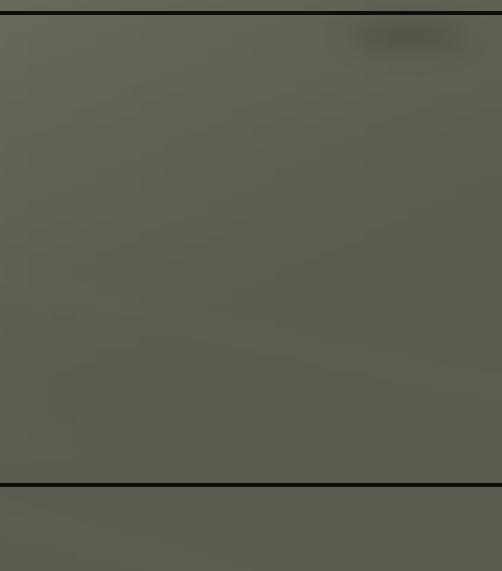


Penn State AE Senior Capstone Project

Dominic CoassoloConstruction ManagementDr. Robert Leicht - CM Advisor

Office Building – G Eastern USA



Office Building – G Eastern USA

Presentation Outline:

- A. Project Background
- **B.** Analysis 1: Implementation of Photovoltaic Glass
- **1. PV Description and Replacement**
- 2. Structural Implications
- 3. Payback Period
- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
- **1. Pedestrian Traffic Information**
- 2. Material Delivery Analysis
- 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Project Background

Presentation Outline:

A. Project Background

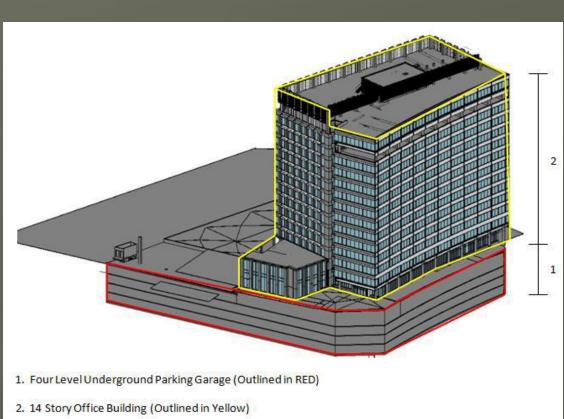
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications

3. Payback Period

- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements



- **Office Building-G Information:** • 14 Stories – 4 Levels Underground Parking • Gross SF – 649,100 SF
- Building 380,100 SF , Garage 269,000 SF
- **Project Information:**
- Design-Bid-Build
- GMP with Owner \$70,000,000
- Construction Dates: November 2009 September 2012 • LEED Certification: Silver

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Project Background

Project Background

Presentation Outline:

A. Project Background

- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications

3. Payback Period

- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

- (Building)

MEP:

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Cast In Place Concrete: • Predominant system • 7' Slabs with 5000 psi load on core floors (4-13) • 24"x 24" Columns : 10,000 psi (Garage) and 6000 psi

• 3 Variable Speed Drive Chillers • VAV System on Each Floor • Fully Integrated Building Automation System Penthouse – Main Mechanical Room

Project Background

Project Background

Presentation Outline:

A. Project Background

- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications

3. Payback Period

- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Façade:

- Precast Concrete
- Blast Façade
- Curtain Wall on Southern Elevation

Dominic Coassolo Construction Management April 11, 2010


Office Building – G Eastern USA

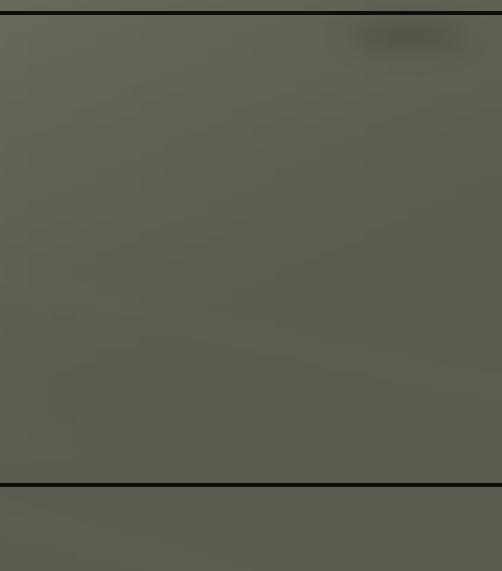
- Glass and Aluminum
- Segmented

Special Considerations: • Metro Station (West Side of Building) Metro Parking

Project Background

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements


- Analyze Structural and System Payback Period

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

- **Problem Identification:**
- Project to attain LEED Silver
- **Opportunity to Implement PV Panels**
- **Research Goal:**
- Replace Current Curtain Wall Glass With **Transparent PV Panels**

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - **1. PV Description and Replacement**
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Office Building – G Eastern USA

Photovoltaic Information:

- Centennial Solar
- Fully Transparent Panels
- Thin Film Module
- Double Glazing
- Size: 3'-8" x 8'-5"
- Power: 100W per Panel

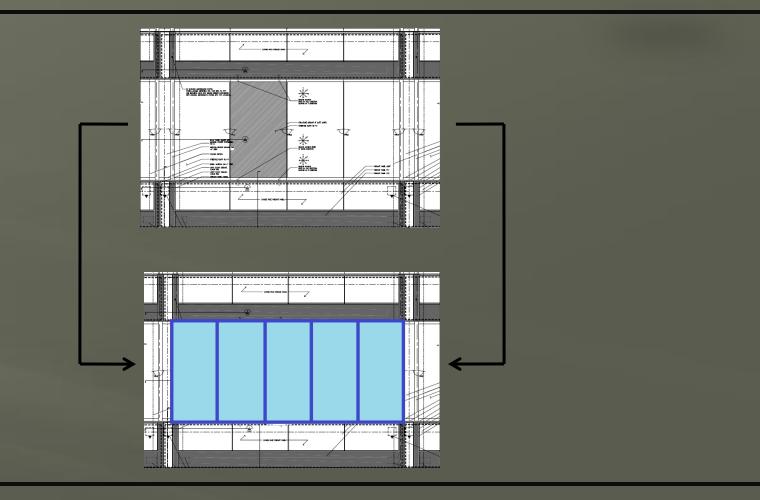
PV Description

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - **1. PV Description and Replacement**
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

- Four Glass Panels (Currently)
- Five PV Panels to be Implemented

- 676 Total PV Panels on Southern Façade
- LEED Credits: Additional 1-3 Points


Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

PV Replacement

- Southern Façade Only
- 52 PV Panels per Floor

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
- 2. Structural Implications
- 3. Payback Period
- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Office Building – G Eastern USA

Structural Impact

Structural Analysis of PV System: • Current Weight of Glass on Curtain Wall: 300,000 lbs • Weight per Panel: 321 lbs • Weight x Four Panels: 1285 lbs • PV Panel Weight: 247 lbs • Weight x Five Panels: 1235 lbs • 1235 lbs < 1285 lbs \rightarrow OK!

Structural Implications Analysis				
Glass Pane	els	Photovoltaic Panels		
Total Panels	936	Total Panels	676	
Total Weight	300,000 lbs	Total Weight	167,000 lbs	
Weight Per Panel	321 lbs	Weight Per Panel	247 lbs	
Total load on Space	1285 lbs	Total load on Space	1235 lbs	
(Panel Wt. x 4)	1203 105	(Panel Wt. x 5)	1255105	

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - **1.** PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Energy Production: • System Size: 67.6 kW • Average Cost of PV System: \$7.50/Watt in 2011 (U.S. Dept. of Energy) • AC Energy per Year: 53,469 kWh • Energy Value: \$4,170.58 • 146.5 kWh – Daily System **Energy Production**

Dominic Coassolo | Construction Management | April 11, 2010 |

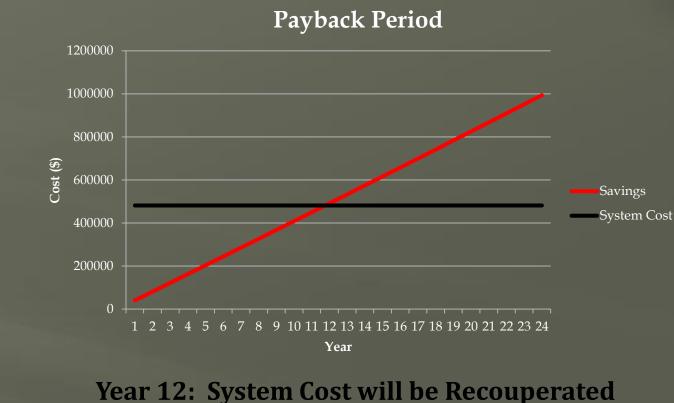
Office Building – G Eastern USA

Station Identification			
City: NA			
NA			
NA			
NA			
47 m			
PV System Specifications			
67.6 kW			
0.77			
52.1 kW			
Fixed Tilt			
90.0°			
180.0°			
Energy Specifications			
7.8 ¢ kWh			

Paybacl	ķ
---------	---

PV Energy Watts Results				
Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)	Energy Value (\$)	
1	3.46	5689	443.74	
2	3.92	5798	452.24	
3	3.46	5268	410.9	
4	2.91	3961	308.96	
5	2.56	3266	254.75	
6	2.46	2821	220.04	
7	2.55	3070	239.46	
8	2.81	3558	277.52	
9	3.25	4354	339.61	
10	4.04	6103	476.03	
11	3.35	5108	398.42	
12	2.8	4473	348.89	
Year	3.13	53469	4170.58	

x Period


Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - **1.** PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Office Building – G Eastern USA

Payback Period Analysis: Total Estimated Cost: \$507,000 • Rebates and Incentives: -15% Installation Cost (\$25,000 max.) -\$500/kWh Produced each year • Retail Cost of Energy: 0.1268\$/kWh • Estimated 1.00% increase each year • System Cost with Incentives: \$482,000 • 25 Year Savings: \$1,036,420 • 25 Year Value: \$554,420

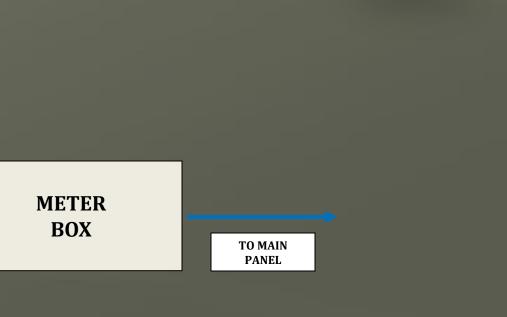
Payback Period

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Office Building – G Eastern USA

PV Connection: Supply – Side Interconnection


Electrical Components

- DC Wire
- DC Disconnects
- Inverter
- AC Disconnects
- AC Wire
- Service Tap Meter Box

PV INVERTER PV SUPPLY FROM INVERER **POWER SUPPLY FROM** TRANSFORMER

Presentation Outline:

- A. Project Background
- **B.** Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Inverter Selection:

- System Size: 67.6 kW
- Inverter Size: 75 kW

Wire Run:

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

• DC Wire Connects each Panel Performance Monitoring • Run Down Southwest Edge of Curtain Wall • Inverter Location: First Floor Electrical Room Transformer Located on First Floor • AC Wire Run to Main Electrical Room (Top Floor **Underground Parking**)

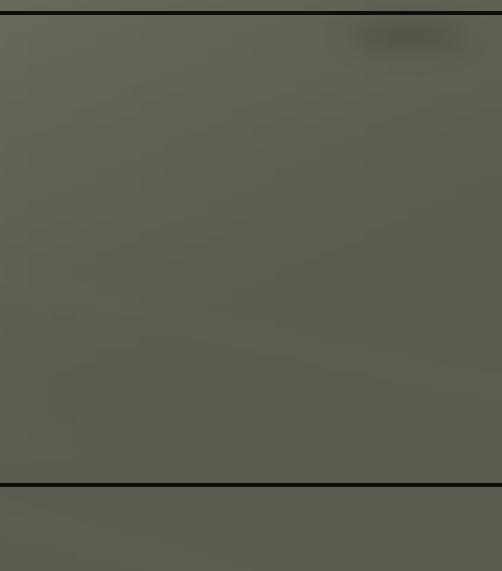
Electrical Tie-In

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In

C. Analysis 2: Material Delivery During Peak Traffic Hours

- 1. Pedestrian Traffic Information
- 2. Material Delivery Analysis
- 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements


- Project Being Between Metro Station and Parking
- Pedestrian Traffic
- •Research Goal:
- Analyze Pedestrian Traffic
- Develop Material Delivery Schedule In **Accordance With Pedestrian Traffic**

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Problem Identification:

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In

C. Analysis 2: Material Delivery During Peak Traffic Hours

1. Pedestrian Traffic Information

- 2. Material Delivery Analysis
- 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

- **Metro Station Statistics:** • 1.36 Million Users per Year
- Approx. 3,700 Users per Day
- Peak Hours:
 - 6am 9am
 - 11am 1pm
 - 4pm 6pm

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Pedestrian Traffic Data

Passengers (Estimated)

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In

C. Analysis 2: Material Delivery During Peak Traffic Hours

1. Pedestrian Traffic Information

2. Material Delivery Analysis

- 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

- -300 LF total - RS Means: 2 man crew, 54 LF/day - 50 studs total/day - 250 studs total (estimated) - 1 truckload/5 pallets - Unloading Time: 50 minutes
- **Material Delivery Analysis:** • Week of Sept. 12, 2011- Sept. 16, 2011 Trade Work on Floors 2 – 14 (exclude 9&10) • Floor 7: Framing

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Material Delivery Analysis

Floor 7: Wall Framing - Summary				
Total Framing	RS Means	Material Per	Total Studs Per	Studs Per
(LF)	NS Means	Day	Floor	Pallet
300 LF	2 workers - 54 LF per day	50 studs	250	50

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In

C. Analysis 2: Material Delivery During Peak Traffic Hours

1. Pedestrian Traffic Information

2. Material Delivery Analysis

- 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Material Delivery Analysis: Analyzed by Truckload and Number of Pallets Unloading Includes Hoists and Cranes if Needed • Materials will be placed in location for Use • Total Unloading Time: 27 hours and 10 minutes

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Material Delivery Analysis

Material Delivery Details (Week of 9/12/11 - 9/16/11)					
Floor	Trade	# of Truckloads of Material	Pallets Per Truck	Unloading Time Per Pallet	Total Time to Place Material in Area
2	Drywall	2	10	10 min	3 hours 20 minutes
3	MEP Wall Close-In	1	5	10 min	50 minutes
4	Elect. Rough-In	1	5	10 min	50 minutes
5	Plumbing Rough- In	1	5	10 min	50 minutes
6	Mech. Rough -In	2	5	12 min	2 hours
7	Wall Framing	1	5	10 min	50 minutes
8	Door Frames	1	5	15 min	1 hour 50 minutes
9	None	NA	NA	NA	NA
10	None	NA	NA	NA	NA
11	Sprinkler Distribution	1	5	10 min	50 minutes
12	Elect. Distribution	1	5	10 min	50 minutes
13	Duct Distribution	5	8	15 min	10 hours
14	MEP Risers	1	5	10 min	50 minutes
	TRASH	2	NA	5 min	10 minutes
				Total Time to Unload Materials	27 hours 10 minutes

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In

C. Analysis 2: Material Delivery During Peak Traffic Hours

- 1. Pedestrian Traffic Information
- 2. Material Delivery Analysis

3. Proposed Delivery Schedule

- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Proposed Delivery Schedule: • Week prior to Sept. 12, 2011- Sept. 16, 2011 • Three to Four Trucks per Day

- Enter and Exit Through North Entrance
- Only

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

• South Entrance for Special Deliveries and Emergencies

Material Delivery Schedule

Material Delivery Schedule (Week of 9/5/11 - 9/9/11)				
Day Trade Materials Delivered		Time Arrival	Time Departure	
Monday (9/5)	MEP Wall Close-In	Truck 1 - 9:00:00 AM	Truck 1 - 9:50:00 AM	
Monday (9/5)	Elect. Rough-In	Truck 1 - 10:00:00 AM	Truck 1 - 10:50:00 AM	
Monday (9/5)	Plumbing Rough-In	Truck 1 - 2:00:00 PM	Truck 1 - 2:50:00 PM	
Tuesday (9/6)	Wall Framing	Truck 1 - 9:00:00 AM	Truck 1 - 9:50:00 AM	
Tuesday (9/6)	Sprinkler Distribution	Truck 1 - 10:00:00 AM	Truck 1 - 10:50:00 AM	
Tuesday (9/6)	Elect. Distribution	Truck 1 - 2:00:00 PM	Truck 1 - 2:50:00 PM	
Tuesday (9/6)	MEP Risers	Truck 1 - 3:00:00 PM	Truck 1 - 3:50:00 PM	
Tuesday (9/6)	Trash	Truck 1 - 4:00:00 PM	Truck 2 - 4:05:00 PM	
Wednesday (9/7)	Duct Distribution	Truck 1 - 9:00:00 AM	Truck 1 - 11:00:00 AM	
Wednesday (9/7)	Duct Distribution	Truck 2 - 11:00:00 AM	Truck 2 - 1:00:00 PM	
Wednesday (9/7)	Duct Distribution	Truck 3 - 1:00:00 PM	Truck 3 - 3:00:00 PM	
Wednesday (9/7)	Duct Distribution	Truck 4 - 3:00:00 PM	Truck 4 - 5:00:00 PM	
Thursday (9/8)	Duct Distribution	Truck 5 - 9:00:00 AM	Truck 5 - 11:00:00 AM	
Thursday (9/8)	Door Frames	Truck 1 - 1:00:00 PM	Truck 1 - 2:50:00 PM	
Thursday (9/8)	Mech. Rough -In	Truck 1 - 3:00:00 PM	Truck 1 - 4:00:00 PM	
Friday (9/9)	Mech. Rough -In	Truck 2 - 9:00:00 AM	Truck 2 - 10:00:00 AM	
Friday (9/9)	Drywall	Truck 1 - 10:00:00 AM	Truck 1 - 11:40:00 AM	
Friday (9/9)	Drywall	Truck 2 - 2:00:00 PM	Truck 2 - 3:40:00 PM	
Friday (9/9)	Trash	Truck 2 - 4:00:00 PM	Truck 2 - 4:05:00 PM	

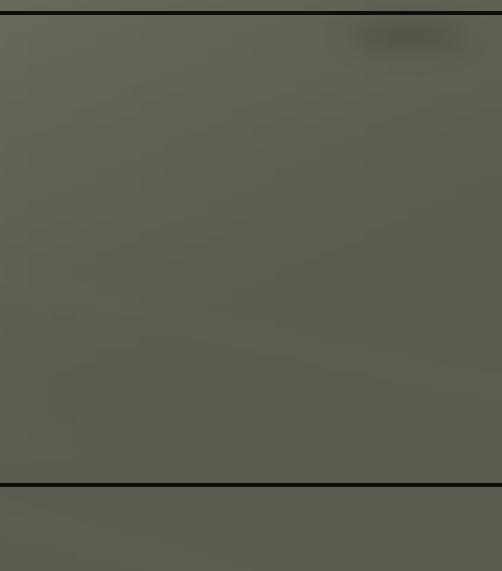
Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

- Excavation Support Is Critical
- **Research Goal:**
- Replace Raker System With Tieback System


Dominic Coassolo Construction Management April 11, 2010

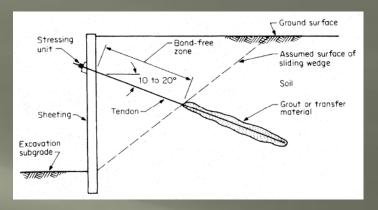
Office Building – G Eastern USA

- **Problem Identification:**
- Metro Adjacent To Project Site

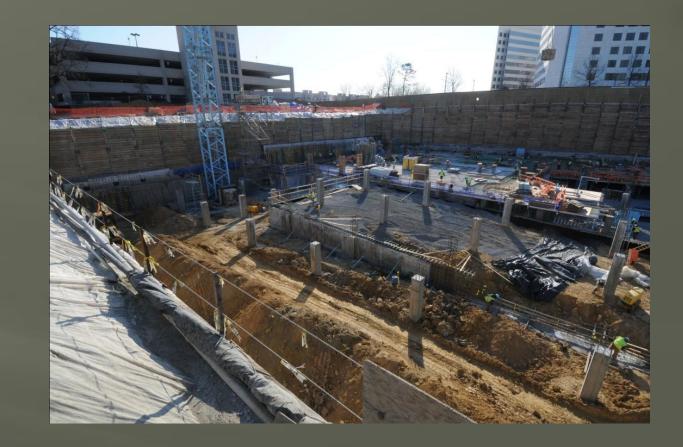
Analyze Cost and Schedule Impact

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - **1. Tieback and Raker Analysis**
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements


Tieback System:

- Three Tier System
- 925 LF


Dominic Coassolo Construction Management April 11, 2010

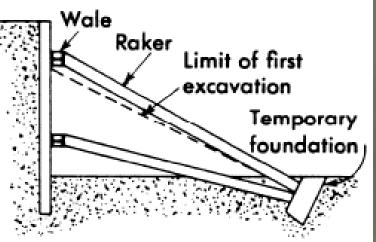
Office Building – G Eastern USA

Soldier Piles and Lagging

 Post tensioning in Foundation Wall Provides room to work

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - **1. Tieback and Raker Analysis**
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements


Raker System: Only on Metro Side

- 165 LF
- Braced Framing

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Braced Against Foundation Slab

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

1. Tieback and Raker Analysis

2. Cost Implications

- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Dominic CoassoloConstruction ManagementApril 11, 2010

Office Building – G Eastern USA

Cost Analysis

•

- Tieback Cost: \$550,000
- Raker Cost: \$276,000
- Tieback Only Cost: \$648,550
- Total Savings: \$177,450

Excavation System Cost Analysis					
	Current Sy	ystem			
Total LF Total Cost (\$) Cost/LF					
Tieback System	925	\$550,000	\$595		
Raker System	165	\$276,000	\$1,673		
Total	1090	\$826,000			
Proposed System					
Tieback System	1090	\$648,550	\$595		
Total	1090	\$648,550			
Total System Cost Savings = \$177,450					

Presentation Outline:

- A. Project Background
- B. Analysis 1: Implementation of Photovoltaic Glass
 - 1. PV Description and Replacement
 - 2. Structural Implications
 - 3. Payback Period
 - 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule

D. Analysis 3: Use of a Tieback System

- 1. Tieback and Raker Analysis
- 2. Cost Implications
- 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Schedule Acceleration: • Excavation: Aug. 20, 2010 – Dec. 10, 2010 • Tieback: 95 days -760 hours - 50 min/LF • Raker: 30 days -240 hours - 1 hr. 30 min/LF **Tieback Only:** • Save 11 Working Days No effect on Critical Path

Schedule Acceleration

Schedule Acceleration Analysis					
Current System					
Total LF Time (hours) Time/LF					
Tieback System	925	760	50 min		
Raker System	165	240	1 hr 30 min		
Total	1090	1000			
Proposed System					
Tieback System	1090	909	50 min		
Total	1090	909			
Total Schedule Savings = ~ 11 Working Days or 90 Hours					

Lessons Learned

Presentation Outline:

A. Project Background B. Analysis 1: Implementation of Photovoltaic Glass 1. PV Description and Replacement 2. Structural Implications 3. Payback Period 4. Electrical Breadth – System Tie-In C. Analysis 2: Material Delivery During Peak Traffic Hours 1. Pedestrian Traffic Information 2. Material Delivery Analysis 3. Proposed Delivery Schedule D. Analysis 3: Use of a Tieback System 1. Tieback and Raker Analysis 2. Cost Implications 3. Schedule Impact **E.** Lessons Learned F. Acknowledgements

Analysis 1 (Implementation of PV):

- Feasibility Study Must Be Developed Early in Project
- State Incentives Help Greatly In System Cost
- **Analysis 2 (Material Delivery Schedule):**
- Delivery Schedule Critical To Keep Project On Track
- **Analysis 3 (Tieback System):**
- One System Is More Cost and Schedule Efficient

Dominic Coassolo Construction Management April 11, 2010

Office Building – G Eastern USA

Acknowledgements

Presentation Outline:

A. Project Background

B. Analysis 1: Implementation of Photovoltaic Glass

- 1. PV Description and Replacement
- 2. Structural Implications
- 3. Payback Period
- 4. Electrical Breadth System Tie-In
- C. Analysis 2: Material Delivery During Peak Traffic Hours
 - 1. Pedestrian Traffic Information
 - 2. Material Delivery Analysis
 - 3. Proposed Delivery Schedule
- D. Analysis 3: Use of a Tieback System
 - 1. Tieback and Raker Analysis
 - 2. Cost Implications
 - 3. Schedule Impact
- E. Lessons Learned
- F. Acknowledgements

Office Building – G Eastern USA

SPECIAL THANKS: TURNER PROJECT TEAM MR. CARLOS FLORES - TURNER MR. JORDAN SHORT - TURNER PACE INDUSTY MEMBERS FAMILY AND FRIENDS

Acknowledgements

Dominic Coassolo Construction Management April 11, 2010

Dominic Coassolo | Construction Management | April 11, 2010

Office Building – G Eastern USA

QUESTIONS?

