Eq.	-	Fy	
Story 14	62.1	25.3	13.2	10 0.66 Eq (H1-1a)		50	W14X43
Story 13	120.9	11.7	6.1	4 0.68 Eq (H1-1a)		50	W14X43
Story 12	175.0	11.3	5.9	4 0.90 Eq (H1-1a)		50	W14X43
Story 11	228.4	11.1	5.7	4 0.99 Eq (H1-1a)		50	W14X48
Story 10	281.4	11.0	6.5	4 0.79 Eq (H1-1a)		50	W14X61
Story 9	336.6	11.0	6.5	4 0.93 Eq (H1-1a)		50	W14X61
Story 8	392.9	11.0	6.5	4 0.95 Eq (H1-1a)		50	W14X68
Story 7	449.3	11.1	6.5	4 0.98 Eq (H1-1a)		50	W14X74
Story 6	505.7	11.2	6.5	4 0.99 Eq (H1-1a)	90.0	50	W14X82
Story 5	562.3	11.0	8.4	4 0.86 Eq (H1-1a)	90.0	50	W14X90
Story 4	618.9	11.0	8.4	4 0.94 Eq (H1-1a)	90.0	50	W14X90
Story 3	675.6	11.1	8.4	4 0.93 Eq (H1-1a)	90.0	50	W14X99
Story 2	732.4	13.6	10.3	4 0.92 Eq (H1-1a)	90.0	50	W14X109
Base	790.4	9.0	6.1	1 0.92 Eq (H1-1a)	90.0	50	W14X132
Column Line 7-E							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fv	Size
Story 14	147.2	9.7	16.4	3 0.99 Eq (H1-1a)	0.0	50	W14X43
Story 13	280.3	8.7	8.9	3 0.81 Eq (H1-1a)	0.0	50	W14X61
Story 12	414.2	8.5	8.8	3 0.92 Eq (H1-1a)	0.0	50	W14X74
		0.0	0.0				

Hubben						Ad	lvisor: Dr. Ali
Story Academic L	icense-Net 1	ForCom	mercial	USP. 0.86 Eq (H1-1a)	0.0	50	W14X90
Story 10	691.1	8.5	11.5	3 0.96 Eq (H1-1a)	0.0	50	W14X90 W14X99
Story 9	829.9	8.6	11.4	3 0.93 Eq (H1-1a)	0.0	50	W14X120
Story 8	968.9	8.7	11.4	3 0.98 Eq (H1-1a)	0.0	50	W14X120
Story 7	1108.2	8.9	12.0	3 0.91 Eq (H1-1a)	0.0	50	W14X152 W14X159
Story 6	1247.6	9.0	12.0	3 0.92 Eq (H1-1a)	0.0	50	W14X176
Story 5	1387.3	9.1	12.0	3 0.93 Eq (H1-1a)	0.0	50	W14X193
Story 4	1527.2	9.2	12.0	3 0.93 Eq (H1-1a)	0.0	50	W14X195
Story 3	1667.4	9.2	12.1	3 0.92 Eq (H1-1a)	0.0	50	
Story 2	1807.9	11.5	14.8	4 0.91 Eq (H1-1a)	0.0	50	
Base	1950.6	0.2	9.6	1 0.99 Eq (H1-1a)	0.0	50	W14X287 W14X283
Column Line 7-W							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	139.0	12.0	15.4	3 0.95 Eq (H1-1a)	0.0	50	W14X43
Story 13	263.0	11.0	8.3	3 0.77 Eq (H1-1a)	0.0	50	W14X61
Story 12	388.7	10.7	8.2	3 0.95 Eq (H1-1a)	0.0	50	W14X68
Story 11	518.6	10.7	10.6	3 0.81 Eq (H1-1a)	0.0	50	W14X90
Story 10	648.6	10.7	10.6	3 0.99 Eq (H1-1a)	0.0	50	W14X90
Story 9	778.8	10.9	10.7	3 0.97 Eq (H1-1a)	0.0	50	W14X109
Story 8	909.3	11.1	10.7	3 0.93 Eq (H1-1a)	0.0	50	W14X132
Story 7	1039.9	11.1	11.2	3 0.94 Eq (H1-1a)	0.0	50	W14X145
Story 6	1170.7	11.2	11.2	3 0.97 Eq (H1-1a)	0.0	50	W14X159
Story 5	1301.7	11.4	11.3	3 0.96 Eq (H1-1a)	0.0	50	W14X176
Story 4	1432.9	11.5	11.3	3 0.96 Eq (H1-1a)	0.0	50	W14X193
Story 3	1564.4	11.6	11.3	3 0.96 Eq (H1-1a)	0.0	50	
Story 2	1696.1	14.4	13.9	3 0.94 Eq (H1-1a)	0.0	50	W14X233
Base	1830.3	2.2	9.0	1 0.93 Eq (H1-1a)	0.0	50	W14X283
Column Line 8-P							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	54.6	16.3	17.9	1 0.68 Eq (H1-1a)	90.0	50	W14X43
Story 13	100.6	7.5	8.2	1 0.62 Eq (H1-1a)	90.0	50	W14X43
Story 12	145.1	7.2	7.9	1 0.80 Eq (H1-1a)	90.0	50	W14X43
Story 11	188.8	7.0	7.7	1 0.97 Eq (H1-1a)	90.0	50	W14X43
Story 10	232.3	7.0	7.7	1 0.91 Eq (H1-1a)	90.0	50	W14X53
Story 9	275.4	6.9	8.7	1 0.79 Eq (H1-1a)	90.0	50	W14X61
Story 8	320.1	6.8	8.6	1 0.90 Eq (H1-1a)	90.0	50	W14X61
Story 7	366.1	6.9	8.6	1 0.90 Eq (H1-1a)	90.0	50	W14X68
Story 6	412.1	6.9	8.6	1 1.00 Eq (H1-1a)	90.0	50	W14X68
Story 5	458.2	7.0	8.7	1 0.91 Eq (H1-1a)	90.0	50	W14X82
Story 4	504.3	7.0	8.7	1 0.99 Eq (H1-1a)	90.0	50	W14X82
Story 3	550.5	6.9	11.2	1 0.85 Eq (H1-1a)	90.0	50	W14X90
Story 2	596.8	8.4	13.7	1 0.93 Eq (H1-1a)	90.0	50	W14X90
Base	644.0	5.5	9.1	1 0.93 Eq (H1-1a)	90.0	50	W14X109

olumn Line 8-T							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	51.2	16.2	11.6	10 0.53 Eq (H1-1a)	90.0	50	W14X43
Story 13	105.3	7.4	5.3	4 0.58 Eq (H1-1a)	90.0	50	W14X43
Story 12	152.0	7.2	5.0	4 0.77 Eq (H1-1a)	90.0	50	W14X43
Story 11	198.0	7.0	4.9	4 0.95 Eq (H1-1a)	90.0	50	W14X43
Story 10	243.6	6.9	4.8	4 0.91 Eq (H1-1a)	90.0	50	W14X53
Story 9	288.9	6.9	5.4	4 0.79 Eq (H1-1a)	90.0	50	W14X61
Story 8	336.9	6.8	5.4	4 0.90 Eq (H1-1a)	90.0	50	W14X61
Story 7	385.2	6.9	5.4	4 0.91 Eq (H1-1a)	90.0	50	W14X68
Story 6	433.7	7.0	5.5	4 0.93 Eq (H1-1a)	90.0	50	W14X74
Story 5	482.2	7.0	5.5	4 0.93 Eq (H1-1a)	90.0	50	W14X82
Story 4	530.8	6.9	7.1	4 0.80 Eq (H1-1a)	90.0	50	W14X90
Story 3	579.4	6.9	7.1	4 0.87 Eq (H1-1a)	90.0	50	W14X90
Story 2	628.1	8.4	8.6	4 0.95 Eq (H1-1a)	90.0	50	W14X90
Base	677.6	5.5	4.5	1 0.96 Eq (H1-1a)	90.0	50	W14X10
olumn Line 9-P							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	53.3	16.2	17.3	1 0.66 Eq (H1-1a)	90.0	50	W14X43
Story 13	98.0	7.4	7.9	1 0.60 Eq (H1-1a)	90.0	50	W14X43
Story 12	141.3	7.1	7.6	1 0.78 Eq (H1-1a)	90.0	50	W14X43
Story 11	183.8	6.9	7.5	1 0.95 Eq (H1-1a)	90.0	50	W14X43
Story 10	226.0	6.9	7.3	1 0.99 Eq (H1-1a)	90.0	50	W14X48
Story 9	268.0	6.8	8.3	1 0.77 Eq (H1-1a)	90.0	50	W14X61
Story 8	310.9	6.8	8.3	1 0.87 Eq (H1-1a)	90.0	50	W14X61
Story 7	355.5	6.8	8.3	1 0.98 Eq (H1-1a)	90.0	50	W14X61
Story 6	400.1	6.8	8.3	1 0.97 Eq (H1-1a)	90.0	50	W14X68
Story 5	444.9	6.9	8.4	1 0.97 Eq (H1-1a)	90.0	50	W14X74
Story 4	489.7	6.9	8.4	1 0.96 Eq (H1-1a)	90.0	50	W14X82
Story 3	534.6	6.8	10.8	1 0.83 Eq (H1-1a)	90.0	50	W14X90
Story 2	579.5	8.3	13.1	1 0.90 Eq (H1-1a)	90.0	50	W14X90
Base	625.2	5.4	9.3	1 1.00 Eq (H1-1a)	90.0	50	W14X99
olumn Line 9-T							
Level	Р	Mx	Mv	LC Interaction Eq.	Angle	Fy	Size
Story 14	52.0	16.2	7.9	1 0.46 Eq (H1-1a)	90.0	50	W14X43
Story 13	95.5	7.4	4.8	4 0.53 Eq (H1-1a)	90.0	50	W14X43
Story 12	137.6	7.1	4.5	4 0.70 Eq (H1-1a)	90.0	50	W14X43
Story 11	179.1	7.0	4.4	4 0.86 Eq (H1-1a)	90.0	50	W14X43
Story 10	220.1	6.9	4.3	4 0.91 Eq (H1-1a)	90.0	50	W14X48
	260.9	6.8	4.3	4 0.95 Eq (H1-1a)	90.0	50	W14X53
Storv 9							
Story 9 Story 8		68	48	4 0.81 Eq (H1-1a)	90.0	50	W14X61
Story 9 Story 8 Story 7	302.0 345.4	6.8 6.8	4.8 4.8	4 0.81 Eq (H1-1a) 4 0.92 Eq (H1-1a)	90.0 90.0	50 50	W14X61 W14X61

Advisor:	Dr.	Ali	Memari
----------	-----	-----	--------

Academic L	teense Not	For Com	merchai				
				1Use 0.92 Eq (H1-1a)	90.0	50	W14X74
Story 4	475.8	6.9	4.9	4 0.91 Eq (H1-1a)	90.0	50	W14X82
Story 3	519.4	6.9	4.9	• • • •	90.0	50	W14X82
Story 2	563.0	8.3	7.7	4 0.85 Eq (H1-1a)	90.0		W14X90
Base	607.5	5.4	4.2	1 0.95 Eq (H1-1a)	90.0	50	W14X99
olumn Line 11-P							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	86.0	13.0	37.4	1 0.94 Eq (H1-1a)	90.0	50	W14X53
Story 13	160.8	6.0	17.5	1 0.93 Eq (H1-1a)	90.0	50	W14X48
Story 12	233.8	5.9	19.5	1 0.80 Eq (H1-1a)	90.0	50	W14X61
Story 11	306.7	5.8	19.1	1 0.97 Eq (H1-1a)	90.0	50	W14X61
Story 10	383.6	5.9	19.3	1 0.95 Eq (H1-1a)	90.0	50	W14X74
Story 9	460.6	5.9	19.3	1 1.00 Eq (H1-1a)	90.0	50	W14X82
Story 8	537.7	5.8	24.9	1 0.90 Eq (H1-1a)	90.0	50	W14X90
Story 7	614.9	5.9	25.0	1 0.91 Eq (H1-1a)	90.0	50	W14X99
Story 6	692.2	5.9	25.0	1 0.92 Eq (H1-1a)	90.0	50	W14X109
Story 5	769.7	5.9	25.1	1 0.91 Eq (H1-1a)	90.0	50	W14X120
Story 4	847.1	5.9	25.1	1 0.99 Eq (H1-1a)	90.0	50	W14X120
Story 3	924.7	6.0	25.1	1 0.98 Eq (H1-1a)	90.0	50	W14X132
Story 2	1002.5	7.3	31.8	1 0.96 Eq (H1-1a)	90.0	50	W14X145
Base	1081.9	4.8	20.7	1 0.93 Eq (H1-1a)	90.0	50	W14X176
olumn Line 11-T							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	80.8	12.3	24.1	6 0.89 Eq (H1-1a)	90.0	50	W14X43
Story 13	175.4	5.7	11.1	2 0.98 Eq (H1-1a)	90.0	50	W14X43
Story 12	255.6	5.6	12.3	2 0.77 Eq (H1-1a)	90.0	50	W14X61
Story 11	337.5	5.6	12.2	2 0.97 Eq (H1-1a)	90.0	50	W14X61
Story 10	422.1	5.7	12.3	2 0.96 Eq (H1-1a)	90.0	50	W14X74
Story 9	506.9	5.6	15.8	2 0.81 Eq (H1-1a)	90.0	50	W14X90
Story 8	591.7	5.6	15.8	2 0.93 Eq (H1-1a)	90.0	50	W14X90
Story 7	676.7	5.7	15.9	2 0.95 Eq (H1-1a)	90.0	50	W14X99
Story 6	761.8	5.7	15.9	2 0.96 Eq (H1-1a)	90.0	50	W14X109
Story 5	846.9	5.7	16.0	2 0.96 Eq (H1-1a)	90.0	50	W14X120
Story 4	932.3	5.8	16.0	2 0.96 Eq (H1-1a)	90.0		W14X132
Story 3	1017.8	5.8	16.7	2 0.93 Eq (H1-1a)	90.0	50	W14X145
Story 2	1103.5	7.2	20.4	3 0.93 Eq (H1-1a)	90.0	50	W14X159
	1190.6	4.7	9.8	1 1.00 Eq (H1-1a)	90.0	50	W14X176
Base			2.0	·	20.0		
Base							
Column Line 12-G	ъ	16-	16	LC Interaction F	Angle	E-	Ci
Column Line 12-G Level	Р	Mx	-	LC Interaction Eq.	-	Fy	Size
Column Line 12-G Level Story 14	142.9	10.1	15.0	2 0.95 Eq (H1-1a)	0.0	50	W14X43
Column Line 12-G Level			-	-	-	-	

Carl	Hubben
Curr	nubben

Story ff	License Not	rorgon	imerciai	Use 0.83 Eq (H1-1a)	0.0	50	W14X90
Story 10	670.7	8.9	10.4	2 0.93 Eq (H1-1a)	0.0	50	W14X99
Story 9	805.3	9.0	10.4	2 1.00 Eq (H1-1a)	0.0	50	W14X109
Story 8	940.2	9.2	10.4	2 0.95 Eq (H1-1a)	0.0	50	W14X132
Story 7	1075.2	9.2	10.9	2 0.97 Eq (H1-1a)	0.0	50	W14X145
Story 6	1210.4	9.3	10.9	2 0.99 Eq (H1-1a)	0.0	50	W14X159
Story 5	1345.8	9.4	11.0	2 0.99 Eq (H1-1a)	0.0	50	W14X176
Story 4	1481.4	9.6	11.0	2 0.99 Eq (H1-1a)	0.0	50	W14X193
Story 3	1617.3	9.6	11.0	2 0.99 Eq (H1-1a)	0.0	50	W14X211
Story 2	1753.4	11.9	13.5	5 0.97 Eq (H1-1a)	0.0	50	W14X233
Base	1892.0	0.8	8.8	1 0.96 Eq (H1-1a)	0.0	50	W14X283
Column Line 12-W							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	140.2	11.1	16.6	2 0.98 Eq (H1-1a)	0.0	50	W14X43
Story 13	265.1	10.0	9.0	2 0.78 Eq (H1-1a)	0.0	50	W14X61
Story 12	392.0	9.7	8.8	2 0.97 Eq (H1-1a)	0.0	50	W14X68
Story 11	523.1	9.7	11.5	2 0.82 Eq (H1-1a)	0.0	50	W14X90
Story 10	654.3	9.9	11.5	2 0.91 Eq (H1-1a)	0.0	50	W14X99
Story 9	785.6	9.9	11.5	2 0.98 Eq (H1-1a)	0.0	50	W14X109
Story 8	917.1	10.1	11.6	2 0.93 Eq (H1-1a)	0.0	50	W14X132
Story 7	1048.9	10.2	12.1	2 0.95 Eq (H1-1a)	0.0	50	W14X145
Story 6	1180.8	10.3	12.1	2 0.97 Eq (H1-1a)	0.0	50	W14X159
Story 5	1312.9	10.4	12.2	2 0.97 Eq (H1-1a)	0.0	50	W14X176
Story 4	1445.2	10.5	12.2	2 0.97 Eq (H1-1a)	0.0	50	W14X193
Story 3	1577.8	10.6	12.2	2 0.97 Eq (H1-1a)	0.0	50	W14X211
Story 2	1710.6	13.1	15.0	2 0.95 Eq (H1-1a)	0.0	50	W14X233
Base	1846.0	1.2	9.7	1 0.94 Eq (H1-1a)	0.0	50	W14X283
Column Line 13-Q							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	72.9	7.7	25.7	10 0.87 Eq (H1-1a)	90.0	50	W14X43
Story 13	154.8	3.6	11.9	4 0.90 Eq (H1-1a)	90.0	50	W14X43
Story 12	225.0	3.5	11.5	4 0.94 Eq (H1-1a)	90.0	50	W14X53
Story 11	294.4	3.4	12.9	4 0.87 Eq (H1-1a)	90.0	50	W14X61
Story 10	368.2	3.5	12.9	4 0.93 Eq (H1-1a)	90.0	50	W14X68
Story 9	442.0	3.5	13.0	4 1.00 Eq (H1-1a)	90.0	50	W14X74
Story 8	516.1	3.5	16.7	4 0.82 Eq (H1-1a)	90.0	50	W14X90
Story 7	590.2	3.5	16.7	4 0.93 Eq (H1-1a)	90.0	50	W14X90
Story 6	664.4	3.5	16.8	4 0.93 Eq (H1-1a)	90.0	50	W14X99
Story 5	738.7	3.5	16.8	4 0.93 Eq (H1-1a)	90.0	50	W14X109
Story 4	813.2	3.6	16.9	4 0.93 Eq (H1-1a)	90.0	50	W14X120
Story 3	887.8	3.6	16.9	4 0.91 Eq (H1-1a)	90.0	50	W14X132
Story 2	962.3	4.4	20.6	5 1.00 Eq (H1-1a)	90.0	50	W14X132
Base	1038.3	2.9	11.2	1 0.97 Eq (H1-1a)	90.0	50	W14X159

Academic L	icense. Not	For Con	mercia	l Use.			
Column Line 13-S Level	Р	Mx	Ma	LC Interaction Eq.	Angle	Fy	Size
Story 14	84.6	8.4	39.8	1 0.96 Eq (H1-1a)	90.0	50	W14X53
Story 13	158.1	3.9	18.6	1 0.93 Eq (H1-1a)	90.0	50	W14X33
Story 12	229.9	3.8	20.7	1 0.80 Eq (H1-1a)	90.0	50	W14X61
Story 12 Story 11	301.0	3.7	20.7	1 0.80 Eq (H1-1a) 1 0.97 Eq (H1-1a)	90.0	50	W14X61 W14X61
		3.8	20.5	• • •			
Story 10	376.5			1 0.94 Eq (H1-1a)	90.0	50	W14X74
Story 9	452.1	3.8	20.5	1 0.99 Eq (H1-1a)	90.0	50	W14X82
Story 8	527.7	3.8	26.4	1 0.88 Eq (H1-1a)	90.0	50	W14X90
Story 7	603.4	3.8	26.4	1 0.99 Eq (H1-1a)	90.0	50	W14X90
Story 6	679.2	3.8	26.5	1 1.00 Eq (H1-1a)	90.0	50	W14X99
Story 5	755.1	3.8	26.5	1 0.99 Eq (H1-1a)	90.0	50	W14X109
Story 4	831.1	3.8	26.7	1 0.98 Eq (H1-1a)	90.0	50	W14X120
Story 3	907.3	3.9	26.7	1 0.96 Eq (H1-1a)	90.0	50	W14X132
Story 2	983.7	4.8	33.8	1 0.95 Eq (H1-1a)	90.0	50	W14X145
Base	1061.6	3.1	22.0	1 0.92 Eq (H1-1a)	90.0	50	W14X176
Column Line 14-Q							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	82.5	54.8	6.3	1 0.75 Eq (H1-1a)	90.0	50	W14X43
Story 13	154.3	25.6	2.9	1 0.83 Eq (H1-1a)	90.0	50	W14X43
Story 12	224.5	25.0	2.8	1 0.99 Eq (H1-1a)	90.0	50	W14X48
Story 11	293.9	24.7	3.2	1 0.84 Eq (H1-1a)	90.0	50	W14X61
Story 10	366.0	24.7	3.2	1 0.90 Eq (H1-1a)	90.0	50	W14X68
Story 9	439.5	25.0	3.2	1 0.97 Eq (H1-1a)	90.0	50	W14X74
Story 8	513.2	24.7	4.1	1 0.80 Eq (H1-1a)	90.0	50	W14X90
Story 7	586.8	24.7	4.1	1 0.91 Eq (H1-1a)	90.0	50	W14X90
Story 6	660.6	25.0	4.2	1 0.92 Eq (H1-1a)	90.0	50	W14X99
Story 5	734.5	25.1	4.2	1 0.92 Eq (H1-1a)	90.0	50	W14X109
Story 4	808.6	25.3	4.2	1 0.92 Eq (H1-1a)	90.0	50	W14X109
Story 3	882.6	25.3	4.2	1 0.99 Eq (H1-1a)	90.0	50	W14X120
Story 2	956.8	31.1	5.1	1 0.99 Eq (H1-1a) 1 0.98 Eq (H1-1a)	90.0	50	W14X120
Base	1032.3	20.4	3.4	1 0.98 Eq (H1-1a) 1 0.97 Eq (H1-1a)	90.0	50	W14X152 W14X159
Dase	1032.3	20.4	5.4	1 0.97 Eq (111-1a)	90.0	50	W14A109
olumn Line 14-S							
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	188.6	44.8	64.5	12 0.97 Eq (H1-1a)	90.0	50	W14X82
Story 13	382.2	20.3	29.9	3 0.98 Eq (H1-1a)	90.0	50	W14X82
Story 12	573.5	20.2	38.8	3 0.95 Eq (H1-1a)	90.0	50	W14X99
Story 11	765.0	20.5	39.0	3 0.98 Eq (H1-1a)	90.0	50	W14X120
Story 10	956.9	20.9	40.6	3 0.96 Eq (H1-1a)	90.0	50	W14X145
•	1149.1	21.3	41.0	3 0.93 Eq (H1-1a)	90.0	50	W14X176
Story 9							
Story 9 Story 8		21.6	41.0	3 0.97 Eq.(H1-1a)	90.0	50	W14X193
Story 9 Story 8 Story 7	1341.6 1534.5	21.6 22.1	41.0 41.4	3 0.97 Eq (H1-1a) 3 0.91 Eq (H1-1a)	90.0 90.0	50 50	W14X193 W14X233

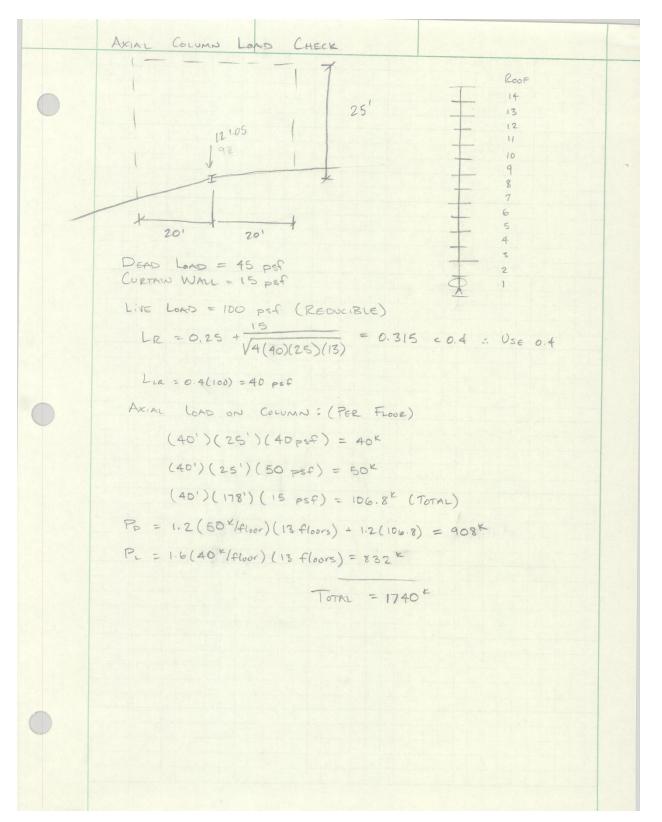
<u> </u>	I			I	_
La	arı	H	up	ber	1

Advisor: Dr. Ali Memari

Story Scademic L	icense ingt	rorzegm	marcan	USF. 0.91 Eq (H1-1a)	90.0	50	W14X283
Story 4	2114.9	22.9	41.8	3 1.00 Eq (H1-1a)	90.0	50	W14X283
Story 3	2308.8	23.3	42.0	3 0.99 Eq (H1-1a)	90.0	50	W14X311
Story 2	2503.1	28.8	51.5	3 0.97 Eq (H1-1a)	90.0	50	W14X342
Base	2700.8	13.5	33.5	1 0.98 Eq (H1-1a)	90.0	50	W14X398
Column Line 15-I							
Level	Р	Mx	Mr	LC Interaction Eq.	Angle	E.	Size
Story 14	181.8	19.3	19.4	2 0.99 Eq (H1-1a)	Angle 0.0	Fy 50	W14X53
Story 13	341.9	17.5	10.3	2 0.99 Eq (H1-1a) 2 0.90 Eq (H1-1a)	0.0	50	W14X55 W14X68
Story 12	511.2	17.4	13.4	2 0.83 Eq (H1-1a)	0.0	50	W14X90
Story 11	681.9	17.4	13.4		0.0	50	W14X99
Story 10	852.9	17.8	13.4	2 0.97 Eq (H1-1a) 2 0.98 Eq (H1-1a)	0.0	50	W14X120
2	1024.2	17.8	13.5		0.0	50	W14X145
Story 9	1024.2	18.1	14.1	2 0.95 Eq (H1-1a)	0.0	50	W14X176
Story 8				2 0.90 Eq (H1-1a)			
Story 7	1367.8	18.7	14.2	2 0.93 Eq (H1-1a)	0.0	50	W14X193
Story 6	1539.9	18.9	14.3	2 0.96 Eq (H1-1a)	0.0	50	W14X211
Story 5	1712.3	19.2	14.3	2 0.96 Eq (H1-1a)	0.0	50	W14X233
Story 4	1885.0	19.6	14.4	2 0.95 Eq (H1-1a)	0.0	50	W14X257
Story 3	2058.0	19.8	14.5	2 0.94 Eq (H1-1a)	0.0	50	W14X283
Story 2	2231.3	24.6	17.7	5 0.93 Eq (H1-1a)	0.0	50	W14X311
Base	2407.9	8.1	11.6	1 0.92 Eq (H1-1a)	0.0	50	W14X370
Column Line 15-W							
Column Line 15-W Level	Р	Mx	Му	LC Interaction Eq.	Angle	Fy	Size
	Р 146.1	Mx 10.4	Му 17.6	LC Interaction Eq. 3 0.90 Eq (H1-1a)	Angle 0.0	Fy 50	Size W14X48
Level				-	-	-	
Level Story 14	146.1	10.4	17.6	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a)	0.0	50	W14X48
Level Story 14 Story 13	146.1 275.5	10.4 9.2	17.6 9.5	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a)	0.0 0.0	50 50	W14X48 W14X61
Level Story 14 Story 13 Story 12 Story 11	146.1 275.5 408.4	10.4 9.2 9.1	17.6 9.5 9.4	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.85 Eq (H1-1a)	0.0 0.0 0.0	50 50 50	W14X48 W14X61 W14X74
Level Story 14 Story 13 Story 12 Story 11 Story 10	146.1 275.5 408.4 544.8 681.4	10.4 9.2 9.1 9.0	17.6 9.5 9.4 12.1 12.2	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.85 Eq (H1-1a) 3 0.95 Eq (H1-1a)	0.0 0.0 0.0 0.0	50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9	146.1 275.5 408.4 544.8	10.4 9.2 9.1 9.0 9.1	17.6 9.5 9.4 12.1	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.85 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8	146.1 275.5 408.4 544.8 681.4 818.3 955.3	10.4 9.2 9.1 9.0 9.1 9.3 9.4	17.6 9.5 9.4 12.1 12.2 12.2 12.2	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.97 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.2 12.7	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.6	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X132 W14X132 W14X145 W14X176
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.6 9.7	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X132 W14X132 W14X145 W14X176 W14X193
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.6 9.7 9.8	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.91 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211 W14X233
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0 12.1	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 12.9 13.0 15.8	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.91 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211 W14X233
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0 12.1	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 12.9 13.0 15.8	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 17-R	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1 1922.9	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0 12.1 0.0	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 12.9 13.0 15.8 10.3	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a) 1 0.97 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X132 W14X145 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233 W14X233
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 17-R Level	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1 1922.9 P	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0 12.1 0.0 Mx	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0 15.8 10.3	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.99 Eq (H1-1a) 1 0.97 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233 W14X233 W14X283
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 17-R Level Story 14	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1 1922.9 P 193.6	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.6 9.7 9.8 10.0 12.1 0.0 Mx 98.9	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0 15.8 10.3 My 40.1	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a) 1 0.97 Eq (H1-1a) LC Interaction Eq. 16 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233 W14X233 W14X283
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 17-R Level Story 14 Story 13	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1 1922.9 P 193.6 361.5	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.4 9.6 9.7 9.8 10.0 12.1 0.0 12.1 0.0 Mx 98.9 45.7	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0 15.8 10.3 My 40.1 18.6	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a) 1 0.97 Eq (H1-1a) 4 0.92 Eq (H1-1a) 4 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233 W14X233 W14X283 Size W14X82 W14X82
Level Story 14 Story 13 Story 12 Story 11 Story 10 Story 9 Story 8 Story 7 Story 6 Story 5 Story 4 Story 3 Story 2 Base Column Line 17-R Level Story 14	146.1 275.5 408.4 544.8 681.4 818.3 955.3 1092.4 1230.0 1367.7 1505.7 1643.9 1782.1 1922.9 P 193.6	10.4 9.2 9.1 9.0 9.1 9.3 9.4 9.4 9.6 9.7 9.8 10.0 12.1 0.0 Mx 98.9	17.6 9.5 9.4 12.1 12.2 12.2 12.2 12.7 12.9 12.9 12.9 13.0 15.8 10.3 My 40.1	3 0.90 Eq (H1-1a) 3 0.80 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.95 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.97 Eq (H1-1a) 3 0.91 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.92 Eq (H1-1a) 3 0.99 Eq (H1-1a) 3 0.99 Eq (H1-1a) 1 0.97 Eq (H1-1a) LC Interaction Eq. 16 0.92 Eq (H1-1a)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	W14X48 W14X61 W14X74 W14X90 W14X99 W14X120 W14X120 W14X132 W14X145 W14X145 W14X176 W14X193 W14X211 W14X233 W14X233 W14X233 W14X283

20
45
59
93
11
33
57
83
11
42
98
3
3
3
1
8
4
0
0
9
09
09
20
32
59
3
3
3
1
8
4
0
0
9
09
09
20
32
59

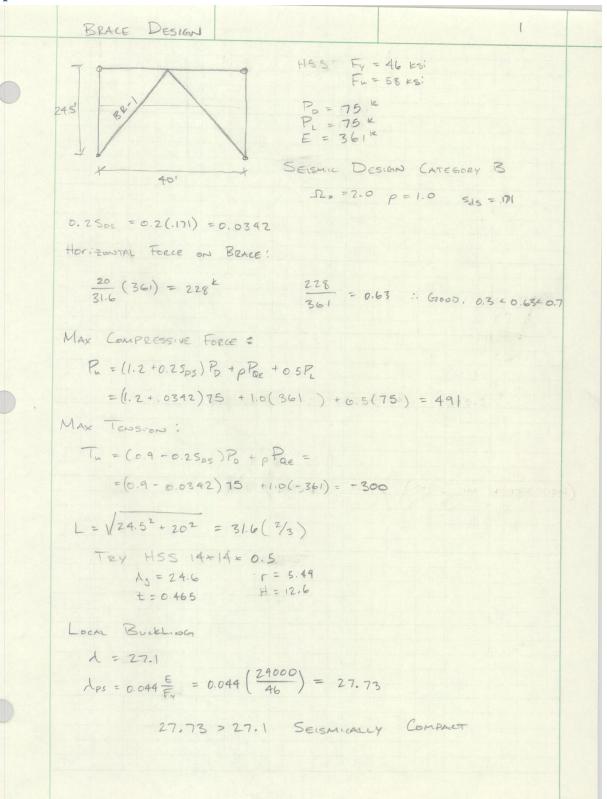
Advisor: Dr. Ali Memari


Advisor: Dr. Ali Memari

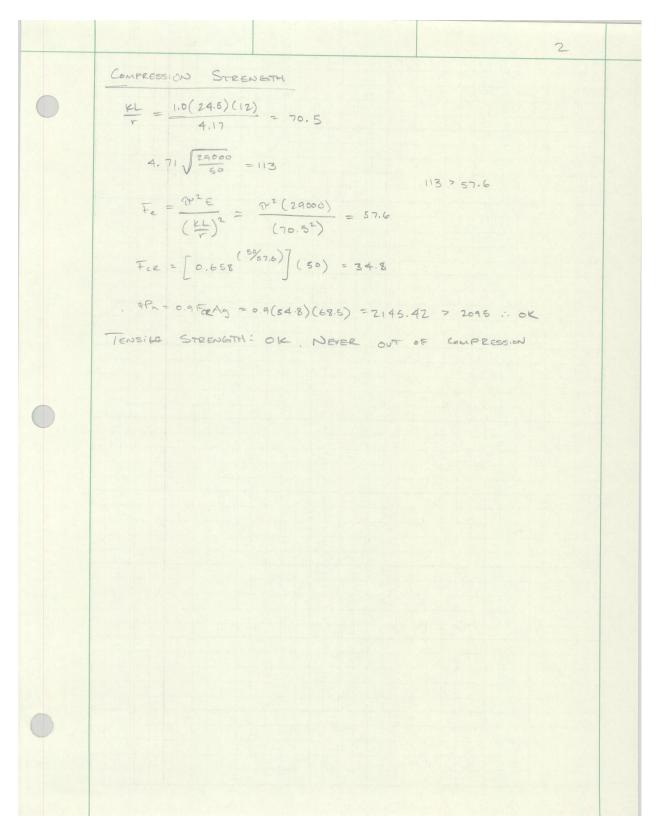
Academic L Column Line 18-K	license. Not l	For Com	mercia	Use.			
Level	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
Story 14	108.1	16.1	53.4	1 0.90 Eq (H1-1a)	90.0	50	W14X61
Story 13	203.7	7.7	25.3	1 0.80 Eq (H1-1a)	90.0	50	W14X61
Story 12	297.5	7.5	24.6	1 0.91 Eq (H1-1a)	90.0	50	W14X68
Story 11	390.6	7.6	24.4	1 0.92 Eq (H1-1a)	90.0	50	W14X82
Story 10	488.0	7.4	31.5	1 0.86 Eq (H1-1a)	90.0	50	W14X90
Story 9	585.6	7.5	31.7	1 0.91 Eq (H1-1a)	90.0	50	W14X99
Story 8	683.4	7.6	31.7	1 0.93 Eq (H1-1a)	90.0	50	W14X109
Story 7	781.3	7.6	31.9	1 0.95 Eq (H1-1a)	90.0	50	W14X120
Story 6	879.3	7.7	31.9	1 0.96 Eq (H1-1a)	90.0	50	W14X132
Story 5	977.5	7.8	33.1	1 0.94 Eq (H1-1a)	90.0	50	W14X145
Story 4	1075.8	7.8	33.3	1 0.94 Eq (H1-1a)	90.0	50	W14X159
Story 3	1174.4	7.9	33.5	1 0.92 Eq (H1-1a)	90.0	50	W14X176
Story 2	1273.2	9.8	40.7	1 0.91 Eq (H1-1a)	90.0	50	W14X193
Base	1373.6	6.4	26.4	1 0.98 Eq (H1-1a)	90.0	50	W14X211
Column Line 18-Q							
Level	Р	Mx	Mv	LC Interaction Eq.	Angle	Fy	Size
Story 14	30.4	18.4	1.6	12 0.21 Eq (H1-1b)	90.0	50	W14X43
Story 13	57.9	8.4	0.8	3 0.30 Eq (H1-1a)	90.0	50	W14X43
Story 12	83.4	8.0	0.7	3 0.40 Eq (H1-1a)	90.0	50	W14X43
Story 11	108.5	7.8	0.7	3 0.50 Eq (H1-1a)	90.0	50	W14X43
Story 10	133.3	7.6	0.7	3 0.60 Eq (H1-1a)	90.0	50	W14X43
Story 9	157.9	7.5	0.7	3 0.70 Eq (H1-1a)	90.0	50	W14X43
Story 8	182.4	7.4	0.7	3 0.80 Eq (H1-1a)	90.0	50	W14X43
Story 7	206.7	7.4	0.7	3 0.90 Eq (H1-1a)	90.0	50	W14X43
Story 6	231.0	7.3	0.7	3 0.89 Eq (H1-1a)	90.0	50	W14X48
Story 5	255.2	7.3	0.7	3 0.98 Eq (H1-1a)	90.0	50	W14X48
Story 4	279.5	7.3	0.7	3 0.96 Eq (H1-1a)	90.0	50	W14X53
Story 3	303.7	7.2	0.8	3 0.77 Eq (H1-1a)	90.0	50	W14X61
Story 2	327.9	8.8	0.9	4 0.84 Eq (H1-1a)	90.0	50	W14X61
Base	352.9	5.5	1.2	1 0.93 Eq (H1-1a)	90.0	50	W14X82

Hand Calculations:

Technical Report 3


Carl Hubben

	P
	* Amax = 0.12 in Deflection
	$M = P_{D} = 2025^{k} (.12/12) = 20.25 fd - k$
	191 STRONG AXIS BENDING
	$COLUMN 5.2E = 14 \times 342$
	$P_r = 2025$
	$P_{c} = 3680$
	$\frac{P_{-}}{P_{c}} = \frac{2025}{3680} = .55^{\circ} > 0.2 \therefore \text{HI-Ia}$
	$\frac{P_{r}}{P_{c}} + \frac{8}{9} \left(\frac{M_{r_{c}}}{M_{cx}} \right) \leq 1.0 \qquad M_{cx} = 1060$
	$\frac{2025}{3680} + \frac{8}{9} \left(\frac{20}{1060} \right) = 0.55 + 0.0168 = 0.567 i. Grood$
	P-D HAS MINIMAL EFFELT ON BEAM DESIGN
0-	


Advisor: Dr. Ali Memari

Appendix D:

SLENDERNESS:	
$\frac{KL}{r} \leq 4.0\sqrt{\frac{E}{F_Y}} = 115 \qquad K = 1.0 \qquad \text{Conversion}$	•
$\frac{KL}{r} = \frac{1.0(31.6)(12)}{5.49} = 70$ 70 2115 :: (2000)	
COMPRESSIVE STRENGTH: $4.71\sqrt{\frac{E}{F_y}} = 136$	
$F_{ce} = \left[0.668^{F/F_e} \right] F_y = 0.658^{46/58.4} \left(46 \right) = 33.1$ $T = \frac{7^2 E}{7^2 E} = 17^2 (29000)$	
$F_{e} = \frac{\pi^{2} E}{\left(\frac{EL}{F}\right)^{2}} = \frac{11^{2} (29000)}{(70^{2})} = 58.4$ +P_{n} = 0.9(33.1)(24.6) = 732	
732 > 491 : OK TENSION STRENGTH OF BRACE :	
$ \Phi P_n = 0.9 F_y A_g $ = 0.9(46)(24.6)=1018 1018 > 300 OK	

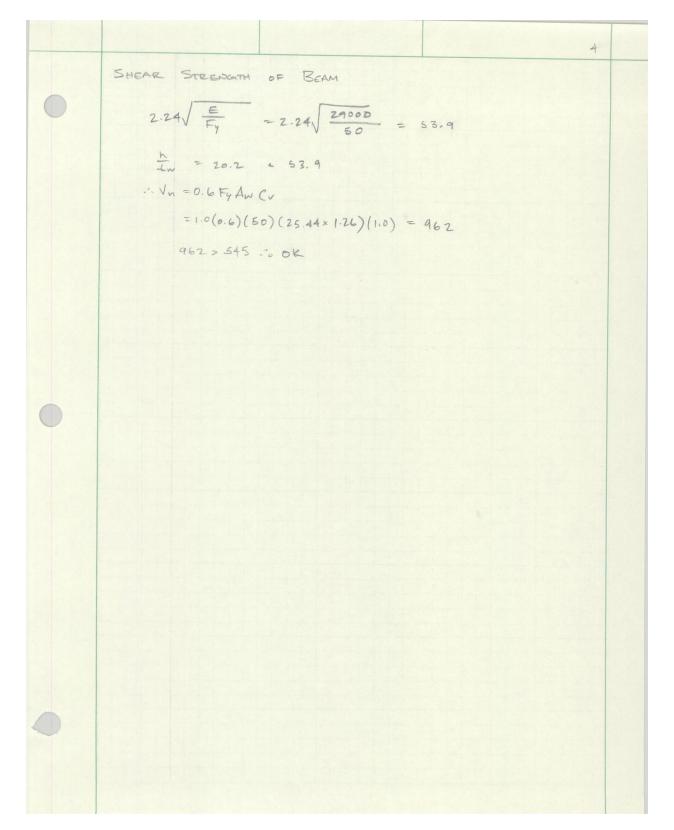
COLUMN T	DESIGN		
Po = 1000 K			
$P_{L} = 1000^{K}$ $P_{RE} = 361$			
MAX Compres	ssive Frece:		
= 1-2	2 + 0.2505) Po + p Per +0 542(1000) +361 + 0.5(100	.6P. 00) - 2095 K	
MAX TENSU	on ;		
$\overline{I}_{M} = (0)$ $= 50$	9-0.2505) B + PPOE 05 (comp)		
TRY WI4×2			
$A_{0} = r_{x} = r_{y} = r_{y}$	= 68.S $d = 16.0= 6.79 t_w = 1.07= 4.17$	$b_f = 15.9$ $d_f = 1.72$	
CHECK SLEN	DEENESS :		
$kf = \frac{bf}{2tf}$	$=\frac{15.9}{2(1.72)}=4.62$		
	$\frac{E}{F_{\gamma}} = 0.3 \sqrt{\frac{29000}{50}}$		
	7.22 74.62 : SEISMILA		
	$= \frac{d-2t_f}{t_w} = \frac{16-2(1.7)}{1.07}$		
$C_{a} = \frac{P_{u}}{\phi_{b} P_{y}}$	$= \frac{P_{u}}{0.9 \text{Fy} \text{Ag}} = \frac{2095}{0.9 (50) (6)}$	8.5) = 0.679 ≥ (0.125
2 = 1.12	$2\sqrt{\frac{\varepsilon}{F_y}}\left(2.33-C_A\right) \ge 1.4$	$49\sqrt{\frac{E}{F_y}} = 35.88$	
	$\sqrt{\frac{20000}{50}}$ (2.33679)		
	47.7 > 35.88		
	1, elps in WEB	SEISMICHLY Comp	ACT

	AXIAL LOAD CHECK : EW	
	BRACE TYPE : HSS14×14×.625	
	$P_t = 1.4(46)(30.3) = 1951 K$	
	Max AxIAL IN BEAM	
	$P_{\text{ex}} = \frac{20}{31.6} (10.51) = 12.34 \text{K}$	
	$P_{\pm x} = \frac{12.34}{2} = 617$	
	\$ Fir = 40 Ksi -> TABLE 4-22	
	Ag = 30.0 -> W27×102	
	$\Phi P_n = 40(30) = 1200$	
	$\frac{P_{c}}{P_{c}} = \frac{617}{1200} = .514$: HI-la	
	Mrie = 1179.5	
	$M_{ce} = 1259$	
	$\frac{617}{1200} + \frac{2}{9} \left(\frac{1180}{1260} \right) = 0.514 \pm 0.83 = 1.34$	
	1. No Good	
	$T_{24} = 37.8$	
	$\phi P_n = (40)(37.8) = 15/2$	
	$\frac{P_{1}}{P_{1}} = \frac{617}{1512} = 0.41$	
	$\frac{617}{1512} + \frac{8}{9} \left(\frac{1180}{1541} \right)$	
	$W_{27} \times 161$ Ag = 47.6 -> $\phi P_n = 1904$	
	$\frac{P_{-}}{P_{c}} = \frac{617}{1904} = .32$	
	$.32 + \frac{8}{9} \left(\frac{1180}{1970} \right) = .92$: Group	

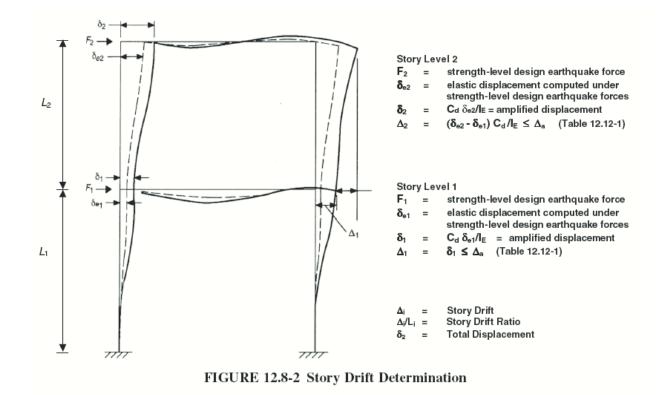
	CHECK AKAL LOADS INS 2	
	HSS 14×14×0.5	
	$P_E = 1.4(46)(24.6) = 1584$	
	$P_{tx} = \frac{20}{31.6} (11584) = 1002 \text{ k} \qquad 1002/2 = 501$	
	W 27×94	
	$A_g = d P (a_f p) = d P (a_f p)$	
	$ \Phi P_n = 40(26.9) = 1076 $	
	$\frac{P_r}{P_c} = \frac{501}{1076} = 0.47$	
	$\frac{P_{r}}{P_{c}} + \frac{8}{9} \left(\frac{M_{r}}{M_{c}} \right) \leq 1.0$	
	$.47 + \frac{8}{9}\left(\frac{316}{833}\right) = 0.81$	
0		

Office Building-G, Eastern United States

Carl Hubben


BEAM DESIGN	
CERM DESIGN	
Assumed Tension in Brace	
$P_{\pm} = R_y F_y A_g$	
=1.4(46)(24.6)=1584.2	
ASSUMED COMPRESSION:	
Pe = 0.3 Pn = 0.3 For Ag	
=0.3(33.1)(24.6) = 244 ^K	
UNBALANCED LOAD:	
$P_{\text{ty}} = \frac{24.5}{31.6} (1584) = 1227$	
$P_{cy} = \frac{24.5}{31.6} (244) = 189$ $P_{b} = P_{cy} - P_{cy} = 1227 - 189 = 1029$	
$t_{cy} = \frac{1}{31.6} (244) = 189 = 1227 - 182 = 1038$	
AVIAL FORCE IN BEAM:	
$P_{tx} = \frac{20}{31.6} (1584) = 1002^{2}$	
$P_{cx} = \frac{20}{31.6} (244) = 154.4^{4}$	
$P_{u} = \frac{P_{ex} + P_{ex}}{2} = \frac{1002 + 154.4}{2} = 578^{E}$	
MOMENTS IN BEAM -	
ASSUME S.W. BEAM = 100 26/PH CW WEIGHT = 12.5 + 15 = 187.5 26/FH LIVE LUND = 110 26/FH	
$M_{0} = (.186 + .100)(40^{2}) + \frac{16(25)}{4} = 122.3 \text{ ft-k}$	
$M_{L} = \frac{10(25^{2})}{8} + \frac{14(25)}{4} = 96.1 \text{ ft-k}$	
$M_{ab} = \frac{361(25)}{4} = 2256 \text{ ft-k}$	
Mu = 1.2 Mo + 0.5 ML + 1.0 MQ	
= 1.2(122.3) + .5(96.1) + 1.0(2256) = 2451	

Then WEDX 307 : $A_{5} = 90.4$ $A_{5} = 30.0$ $A_{5} = 12.0$ $A_{5} = 0.55$ $A_{5} = 0.55$			
$d = \frac{1}{200}$ $d_{W} = \frac{1}{200}$ $d_{W} = \frac{1}{200}$ $d_{X} = \frac{1}{200}$ $d_{X} = \frac{1}{1000}$ $d_{X} = \frac{1}{10000}$ $d_{X} = \frac{1}{10000000000000000000000000000000000$		2	
$\begin{aligned} \lambda_{\varphi} &= 0.34 \sqrt{\frac{E}{F_{Y}}} = 4.15 & \lambda_{\varphi} < \lambda_{\varphi} :: Flange Compact \\ \lambda_{w} &= \frac{\lambda}{L_{w}} = \frac{30-2(2.18)}{1.26} - 20.2 \\ \lambda_{\varphi} &= 3.76 \sqrt{\frac{E}{F_{Y}}} = 40.6 & 40.6 > 20.2 & compact Weg \end{aligned}$ $\begin{aligned} \text{UNREAVED Lewerry} \\ L_{\varphi} &= 12.0 \\ \text{Composite Beam } > L_{0} = 0 & cok \end{aligned}$ FLEGOVER Streeneeth : $\begin{aligned} M_{n} &= M_{\varphi} = F_{v} \frac{2}{2k} \\ M_{\varphi} &= 50 (1030) (V_{10}) = 42.92 \text{ k-H} \\ 4M_{n} &= 0.9(42.92) = 386.2 \end{aligned}$ $\begin{aligned} \text{Compressive Streeneeth} :\\ \frac{\lambda_{L_{Y}}}{C_{v}} &= \frac{1.0(40)(12)}{12.0} = 40 \frac{k_{L_{Y}}}{C_{Y}} = 0 \\ \text{Rescuen Streeneeth} :\\ \frac{k_{L_{Y}}}{C_{v}} &= \frac{1.0(40)(12)}{12.0} = 40 \frac{k_{L_{Y}}}{C_{Y}} = 0 \\ \text{Rescuen Streeneeth} :\\ \frac{k_{L_{Y}}}{C_{v}} &= \frac{1.0(40)(12)}{12.0} = 40 \frac{k_{L_{Y}}}{C_{Y}} = 0 \\ \text{Rescuen Streeneeth} :\\ \frac{k_{L_{Y}}}{C_{v}} &= \frac{1.0(40)(12)}{12.0} = 36.20^{k} \end{aligned}$	•	$d = 30.0 t_f = 2.28 I_X = 13100 \\ t_W = 1.26 r_y = 12.0 Z_X = 1030 \\ S_X = 887 \\ SLENDERNESS S_X = 887 \\ S_X = 887$	
$L_{p} = 12.0$ Lomposite BEAM $\rightarrow L_{b} = 0$ OK FLEGOVERN STREENGETH: $M_{n} = M_{p} = T_{v} \frac{1}{2x}$ $M_{p} = 50 (1030) (Y_{12}) = 4292 \text{ k-1}t$ $4M_{n} = 0.9 (4292) = 3862$ Compressive Streengetry: $\frac{K_{1}K_{y}}{r_{y}} = \frac{1.0(40)(12)}{12.0} = 40$ $\frac{K_{1}K_{y}}{r_{y}} = 0$ $b \text{ Fer} = 40 \text{ ks};$ $4P_{n} = 40(904) = 3620^{K}$		$A_{p} = 0.39 \int \frac{E}{F_{y}} = 9.15 \qquad A_{p} < A_{p} = Flange Compact$ $A_{w} = \frac{h}{tw} = \frac{30 - 2(2.28)}{1.26} = 20.2$ $A_{p} = 3.76 \int \frac{E}{F_{y}} = 90.6 \qquad 90.6 > 20.2 \qquad \text{compact Wes}$	
$M_{P} = 50 (1030) (1/2) = 4292 \text{ k-1+}$ $qM_{n} = 0.9 (4292) = 3862$ Compressive Strengers: $\frac{kL_{x}}{r_{c}} = \frac{1.0(40)(12)}{12.0} = 40 \qquad \frac{kL_{y}}{r_{y}} = 0$ $\Phi F_{cR} = 40 \text{ ksi}$ $\Phi P_{n} = 40(90.4) = 3620^{K}$		Lp=12.0 Composite BEAM > Lb=0 :OK	
$\frac{k L_{y}}{r_{x}} = \frac{1.0(40)(12)}{12.0} = 40 \qquad \frac{k L_{y}}{r_{y}} = 0$ $\phi F_{CR} = 40 \text{ ksi}$ $\phi P_{m} = 40(90.4) = 3620^{K}$		Mp = 50 (1030) (1/2) = 4292 K-St	
		$\frac{k \cdot l_{x}}{r_{z}} = \frac{l_{z} \circ (4 \circ)(1 z)}{1 \cdot 2 \cdot 0} = 40 \qquad \frac{k \cdot l_{y}}{r_{y}} = 0$ \$\overline F_{cR} = 40 ksi	


$\frac{3}{8_{1}} = \frac{c_{n}}{1 - \left[\frac{c_{R}}{R_{c}}\right]} \ge 1$ $R_{r} = \frac{W^{2} e_{T}}{(t_{c})^{2}}$ $R_{r} = \frac{W^{2} e_{T}}{(t_{c})^{2}}$ $R_{r} = \frac{W^{2} e_{T}}{(t_{c})^{2}}$ $R_{r} = \frac{W^{2} e_{T}}{(t_{c})^{2}}$ $R_{r} = \frac{W^{2} e_{T}}{(t_{c})^{2}} = 16,366^{16}$ $R_{r} = R_{r} + 8_{r} R_{r}$ $R_{r} = R_{r} + 8_{r} R_{r}$ $R_{r} = R_{r} + 8_{r} R_{r}$ $R_{r} = 8, M_{r} + 8_{r} M_{r}$ $R_{r} = 8, M_{r} + 8_{r} M_{r}$ $R_{r} = \frac{578}{3620} = 0.16 < 2.0 \qquad H1-16$ $\frac{R_{r}}{2R_{r}} + \frac{Mr_{r}}{Mc} < 1.0 \implies 0.050 + .66 = 0.74 \qquad Gavo$ $R_{r} = \frac{(164 + 307)(40)}{2} + \frac{16}{2} = 17.16$ $N_{r} = \frac{(164 + 307)(40)}{2} + \frac{16}{2} = 17.16$ $N_{r} = \frac{(124)}{2} + \frac{15}{2} = 1.7$ $N_{R} = \frac{(0.37)}{2} = 514$ $N_{r} = 1.2V_{0} + 6.5V_{r} + 1.0V_{R_{r}} = 1.2(17.86) + 0.5(4.7) + 1.0(519)$ $N_{r} = 545$			
$B_{1} = \frac{Cm}{1 - \left(\frac{m^{2}}{M_{e}}\right)^{2}} = 1$ $B_{1} = \frac{m^{2}ET}{1 - \left(\frac{m^{2}}{M_{e}}\right)^{2}} = 1 + 0.4$ $B_{1} = \frac{m^{2}ET}{1 - \left(\frac{m^{2}}{M_{e}}\right)^{2}} = 1 + 0.4$ $B_{2} = 1.0$ $B_{2} = 1.0$ $P_{1} = P_{1} + B_{2} P_{2} A$ $= 0 + 1.0(6.78) = 5.78$ $M_{2} = 8, M_{4} + 8_{2} M_{4} A$ $= 1.04(2451) = 2.549$ Conclused Lordney Check : $\frac{P}{P_{1}} = \frac{5.78}{3620} = 0.16 + 2.0 + 1.116$ $\frac{P}{2P_{2}} + \frac{M_{2}}{M_{4}} = 1.0 = 0 = 0.050 + 1.66 = 0.74 + 1.6600$ Determines Stream in Bern $M_{3} = (\frac{(\pi 6 + .507)(40)}{2} + \frac{16}{2} = 17.16$ $M_{2} = \frac{(\pi 6 + .507)(40)}{2} + \frac{15}{2} = 17.76$ $M_{1} = \frac{(\pi 6 + .507)(40)}{2} + \frac{15}{2} = 1.7$ $M_{2} = \frac{(\pi 3.8)}{2} = 5.14$ $M_{1} = (1.2M_{0} + 0.5M_{1} + 1.0M_{0}) = 1.2((17.86) + 0.5(9.7) + 1.0(519)$		SECOND DEDED FOR S	
$B_{1} = \frac{1.0}{1 - \left[\frac{578}{4580}\right]} = 1.04$ $B_{2} = 1.0$ $B_{2} = 1.0$ $B_{2} = 1.0$ $B_{3} = 1.0$ $B_{4} = 1.0 $ $B_{2} = 1.04 (2451) = 2549$ $Comewer Loadward Check:$ $\frac{P}{P_{4}} = \frac{578}{3620} = 0.16 \le 2.0 \therefore \text{HI-16}$ $\frac{P}{P_{4}} = \frac{578}{3620} = 0.16 \le 2.0 \therefore \text{HI-16}$ $\frac{P}{2P_{4}} + \frac{M_{1}}{M_{0}} \le 1.0 \Rightarrow 0.050 + .66 = 0.74 \therefore \text{Good}$ $Determine Steam in Beam$ $V_{0} = \frac{(180 + .307)(40)}{2} + \frac{16}{2} = 17.36$ $V_{1} = \frac{.114(40)}{2} + \frac{15}{2} = 9.7$ $V_{1} = \frac{.038}{2} = 519$ $V_{1} = 1.2V_{0} + 0.5V_{1} + 1.0V_{0} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$	•	$B_{i} = \frac{c_{m}}{1 - \left[\frac{\alpha P_{i}}{P_{i}}\right]^{2}} = \frac{1}{1 - \left[\alpha P_{$	
$= 0 + 1.0(678) = 678$ $M_{r_{x}} = 8, M_{AL} + B_{2}M_{AL}$ $= 1.04(2461) = 2549$ Comewer Loadwar Check: $\frac{P_{r}}{P_{L}} = \frac{578}{3620} = 0.16 < 2.0 \therefore H1-16$ $\frac{P_{r}}{2P_{L}} + \frac{M_{r_{x}}}{M_{LL}} = 1.0 \Rightarrow 0.080 + 166 = 0.74 \therefore \text{ Good}$ Determine Stream in BEAM $\frac{V_{p}}{2} = \frac{(186 + .307)(40)}{2} + \frac{16}{2} = 17.86$ $\frac{V_{L}}{2} = \frac{(1038)}{2} = 519$ $V_{L} = 1.2V_{p} + 0.5V_{L} + 1.0V_{R_{L}} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$		$B_{1} = \frac{1.04}{1-\left[\frac{578}{16300}\right]} = 1.04$	
Companyed LOADING CHECK: $\frac{P}{P_{2}} = \frac{578}{3620} = 0.16 < 2.0 \therefore \text{HI-Ib}$ $\frac{P}{P_{2}} = \frac{578}{3620} = 0.16 < 2.0 \therefore \text{HI-Ib}$ $\frac{P}{2P_{2}} + \frac{M_{xx}}{M_{xx}} = 1.0 \Rightarrow 0.080 + .660 = 0.74 \therefore \text{Glood}$ Determine Stear in Beam $V_{b} = \frac{(.186 + .307)(40)}{2} + \frac{16}{2} = .17.86$ $V_{L} = \frac{.11(40)}{2} + \frac{.15}{.2} = 9.7$ $V_{R} = \frac{.038}{-2} = .519$ $V_{h} = 1.2V_{D} + 0.5V_{L} + 1.0V_{R_{b}} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$		= 6 + 1.0(578) = 578	
DETERMINE SHEAR IN BEAM $V_{p} = \frac{(.186 + .307)(40)}{2} + \frac{16}{2} = 17.86$ $V_{L} = \frac{.11(40)}{2} + \frac{15}{.2} = 9.7$ $V_{R} = \frac{.039}{2} = 519$ $V_{u} = 1.2V_{p} + 0.5V_{L} + 1.0V_{R_{u}} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$	•	COMBINED LOADING CHECK:	
$V_{L} = \frac{111(40)}{2} + \frac{15}{2} = 9.7$ $V_{R_{Q}} = \frac{1039}{2} = 519$ $V_{u} = 1.2 V_{D} + 0.5 V_{L} + 1.0 V_{Q_{u}} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$		$\frac{P_r}{2P_c} + \frac{M_{r_x}}{M_{cx}} = 1.0 \implies 0.080 + .66 = 0.74 \qquad Good$	
$V_{R_{e}} = \frac{1039}{2} = 519$ $V_{u} = 1.2V_{p} + 0.5V_{u} + 1.0V_{e_{u}} = 1.2(17.86) + 0.5(9.7) + 1.0(519)$			

Office Building-G, Eastern United States

Carl Hubben

	1 2 8
TORSIONAL FORCES	
CENTER OF RIGIDITY :	
$\overline{X} = \frac{\sum k_{iy} X_i}{\sum k_{iy}} \qquad \overline{y} = \frac{\sum k_{ix} y_i}{\sum k_{ix}}$	
\overline{X} : K, X, = 36.7(0) = 0	
$k_2 X_2 = 35.7(6.22') = 222$	
$K_3 X_3 = 33.5 (203.8) = 723.5$	
$K_{4}X_{4} = 30.3(212.4) = 6436$	
ZKiy = 136.2 ZKiyXi = 13893	
$\overline{X} = \frac{13893}{136.2} = 102.0$ ft	
\overline{y} : $k_1 y_1 = 48.3(138.7) = 6699$	
$K_2 Y_2 = 37.1 (138.7) = 5146$	
$K_3 Y_3 = 41.3(0) = 0$	
$K_{4} y_{4} = 53.9(14.7) = 792.3$	
ZK:x = 180.6 ZK:x Y: = 12637	
$\overline{y} = \frac{12637}{180.6} = 70.01$	

Table 12.	12-1 Allowa	able Story I	Drift, $\Delta_a^{a,b}$

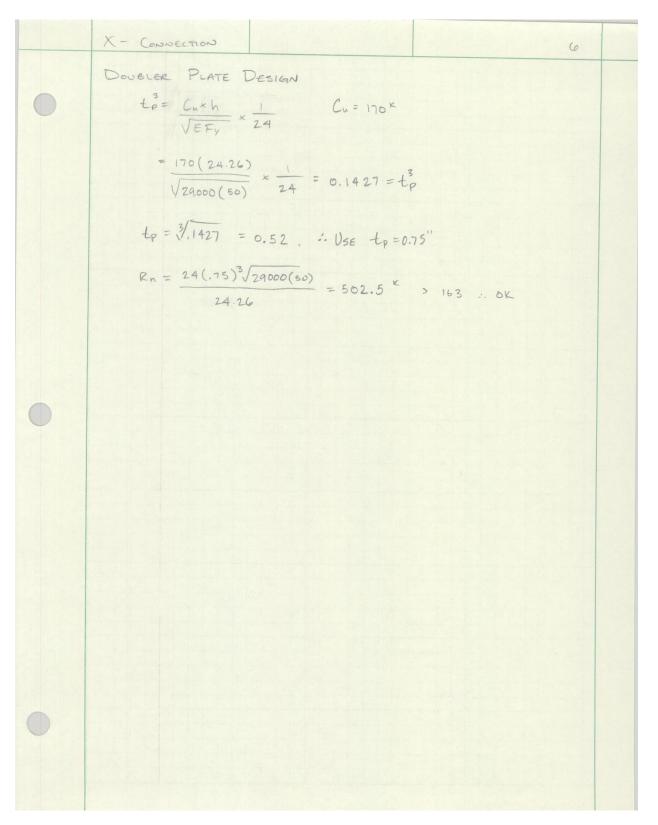
		Risk Category		
Structure	I or II	III	IV	
Structures, other than masonry shear wall structures, 4 stories or less above the base as defined in Section 11.2, with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the story drifts.	0.025h _{xx} ^c	0.020h _{st}	0.015h _{xx}	
Masonry cantilever shear wall structures ^d	$0.010h_{sx}$	$0.010h_{st}$	$0.010h_{st}$	
Other masonry shear wall structures	$0.007h_{sx}$	$0.007h_{sx}$	$0.007h_{st}$	
All other structures	$0.020h_{sx}$	$0.015h_{st}$	$0.010h_{sx}$	

Advisor: Dr. Ali Memari

Appendix E:

	GENER CONNECTION
	PLATE BLOCK SHEAR :
	TABLE 9.3a = 46.2 9.3b = 121 $\frac{2}{3}$ 121 9.3c = 139 $\frac{2}{3}$ 121
	$dV_n = 2(121 + 46.2)(.5) = 167.2$
	BOLT LIMIT STATES
	SHEAR = 15.9
"DAMPAD"	PLATE ISEARING =0.75(2,4)(58)(0.75)(.5) = 39.2
A	PLATE EDGE = 0.75(1.2)(58)(1.5 - $\frac{.75+2/16}{2}$)(1.5) = 27.7
	$\phi V_n = 3(15.9)(2) = 95.4$ > 22" : 0K
	, LL LOK
•	
•	

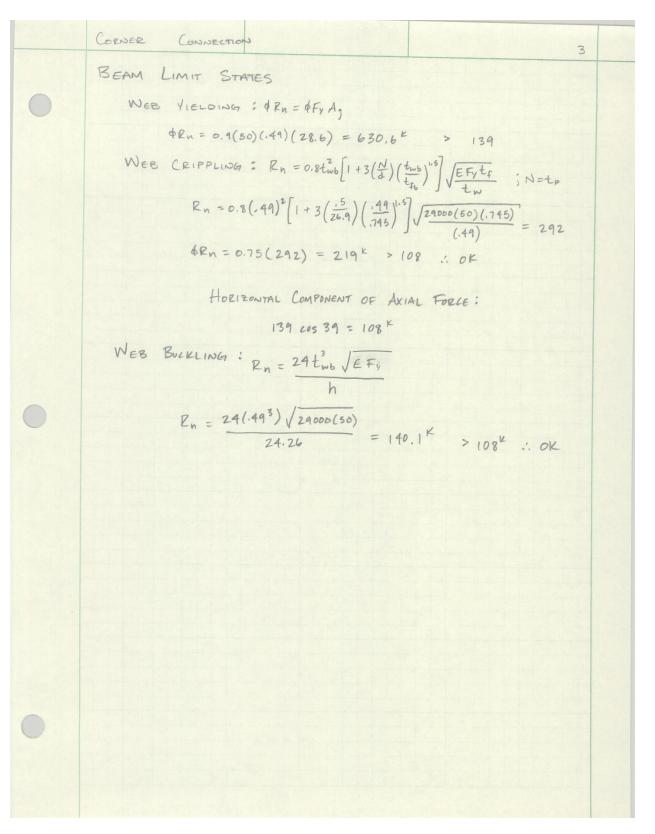
X - CONNECTION
DESIGN OF TOP CONNECTION
MAX TENSION = 278 K L.C. 71
MAX COMPRESSION = 210K L.C. 80
BRACE TYPE: HSS 14×14×.3125, ASOO GRADE B
BRACE LIMIT STATES
TENSION YIELDING : ORN = OFYAG
\$Rn=0.9(46)(15,7) = 650 K >278 : 0K
TENSION RUPTURE : PRN = & Fude
$A_e = UA_n$ $U = 1 - \frac{x}{L} \implies \overline{x} = \frac{B^2 + 2BH}{4(B+H)}$ TABLE D3.1
$U = 1 - \frac{5.25}{14} \qquad \overline{X} = \frac{14^2 + 2(14)(14)}{4(14 + 14)} = 5.25$
V= 0.625
$A_e = 0.625(15.7) = 9.81 \text{ in}^2$
$dR_n = 0.75(58)(9.81) = (427.5) = 278$
BRACE/GUSSET LIMIT STATES:
WELD RUPTURE: $\phi R_n = 1.392(0)(2_{w})(\#)$
+HSS = 0.291 -> Min Weld = 3/16 MAX WELD = 3/16
\$Rn = 1.392(3)(14)(4) = 233.8 1 WELD LENGITH
$L_{w} = \frac{278}{1.342(3)(4)} = 16.6 \implies 17''$
\$Rn = 1.392(3)(17)(4) = 28.4K > 278 - 0K
Land White Stat = Mind /10 0.2


X - CONNECTION 2	
BRACE/GUSSET LIMIT STATE:	
BASE METAL: BRACE: ØRn = Ø(0.6) F. Ann #	
Anw = tbr × Lw = 0,291 (17) = 4.95 in2	
QRn = 0.75(0.6)(58)(4.95)(4) = 517 × 278 ok	
BASE METAL GUSSET, 2" A36	
$A_{nW} = 0.5(17) = 8.5 \text{ in}^2$	
\$Rn = 0.75(0.6)(58)(8.5)(2) = 444 K 7278 OK	
GUSSET LIMIT STATES	
TENSION YIELDING: ORn = OFYAg	
\$Rn = 0.9(36)(.5)(18) = 2925 > 278 . OK	
TENSION RUPINE : & Rn = & Fn Ae : WHITORE SECTION	
Ae = Ag	
\$Rn = 0.75(58)(9) = 392 > 278 OK	
LOCAL BUCKLING : & Pn = & AgFer	
$A_{L} = \frac{KL}{\Gamma T V} \sqrt{\frac{F_{VI}}{E}} = \frac{0.5(22)}{(\frac{15}{VT2})T} \sqrt{\frac{36}{29000}} = 0.85 \le 1.5$	
$F_{cR} = 0.668^{\lambda_c^2} F_y = 0.658^{(.85^2)}(36) = 26.6 \text{ Ksi}$	210
\$P_ = 0.9(0.5)(30)(26.6) = 359.1>210 .: 0K ⊥ WHITMORE	
GUSSET/BEAM LIMIT STATES	
WELD RUPTURE: $PR_n = 1.392(D)(L_n)(\#)$	
$M_{in} w erb = \frac{3}{16}, \theta = 39^{\circ}$	
$(1+.5sin(\theta)^{1.5}) = 1+.5(sin39)^{1.5} = 1.25$	
\$Rn = 1.392(1.25)(3)(35.5)(2) = 370.6K 278ok	

X - CONNECTION 3 GUSSET/BEAM LIMIT STATES : BASE METAL : GUSSET : & Rn = \$ (0.6) Fn Ann Anw = tg * 2w = 0.5 (36.5) = 17.75 in 2 dRn = 0.75(0.6)(58)(17.75) = 462 > 278 ∴ 0K BASE METAL : BEAM : \$ En = \$ (0.6) F. Ann # Anw = + x Lw = 0.745 (35.5) = 26.4 ¢Rn =0.75(.6)(65)(26.4)(2) = 1544.4 > 278 ∴OK

	X - CONNECTION 2	+
	DESIGN OF BOTTOM LONNECTION	
	MAX TENSION = BILK	
	MAX COMPRESSION = 196 K	
	HSS: 14×14×.375	
	TENSION VIELDING: 650 > 311 : OK	
	TENSION RUPTURE: 427 > 311 : OK	
	BRACE/GUSSET LIMIT STATES :	
	WELD RUPTURE : \$ Rn = 1.392(D)(Lw)(#)	
	$min_{weld} = 3/16$ $max_{weld} = .349 - 1/16 = 0.287$	
	$t_w = 4/16 = 0.25$	
	#Rn = 1.392(A)(17)(4) = 379 × > 311 COK	
	BASE METAL : BEACE 517 > 311 : OK	
	: GUSSET 887 > 311 :. OK	
	GUSSET LIMIT STATES :	
	TENSION YIELDING: & En = & Fy Ag	
	- CHECK W/ WHITMORE SECTION => L = 30.7" (SEE DETAIL)	
	4Rn = 0.9(36)(0.5)(30,7) = 497.3 > 311 . OK	
	TENSION RUPTURE : ORn = OFnAc	
	kRn = 0.75(58)(15.35) = 668 K > 311 ∴ 0K	
	LOCAL BUCKLING: 359 > 196 : OK	
0	EUSSET/BEAM LIMIT STATES :	
	WELD RUDTURE: 370.6 >2311 .: OK	
	BASE METAL: 927 > 311 : OK	
	: 1544 > 311 : OK	H

Carl Hubben


$$\frac{X - Constraint}{2}$$
BEAM Limit STATES:
BEAM When Transon Vielenson: $dR_n = dF_y A_g$
 $+ E_n = 0.9(50)(.49)(35.5) = 782.5 311...0L$
Wee Cerepting: $R_n = 0.8t_{nn}^{2} \left[1 + 3\left(\frac{N}{2}\right)\left(\frac{t_{nn}}{t_{nk}}\right)^{1/2}\right]\sqrt{\frac{E}{E_{nn}}} \frac{t_{nn}}{t_{nn}}$
 $N = t_p = 0.5$
 $R_n = 0.5(.49)^{2} \left[1 + 3\left(\frac{15}{26}\right)\left(\frac{t_{nn}}{7as}\right)^{2}\right]\sqrt{\frac{20000(50)}{.44}}$
 $R_n = 2.42^{N}$
 $M = t_{nn}(t_n) = 4.45(.49) = 2.4.26$
 $R_n = 2.4(.49)^{2}\sqrt{29000(50)} = 140.1$ $4R_n = 0.9(140.1)$
 $4R_n = 126.1$
 $M = 39^{n}$
 $N = 39^{n}$
 $N = 39^{n}$
 $N = 39^{n}$
 $N = 39^{n}$
 $M = 39^$

CORA	DER CONNECTION
EAST	ELEVATION PORTION
М,	Ax TENSLON = 139 K
MA	& COMPRESSION = 119 K
BRA	CE TYPE : HSS 14×14×,3125, A 500 GRADE B
	E LIMIT STATES : \$ Rn = \$ Fy Ag
	\$Rn = 0.9(46)(15.7) = 650 " 650" > 139" OK
Te	ENSION RUPTURE : ORN = OFu Ae
	$U = 1 - \frac{5.25}{14} = 0.625$
	$A_{c} = 0.625(15.7) = 9.8125$
	\$Rn = 0.75(58)(9.8125) = 426.8K > 139K . OK
BRACE	E/ GUSSET
N	ELD RUPTURE : \$Rn = 1.392(D)(LN)(#)
	\$\$Rn = 1.392(3)(14)(4) = 234 > 139 " OK
Br	ASE METAL STRENGTH: $\partial R_n = \phi(0.6) F_u A_{nw} #$
	BRACE : Anw = 0.291 (14) = 4.074
	\$Rn = 0.75(0.6)(58)(4.074)(4) = 425 × 139 - 0K
	Gusser: $\frac{1}{4}$ A36 \Rightarrow Anw = 0.25(14) = 3.5
	\$Pn = 0.75(0.6)(58)(3.5)(2) = 182 × >139 :. 0K
GUSSE	τ:
Te	USION YIELDING: & Rn = & FyAg
	¢Rn = 0.9 (36) (0.25) (30) = 243 × > 139 × ∴ 0K
	WHITMORE (SEE DETAIL)
Tes	SION RUPTURE : $\phi R_n = \phi F_n A e$
	den = 0.75 (58) (0.5) (30) = 652.5 × > 139 ∴ 0K

	CORNER	CONDECTION	2
	GUSSET	:	
	BULK	LING: $\phi P_n = \phi A_g F_{cR}$	
		$\lambda_{c} = \frac{KL}{\Gamma \Omega} \sqrt{\frac{F_{Y}}{E}} = \frac{0.5(18)}{(\frac{.25}{\sqrt{12}}) \Omega} \sqrt{\frac{1}{2}}$	36 29000 = 1.40 ~ 1.5
		$\overline{T}_{ce} = 0.658^{\lambda_c^2} F_y = 0.658^{1.4^2} (36) =$	15.85 psi
		$\phi P_n = 0.9(15.85)(0.25)(30) = 106.$	
		$\lambda_{c} = \frac{0.5(18)}{(\frac{15}{\sqrt{12}})^{2}} \sqrt{\frac{36}{29000}} = 0.7 < 1.5$	NCREASE to
		Fer = 0.658 .72 (36) = 29.3	
	,	$\Phi P_n = 0.9(29.3)(.5)(30) = 396^{\kappa}$	> 119 K OK
	GUSSET		
	WELD	RUPTURE : \$ Rn = 1.342(D)(Lw)(#)	
		$(1+0.5sin(\theta)^{1.5}) = 1+.5(sin(39))$	
		$\Phi R_n = 1.392 (1.25) (3) (28.6) (2) =$	298.6K > 139K 0K
	BASE	METAL : $\phi R_n = \phi(0.6) F_n A_{nN} \neq$	
		Gusser : 0.75(.6)(58)(.5)(28.6) =	373.2 × 139 K
		BEAM : 0.75(0.6)(65)(.745)(28.6)($(2) = 1246 > 139^{K}$
0			

Carl Hubben

Office Building-G, Eastern United States

Technical Report 3

Carl Hubben

	CORNER CONNECTION 4
	Angle/Column Connection:
	NUMBER OF BOLTS NEEDED : 3" & A325 -N, drn = 15.9K
80-11.9	$T_u = 139 \sin 39 = 87.5 \text{ K}$ $V_u = 109 + 218 = 129.8 \text{ K}$ $F_{nv} = 48$
72-21.8	$V_{n} = 108 + 21.8 = 129.8$ $T_{PY} = 129.8$ $T_{PY} = 2 ROWS OF 5 BOLTS$ Fint = 90
	SHEAR STRESS IN BOLTS:
	$f_{\rm v} = \frac{129.8}{10(.442)} = 29.4 \text{KSi}$
	AVAILABLE TENSILE STRENGTH :
	$F_t = 1.3 F_{nt} - \frac{F_{nt}}{\phi F_{nv}} f_v$
	$= 1.3(90) - \frac{90}{36}(29.4) = 43.5^{ksi} < 90^{ksi}$
•	Φ (nt = 0.75(43.5)(.442) = 14.42 K
	WILL PRYING OCCUR. to
	$\frac{12.5}{100} + \frac{100}{100} = 1.5$ $b = 2.5 - \frac{175}{100} = 2.135$
	$b' = 2,125 - \frac{75}{2} = 1075$
	$Z_{p_1} = \frac{pt_p^2}{4} = \frac{3.6(.15^2)}{4} = .506$ $a = \begin{vmatrix} a_{actual} = 1.5 \\ 1.25b = 1.25(2.125) = 2.656 \end{vmatrix}$
	$\phi M_{n_1} = 0.9 F_0 Z_{P_1}$ $a' = 1.5 + \frac{75}{2} = 1.875$
	= 0.4(50)(.506)
	$= 22.77$ Kip-in $P = \begin{vmatrix} gage = 5.49 \end{vmatrix}$
0	$\phi r_{ut} b' = 14.42(1.75) = 25.2 \text{ k-in}$ $\frac{18}{5} = 3.6 \Leftarrow$
	- PRVING OLLURS

Carl Hubben

CORDER	CONDECTION	5
PRYING	EFFECTS :	4
6M.	$n_2 = 0.9 F_n Z_{P2} \qquad \qquad$	
	=0.9(50)(.4) 4	
	$= 18 = (3.675)(.75^{2})/4 = 0.40$	
ФMn,	$+\phi M_{n2} \left(1 + \frac{1.75}{1.875}\right) = 22.77 + 18(1.93) = 57.57$	
	:. BOLT RUPTURE W/ PRYING ACTION	
ANGLE	Limit States : 4"	
SHEA	\mathbb{Z} YIELDING: $\phi V_n = \phi(0,6) F_y 2 Lpt p$	
	$dV_{n} = 1.0(0.6)(36)(2)(18)(.75)$ = 583.2	
	$V_c = \frac{B}{r} P_n$	
Mar and	$= \frac{9.39}{30} (139) = 43.5 \qquad 583.2 > 43.5 : 0K$	
SHEAR	$R_{UPNRE}: \phi V_n = 0.75(0.6 F_n)(A_n)$	
	$A_n = 18(.75) - 5(\frac{3}{4} + \frac{2}{16})(.75) = 10.22 \text{ m}^2$	
	\$Vn = 0.75(16)(58)10.22 = 266.7 >43.5 (+> 0K	
BLOCK	SHEAR : Co.	
	TABLE 9.3a = 46.2 9.3b = 219 $\frac{1}{2}$ 219 9.3c = 250 $\frac{1}{2}$ 219	
	\$Vn = 2(219+46.2)(175) = 382.8 > 43.5 :1 OK	

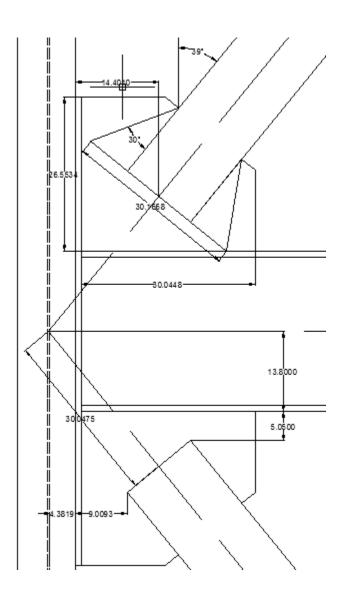
Ce	ORNER CONNECTION
B	SOLT LIMIT STATES !
	SHEAR & TENSION GOOD DUE TO PRYING CHECK
B	OLT BEARING & TEAR OUT :
	ANGLE : $\phi r_n = 0.75(2.4) d_b F_n t$
	= 0.75 (2.4) (175) (58) (175) = 58.7 BEARING
	COLUMN : Orn = 0.75(2.4)(.75)(65)(.645)= 56.6 BEARING
	$ANGLE : \Phi r_n = 0.75(1.2)(L_c)(F_n)t$
	EDGE $L_c = 1.5 - \frac{.75 + 1/6}{.75 + 1.69} = 1.09$
	$\phi r_n = 0.75(1.2)(1.09)(58)(.75) = 42.6$
	OTHER L = 3.0 - (.75+1/6) = 2.19 TEAR
	\$Fn = 0.75(1.2)(2.19)(58)(.75) = 85.7
	COLUMN : 4rn = 0.75(1.2)(2.19)(65)(.645) = 82.6
(· CONTROLLED BY SHEAR, OK CR
Gu	DSSET/ANGLE LIMIT STATES
	WELD RUPTURE: $\phi R_n = 1.392(D)(L_w) #$
	¢Rn = 1.392(3)(18)(2) = 150 × 139 ∴ 0K
	BASE METAL STRENGTH: \$Rn = \$(0.6). F. Ann #
	ANGLE = 0.75(0.6)(58)(18)(.75)(2) = 704.7 > 139 OK
	GUSSET = 0.75(0.6)(58)(18)(.5) = 234 7 139 : OK
Gu	SSET
	TENSION YIELDING ORN = & Fy Ag
	\$ Rn = 0.9(36)(18)(.5) = 291 > 139 0K
	TENSION RUPTURE : ORN = OFTAE
	¢Rn = 0.75(58)(9) = 391 > 139 ∴ 0K

Cor	NER CONNECTION 7
No	RTH ELEVATION PORTION
M#	+ TENSION = 278K
MA	× COMPRESSION = 226 K
BRA	CE TYPE : HSS 14 × 14 × 0.5
BZF	RUPTURE = 427 > 278 . OK
BRA	LE/GUSSET LIMIT STATES
	WELD RUPTURE = 1.392 (4) (14) (4) = 312 > 278 . OK
	BASE METAL STRENGTH: BRACE = 425 7278 OK
	GUSSET (2") = 0.75(0.6)(58)(14)(.5)(2) = 365 > 278 - 0K
Guss	et Limit States
	TENSION YIELDING: \$ 278 : 0K
	TENSION RUPINEE = 652 > 278 . OK
	BUCKLING = 396 > 226: OK
Gusse	ET / BEAM LIMIT STATE > 278 5 OK (W27 × 94 DIMENSIONS ARE LONSEEVATIVE)
	LIMIT STATES:
	WEB YIELDING : > 278 : CONSERVATIVE, OK
	WEB CRIPPLING: $4Rn = 0.75(0.8(.66^2) \left[1 + 3(\frac{.5}{27.6})(\frac{.66}{1.08})^{1.5} \right] \sqrt{\frac{29000(50)(1.08)}{.66}}$
	\$Rn = 413 × > 226 : 0K
E	BULKLING
	$dRn = 0.75(24)(.66^3)\sqrt{29000(55)}$ h = 36.1(.66) = 23.8
	23.8
	¢Rn = 261.8 > 226 : 0K

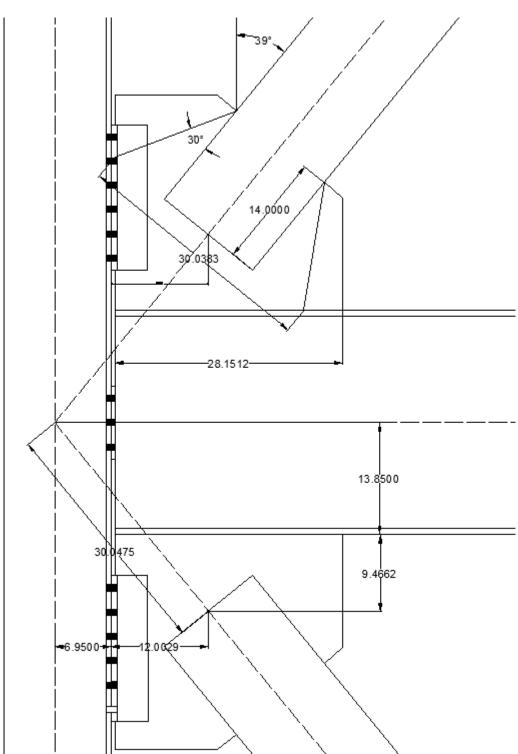
Carl Hubben

	COENER CONNECTION 8
	GUSSET/PLATE CONNECTION: $H_c = \frac{e_c}{r} P_u$
	WELD RUPTURE: $\phi R_n = 1.392(0)(L)(\#) = \frac{4.57}{30}278 = 42$
	#Rn = 1.392(1.25)(26)(2)(3) = 271 > 42 : OK
	The second
	BASE METAL STRENGTH : ORn = O(0.6) F. Ann
	GUSSET =0.75(0.6)(58)(26)(15) = 340 > 42 : OK
	PLATE (1" A36 -> - OK)
	PLATE LIMIT STATES
	PLATE BENDING:
	$PR_n = 16.25t_p^2 F_y$
	= 0.9(6.25)(1.02)(36) = 202.5 FROM BEAM
	MAX HORIZONTAL FORCE = 278 sin 39 = 175
	202.5 > 175" - OK
	PLATE/ COLUMN LIMIT STATES
	WELD RUPTURE: 1.392(3)(26)(2) = 217 7 175 OK
	BASE METAL STRENGTH: &Rn = \$ (0.6) Fu Ann
	PLATE = 0.75(0.6)(58)(26)(1.0)(2) = 1357 > 175 OK
	COLUMN = 0.75(0.6)(58)(26)(.645)(2) = 875 > 175 = OK
0	

Carl Hubben


Advisor: Dr. Ali Memari

	CORNER CONNECTION 9
	COLUMN LIMIT STATES
•	LOCAL FLANGE VIELDING : dRn = & FyAn
	\$Rn = 1.0(50)(.645)(26)(2) = 1677 > 278 - 0K
	ECCENTRIC LOADING FROM NORTH ELEVATION:
74 -71	e = 5.6''
	$V_{u} = \frac{R}{r} P_{u} + V_{u} = 74 + \frac{9.4}{30} (278) = 161$ $M_{u2} = 902 (u-k) \rightarrow 75 \text{ ft-k} \text{ k}$
	$M_{u_1} = 6.95(43+22) = 452 \text{ (n-k} \Rightarrow 38 \text{ ft-k}$
	COMBINED LOADING $\frac{P_u}{P_r} = \frac{376}{626} = 0.6 > 0.2 : HI-1a$
	$\frac{F_{m}}{P_{r}} + \frac{g}{9} \left(\frac{M_{i}}{M_{m_{i}}} + \frac{M_{z}}{M_{n_{z}}} \right) = \frac{376}{626} + \frac{g}{9} \left(\frac{38}{382.5} + \frac{75}{242} \right) = 0.96$
•	: OK, COULD INCREASE COLUMN SIZE


Carl Hubben

	CORNER CONNECTION	
	BEAM COLUMN CONNECTION	
	EAST ELEVATION	
	$D_{IAPHRAGM} L_{OAD} = \frac{187.7 }{4} = 47 K$	
	$H_b = \frac{\alpha}{r} P_{L} = \frac{12.02}{30} (119) = 48^{K}$	
	95K AXIAL FORCE IN BEAM	
"AMPAD"	SHEAR END PLATE DESIGN	
X	$V_{\mu} = 22^{k}$	
	BEAM LIMIT STATES	
	SHEAR YIELDING: \$ Rn = (1.0) (0.6) Fyhtw	
	\$Rn = 0.6(50)(24.26) = 727.6 × 22 0K	
	BEAM/END PLATE:	
	WELD RUPTURE: $\phi V_n = 1.392(D)(L_p)(\#)$	
	¢Vn = 1.392(3)(9 - 2(3/16))(2) = 72.0 K + 22 ∴ 0K	
	BASE METAL STRENGTH : OVn = \$ (0.6) F. Ann	
	¢Vn = 0.75(0.6)(65)(9-6/16)(.49) = 124 > 22 ∴ 0K	
	+Vn=0.75(0.6)(58)(9-6/16)(.5)=113 722 0K	
	END PLATE LIMIT STATES 2", A36	
	GROSS SHEAR: $\Phi V_n = \phi(0.6) Fy(2)(lptp)$	
	\$Vn = 0.6(36)(2)(9)(.5) = 194 > 22 . OK	
	NET SHEAR $: \phi V_n = \phi(0.6) F_u A_n$	
	$A_n = 9(.5) - 3(2/8 + 2/16)(.5) = 3.19 m^2$	
•	¢Vn = 0.75(0.6)(58)(3.19) = 83.3 > 22 ∴ 0K	

North Elevation:

West Elevation:

Advisor: Dr. Ali Memari

Appendix F:

Duct Size and Pressure Drop Calculations:

	Perimeter					Interior				
	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss
	18	4800	30	0.55	0.17	18.5	3600	30	0.3	0.09
NW	18	3600	55	0.3	0.17	17	2400	80	0.14	0.11
	15.5	2400	80	0.3	0.24	13	1200	208	0.18	0.37
	11.5	1200	120	0.35	0.42					
	18	4800	10	0.5	0.05	11.5	1200	25	0.35	0.09
NE	18	3600	35	0.3	0.11					
	16	2400	65	0.26	0.17					

	Perimeter					Interior				
	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss	Duct Dia (in)	CFM	Run	Friction Loss/100'	Friction Loss
	18	7200	15	1.2	0.18	18.00	5300.00	15.00	0.70	0.1
	18	6000	40	0.8	0.32	18.00	4100.00	40.00	0.40	0.1
SW	18	4800	65	0.45	0.29	16.50	2900.00	65.00	0.33	0.2
	17	3600	85	0.4	0.34	15.00	2400.00	85.00	0.35	0.3
	16	2400	100	0.26	0.26	13.50	1200.00	130.00	0.16	0.2
	17	3600	20	0.4	0.08	17.00	3600.00	20.00	0.40	0.0
SE	15	2400	40	0.35	0.14	17.00	2400.00	60.00	0.19	0.1
	11.5	1200	60	0.35	0.21					