OFFICE BUILDING-G

Eastern United States

Technical Report I

Carl Hubben

Structural Option Advisor: Dr. Ali Memari October 4, 2010

Table of Contents

Executive Summary2
Introduction
Building Description3
Structural Introduction5
Structural Systems
Gravity System:
Lateral System:6
Foundation System:8
Structural Materials10
Codes and Reference
Design Codes:11
Thesis Codes:11
Gravity Loads12
Live Loads12
Dead Loads12
Dead Loads
Snow Loads13
Snow Loads
Snow Loads 13 Lateral Loads 15 Wind: 15
Snow Loads 13 Lateral Loads 15 Wind: 15 Seismic: 20
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22Lateral Soil Loads:23
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22Lateral Soil Loads:23Gravity Member Spot Checks24
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22Lateral Soil Loads:23Gravity Member Spot Checks24Concrete Slab24
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22Lateral Soil Loads:23Gravity Member Spot Checks24Concrete Slab24Post-Tensioned Beam24
Snow Loads13Lateral Loads15Wind:15Seismic:20Lateral Load Comparison:22Lateral Soil Loads:23Gravity Member Spot Checks24Concrete Slab24Post-Tensioned Beam24Column Check25

Advisor: Dr. Ali Memari

Executive Summary

Technical Report I is a detailed description of the structural concepts and existing conditions of Office Building-G. It provides insight into the structural system design and functionality as well as the loading conditions. Due to owner restrictions certain information (i.e. the owner, building name, occupant) cannot be disclosed.

This 14-story high rise office building, located in the eastern United States, is built on top of a 4story parking garage, both of which are supported by a concrete bearing wall core with concrete edge columns. The floor system is a one way flat plate slab which is supported by post tensioned beams. Lateral forces on the building are resisted by the concrete core that also functions as a shear wall core.

Wind and seismic design forces were determined using ASCE 7-10. When compared, it was concluded that seismic forces govern the design except in the North-South direction in which the wind base shear controls. Base shear in the North-South is 1370 kips and in the East-West it totals to 1198 kips. Overturning moments are controlled by seismic forces in all directions with a value of 154,790 ft-kips. These loads are from the shear wall core into enlarged spread footings below the bottom level of the parking garage's slab on grade.

Gravity load spot checks were performed on a typical slab, post-tensioned beam and column. Any discrepancies found between member sizes or strengths were analyzed and possible explanations were explored. These members will have to be checked again when the lateral forces are included in the analysis.

Advisor: Dr. Ali Memari

Introduction

Building Description

As noted above, Office Building-G is a 14-story office building with a 4-story parking garage below the superstructure. The roof of the mechanical penthouse is 195 ft above grade, categorizing this building as a high rise structure for its location. A typical office floor has a gross square footage of 25,376 sf and when the total superstructure and garage are added, Office Building-G is 649,461 sf.

The southern façade of the building is a curved glass curtain wall, breaking the mold of precast concrete panels the other three sides of the building follow. On the first and second floor there is a restaurant which has a glass façade with concrete pilasters between the panes of glass. Figures 1 is a view of the South-West corner of the building. The red lines outline the restaurant while the blue show the extents of the parking garage.

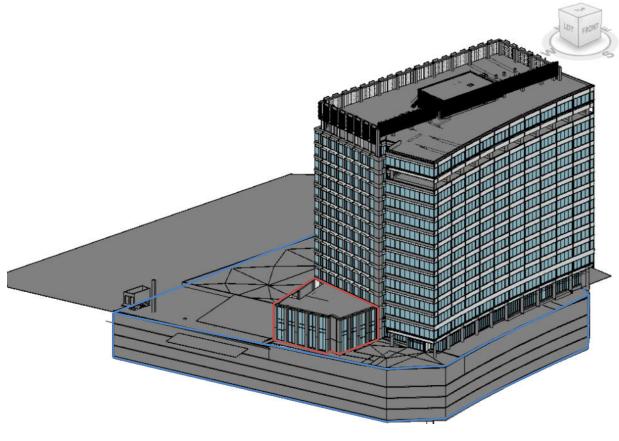


Figure 1

Directly to the right of the restaurant Figure 1 is the main entrance of the building. The upscale lobby, along with the entire first floor, has a 17 ft floor to floor height, compared to the typical height of 12 ft 3

Advisor: Dr. Ali Memari

in. Figure 1 also shows how the perimeter columns supporting the glass façade are on the exterior of the building on the first floor due to a setback on the first floor.

Figure 2 is a view of the North-East corner of Office Building-G. Again, the extents of the below grade parking garage are outlined in blue. Other building aspects displayed in this figure are the bank in green, the loading dock in red, architectural screen wall in purple and the mechanical penthouse in orange.

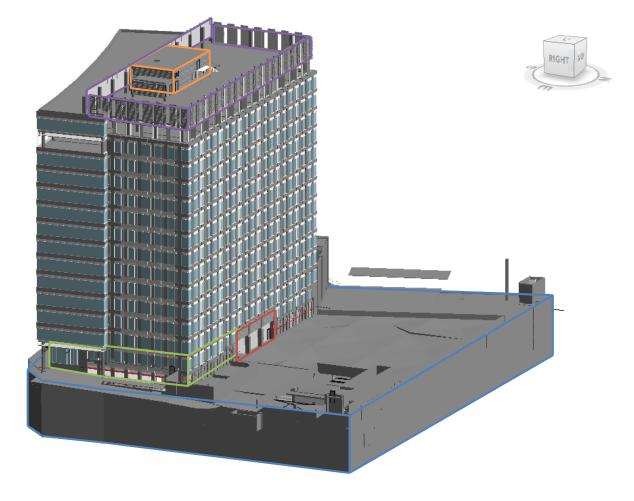


Figure 4 is a typical floor plan which is followed for the majority of the structure. On the 12th and 13th floors of the building the exterior columns slope in creating a slightly smaller square footage for the 13th and 14th floors. Other building features are described throughout the report as needed.

Technical Report 1

Carl Hubben

Advisor: Dr. Ali Memari

Structural Introduction

The curved glass curtain wall on the southern façade of Office Building-G disguises the framing but a reinforced concrete structure is suspected due to the scale of the precast concrete used to frame the windows on the other elevations. Structural plans confirm the suspicions as they reveal circular and rectangular concrete columns with typical 20' x 45' bays. Post-tensioned beams run north-south between columns and rely on one-way slab construction to span from beam to beam. There is an internal concrete shear wall core extending the entire height of Office Building-G. This core houses the majority of the vertical transportation within the building while providing lateral stiffness and rotational resistance.

Spread footings ranging in sizes of 4' x 4' to 15' x 15' act as the primary foundation for Office Building-G. The concrete exterior wall of the parking garage is supported by a wall footing around the entire perimeter of the building. Two large footings (approximately 40' x 40' and 40' x 10') are located below the internal shear walls. All foundations are required to be a minimum of 1' below the low point of the 5" normal weight slab on grade.

The structural engineer's design of the structure uses concrete strengths between 3000 psi and 10,000 psi. A small amount of structural steel is used to support the elevators but the rest of the building is concrete. 5000 psi concrete is primarily used in the slab construction but 8000psi concrete is utilized below columns and shear walls to account for any punching shear requirements. Concrete strength of the columns and shear walls vary with the number of floors above them. Cast in place beams use 5000 psi normal weight concrete and are reinforced with Grade 60 steel as per ACI 318 requirements. The post-tensioned beams use 5000 psi concrete with seven wire stress relieved strand with a minimum ultimate tensile strength of 270 ksi.

The following report contains an in-depth evaluation of the structural concepts and the existing conditions of Office Building-G. Included within this report is an overview of the design codes and requirements as well as determinations of the loads used by the project engineer. This information is used to perform an analysis of the lateral wind and seismic loads as well as spot checks of typical column gravity loads.

Advisor: Dr. Ali Memari


Structural Systems

Gravity System:

Gravity loads are carried down the building through a combination of interior and exterior concrete columns and a shear wall core. The typical floor system is a cast in place concrete flat slab. Thickness changes based on loading conditions but the typical floor is a one-way, 7", 5000 psi normal weight concrete flat slab. On the first floor there is a 12" concrete slab designed for fire separation between the parking garage and superstructure. The slab system carries the loads to post-tensioned concrete beams with spans between 41'-5" and 45'-1 1/4".

The post tensioned beams range in width from 18" to 48" and have a maximum depth of 24". Forces in the beams are between 162 kips to 675 kips. These beams collect the floor loads from the slab and distribute their reactions to the columns supporting them.

Rectangular and round concrete columns then transfer the loads down the strictly followed grid. Typical floors have columns sizes of 24" x 24", 24" x 30", and 30" diameter. Smaller columns are used in the mechanical penthouse due to the much lower loads they are carrying. On above grade floors, higher strength concrete is placed below columns and shear walls to accommodate for any possibility of punching shear. In the parking garage, 8" drop panels are used instead of the different concrete strengths. Figure 3 and 4 below highlights the posttensioned beams in yellow, the reinforced beams in purple, and the columns in red.

Lateral System:

Wind and seismic forces are resisted by an internal shear wall core. The core is made of reinforced concrete walls which have a consistent floor plan from the bottom floor of the parking garage up to the slab of the roof. Basement shear walls were designed with f'c = 10,000 psi, levels 1-4 use f'c = 8,000, and levels 5-14 use f'c = 5,000. Precast concrete beams attached to concrete columns using precast lateral connections provide the required resistance for the mechanical penthouse and elevator machine room.

The magnitude of the lateral force due to wind is proportional to the length of the building normal to the direction of the force. Due to the larger width of the North-South elevations, the

Advisor: Dr. Ali Memari

lateral force experienced in this direction is going to be larger than that of the East-West direction. To compensate for the larger forces there is 85' of 12" thick wall in the N/S direction compared to the 65' of 12" wall in the E/W.

Lateral forces are engaged by the shear walls through the use of floor diaphragms. The building façade collects wind forces that are then transferred to the respective floor diaphragm. Forces then travel through the diaphragm until the shear walls are engaged, at which point the forces are distributed based on the relative stiffness of the walls. An estimate of amount of force in a shear wall can be performed using the tributary area of the façade for each shear wall. Figure 4 below is a typical floor plan with the lateral system highlighted in both directions. Blue lines represent concrete shear walls in the North-South Direction while green lines represent the walls in the East-West direction.

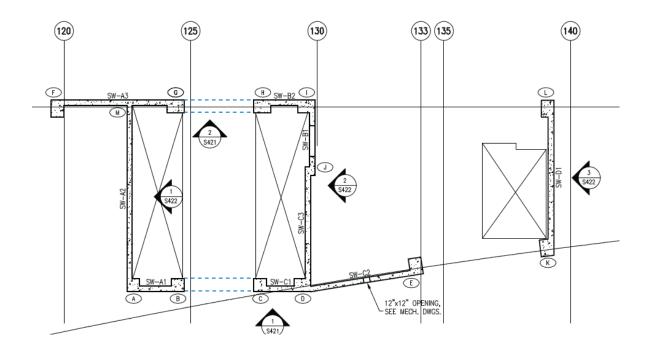
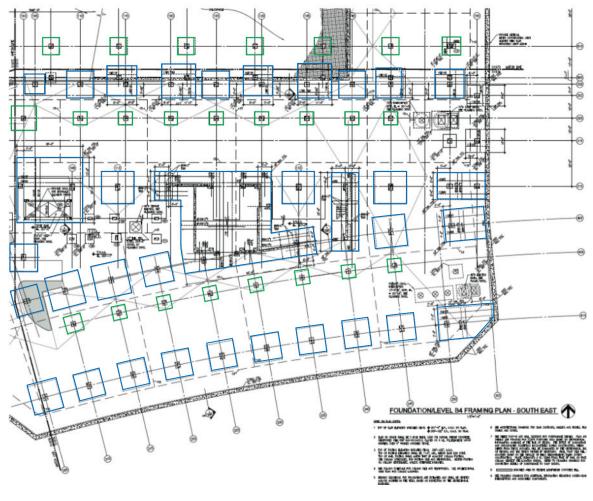



Figure 4

Figure 5 is a detailed plan of the shear wall core that extents the entire height of the building. Link beams responsible for the East-West shear walls to act together when loaded are highlighted in this figure. The boundary elements are also more visible in this graphic. These

Advisor: Dr. Ali Memari

end conditions provide lateral confinement and allow a vertical couple to form, resisting the moment induced by lateral forces.



Foundation System:

The geotechnical engineer performed a geotechnical study for the location of Office Building-G which determined the possible foundation systems as spread footings, caissons or geopiers. The structural engineer decided to use a system of spread footings under the columns, shear walls and along the perimeter concrete bearing wall. Square footage and depth of the footings are based on the load carrying capability of the soil and the vertical load on the column.

Service loads on the columns ranged greatly depending on whether or not the column extended up into the super structure of the building. Based on the structure above the foundation, the load capacity of soil was engineered to support a range of 3,000 psf to 10,000 psf. Loads on the footings varied between 60 kips to 3075 kips, once again depending on which part of Office Building-G they are supporting. Figure 6 outlines major foundations in relation with the size of the load they carry and whether or not they carry super structure loads. Blue foundations carry the load of the entire structure while green foundations only carry loads associated with the parking garage.

Advisor: Dr. Ali Memari

Note on foundations: Shear walls have been identified as the lateral force resistance system for Office Building-G. After the walls collect the lateral forces, an overturning moment is formed at the structures foundation which must be designed for. It is clear that the structural engineer took overturning into consideration with the large spread footings under the shear wall core.

Advisor: Dr. Ali Memari

Structural Materials

Structural Materials				
Material	Element	Level	Strength	
Cast-in-Place Concrete	Spread Footings	Foundation	f' _c = 10,000 psi f' _c = 6,000 psi f' _c = 3,000 psi	
	Foundation Walls	B4	f' _c = 5,000 psi	
		B3-B1	f' _c = 4,000 psi	
		B4-B1	f' _c = 10,000 psi	
	Shear Walls	L1-L4	f' _c = 8,000 psi	
	Sileal Walls	L5-L7	f' _c = 6,000 psi	
		L8-L14	f' _c = 5,000 psi	
		B4-B1	f' _c = 10,000 psi	
			f' _c = 6,000 psi	
			f' _c = 10,000 psi	
	Columns	L1-L4	f' _c = 8,000 psi	
			f' _c = 6,000 psi	
		L5-L7	f' _c = 6,000 psi	
		L8-Roof	f' _c = 5,000 psi	
	Reinforced Beams	ALL	f' _c = 5,000 psi	
	Post-Tensioned Beams	ALL	f' _c = 5,000 psi	
Tendons	Post-Tensioned Beams	ALL	F _u = 270 ksi	
Reinforcing Steel	Concrete	ALL	F _y = 60 ksi	
Structural Steel	Elevator Framing - A36	ALL	F _y = 36 ksi	
	Bolts - A325	ALL	F _u = 120ksi	

Codes and Reference

Design Codes:

National Model Code:

Local building code based on the 2006 International Building Code Sections: 1603.1.1-1603.1.7, 1603.2, 1607.11, 1608.1, 1608.7, 1608.8, 1609.1

Design Codes:

American Concrete Institute (ACI) 318-08, Building Code Requirements for Structural Concrete and Commentary

ACI 301, Specifications for Structural Concrete for Buildings

ACI 347, Standard Recommended Practice for Concrete Formwork

American Institute for Steel Construction (AISC), Specification for the design, fabrication and erection of structural steel for buildings

Thesis Codes:

National Model Code: International Building Code, 2006

Design Codes:

ACI 318-08, Building Code Requirements for Structural Concrete and Commentary

Structural Standards:

American Standards of Civil Engineers (ASCE), ASCE 7-10 Minimum Design Loads for Buildings and Other Structures

Advisor: Dr. Ali Memari

Gravity Loads

Live Loads

A comparison between the live loads used by the designer, ASCE 7-10 minimums, and the thesis loads can be found below. ASCE 7-10 does not cover all of the possible loading conditions that present themselves in the design of a building so reasonable assumptions must be made to ensure a safe design. The loads used by the structural engineer were taken from the local building code which was based on the 2006 International Building Code. Most of the loads found in ASCE 7-10 were found to coincide with the designer loads but there were a few instances where ASCE 7-10 permitted a reduction. An office live load of 100 psf was used to account for a 20 psf partition load allowing for a universal use of the floor plan.

Floor Live Loads				
Description	Designer	ASCE 7-10	Thesis	
Parking Areas	50	40	40	
Slab on Grade	100	100	100	
Office Areas	100	80	100	
Ground Floor Retail Areas	100	100	100	
Vestibules, Corridors, Lobbies, Stairs	100	100	100	
Terraces	100	100	100	
Mechanical Room	150	-	150	
Pump Room	150	-	150	
Penthouse Floor	150	-	150	
Elevator Machine Room	125	-	125	
Truck Bays	350	250	250	
Areas Accessible by Fire Fighting Equipment	350	-	350	

Dead Loads

The dead loads used throughout design as well as a comparison to the thesis loads used can be found below. A more detailed description of how the dead loads were calculated can be found in Appendix A. Although partition loads were accounted for in the live loads and dead loads they were not double counted. The 20 psf partition load was included in the determination of seismic loads due to the assumption that in the event of an earthquake the partitions would respond with the building, thus not acting like a live load.

Advisor: Dr. Ali Memari

Carl Hubben

Dead Loads			
Description	Designer	Superimposed	Thesis
Concrete	150	-	150
Partitions	20	-	20
MEP	-	15	15
Precast Panels	-	30	25
Curtain Glass	-	15	25

Snow Loads

Chapter 7 of ASCE 7-10 was referenced for the calculation of the snow loads for Office Building-G. Due to different importance factors and other load reducing coefficients, a significant difference is noticeable in the designer snow loads and the thesis snow loads. These can be viewed in the table below.

Snow Loads				
Factor Designer Thesis				
Exposure	В	В		
Pg	30	25		
C _e	0.9	0.9		
Ct	1	1		
_s	1	0.8		
p _f	27	12.6		

An additional cause for the thesis snow load to lower than the designer load is a 0.7 multiplier applied to the thesis calculation per ASCE equation 7.3-1. The snow drift calculations can be viewed in the below tables and the additional hand calculations for all of the snow loads determined can be viewed in the Appendix A.

Roof Snow Drift				
Factor	Reference			
l _u	50	F 7-8		
pg	25	7.3-1		
γ	17.25 7.7-1			
h _b	0.73	F 7-8		
h _d	2.2 F 7-9			
		F 7-9		
w	w 8.8			
\mathbf{p}_{d}	37.95	7.7.1		

Level 2 Roof Drift				
Factor	Reference			
l _u	204	F 7-8		
pg	25	7.3-1		
γ	17.25	7.7-1		
h _b	0.73	F 7-8		
h _d	4	F 7-9		
h _c	143	F 7-9		
w	16	7.7.1		
p _d	69	7.7.1		

Advisor: Dr. Ali Memari

When combining the snow drift with the flat roof snow load, there is no instance when the snow load is greater than 100 psf. With this in mind, the 100 psf live loads from the previous load determinations should continue to be used in all locations on the roofs.

Advisor: Dr. Ali Memari

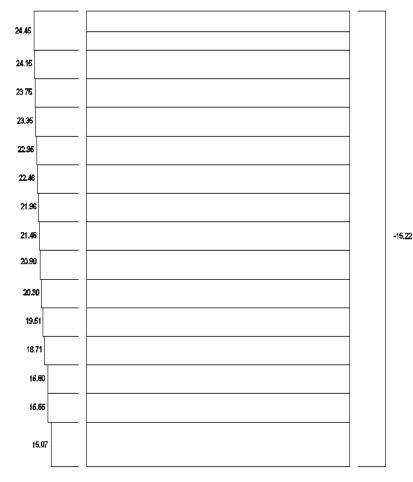
Lateral Loads

Wind:

ASCE 7-10 was used for the determination of the wind loads for the Main Wind-Force Resisting System (MWRFS) of Office Building-G. Loads were calculated in the North-South and in the East-West direction due to the roughly rectangular shape of the building. The forces were determined using the Chapter 27 guidelines for Enclosed and Partially Enclosed Rigid Buildings.

The first step in calculating wind loads is determining if the building is flexible or rigid. This classification is based on the natural frequency of the structure. ASCE 7-10 allows for an estimation of a buildings frequency based on relationships between the building height and characteristics of the lateral force resisting system. Through this estimation it was determined that the natural frequency of Office Building-G > 1 defining the building as rigid.

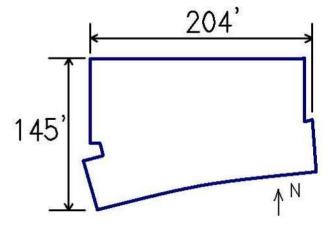
The building is fairly square on three sides but the curved southern façade creates a scenario where the West wall has a greater length than the East wall. If the curvature had been so severe that the West wall was wider than the North wall is deep, an additional wind load would have had to be calculated. Since this is not the case and L/B < 1 a single wind load calculation can be used for both the East and West loads. Using the similar rationale, the North-South wind loads were calculated using the worst case for the different geometries of the building. The building receives the largest wind force in the North-South directions, as these are the longer façades of the building normal to the wind.


The final step in analyzing the wind loads is to compare them to the seismic calculations. This is accomplished by calculating the base shear and overturning moments acting on the building. A comparison between these two forces is performed to determine the governing lateral force for design. Reference Appendix A tor a complete set of values, tables, references and equations used to calculate the design wind pressures and forces.

Note: There is an architectural screen panel that extends the entire length of the building. For this reason, the effect that the roof parapet would have on the wind load on the top of the structure was not calculated.

Advisor: Dr. Ali Memari

North-South Wind Distribution


North-South				
Story Level	Story Height (ft)	Windward pz (psf)	Leeward ph (psf)	
Roof	195	24.45	-15.22	
Elevator	186.0	24.45	-15.22	
Penthouse	178.3	24.15	-15.22	
14	166.0	23.75	-15.22	
13	153.8	23.35	-15.22	
12	141.5	22.95	-15.22	
11	129.3	22.46	-15.22	
10	117.0	21.96	-15.22	
9	104.8	21.46	-15.22	
8	92.5	20.90	-15.22	
7	80.3	20.30	-15.22	
6	68.0	19.51	-15.22	
5	55.8	18.71	-15.22	
4	43.5	16.80	-15.22	
3	31.3	16.66	-15.22	
2	19.0	15.07	-15.22	
1	0	15.07	-15.22	

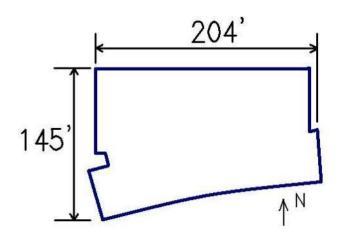
L=204'

B=145'

The larger B value of Office Building-G's dimensions was used in order to decrease the L/B ratio. The C_p multiplier used when calculating Leeward Wind forces is inversely related to this ratio so when L/B decrease, C_p and thus the wind force, increase.

Office Building-G, Eastern United States

Advisor: Dr. Ali Memari


East-West Wind Distribution

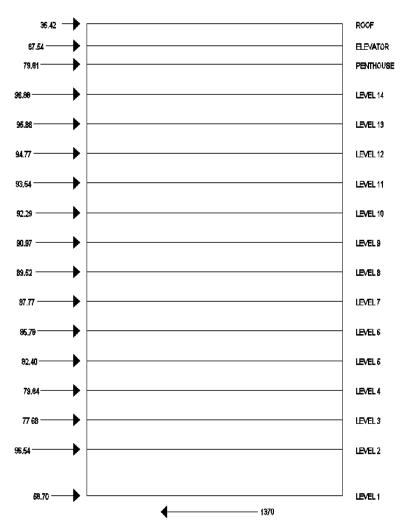
L=145'

B=204

East-West				
Story Level	Story Height (ft)	Windward pz (psf)	Leeward ph (psf)	
Roof	195	24.45	-17.20	
Elevator	186.0	24.45	-17.20	
Penthouse	178.3	24.15	-17.20	
14	166.0	23.75	-17.20	
13	153.8	23.35	-17.20	
12	141.5	22.95	-17.20	
11	129.3	22.46	-17.20	
10	117.0	21.96	-17.20	
9	104.8	21.46	-17.20	
8	92.5	20.90	-17.20	
7	80.3	20.30	-17.20	
6	68.0	19.51	-17.20	
5	55.8	18.71	-17.20	
4	43.5	16.80	-17.20	
3	31.3	16.66	-17.20	
2	19.0	15.07	-17.20	
1	0	15.07	-17.20	

As noted above, a conservative value for the L/B ratio should be used to ensure the greatest value of C_p . In this particular instance the L value used does not matter because both ratios (either 114'/204' or 145'/204') result in a value of less than one, resulting in a C_p value of -0.5.

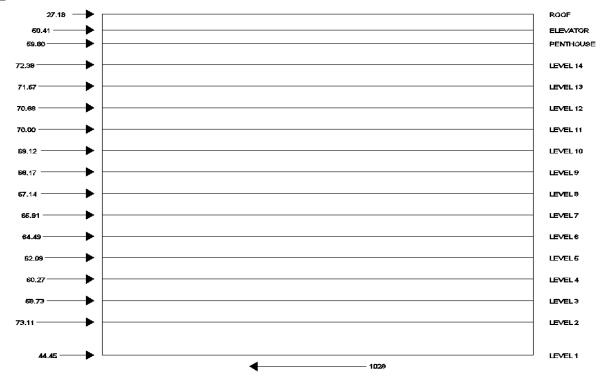
24.45			
24 15			
23.75			
23,35			
22.95			
22.46			
21.96			
21.46			-17.20
20.90			
20.30))		
19.5	1		
18.7	'1		
16.	eo		
16.	66		
	i.07		
10			


18

Advisor: Dr. Ali Memari

Carl Hubben

Technical Report 1


North-South				
Story Level	Story Height (ft)	Story Shear (Kips)	Moment (k-ft)	
Roof	195	36.42	7101	
Elevator	186.0	67.54	12562	
Penthouse	178.3	79.81	14226	
14	166.0	96.88	16082	
13	153.8	95.88	14742	
12	141.5	94.77	13410	
11	129.3	93.54	12090	
10	117.0	92.29	10798	
9	104.8	90.97	9529	
8	92.5	89.52	8280	
7	80.3	87.77	7044	
6	68.0	85.78	5833	
5	55.8	82.40	4594	
4	43.5	79.84	3473	
3	31.3	77.68	2427	
2	19.0	96.54	1834	
1	0	58.70	0	
Total Base S	Total Base Shear = 1369.92			
Total Overturning Moment (k-ft) = 136924.9				

Advisor: Dr. Ali Memari

East-West Wind Story Forces

East-West						
Story Level	Story Hight (ft)	Story Shear (Kips)	Moment (k-ft)			
Roof	195	27.18	5299			
Elevator	186.0	50.41	9376			
Penthouse	178.3	59.60	10623			
14	166.0	72.38	12015			
13	153.8	71.67	11019			
12	141.5	70.88	10030			
11	129.3	70.00	9048			
10	117.0	69.12	8087			
9	104.8	68.17	7141			
8	92.5	67.14	6211			
7	80.3	65.91	5289			
6	68.0	64.49	4385			
5	55.8	62.09	3461			
4	43.5	60.27	2622			
3	31.3	58.73	1835			
2	19.0	73.11	1389			
1	0	44.45	0			
Total Base S	hear =	1028.41				
Total Overtu	urning Mome	nt (k-ft) =	107830.34			

Advisor: Dr. Ali Memari

Seismic:

The Equivalent Lateral Force Procedure is in chapters 11 and 12 of ASCE 7-10 and these were referenced during the calculation of the seismic loads for Office Building-G. General design parameters of the building are a site classification of type D, a seismic design category of B, and a seismic importance factor of 1.0.

The first step taken in determining the seismic forces of the building was to determine the seismic response coefficient; C_s. C_s is based on a variety of factors that take into account the lateral system of the building as well as its geographical. The lateral system of the building is classified as ordinary reinforced concrete shear walls, corresponding to a response modification factor of R=5. When determined, Cs can then be multiplied by the total dead load weight of the building to yield the seismic base shear.

The next step was to consider all of the possible areas that could contribute to the dead weight of the building. The building elements considered were: slabs, beams, columns, shear walls, exterior walls, partitions, and imposed MEP loads. These loads were either a pound per square foot or a total per floor, depending on the nature of the element. It should be noted that partitions included in a 100 psf live load for office space but since they are secured to the floor of the structure it was assumed that they will not move freely in the instance of an earthquake.

A typical floor plan was used to determine many of the weights calculated. This yielded a very reasonable estimate because Office Building-G follows a typical floor plan design and variations are uncommon and minor.

Shear forces and the corresponding overturning moments at each floor were calculated and the total of these forces can be compared to the wind forces. The table below displays the story force, the total shear at that level, as well as the overturning moment caused by seismic forces. An additional table provides values of a rotational moment that could result due to a slight eccentricity of the seismic forces. These seismic loads are for both North-South and East-West directions. There would have been different seismic loads had one direction had a lateral system consisting of shear walls while the other utilized a different system like moment frames for example. Reference the Appendix A for a complete list of values used and calculations.

Advisor: Dr. Ali Memari

	Seismic Forces							
Level	Height (ft)	Wx (k)	w _i *h ^k	fx (k)	V _x (k)	Overturning Moment (k-ft)		
Roof	195	126	97,684	5	5	881		
Elevator	186	421	307,496	14	19	2644		
Penthouse	178	5457	3,777,032	175	193	31127		
14	166	5300	3,353,492	155	348	25737		
13	154	5300	3,044,317	141	489	21640		
12	142	5300	2,741,529	127	616	17935		
11	129	5300	2,445,532	113	729	14614		
10	117	5300	2,156,798	100	829	11667		
9	105	5300	1,875,881	87	915	9085		
8	93	5300	1,603,449	74	990	6857		
7	80	5300	1,340,323	62	1052	4973		
6	68	5300	1,087,537	50	1102	3419		
5	56	5300	846,448	39	1141	2182		
4	44	5300	618,927	29	1170	1245		
3	31	5300	407,758	19	1188	589		
2	19	5300	217,642	10	1198	191		
	Tota	l Base Shea	ır (k)=		1198			
	Total	Over Turniı	ng Moment (k-ft))=		154786		

Note: The weight and story shear force on the penthouse level is higher than any of the other levels. This is due to the additional weight of the mechanical equipment on this floor. Also, an estimated base shear of 1198 kips is very reasonable due to the fact that the design documents list the seismic base shear at 1200 kips.

Advisor: Dr. Ali Memari

	Twisting N	Noment	
Level	Height (ft)	N/S (k-ft)	E/W (k-ft)
Roof	195	46	33
Elevator	186	145	103
Penthouse	178	1781	1266
14	166	1581	1124
13	154	1436	1020
12	142	1293	919
11	129	1153	820
10	117	1017	723
9	105	885	629
8	93	756	537
7	80	632	449
6	68	513	365
5	56	399	284
4	44	292	207
3	31	192	137
2	19	103	73
Total Moment	N/S (k-ft) =	12224	
Total Moment	E/W (k-ft) =		8744

The above moments were calculated based on a 5% eccentricity that may occur from the Office Building-G's seismic forces being applied at a location not in direct alignment with the center of rigidity.

Lateral Load Comparison:

Below is a chart that compares the base shear and overturning moments of the wind and seismic forces. Seismic is the controlling lateral force for overturning moment in both directions and base shear in the East-West Direction. However, the wind force in the North-South direction has a larger base shear. This can be attributed to the larger width of the building causing greater wind loads to accumulate.

Lateral Load Analysis							
	Wind Seismic Controlling						
Туре	N-S	E-W	N-S	E-W	N-S	E-W	
Total Base Shear (k)	1370	1028	1198	1198	1370	1198	
Overturning Moment (k-ft)	136924	107830	154786	154786	154786	154786	

Advisor: Dr. Ali Memari

Lateral Soil Loads:

Beneath the superstructure of Office Building-G is a four story parking garage with floor plans of almost double the square footage of a typical office floor. This parking garage extends 47 ft below grade before reaching the slab on grade and spread footings. Based on the geotechnical report provided by the geotechnical engineer, significant soil pressure accumulates on the exterior concrete walls of the garage. In the report, the engineer recommends a fluid pressure of 45H psf, with H = 47 ft, be resisted by the basement walls. Figure 7 was provided by the geotechnical engineer and graphically explains the loads that the basement walls must be designed to resist.

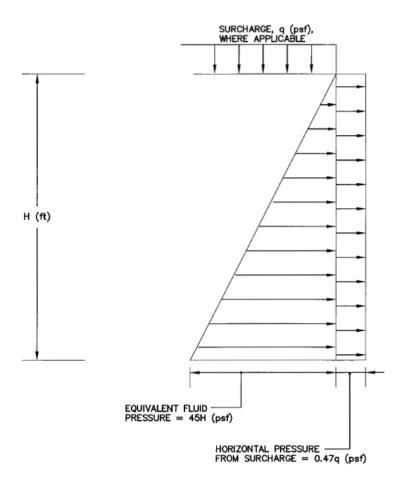


Figure 7

Advisor: Dr. Ali Memari

Gravity Member Spot Checks

Concrete Slab

A typical floor in Office Building-G is a one way 7" thick slab reinforced with #4 bars at 10" OC. This slab experiences an office live load of 100 psf and must be designed to support its own self-weight and any superimposed loads. Live load reduction would typically be used with such a large load but slab design does not allow for any reduction. Using a width of one foot, the integrity of a floor slab spanning between two post-tensioned beams was checked and the calculations can be found in Appendix B. Figure 8 displays the slab checked.

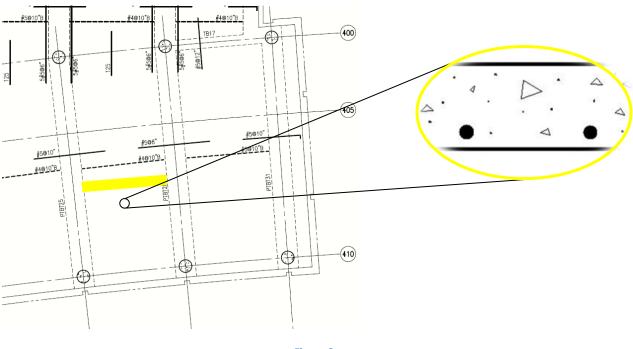
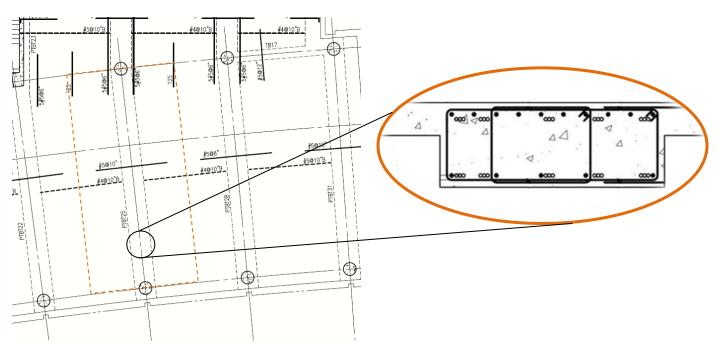


Figure 8


When the as designed slab was analyzed with the loads determined to be supported by the slab, the slab failed in its moment carrying capacity. Spot check results determined that the applied moment is 0.256 ft-k larger than the allowed moment. A possible explanation for this failure is a difference in the assumed superimposed loads because the applied moment was calculated using a relatively large imposed load of 15 psf. This theory was tested at the end of the spot check calculation and using a superimposed load of 5 psf results in an acceptable design.

Post-Tensioned Beam

48" x 18" post-tensioned beam spanning 43' between columns support 20' of tributary slab width. Unlike the slabs, live load reduction may be used in the beam design. Target Load Balancing analysis was used in the confirmation of the number of tension members. Since an allowable strength design

Advisor: Dr. Ali Memari

method was implemented in the hand calculations, service loads on the beam were used. Figure 9 highlights the post-tensioned beam design that was checked.

Spot check calculations confirmed the beam dimensions and the tension in the member based on the number of tendons. The load balancing method used provided fairly accurate results for the simplified single span assumption but an analysis of the entire frame with the aid of a computer program will be provided in the future. Assumptions made in the analysis are included in hand calculations found in Appendix B.

Column Check

A typical exterior column's axial strength was checked using a tributary area and accumulation of loads from above floors. Live load reduction on columns is allowed and was used in the analysis of the typical column. The influence area of columns is much greater than that of beams because the areas of all the floors above are included in this value. A maximum reduction of 40% of the original live load is permissible for columns supporting more than one floor.

Spot check calculations confirmed the strength of a 30" diameter exterior column on the fourth floor, reinforced by 10 #10 grade 60 bars. It was discovered that the column strength is much greater than the required strength. This is attributed to columns on levels 1-4 having the same detail and material strength. With this in mind, the column on the fourth floor is expected to have a much lower axial stress than the column was designed to carry because the same column on the first floor must support three additional floors of load.

Advisor: Dr. Ali Memari

Conclusion

Based on the loads identified and determined in Technical Report I, Office Building-G's structural concepts and existing conditions have been confirmed as adequate. Gravity load spot checks provide the most measurable results of this confirmation. Discrepancies in the as designed members to the values determined in Technical Report I can be attributed to different design loads and references.

Loads used by the structural engineer were determined using the local building code, which was based off of the 2006 International Building Code. In Technical Report I, ASCE 7-10 was referenced for load determination.

Following the design procedures described in ASCE 7-10, lateral load calculations were performed to determine the controlling forces experienced by Office Building-G. Despite being located in a low earthquake activity area, seismic forces control the design of the lateral members. Due to the rectangular shape of the building, wind base shear controls in the North-South direction.

Technical Report I is the first of three technical documents to be completed for Office Building-G. The following papers will reference this report for the existing structural systems and loads experienced for an exploration of alternate floor systems and a detailed analysis of the lateral system.

Advisor: Dr. Ali Memari

Carl Hubben

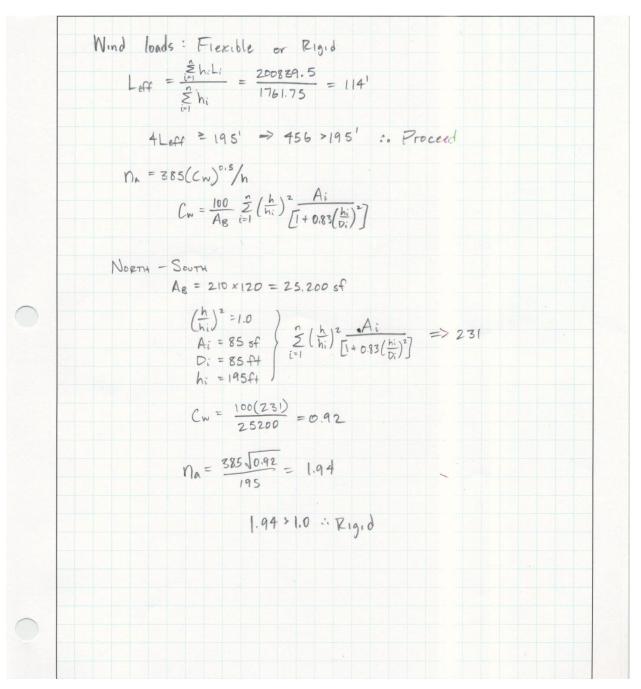
Appendix A: Load Calculation Wind Loads

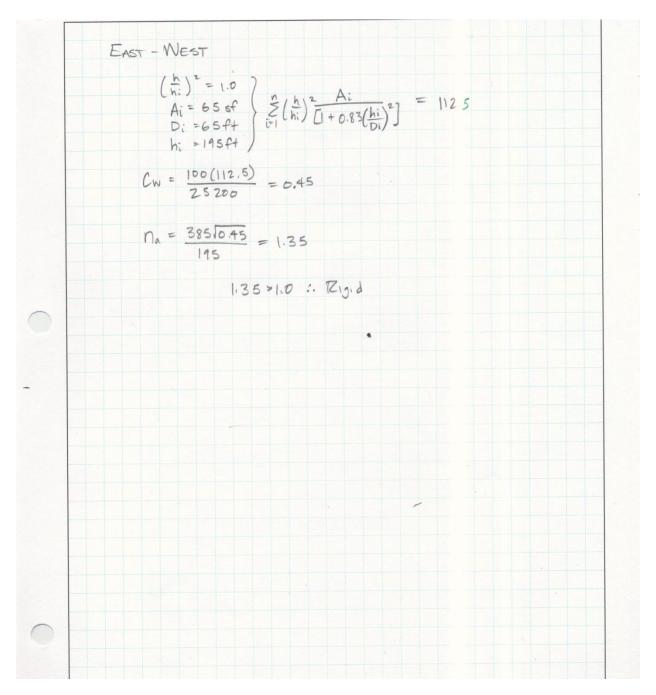
Factors and Coefficients						
	North- South	East- West	Reference			
Exposure	В	В	26.7.3			
Importance	I	I	T 1.5-1			
L _{eff}	114	204	26.9-1			
C _w	0.92	0.45	26.9-5			
n _a	1.94	1.35	26.9-5			
G _f	0.85	0.85	26.9.4			
V	105	105	26.5-1C			
K _{zt}	1.0	1.0	26.8.2			
Kh	1.185	1.185	27.3-1			
GC _{pi}	+/- 0.18	+/- 0.18	T 26.11-1			
L	204	145	Bldg Plan			
В	145	204	Bldg Plan			
Windward C _p	0.8	0.8	F 27.4-1			
Leeward C_p	-0.418	-0.5	F 27.4-1			

Kz and c	Kz and qz Calculations						
Height	Kz	qz					
19.0	0.610	14.63					
31.3	0.708	16.97					
43.5	0.716	17.18					
55.8	0.833	19.98					
68.0	0.882	21.16					
80.3	0.931	22.33					
92.5	0.968	23.21					
104.8	1.002	24.04					
117.0	1.033	24.77					
129.3	1.063	25.50					
141.5	1.093	26.22					
153.8	1.118	26.81					
166.0	1.142	27.40					
178.3	1.167	27.98					
186.0	1.185	28.43					
195.0	1.185	28.43					

Technical Report 1

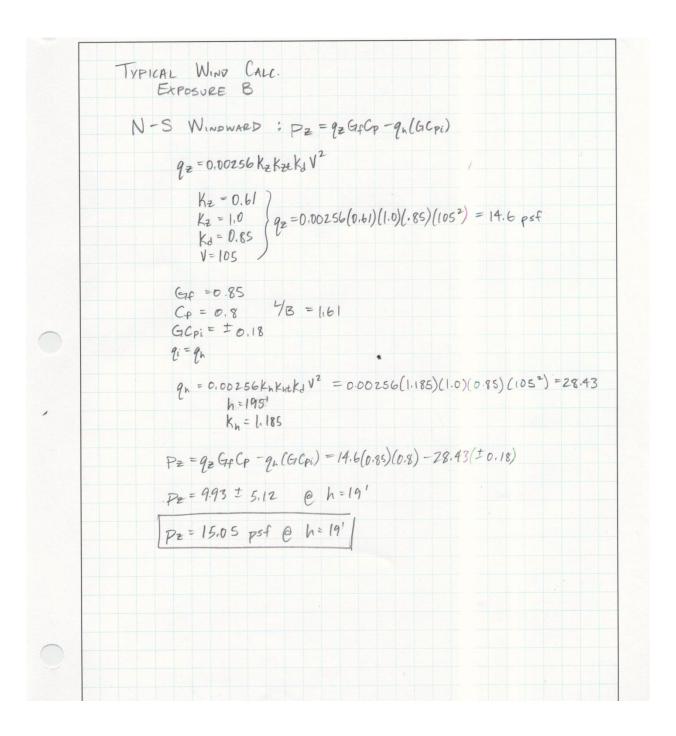
Advisor: Dr. Ali Memari


Carl Hubben


			North / South							
Story Level	Floor to Floor Height (ft)	Story Height (ft)	Windward (psf)	Leeward (psf)	Windward (plf)	Leeward (plf)	Windward (kips)	Leeward (kips)	Story Shear (Kips)	Moment (k-ft)
1	19	0	15.07	-15.22	3074	-3104.9	29.20	-29.50	58.70	0.0
2	12.25	19	15.07	-15.22	3074	-3104.9	48.03	-48.51	96.54	1834.4
3	12.25	31.25	16.66	-15.22	3398	-3104.9	39.64	-38.03	77.68	2427.5
4	12.25	43.5	16.80	-15.22	3428	-3104.9	41.81	-38.03	79.84	3473.2
5	12.25	55.75	18.71	-15.22	3816	-3104.9	44.37	-38.03	82.40	4593.9
6	12.25	68	19.51	-15.22	3979	-3104.9	47.75	-38.03	85.78	5833.1
7	12.25	80.25	20.30	-15.22	4141	-3104.9	49.74	-38.03	87.77	7043.8
8	12.25	92.5	20.90	-15.22	4264	-3104.9	51.48	-38.03	89.52	8280.3
9	12.25	104.75	21.46	-15.22	4378	-3104.9	52.93	-38.03	90.97	9528.7
10	12.25	117	21.96	-15.22	4480	-3104.9	54.26	-38.03	92.29	10798.1
11	12.25	129.25	22.46	-15.22	4582	-3104.9	55.50	-38.03	93.54	12090.0
12	12.25	141.5	22.95	-15.22	4681	-3104.9	56.74	-38.03	94.77	13410.4
13	12.25	153.75	23.35	-15.22	4763	-3104.9	57.85	-38.03	95.88	14741.7
14	12.25	166	23.75	-15.22	4844	-3104.9	58.85	-38.03	96.88	16082.1
Penthouse	7.75	178.25	24.15	-15.22	4926	-3104.9	48.76	-31.05	79.81	14226.0
Elevator	9	186	24.45	-15.22	4988	-3104.9	41.53	-26.00	67.54	12561.6
Roof	0	195	24.45	-15.22	4988	-3104.9	22.44	-13.97	36.42	7101.1

						East/\	Vest			
Story Level	Floor to Floor Height (ft)	Story Height (ft)	Windward (psf)	Leeward (psf)	Windward (plf)	Leeward (plf)	Windward (kips)	Leeward (kips)	Story Shear (Kips)	Moment (k-ft)
1	19	0	15.07	-17.20	2185	-2494	20.76	-23.69	44.45	0
2	12.25	19	15.07	-17.20	2185	-2494	34.14	-38.97	73.11	1389.1
3	12.25	31.25	16.66	-17.20	2416	-2494	28.18	-30.55	58.73	1835.3
4	12.25	43.5	16.80	-17.20	2436	-2494	29.72	-30.55	60.27	2621.7
5	12.25	55.75	18.71	-17.20	2712	-2494	31.54	-30.55	62.09	3461.4
6	12.25	68	19.51	-17.20	2828	-2494	33.94	-30.55	64.49	4385.3
7	12.25	80.25	20.30	-17.20	2944	-2494	35.35	-30.55	65.91	5288.9
8	12.25	92.5	20.90	-17.20	3031	-2494	36.59	-30.55	67.14	6210.8
9	12.25	104.75	21.46	-17.20	3112	-2494	37.62	-30.55	68.17	7141.3
10	12.25	117	21.96	-17.20	3184	-2494	38.56	-30.55	69.12	8086.6
11	12.25	129.25	22.46	-17.20	3257	-2494	39.45	-30.55	70.00	9048.0
12	12.25	141.5	22.95	-17.20	3327	-2494	40.33	-30.55	70.88	10029.6
13	12.25	153.75	23.35	-17.20	3385	-2494	41.12	-30.55	71.67	11019.0
14	12.25	166	23.75	-17.20	3443	-2494	41.83	-30.55	72.38	12014.8
Penthouse	7.75	178.25	24.15	-17.20	3501	-2494	34.66	-24.94	59.60	10623.4
Elevator	9	186	24.45	-17.20	3545	-2494	29.52	-20.89	50.41	9375.9
Roof	0	195	24.45	-17.20	3545	-2494	15.95	-11.22	27.18	5299.3

Advisor: Dr. Ali Memari


Hand Calculations

Technical Report 1

Carl Hubben

N-S LEEWARD : ph = 2hGfCp - 2h(GCpi)
$q_n = 0.00256 K_n Knekd V^2 = 28.43$
(yr = 0.85
$C_{P} = -0.418$ ($Y_{B} = 1.41$)
$GCpi = \pm 0.18$
$p_n = 28.43(0.85)(418) - 28.43(±0.18)$
$= -16.10 \pm 5.12$
$\mathcal{P}_{A} = -15.22 \text{ psf}$
E-W WINDWARD
9z = 14.6 psf
2h = 2843 psf
$P_{Z} = 14.6(0.85)(0.8) - 28.43(\pm 0.18)$
Pz = 15.05 psf @ h=19'
E-W LEEWARD
$q_h = 28.43$ $C_p = -0.5$ (4/B = 0.623)
$C_{p} = -0.5$ (4B = 0.623)
Pn = 28.43(0.85)(-0.5)-28.43(±0.18)
$P_{h} = -17.22 \text{ psf}$

Advisor: Dr. Ali Memari

Carl Hubben

Seismic Loads

Coefficients and References						
Factor	Coefficient	Reference				
Site Class	D	Geo. Report				
Design Category	В	T 11.6-1				
Importance	1	T 1.5-2				
Ss	16	USGS Website				
S ₁	5.1	USGS Website				
Fa	1.6	T 11.4-1				
F _v	2.4	T 11.4-2				
S _{ms}	0.256	11.4-1				
S _{m1}	0.0816	11.4-2				
S _{ds}	0.171	11.4-3				
S _{d1}	0.0816	11.4-4				
C _t	0.02	T 12.8-2				
x	0.75	T 12.8-2				
h _n	195	Bldg Drawings				
T _a	1.0235	128-7				
TL	8	F 22-12				
R	5	T 12.2-1				
Cs	0.0159	12.8-3				
W	74903	12.7.2				
V _b	1198	12.8-1				

33

Advisor: Dr. Ali Memari

N/S-Direction Loading

k=	1.262
V _b =	1198

i	h _i	h	w	w*h ^k	C _{vx}	f _i	Vi	N/S L	5%L	Ах	Mz
	ft	ft	kips			kips	kips	ft	ft		k-ft
Roof	0	195	126	97684	0.004	5	5	204	10	1.0	46
Elevator	9	186	421	307496	0.012	14	19	204	10	1.0	145
Penthouse	7.75	178.25	5457	3777032	0.146	175	193	204	10	1.0	1781
14	12.25	166	5300	3353492	0.129	155	348	204	10	1.0	1581
13	12.25	153.75	5300	3044317	0.117	141	489	204	10	1.0	1436
12	12.25	141.5	5300	2741529	0.106	127	616	204	10	1.0	1293
11	12.25	129.25	5300	2445532	0.094	113	729	204	10	1.0	1153
10	12.25	117	5300	2156798	0.083	100	829	204	10	1.0	1017
9	12.25	104.75	5300	1875881	0.072	87	915	204	10	1.0	885
8	12.25	92.5	5300	1603449	0.062	74	990	204	10	1.0	756
7	12.25	80.25	5300	1340323	0.052	62	1052	204	10	1.0	632
6	12.25	68	5300	1087537	0.042	50	1102	204	10	1.0	513
5	12.25	55.75	5300	846448	0.033	39	1141	204	10	1.0	399
4	12.25	43.5	5300	618927	0.024	29	1170	204	10	1.0	292
3	12.25	31.25	5300	407758	0.016	19	1188	204	10	1.0	192
2	12.25	19	5300	217642	0.008	10	1198	204	10	1.0	103
1	19	0									
		Σ	74903.5	25921845	1.0	1198					12224

Technical Report 1

Carl Hubben

E/W-Direction Loading	k=	1.262	
	V _b =	1198	

i	h _i	h	w	w*h ^k	C _{vx}	f _i	Vi	E/S L	5%L	Ах	Mz
	ft	ft	kips			kips	kips	ft	ft		k-ft
Roof	0	195	126	97684	0.004	5	5	145	7	1.0	33
Elevator	9	186	421	307496	0.012	14	19	145	7	1.0	103
Penthouse	7.75	178.25	5457	3777032	0.146	175	193	145	7	1.0	1266
14	12.25	166	5300	3353492	0.129	155	348	145	7	1.0	1124
13	12.25	153.75	5300	3044317	0.117	141	489	145	7	1.0	1020
12	12.25	141.5	5300	2741529	0.106	127	616	145	7	1.0	919
11	12.25	129.25	5300	2445532	0.094	113	729	145	7	1.0	820
10	12.25	117	5300	2156798	0.083	100	829	145	7	1.0	723
9	12.25	104.75	5300	1875881	0.072	87	915	145	7	1.0	629
8	12.25	92.5	5300	1603449	0.062	74	990	145	7	1.0	537
7	12.25	80.25	5300	1340323	0.052	62	1052	145	7	1.0	449
6	12.25	68	5300	1087537	0.042	50	1102	145	7	1.0	365
5	12.25	55.75	5300	846448	0.033	39	1141	145	7	1.0	284
4	12.25	43.5	5300	618927	0.024	29	1170	145	7	1.0	207
3	12.25	31.25	5300	407758	0.016	19	1188	145	7	1.0	137
2	12.25	19	5300	217642	0.008	10	1198	145	7	1.0	73
1	19	0									
		Σ	74903.5	25921845	1	1198					8689

Office Building-G, Eastern United States

Technical Report 1

Carl Hubben

			D	ead Lo	bad De	eterr	nina	tion			
Element	Width (in)	Depth (in)	Length (ft)	Volume (ft ³)	Number	pcf	psf	SF/Floor	Weight/Floor (Ibs)	Weight/Floor (kips)	Concentrated (kips)
Clark	-	7	-	-	1	150	87.5	25376	2220400	2220	-
Slab											
	24	24	12.25	49.0	15	150	-	-	110250	110	-
Columns	24	32	12.25	65.3	7	150	-	-	68600	69	-
	30	-	12.25	60.1	18	150		-	162356	162	-
Post-Tensioned Beam #											
31	48	18	45	270.0	1	150	-	-	40500	41	-
28	48	18	45	270.0	1	150	-	-	40500	41	-
25	48	18	45	270.0	1	150	-	-	40500	41	-
22	48	18	45	270.0	1	150	-	-	40500	41	-
19	48	18	45	270.0	1	150	-	-	40500	41	-
16	48	18	45	270.0	1	150	-	-	40500	41	-
13	48	18	45	270.0	1	150	-	-	40500	41	-
10	48	18	45	270.0	1	150	-	-	40500	41	-
7	48	18	45	270.0	1	150	-	-	40500	41	-
4	48	18	45	270.0	1	150	-	-	40500	41	-
1	48	18	45	270.0	1	150	-	-	40500	41	-
6	48	18	45	270.0	1	150	-	-	40500	41	-
9	48	18	45	270.0	1	150	-	-	40500	41	-
12	48	18	45	270.0	1	150	-	-	40500	41	-
15	48	18	45	270.0	1	150	-	-	40500	41	-
18	48	18	45	270.0	1	150	-	-	40500	41	-
21	48	18	45	270.0	1	150	-	-	40500	41	-
24	48	18	45	270.0	1	150	-	-	40500	41	-
27	48	18	45	270.0	1	150	-	-	40500	41	-
30	48	18	45	270.0	1	150	-	-	40500	41	-
34	36	18	45	202.5	1	150	-	-	30375	30	-
14	18	24	30	90.0	1	150	-	-	13500	14	-
2	36	18	46	207.0	1	150	-	-	31050	31	-
5	48	18	41	246.0	1	150	-	-	36900	37	-
8	48	18	37	222.0	1	150	-	-	33300	33	-
11	48	18	37	222.0	1	150	-	-	33300	33	-
17	24	18	29	87.0	1	150	-	-	13050	13	-
20	48	18	25.5	153.0	1	150	-	-	22950	23	-
23	24	18	23	69.0	1	150	-	-	10350	10	-
26	48	18	20	120.0	1	150	-	-	18000	18	-
29	48	18	18	108.0	1	150	-	-	16200	16	-

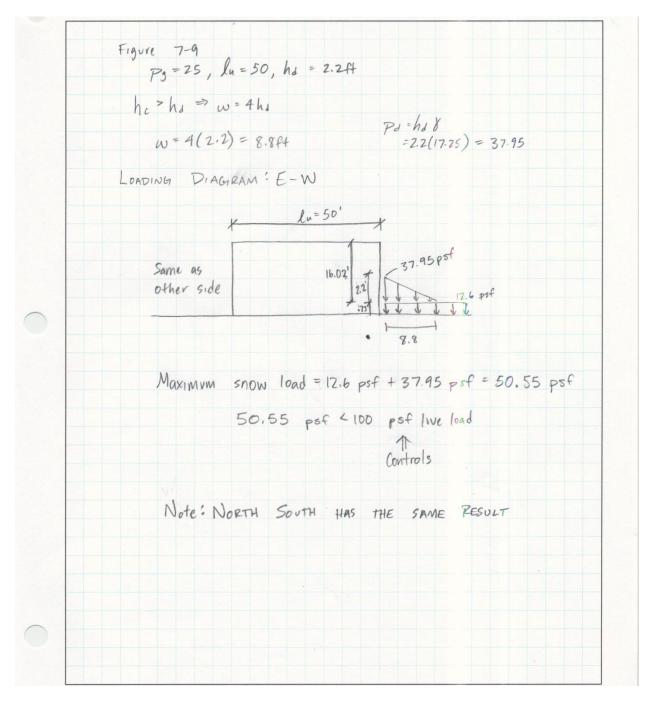
Carl Hubben

32	36	18	16	72.0	1	150	-	-	10800	11	-
33	36	18	20	90.0	1	150	-	-	13500	14	_
55											
Beam #							-	-	0	0	-
1	24	18	15	45	1	150	-	-	6750	7	-
20C	24	18	6	18	1	150	-	-	2700	3	-
20	24	18	20	60	1	150	-	-	9000	9	-
2	24	18	17	51	1	150	-	-	7650	8	-
3	24	18	17	51	1	150	-	-	7650	8	-
4	12	18	22	33	1	150	-	-	4950	5	-
5	18	18	18	40.5	1	150	-	-	6075	6	-
6	18	24	26	78	1	150	-	-	11700	12	-
7	18	18	13	29.25	1	150	-	-	4388	4	-
8	12	18	12	18	1	150	-	-	2700	3	-
8	12	18	12	18	1	150	-	-	2700	3	-
9	18	18	17	38.25	1	150	-	-	5738	6	-
10	10	20	21	29.167	1	150	-	-	4375	4	-
11	12	24	18	36	1	150	-	-	5400	5	-
12	8	18	10	10	1	150	-	-	1500	2	-
13	24	18	20	60	1	150	-	-	9000	9	-
14	36	18	20	90	1	150	-	-	13500	14	-
15	36	18	20	90	1	150	-	-	13500	14	-
16	36	18	20	90	1	150	-	-	13500	14	-
17	24	18	20	60	1	150	-	-	9000	9	-
18	8	18	12	12	1	150	-	-	1800	2	-
19	6	12	5	2.5	1	150	-	-	375	0	-
	1020	12	12.25	1041.3	1	150	-	-	156188	156	-
Shear Walls	780	12	12.25	796.25	1	150	-	-	119438	119	-
Partitions	-	-	-	-	-	-	20	25376	507520	508	-
Exterior Walls	706	-	195	-	-	-	30	137670	337151	337	-
Superimposed	-	-	-	-	-	-	15	25376	380640	381	-
Mechanical Equipment	-	-	-	-	1	-	-	-	_	-	
Cooling tower	-	-	-	-	2	-	-	-	-	-	66.4
RTU	-	-	-	-	1	-	-	-	-	-	33
Chiller 1	-	-	-	-	1	-	-	-	-	-	21.4

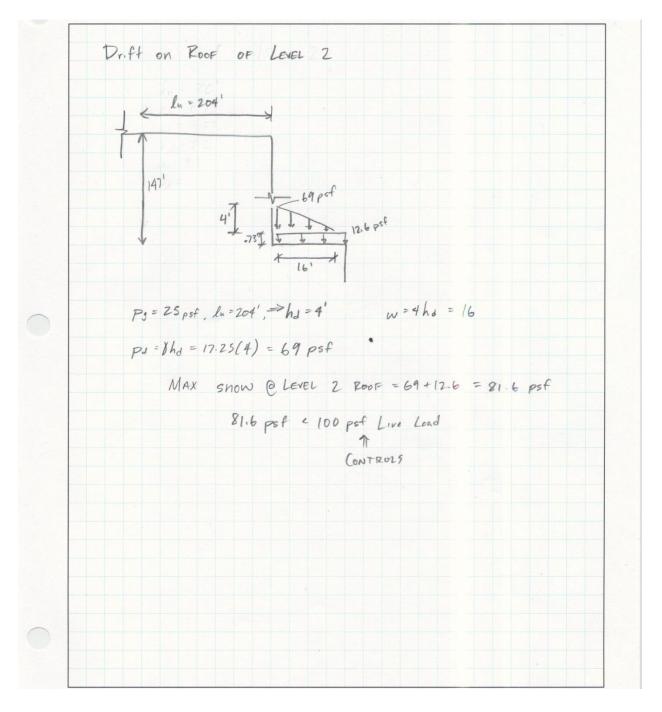
Advisor: Dr. Ali Memari

1	Chiller 2	-	-	-	-	1	-	-	-	-	-	21.4
	Chiller 3	-	-	-	-	1	-	-	-	-	-	14.3
Total										5299767	5300	156.5

Hand Calculations:

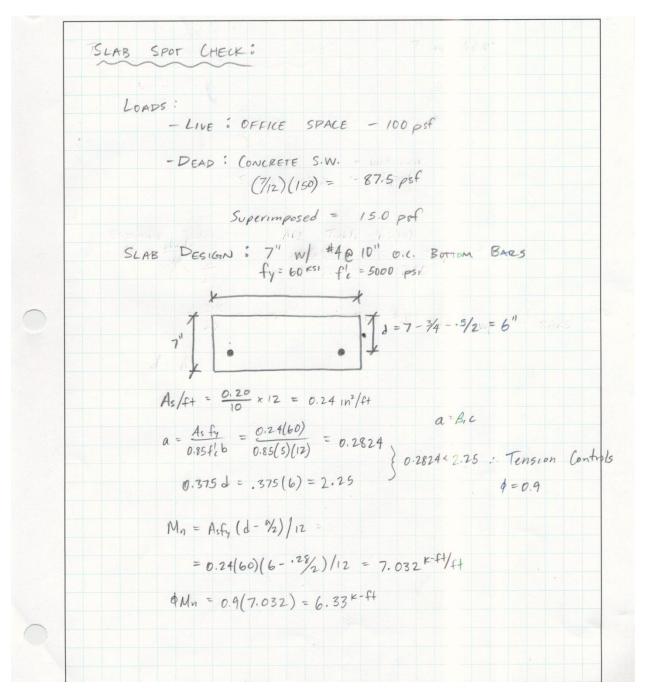

	$V = C_S W$
	$T_{n} = C_{t}h_{n}^{X} = 0.02(195)^{0.75} = 1.0235$
	Ct = 0.02
	x = 0.75 $h_{x} = 195'$
	TL = 8 (Figure 22-12)
	$C_{s} = \left \frac{S_{D,i}}{T(\frac{P}{I_{E}})} = \frac{0.0816}{1.0235(5/i)} = 0.0159 \ll Controls \right $
	$min \left \frac{S_{DS}}{(R/L_{c})} \right = \frac{0.171}{(5/1)} = 0.0342$
	$5_{DS} = \frac{2}{3} S_{MS} = 0.171$
	$S_{ms} = F_{s}S_{s} = 0.256$
-	$S_s = 16.0\% = .16$, $F_a = 1.6$
	$S_{D_1} = \frac{2}{3} S_{m_1} = 0.0816$
	· Sm, = F, S, = 2.4 (0.051) = 0,1224
	$S_1 = 5.1\% = 0.051$, $F_7 = 2.4$
	R = 5
	$I_e = 1.0$
	제 않는 것 같은 것 같

Advisor: Dr. Ali Memari

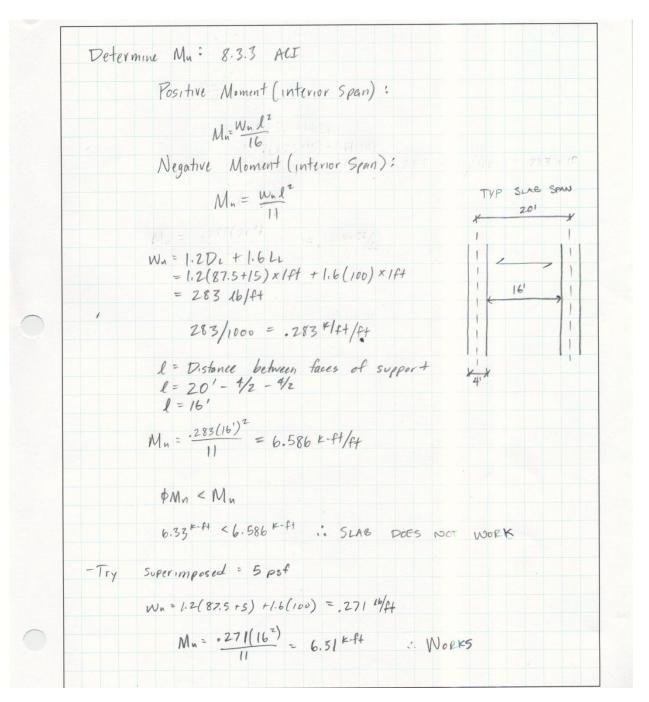

Snow Loads

Ground	1 Snow LOAD : PO = 25 psf
Flat	roof Snow load:
	pf=0.7CeC+Ispg = 0.7(0.9)(1.0)(0.8)25 = 12.6 psf
	Ce = 0.9
	$C_t = 1.0$
	Is =0.8
	$P_{3} = 2.5$
Prift	Snow load on Roof : E/W
	h(102
	The This 10.2 The This 10.2 The 10.2
	$\frac{hc}{hs} = \frac{1000}{1000} = $
	· Drift must b
	calculated.
	he leeward use lu=50' {. Use larger in design vindward use 0.75 he }
	windward use U. is nd)
	$h_{d} \leq h_{c} \gg w = 4h_{d}$
	$h_d > h_c \Rightarrow w = \frac{4h_d^2}{h_c} \ddagger h_d = h_c$
	$w \leq 8hc$
	W=8hc
	Pd=h+X &= 0.13 Pg+14 = 30 pcf
	8=0.13(25)+14 = 17.25 pcf
	$h_{b} = 12.6 \frac{l_{b}}{f_{12}} \times \frac{1}{17.25} \frac{f_{13}^{2}}{p_{b}} = 0.73 f_{12}$
	ft 11.00 lb 00 10 TT

Carl Hubben

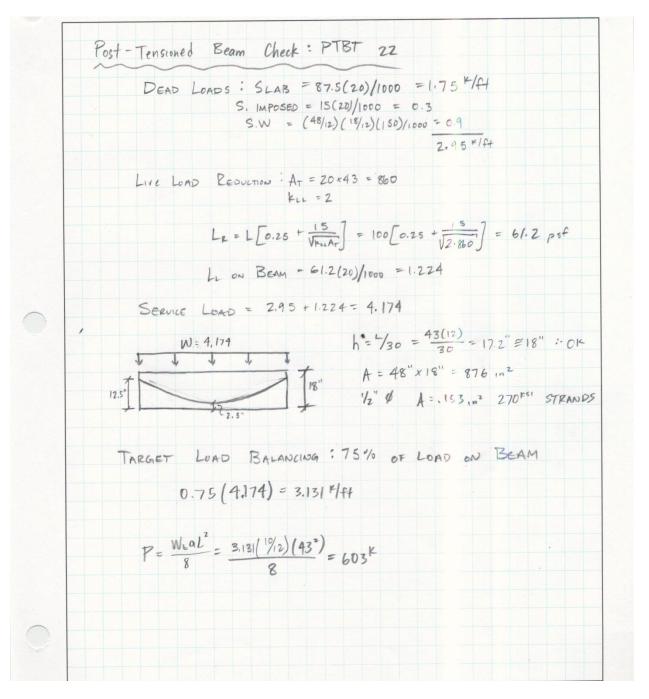


Carl Hubben



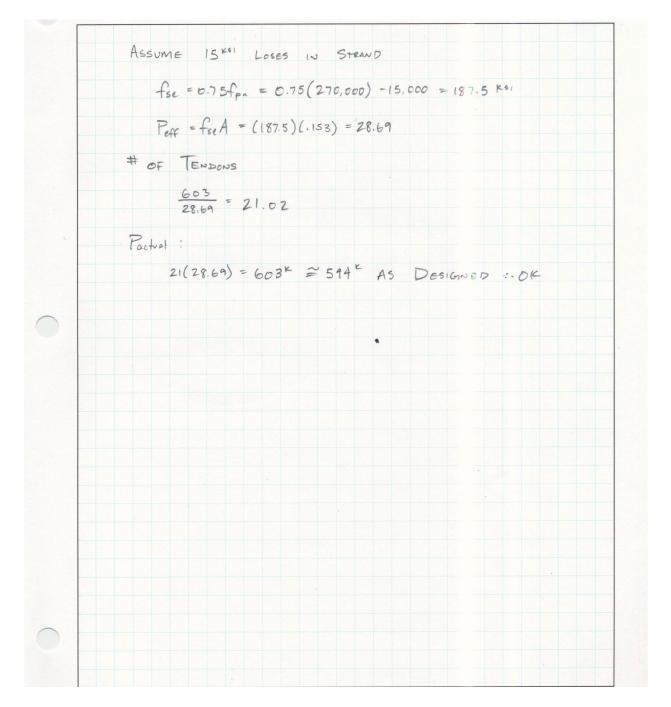
Advisor: Dr. Ali Memari

Appendix B: Spot Checks Slab

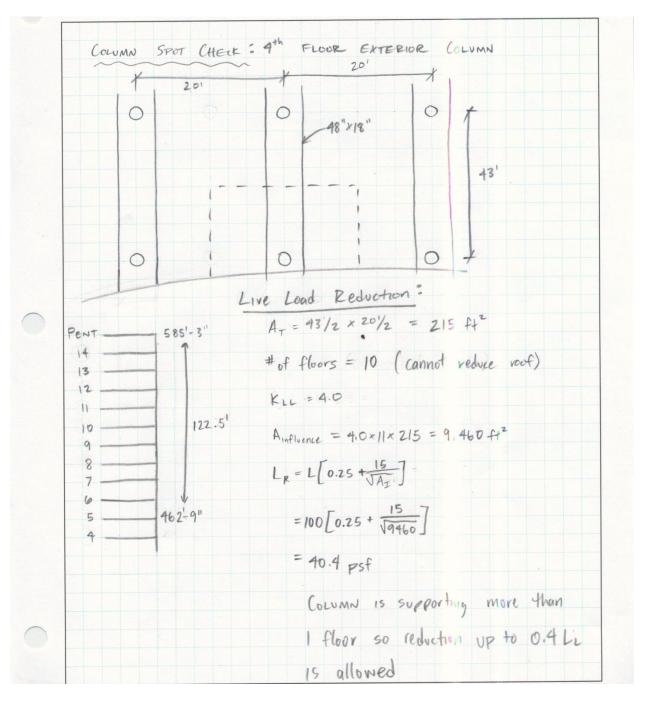


Carl Hubben

Advisor: Dr. Ali Memari


Post-Tensioned Beam

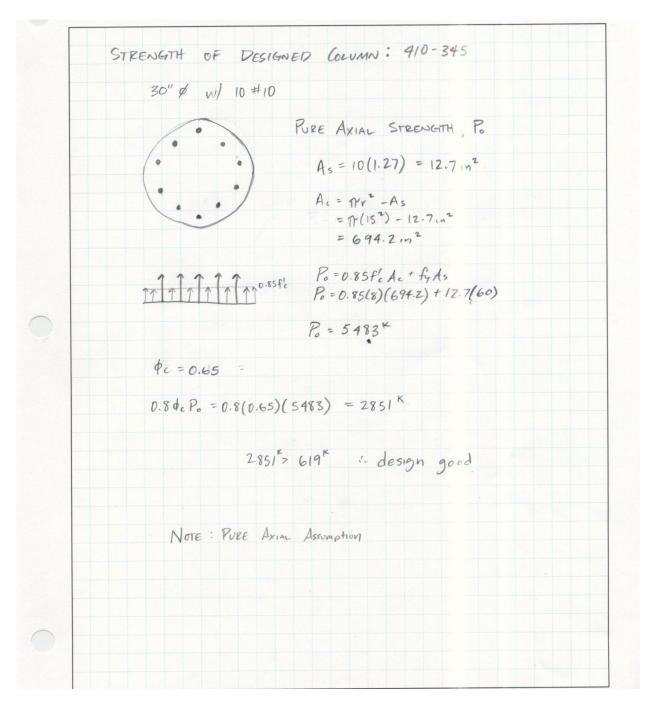
Office Building-G, Eastern United States


Technical Report 1

Carl Hubben

Advisor: Dr. Ali Memari

Column


Office Building-G, Eastern United States

Technical Report 1

Carl Hubben

1000	LOADS	ON	COLUMN :
	~~~		
		LIVE	LOADS:
			POOF/TERPACE = 100 psf × 1 floor × 215 = 21,500 lbs
			OFFICE (2) = 40.4 psf x 10 floors x 215 = 86,860 lbs
			TOTAL AXIAL LIVE : 108,360 Rbs
		Dear	D LOADS:
		FEAN	SUPERIMPOSED = 15 psf × 11 floors × 215 = 35,475 lb
			SLAB = $87.5 \text{ psf} \times 11 \text{ floors} \times 215 = 206, 940 26$
			SLAB 8/ Sport X 11 FICOIS A 210 - 206, 140
			BEAM3:
			BEAMS: (48/12)(18/12)(150)(43/2) = 19,350 lb
			19,350 × 11 + 1005 - 212,050
			EXTERIOR WALL :
			$(30 \text{ psf})(12,25')(20') = 7,350^{15}$
			7,350 × 10 floors = 73,500 26
			COLUMNS: (71(152)/144)(12.25)(150)×10 floors = 90,200 20
			TOTAL AXIAL DEAD: 618,96546

#### Carl Hubben

