

ARCHITECTURAL ENGINEERING

CONSTRUCTION MANAGEMENT

SENIOR THESIS

APRIL 11th, 2011

CONSULTANT: DR. RILEY

ARCHITECTURAL ENGINEERING
CONSTRUCTION MANAGEMENT
SENIOR THESIS
APRIL 11TH, 2011
CONSULTANT: DR. RILEY

PRESENTATION OUTLINE

- I. PROJECT OVERVIEW
- II. Project Team
- III. Overview of Analyses
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII.CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. Questions

I. PROJECT OVERVIEW

II. PROJECT TEAM

III. OVERVIEW OF ANALYSES

IV. Analysis 1 – Leed Certification

V. Analysis 2 – Brick Façade

VI. MECHANICAL BREADTH

VII. Analysis 3 – BIM Coordination

VIII. CONCLUSION

IX. ACKNOWLEDGMENTS

X. QUESTIONS

PROJECT OVERVIEW

Project Title: Paint Branch High School

FUNCTION: EDUCATION

Location: Burtonsville, MD

BUILDING SIZE: 349,000 SF

PROJECT COST: \$ 80,973,293

DATE OF CONSTRUCTION: 12/15/2009 – JULY 30, 2013

Delivery Method: Modified CM @ Risk

PRESENTATION OUTLINE:

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGMENTS
- X. QUESTIONS

PROJECT OVERVIEW

PHASE 1:

- CONSTRUCTION OF THE NEW FACILITY
- Substantial completion date: June 1, 2012

PHASE 2:

- Reconfigure Parking Lots for Staff & Students
- SUBSTANTIAL COMPLETION DATE: AUGUST 19, 2011

PHASE 3:

- ABATEMENT & DEMOLITION OF OLD FACILITY
- SUBSTANTIAL COMPLETION DATE: JULY 30, 2013

PB PHASE DIAGRAM

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGMENTS
- X. QUESTIONS

PROJECT TEAM

Owner: Montgomery County Public

SCHOOLS (MCPS)

ARCHITECT: MOSELEY ARCHITECTS

CONSTRUCTION MANAGER: HESS CONSTRUCTION + ENGINEERING

SERVICES

CIVIL ENGINEER ADTEK ENGINEERS

MEP ENGINEER: B2E CONSULTING ENGINEERS

STRUCTURAL ENGINEERS: WOLFMAN & ASSOCIATES

PROJECT TEAM

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. Analysis 1 LEED Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

OVERVIEW OF ANALYSES

ANALYSIS 1: LEED CERTIFICATION

- REVIEWING LEED SCORECARD FOR OPPORTUNITIES
- ANALYZING OPPORTUNITIES FOR ADDITIONAL COSTS

Analysis 2: Brick Façade

- COST & SCHEDULE IMPACT TO PROJECT
- MECHANICAL BREADTH
- STRUCTURAL BREADTH

ANALYSIS 3: BIM COORDINATION

- REVIEWING CLASH DETECTION LOGS AND CASE STUDIES
- DETERMINE COST AND SCHEDULE SAVINGS TO PROJECT

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

ANALYSIS 1 – LEED CERTIFICATION

PROBLEM:

- STATE OF THE ART HIGH SCHOOL
- LEED GOLD CERTIFIED (43 POINTS)

RESEARCH GOALS/METHODOLOGY:

- REVIEW LEED SCORECARD FOR OPPORTUNITIES
- ACHIEVE LEED PLATINUM CERTIFICATION (52 POINTS)

LEED VERSION 2.2

GREEN SCHOOLS STATISTICS

DAYLIGHT:

- WITH BRIGHTER LEARNING ENVIRONMENTS, TEST SCORES INCREASE BY 25%
- ABILITY TO LEARN 20-25% FASTER ON STANDARDIZED TESTS

AIR QUALITY:

- CHILDREN MISS 10 MILLION SCHOOL DAYS A YEAR DUE TO ASTHMA
- POOR AIR QUALITY CAN CAUSE MOLD GROWTH AND DISEASE TO SPREAD

ACOUSTICS:

- STUDENTS SCORE UP TO 20% HIGHER ON WORD RECOGNITION TESTS
- POOR ACOUSTICS CAUSE DISTRACTION, WHICH AFFECTS A STUDENTS ABILITY TO LEARN

DIAB SHETAYHI

Architectural Engineering Spring 2011 – Senior Thesis

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

LEED SCORECARD

SUSTAINABLE SITES

- Credit 7.1 Heat Island Effect, Non-Roof
 - Placed 50% of parking under canopy

ENERGY & ATMOSPHERE

- CREDIT 2.1 ON-SITE RENEWABLE ENERGY
 - INCORPORATED WIND TURBINE ON SITE
- CREDIT 4 ENHANCED REFRIGERANT MANAGEMENT
 - CHANGED REFRIGERANT TO R134A
- Credit 5 Measurement & Verification
 - THIRD PARTY TO ESTABLISH PLAN

INDOOR ENVIRONMENTAL QUALITY

- CREDIT 1 OUTDOOR AIR DELIVERY MONITORING
 - Incorporated CO2 monitoring Systems
- CREDIT 5 INDOOR CHEMICAL & POLLUTANT SOURCE CONTROL
 - PROPOSED ENTRY GRATES AT ALL MAJOR ENTRANCES
- Credit 7.1 Thermal Comfort, Design
 - HEATING & COOLING LOADS TO BE CALCULATED BY ME

I. PROJECT OVERVIEW

II. PROJECT TEAM

III. OVERVIEW OF ANALYSES

IV. ANALYSIS 1 – LEED CERTIFICATION

V. Analysis 2 – Brick Façade

VI. MECHANICAL BREADTH

VII. Analysis 3 – BIM Coordination

VIII. CONCLUSION

IX. ACKNOWLEDGEMENTS

X. QUESTIONS

CREDIT 7.1 – HEAT ISLAND EFFECT, NON-ROOF

REQUIREMENTS:

- 50% of parking spaces under deck/roof
- Material used must have a Solar Reflectance Index (SRI)² of at least 29

TOTAL PARKING SPACES: 355

TOTAL PARKING SPACES REQUIRED: 178

TOTAL PARKING SPACES UNDER CANOPY: 188

- = SINGLE CANTILEVER SYSTEM
- = Double Cantilever System

Diab Shetayhi

Architectural Engineering Spring 2011 – Senior Thesis

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. Questions

CREDIT 7.1 – COST ANALYSIS

Cost Analysis					
Canopy System	Total Parking Spots	Total Linear Ft	Cost/LF	Total Cost	
Single Cantilever	47	470	\$300	\$ 141,000	
Double Cantilever	141	780	\$600	\$ 468,000	
Total	188	1,250	\$900	\$ 609,000	

- = SINGLE CANTILEVER SYSTEM
- = DOUBLE CANTILEVER SYSTEM

- I. Project Overview
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. ANALYSIS 3 BIM COORDINATION
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

COMPLETE COST ANALYSIS

LEED Cost Analysis			
Sustainable Sites		Points	Cost
Credit 7.1	Heat Island Effect, Non Roof	1	\$609,000
Energy & Atmosphere		Points	Cost
Credit 2.1	On-Site Renewable Energy	1-3	\$25,000
Credit 4	Enhanced Refrigerant Management	1	N/A
Credit 5	Measurement & Verification	1	\$55,000
Indoor Environmental Quality		Points	Cost
Credit 1	Outdoor Air Delivery Monitoring	1	\$123,200
Credit 5	Indoor Chemical & Pollutant Source Control	1	\$156,695
Credit 7.1	Thermal Comfort, Design	1	N/A
	Total Possible Points/Cost	9	\$968,859

ANALYSIS 1 CONCLUSION

ADVANTAGES:

- SAVINGS IN OPERATING COSTS
- INCREASED TEST SCORES
- CLEANER LEARNING ENVIRONMENT

DISADVANTAGES:

• HIGH UPFRONT COST

Diab Shetayh

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

ANALYSIS 2 – BRICK FAÇADE

PROBLEM:

- CONGESTED SITE
- FAÇADE IS PRIMARILY FACE BRICK

RESEARCH GOALS/METHODOLOGY:

- CONTACTING PREFAB. MANUFACTURERS
- DETERMINE COST & SCHEDULE IMPACT WITH NEW SYSTEM

CURRENT SYSTEM:

- 4" FACE BRICK
- 1" AIR SPACE
- 2" RIGID INSULATION
- 10" CMU

PROPOSED SYSTEM:

- 1" face Brick
- 3.5" Polyurethane
- 4" STEEL STUD
- 5/8" Gypsum Board
- 1" MEMBRANE (2)
- ½" FIBERBOARD

Diab Shetayh

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. ANALYSIS 3 BIM COORDINATION
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

CALCULATIONS

TOTAL SF OF BRICK: 108,000 SF

PREFAB. PANEL SIZE: 12' X 40' = **480 SF**

TOTAL NUMBER OF PANELS NEEDED: 225 PANELS

Panels Installed Per Day: 8-15 panels (5 man crew)

CURRENT SYSTEM:

- 4" FACE BRICK
- 1" AIR SPACE
- 2" RIGID INSULATION
- 10" CMU

PROPOSED SYSTEM:

- 1" FACE BRICK
- 3.5" Polyurethane
- 4" STEEL STUD
- 5/8" Gypsum Board
- 1" MEMBRANE (2)
- ½" FIBERBOARD

- I. Project Overview
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. Questions

FAÇADE COMPARISON

Masonry Systems Comparison					
Original Masonry System					
<u>Duration</u>	Cost/SF	SF of Brick	<u>Total Cost</u>		
139 Days	\$20.62	108,000 \$2,226,960.			
Prefabricated Masonry Panels					
<u>Duration</u>	<u>Cost/SF</u>	<u>SF of Brick</u>	<u>Total Cost</u>		
19 days	\$40.00	108,000	\$4,320,000.00		

SCHEDULE SAVINGS: 139 DAYS – 19 DAYS = 120 DAYS (6 MONTHS)

ADDITIONAL COST: \$4,320,000 - \$2,226,960 = \$2,093,040

ANALYSIS 2 CONCLUSION

ADVANTAGES:

- DECREASE IN PROJECT SCHEDULE
- MINIMIZE SITE CONGESTION
- BETTER QUALITY

DISADVANTAGES:

• MORE EXPENSIVE SYSTEM

Diab Shetayh

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

MECHANICAL BREADTH

COMPARISON IN R –VALUES AND U-VALUES

CALCULATE EACH SYSTEMS HEAT TRANSFER

CONDUCT COST ANALYSIS BETWEEN BOTH SYSTEMS

CURRENT SYSTEM:

- 4" FACE BRICK
- 1" AIR SPACE
- 2" RIGID INSULATION
- 10" CMU

PROPOSED SYSTEM:

- 1" face Brick
- 3.5" Polyurethane
- 4" STEEL STUD
- 5/8" GYPSUM BOARD
- 1" Membrane (2)
- ½" FIBERBOARD

WALL SECTIONS

Current System

PROPOSED SYSTEM

I. Project Overview

II. PROJECT TEAM

III. Overview of Analyses

IV. Analysis 1 – Leed Certification

V. Analysis 2 – Brick Façade

VI. MECHANICAL BREADTH

VII. ANALYSIS 3 – BIM COORDINATION

VIII. CONCLUSION

IX. ACKNOWLEDGEMENTS

X. QUESTIONS

CURRENT FAÇADE

R & U Values (Brick Façade)				
Material	Material Thickness	R-value/inch	R-value	
Air Film	1"	1.00	1.00	
Brick	4"	0.011	0.44	
CMU	10"	1.20	12.00	
nsulation	2"	4.00	8.00	
		Total R-value	21.44	
		U-Value (1/R)	0.046641791	

PROPOSED FAÇADE

R & U Values (Prefabricated System)					
Material Thickness	R-value/inch	R-value			
1"	0.11	0.011			
3.5"	6.25	21.875			
4"	1.38	5.52			
0.625"	0.56	0.35			
0.08"	1.00	0.16			
0.5"	1.32	0.66			
	Total R-values	28.576			
	U-Value (1/R)	0.034994401			
	Material Thickness 1" 3.5" 4" 0.625" 0.08"	Material ThicknessR-value/inch1"0.113.5"6.254"1.380.625"0.560.08"1.000.5"1.32Total R-values			

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

COST ANALYSIS

Cost Analysis					
Summer: $\Delta T = 100-75 = 25F$					
Brick Façade	q=0.0467*108,000*25F=126,090 BTU/h	126,090*4,380=552,274,200 BTU/yr.			
Prefabricated Façade	q=0.0350*108,000*25F=94,150 BTU/h	94,500*4,380=413,910,000 BTU/yr.			
		Difference	138,364,200 BTU/yr.		
			40,584.66 kWh/yr.		
Cost/kWhr in MD = \$0.125kWh					
Winter: $\Delta T = 70-16 = 3$	54F				
Brick Façade	q=0.0467*108,000*54F=272,354.4 BTU/h	272,354.4*4,380=1,192,912,272 BTU/yr.			
Prefabricated Façade	q=0.0350*108,000*54F =204,120 BTU/h	204,120*4,380=894,045,600 BTU/yr.			
		Difference	298,866,672 BTU/yr.		
			87,585.11 kWh/yr.		
Cost/kWh in MD = \$0.125 kWh					
		Total Savings per year: \$16.016.72			

COST ANALYSIS

ALTERNATIVE INTERIOR FINISH:

- CHANGED CMU FINISH TO GYPSUM WALL BOARD
- CHANGED RIGID INSULATION TO POLYURETHANE

Gypsum Board Estimate					
laterial	Mat'l Cost/SF	Labor Cost/SF	Area/Panel (ft²)	Total Panels	Total Cost
ypsum Wall Board	\$0.48	\$0.54	480	225	\$109,404.00
olyurethane	\$1.50		480	225	\$162,000.00
				Total=	\$271,404.00

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. ANALYSIS 3 BIM COORDINATION
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

ANALYSIS 3 – BIM COORDINATION

Architectural Engineering Spring 2011 – Senior Thesis

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. ANALYSIS 3 BIM COORDINATION
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. Questions

Architectural Engineering Spring 2011 – Senior Thesis

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. ANALYSIS 3 BIM COORDINATION
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. Questions

Architectural Engineering Spring 2011 – Senior Thesis

Diab Shetayh

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination

VIII. CONCLUSION

- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

CONCLUSION

ANALYSIS 1:

- ACHIEVED LEED PLATINUM CERTIFICATION
- Total Additional Cost \$968,859

ANALYSIS 2:

- Additional Cost W/ Prefab System \$2,093,040
- SAVINGS IN PROJECT SCHEDULE 6 MONTHS

- I. PROJECT OVERVIEW
- II. PROJECT TEAM
- III. OVERVIEW OF ANALYSES
- IV. ANALYSIS 1 LEED CERTIFICATION
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

ACKNOWLEDGEMENTS

ACADEMIC ACKNOWLEDGEMENTS:

- Dr. Riley CM Advisor
- Dr. Robert Leicht
- Dr. John Messner
- PENN STATE AE FACULTY

Special Thanks To:

- MATT EVANS (HESS CONSTRUCTION)
- SAURABH GANGWAR (HESS CONSTRUCTION)
- GEORGE HOUKE (HESS CONSTRUCTION)
- PAINT BRANCH PROJECT TEAM

ACKNOWLEDGEMENTS

- . Project Overview
- II. PROJECT TEAM
- III. Overview of Analyses
- IV. Analysis 1 Leed Certification
- V. Analysis 2 Brick Façade
- VI. MECHANICAL BREADTH
- VII. Analysis 3 BIM Coordination
- VIII. CONCLUSION
- IX. ACKNOWLEDGEMENTS
- X. QUESTIONS

QUESTIONS?

QUESTIONS?

Architectural Engineering Spring 2011 – Senior Thesis