Final Report

Redesign Project

Slippery Rock University Student Union

Slippery Rock, PA

Slippery Rock University Student Union Building

Project Information:

Size - 105,000 SQ. FT. Levels - 3 Construction Start - July 15, 2010 Construction End - November 28, 1011 Delivery Method - Design - Bid - Build Cost - Confidential

Architecture:

 Designed to achieve LEED Silver Rating
 Surrounded by brick façade, glass curtain walls and composite stone wall panels

- Integrates sustainability and architecture with green roof and daylighting glass panels

Lighting/Electrical:

Daylighting utilized wherever possible
 Energy efficient CFL and LED lamps with low clare

- Automatic and manual control of lighting to conserve energy when spaces are unoccupied

Slippery Rock, PA

Project Team:

Owner - Slippery Rock University Architects - DRS Architects, Sasaki Associates General Contractor - Mascaro Construction Construction Manager - Crawford Consulting MEP Engineers: CJL Engineering Structural Engineers: Atlantic Engineering

Mechanical:

 Water source heat transfer system circulating between energy recovery heat pump units
 Enthalpy wheel to capture exhaust energy

- Heating supplied from campus steam plant using shell and tube heat exchangers

Structural:

Slab on grade with concrete foundation wall assembly around the perimeter of the building
Steel wide-flange beams, girders and columns
Cast-in-place concrete slabs with composite decking

Gary Haffely | Mechanical Option

CPEP Site- http://www.engr.psu.edu/ae/thesis/portfolios/2011/gjh5027/index.html

Table of Contents

1.0	Executive Summary	5
2.0 Pi	oject Information	6
2.1	Design Goals	6
2.2	Building Information	7
2.3	Project Team	7
3.0 E>	cisting Conditions and Building Overview	8
3.1	Architecture/Building Enclosure	8
3.2	Sustainability	8
3.3	Mechanical	8
3.4	Construction	9
3.5	Structural	9
3.6	Electrical	9
3.7	Lighting	9
	Fire Protection	
	Telecommunications	
3.1) Transportation	10
4.0 Ex	isting Mechanical System Summary	11
4.1	Mechanical Design Objectives	11
4.2	Energy Sources	11
4.3	Indoor and Outdoor Design Conditions	12
4.4	Existing Building Zones and Equipment Summary	13
4	.4.1 Existing Zones	13
4	.4.2 Mechanical Equipment Summary	15
4.5	System Evaluations and Schematics	16
	.5.1 Air Flow System	
	.5.2 Hot Water Heating System	
	.5.3 Heat Transfer System	
	Energy Consumption and Cost Analysis	
	.6.1 Natural Gas	
	.6.2 Steam	
	.6.3 Electricity	
	6.4 Total Cost Analysis	
	.6.5 Energy Consumption Summary	
4.7	Overall Evaluation of Mechanical System	25
5.0 O	verview of Proposed Mechanical Redesign	26

5.1 Introduction	
5.2 DOAS with Active Chilled Beams	
5.3 Solar Thermal Water Heating System	
6.0 DOAS with Active Chilled Beams - Mechanical Depth	
6.1 Redesign Objective	
6.2 DOAS with Active Chilled Beam System Design and Evaluation	
6.2.1 Active Chilled Beams Background Information	
6.2.2 Design Considerations	
6.2.3 System Design	
6.2.4 Redesign Schematics	
6.2.5 Redesign Energy Consumption and Cost Analysis	
6.3 System Comparison	
6.4 Recommendations and Conclusions	
7.0 Solar Thermal Water Heating System - Mechanical Depth	45
7.1 Introduction	45
7.2 Solar Thermal Water Heating System Design	45
7.3 Conclusions and Recommendations	
8.0 Structural Breadth Study	
8.1 Design Objectives	
8.2 Assumptions and Design Strategies	
8.3 Floor Slab System Redesign	
8.4 Girder Redesign	51
8.4.1 Sizing Girder	51
8.4.2 Live Load Deflection	
8.4.3 Total Load Deflection	
8.4.4 Existing Beam and Girder Design	53
8.4.5 Beam and Girder Redesign	54
8.5 Recommendations and Conclusions	
9.0 Construction Breadth Study	55
9.1 Objectives	55
9.2 Assumptions and Redesign Methods	
9.3 Schedule Acceleration	
9.4 Overall Cost Analysis of Existing vs. Redesign	
9.4.1Existing Cost Analysis	
9.4.2 Redesign Cost Analysis	
9.5 Conclusions	
10.0 Credits and Acknowledgements	

Slippery Rock University Student Union, Slippery Rock, PA Advisor Dustin Eplee- 4/7/2011

11.0 List of Figures and Tables	60
Appendix A – Energy Consumption and Cost Tables	62
Appendix B – Equipment Takeoffs	64
Appendix C – Room Assignments	67
Appendix D - Air Handler Design	70
Appendix E – Girder Redesign Calculations	72

1.0 Executive Summary

The Slippery Rock University Student Union was designed by the architects and engineers with the intent to deliver a comfortable environment inside and outside of the building in hopes of creating a central gathering place of the campus. While occupant comfort was a major design condition, building performance and energy conservation was equally as important in striving to achieve LEED Silver Certification. In the following report, the existing mechanical design will be researched, evaluated, and redesigned.

The existing mechanical design is comprised of five rooftop air handling units with energy recovery that supply the majority of the occupied spaces with the proper heating, cooling and ventilation. The electrical and IT rooms are cooled by a separate ductless split system due to the excessive internal heat loads caused by the equipment. Three additional make-up air units are located on the roof supplying the kitchen with ventilation air. The energy recovery units utilize a water heat transfer system to exchange heat between the units to further decrease wasted energy within the system and are also equipped with variable frequency drives.

The campus steam plant provides the SRU Student Union with steam to heat the water used in the hot water heating system for the VAV boxes with hot water heating coils. The cooling is provided through the water source heat transfer system that is tied into two closed circuit coolers located on the roof.

In the report, a different method of providing the building with heating, cooling and ventilation is explored. The topic of redesign is to change three of the existing air handlers with energy recovery to a dedicated outdoor air system with active chilled beams. The systems overall performance created an annual savings of \$5,985.71 with an additional first cost of \$41,934.88 for a simple payback period of 7 years.

An additional system was also added to the mechanical design. The use of an evacuated tube system for solar hot water was designed and evaluated. With the combination of the cost savings from the existing portion of the green roof and the government incentives, the new system has a net savings of \$15,336.50. However, without the incentives, the system does not appear to be economically feasible.

The structural implications of replacing composite steel deck with precast hollowcore planks were also evaluated. The overall consensus of the structural analysis seems that the precast planks could be used however coordination and planning could potentially become an issue. The first cost analysis of the system saved \$83,287.75 and also accelerated the construction time of the structure.

2.0 Project Information

2.1 Design Goals

The Slippery Rock University Student Union construction is currently underway with building completion estimated to be in late November of 2011. The 105,000 square foot building will serve many different types of activities and will house spaces such as a bookstore, kitchen, cafeteria, ballroom, theater, student lounges, retail shops along with numerous offices and conference rooms. The building is currently predicted to achieve a LEED Silver Rating.

The SRU Student Union will be used by primarily students and faculty year round. The ground floor will contain the large bookstore and house all of the interior mechanical equipment. The second floor has spaces available to hold club meetings and conferences for the student organizations within the university. The faculty will also be occupying the building, with a portion on the second floor of the building dedicated into individual offices. The remaining west side of the floor will contain a full kitchen and dining commons. A ballroom and theater room is located on the floor directly above the kitchen and dining area on the third floor. The east side of the third floor will house the remaining meeting rooms.

The exterior landscape of the building will allow the students and faculty to have areas where outdoor seating is available. The SRU Student Union will hope to be the central meeting and gathering place of the Slippery Rock University Campus.

Figure 1 - Campus Site Plan

2.2 Building Information

Building Name: Slippery Rock University Studen	
• Location and site:	Slippery Rock, Pennsylvania
Occupancy type:	Student Center
• Size:	105,000 SF
• Number of Stories:	3 Floors
Cost Information:	Confidential
• Project Delivery Method:	Design-Bid-Build

2.3 Project Team

• Owner:

• General Contractor:

- Architects:
- MEP Engineers:
- Structural Engineers:
- HVAC Contractor:
- Electrical Contractor:
- Plumbing Contractor:

Mascaro Construction DRS Architects

Slippery Rock University

- CJL Engineering
- Atlantic Engineering Services
- Renick Brothers
- Yates Contracting
- Vrabel Plumbing

3.0 Existing Conditions and Building Overview

3.1 Architecture/Building Enclosure

The building is enclosed by a brick façade, glass curtain walls and composite stone wall panels. It is designed to integrate sustainability with the architecture and surroundings to invoke a natural feeling when inside and outside the building. The large glass panels allow this sensation to occur by the mass amount of natural daylighting that is present in every applicable space. The building enclosure consists of brick and prefabricated curtain wall panels. Large glass curtain walls are also present on a large portion of the southern façade.

3.2 Sustainability

The Slippery Rock University Student Union Building strives to achieve LEED Silver rating. Through various active and passive systems, the building will have the capacity to lower its energy and natural resource consumption. By incorporating natural daylighting, the building is able to conserve energy on both lighting the spaces along with cutting out the additional lighting heat load. This was possible by close planning and coordination between the design engineers and architects. When daylighting is unavailable, efficient LED and CFL luminaire configurations are used to further reduce energy consumption. The heating and cooling will be provided through a water source heat transfer system circulating throughout the five separate energy recovery units. Due to the nature of the building, simultaneous heating and cooling will occur allowing heat recovery between different zones to be utilized. The air handlers are also equipped with energy recovery wheels and VAVs to reduce energy usage at low loads.

3.3 Mechanical

The mechanical system is comprised of five energy recovery units that are used to serve ventilation air to all the occupied spaces in the building. These energy recovery units provide the building with the minimum required ventilation air. They use energy wheels to transfer exhaust energy to the incoming outdoor air. Due to the nature of the building, simultaneous heating and cooling occurs year round so a hot water heat transfer system is utilized to avoid auxiliary energy use. These units are also equipped with variable volume drives to conserve energy output when heating and cooling loads are low. There are three 24,000 cfm ERU's and two 16,000 cfm ERU's, which are sized such that they can supply the entire building with proper ventilation and can meet the peak heating and cooling loads.

The building also uses three make-up air units to provide proper ventilation in the kitchen area, where large exhaust fans are located. The make-up air units also provide the space with 100 percent outdoor air. Additionally, there is a ductless split-system which serves the IT and electrical rooms, which generate a lot of heat due to all of the electrical equipment.

3.4 Construction

The building contract was design-bid-build, however, it was not awarded to the lowest bidder. The Mascaro Construction Company was awarded the contract because of their Minority Business Enterprise and Women's Business Enterprise (MBE/WBE) participation. The building construction uses deep foundations due to the instability in the surrounding soil. Caisson piers are used, sized as large as 72 inches in diameter and 22 feet deep. The dirt is removed then a hollow form is placed in the hole. The rebar is dropped into place then filled with concrete. These are used to prevent vertical movement in the building which causes cracks as differential soil settling occurs. Specialty contractors will be used for construction of the custom fireplace, green roof, and a custom designed fountain.

3.5 Structural

The foundation consists of caisson piers up to 22 feet deep with a 16 inch slab on grade. The north facing walls are concrete load bearing to support the green roof. The main structure of the building contains a steel column and beam system with composite steel deck for the floor system. The columns typically run 16 feet on center north to south with small variations and roughly 24 feet on center east to west also with a few bay variations to accommodate the ballroom and theater. Web joists 16 inches on center run east to west support the theater.

3.6 Electrical

The 15kV electrical utility line comes in to a new electrical manhole from the southern side of the building. It then runs beneath the building to the northern side where there is a concrete electrical equipment pad to house a generator and a transformer. It contains a 1500 kVA transformer with 15kV primary stepped down to a 480/277 V, 3 Phase, 4W secondary along with a 200 kW generator in a weatherproof enclosure. Both connect to the main electrical room located on the first floor which is then used to supply the building with power.

3.7 Lighting

The building incorporates natural daylighting along most of the southern façade and wherever possible using shades to avoid excessive glare. Automatic controls with manual override are used to allow for occupants to control the amount and intensity of light in each space. The system is equipped with dimmers to allow less energy consumption when lighting load is low. The controls can also be programmed such that they change based on the time of day and hours of occupancy. CFLs and LEDs are used rather than conventional incandescent lights to conserve energy. The fixtures are high efficiency with high power factor electronic ballasts.

3.8 Fire Protection

The building is equipped with ADA compliant audio and visual alarms where necessary. The

building has motorized doors connected to the fire alarm system and will open upon a signal from the smoke evacuation system. When the smoke evacuation system is implemented, a 75,000 cfm exhaust fan located in the atrium will turn on. The doors and windows in the atrium will simultaneously open and allow for the exhaust fan to pull air in and take out the smoke through the exhaust located on the roof.

3.9 Telecommunications

Dual 600 copper cable telecommunications and data lines run to an existing manhole. A new telecommunications line runs from the existing manhole into the eastern side of the building, where it ties into the electrical and IT room. The other existing line then runs into the western side of the building.

3.10 Transportation

The building can be accessed by its main means of entrance and egress located on the south west side of the building. Upon entering the atrium, a main and centralized staircase is present which enables you to access the floor above. There is another entrance on the south east side of the building. A staircase is located directly next to the vestibule that can also take the person to the remaining floors of the building. A third and final vestibule is located on the north east corner of the building giving access to the bookstore. On the roof of the building, a catwalk leading off the building is located as an added architectural feature along with providing another means of egress.

4.0 Existing Mechanical System Summary

4.1 Mechanical Design Objectives

The Slippery Rock University Student Union construction is currently underway with building completion estimated to be in late November of 2011. The building will serve many different types of activities and will house spaces such as a bookstore, kitchen, cafeteria, ballroom, theater, student lounges, and will also have various offices and conference rooms. With such a diverse environment, it is important to ensure comfort and wellbeing for the occupants throughout the long operation hours during all months of the year. In order to achieve this, careful planning was incorporated into the design to allow the occupants to have control of each space as much as possible.

In most cases, the building well exceeds minimum ventilation requirements set forth by ASHRAE Standard 62.1 and the minimum system efficiencies stated in ASHRAE Standard 90.1. The SRU Student Union is designed in order to obtain a LEED Silver Rating. To able to accomplish this achievement, energy recovery units with a hot water heat transfer system are used with auxiliary back up. Due to the different types of spaces in the building, simultaneous heating and cooling will be occurring, which allows for these units to run effectively.

Comfort is another major priority within the SRU Student Union. Each office, conference room, and lounge area in the building is equipped with a VAV box along with a thermostat so the individuals can have the space at their own comfort level. The nature of the building requires the larger spaces to be monitored by automatic controls to keep each space at a satisfactory temperature and humidity throughout operational hours. When outdoor conditions are suitable, natural ventilation can be utilized by operable windows where applicable. With careful consideration, the SRU Student Union will be a safe and comfortable environment for the occupants.

4.2 Energy Sources

The Slippery Rock Student Union will use several means of energy. The majority of the energy consumption will be in the form of electricity. The building will also use natural gas, and steam from the nearby campus steam plant. The following chart shows the energy costs per type.

Electricity Rates		
	0-100 kW	>100 kW
Electric Demand (\$/kW)	7.04	6.05
	0-40,000 kWh	>40,000 kWh
Electric Consumption (\$/kWh)	0.05113	0.04615

Table 1 - Electricity Demand and Consumption Rates

Table 2 - Natural Gas Rates

Natural Gas Consumption Rates		
Natural Gas (\$/therm)	1.16	

Table 3 – Steam Rates

4.3 Indoor and Outdoor Design Conditions

The following design conditions were used based on the design conditions specific to the location. These design conditions are based on weather data supplied for Pittsburgh, PA because weather conditions for Slippery Rock, PA were unavailable.

Outdoor Design Conditions		
Location	Pittsburgh, Pa	
Summer Dry Bulb (°F)	86	
Summer Wet Bulb (°F)	71	
Winter Dry Bulb (°F)	5	
Summer Clearness	0.97	
Summer Ground Reflectance	0.2	
Winter Clearness	0.97	
Winter Ground Reflectance	0.2	
Outdoor Carbon Dioxide Level	400	

Table 4 - Outdoor Design Conditions

Indoor Temperatures Settings		
Cooling Dry Bulb (°F)	74	
Heating Dry Bulb (°F)	70	
Relatives Humidity %	50	
Cooling Driftpoint (°F)	80	
Heating Driftpoint (°F)	64	

4.4 Existing Building Zones and Equipment Summary

4.4.1 Existing Zones

The Slippery Rock University Student Union holds various types and varieties of functions throughout the building. The mechanical system is designed to supply these spaces effectively and as efficiently as possible by isolating each zone. The following list describes which air handler will provide air to the areas in the building. Figure 3 is a colored floor plan showing where these spaces are located.

- Zone 1: Heating only This zone only requires the spaces to be heated. It contains the perimeter stairwells, mechanical rooms, and the entry vestibules.
- Zone 2: Energy Recovery Unit 1 This unit will both heat in the winter and cool in the summer. Located on the roof, the energy recovery unit will provide air to the entrance lobby, café, UPS, cultural lounge, fireplace lounge, theatre, administrative offices, and surrounding corridors.
- Zone 3: Energy Recovery Unit 2 This unit is also located on the roof and provides both heating and cooling. It serves the dining/cafeteria area, the kitchen support rooms, the servery, storage rooms, and the surrounding corridors.
- Zone 4: Energy Recovery Unit 3 This energy recovery unit is located on the roof which provides ventilation to the student organization rooms, meeting rooms, and the circulation spaces throughout the area.
- Zone 5: Energy Recovery Unit 4 This unit is located on the roof providing both heating and cooling. It serves the ballrooms and the pre-function and circulation space surrounding the ballrooms. It also provides ventilation to the supporting storage rooms.
- Zone 6: Energy Recovery Unit 5 The final energy recovery unit is located indoors on the first floor. This unit serves the bookstore and its storage space and office space.
- Zone 7: Make-Up Air Units Three make-up air units supply air to the kitchen hoods located on the second floor kitchen. These kitchen hoods exhaust large amounts of air so these units must bring in air in order to keep the space properly ventilated and conditioned.
- Zone 8: Ductless Split System Schedule This system is used to combat the heat gain that is caused by the electrical and IT spaces located throughout the building. These rooms must be kept at a reasonable temperature in order to keep the equipment from being damaged.

Zone 1 - Green: Heating Only	Zone 5 - Purple: ERU 4	
Zone 2 - Light Blue: ERU 1	Zone 6 - Orange: ERU 5	
Zone 3 - Yellow: ERU 2	Zone 7 - Pink: MUA	
Zone 4 - Dark Blue: ERU 3	Zone 8 - Red: Ductless Split System	

Figure 3 – Existing Third Floor Zone Layout

Figure 4 – Existing Second Floor Zone Layout

Figure 5 – Existing First Floor Zone Layout

4.4.2 Mechanical Equipment Summary

Most spaces in the building are heated, ventilated, and cooled by five separate energy recovery units with a hot water heat transfer loop between the units in the system using a 40% glycolwater mixture. Each energy recovery unit serves a different zone located in the building with remote control panels located in the mechanical room. Three make-up air handlers are used to provide 100 percent outdoor ventilation air to the kitchen area due to the mass amount of exhaust air from the kitchen hoods. The ductless split system is used to keep the IT rooms from overheating throughout the building. These rooms contain building servers and electrical equipment that put off large amounts of heat.

The building receives the steam from the university steam plant which is then taken to the heat exchangers where hot water is then pumped throughout the building used for heating in the hot water heat transfer system along with domestic hot water. The water used for cooling is provided by the campus chiller plant. It is then taken to heat exchangers to provide the building with an adequate cooling capacity throughout the year.

The building was designed to isolate the areas containing mechanical equipment. A large mechanical room is located on the northwest end on the first floor of the building. It houses heat exchangers, domestic hot water tanks, pumps, expansion tanks, various types of vavles, and piping. Another mechical room is located on the first floor located on the northern side of the building that contains an energy recovery unit that services the bookstore and surrounding support areas. The ductless split system evaporators are located in the IT rooms throughout the building. Each condesndsor serves three indoor evaporators. The remaining four energy recovery units, two cooling towers, three ductless split system condensors, three make-up air units, and exhaust fans are located on the rooftop.

4.5 System Evaluations and Schematics

Figure 6 - Existing Air Side System for ERU1 - ERU5

Figure 7 – Existing Typical Energy Recovery Unit Plan

Figure 8 - Existing Hot Water Heating System

When heating, the campus steam plant provides the building with steam, which is taken to the heat exchangers then hot water is used to heat the building by the energy recovery units. When the heating demand is high, an auxiliary natural gas hot water heating system is used to provide sufficient heat. The water reaches the heating coils located in various spaces. Then, using variable air volume with hot water reheat coils and thermostats, the occupants have individual climate control.

4.5.3 Heat Transfer System

Figure 9 - Existing Heat Transfer System

The heat transfer system is the primary means of heating, cooling, and ventilating the building. The water circulates between the five energy recovery units, and then each unit delivers air to its respective zone. This allows for simultaneous heating and cooling throughout the building with energy being transferred between spaces in order to conserve energy. When the cooling demands are high enough, the heat transfer water loop will pass through the cooling towers to provide sufficient cooling for the building.

4.6 Energy Consumption and Cost Analysis

The following heating and cooling loads were calculated in TRACE 700.

Table 6 - Peak Loads		
Peak Loads		
Heating	6630 Mbh	
Cooling	3516 Mbh	

4.6.1 Natural Gas

Figure 10 - Existing Monthly Natural Gas Consumption Graph

The figure above shows the monthly natural gas consumption rates throughout the year. As you can see, when heating loads are low enough, the hot water heat transfer system is able to completely satisfy the heating needs of the building. The building does not require any auxiliary heating, therefore uses no natural gas.

On Peak Monthly Natural Gas Consumption Cost Analysis			
Month	Consumption (therms)	Price per Therm (\$)	Cost (\$)
Jan	1392	1.16	1614.72
Feb	1119	1.16	1298.04
Mar	1083	1.16	1256.28
Apr	469	1.16	544.04
May	443	1.16	513.88
June	0	1.16	0
July	0	1.16	0
Aug	0	1.16	0
Sep	424	1.16	491.84
Oct	443	1.16	513.88
Nov	1014	1.16	1176.24
Dec	1244	1.16	1443.04
Total	7631	1.16	8851.96

Table 7 - Existing On Peak Monthly Natural Gas Consumption Cost Analysis

The cost per therm was found on the website of the U.S. Energy Information Administration website. The cost is equal to 12.01\$ per cubic foot. I then converted cubic feet into BTUs, then BTUs into therms to find the cost per therm. I used the consumption in therms from the trace model to accurately find out the total monthly cost of natural gas and finally the total annual cost.

Figure 11 - Existing Monthly Steam Consumption Graph

The steam is provided by the Slippery Rock University Campus Steam Plant. I was able to obtain the cost of steam from the engineer in order to calculate the monthly energy costs. Figure 11 shows that there is not much use for steam in the summer with exception to provide a sufficient amount of hot water.

On Peak Steam Energy Consumption Cost Analysis								
Month	Therms	\$ per therm	Cost (\$)					
Jan	3024	1.057	3196.37					
Feb	2431	1.057	2569.57					
Mar	1627	1.057	1719.74					
Apr	329	1.057	347.75					
May	127	1.057	134.24					
June	120	1.057	126.84					
July	118	1.057	124.73					
Aug	125	1.057	132.13					
Sep	241	1.057	254.74					
Oct	425	1.057	449.23					
Nov	1362	1.057	1439.63					
Dec	2026	1.057	2141.48					
Total	11955	1.057	12636.44					

4.6.3 Electricity

	On Peak Monthly Electricity Energy Consumption Cost Analysis										
	El	ectrcity	Price per kV	Price per kWh		Price per kW		Cost (\$)	Total Monthly Cost (\$)		
Month	Consumption (kWh)	Demand (kW)	0 - 40,000 kW	> 40,000 kW	0 - 100 kW	> 100 kW	Consumption	Demand	Total Monthly Cost (\$)		
Jan	106050	288	0.05113	0.04615	7.04	6.05	5093.41	1841.40	6934.81		
Feb	96869	290	0.05113	0.04615	7.04	6.05	4669.70	1853.50	6523.20		
Mar	110241	282	0.05113	0.04615	7.04	6.05	5286.82	1805.10	7091.92		
Apr	111790	337	0.05113	0.04615	7.04	6.05	5358.31	2137.85	7496.16		
May	55709	223	0.05113	0.04615	7.04	6.05	2770.17	1448.15	4218.32		
June	29318	212	0.05113	0.04615	7.04	6.05	1552.23	1381.60	2933.83		
July	37270	219	0.05113	0.04615	7.04	6.05	1919.21	1423.95	3343.16		
Aug	28512	205	0.05113	0.04615	7.04	6.05	1515.03	1339.25	2854.28		
Sep	134311	469	0.05113	0.04615	7.04	6.05	6397.65	2936.45	9334.10		
Oct	115106	317	0.05113	0.04615	7.04	6.05	5511.34	2016.85	7528.19		
Nov	103069	281	0.05113	0.04615	7.04	6.05	4955.83	1799.05	6754.88		
Dec	42094	106	0.05113	0.04615	7.04	6.05	2141.84	740.30	2882.14		
Total	970339	469	0.05113	0.04615	7.04	6.05	47171.54	20723.45	67894.99		

Table 9 - Existing On Peak Monthly Electricity Energy Consumption Cost Analysis

Table 9 shows both the consumption and demand load for electricity both monthly and annually thoughout the year. As shown in the table above, the cost of elecricity was found on the West Penn Power Company website. It provides demand energy charges for the first and second block kilowatts along with the first and second block kilowatt-hour charges for energy consumption. The total monthly costs are accurate due to the scale of the building. They are likely lower than most buildings of similar size due to the high efficient mechanical systems and lighting fixtures.

Figure 12 - Existing Monthly Electricity Consumption Graph

Shown in Figure 12, the electricity rates drop dramatically in December, and also during the summer months of May through August. This can be attributed to the fact that the building is part of The Slippery Rock University. There are not as many students at school in the summer compared to rest of the year based on the occupancy hours provided by the mechanical engineer. The students also are off for winter break in the December shown by the lower electricity rates.

4.6.4 Total Cost Analysis

	Total Monthly a	and Annual Ene	rgy Cost	
Month	Natural Gas (\$)	Electricity (\$)	Steam (\$)	Total (\$)
Jan	1614.72	6934.81	3196.37	11745.90
Feb	1298.04	6523.20	2569.57	10390.81
Mar	1256.28	7091.92	1719.74	10067.94
Apr	544.04	7496.16	347.75	8387.95
May	513.88	4218.32	134.24	4866.44
June	0.00	2933.83	126.84	3060.67
July	0.00	3343.16	124.73	3467.89
Aug	0.00	2854.28	132.13	2986.41
Sep	491.84	9334.10	254.74	10080.68
Oct	543.88	7528.19	449.23	8521.30
Nov	881.60	6754.88	1439.63	9076.11
Dec	1568.32	2882.14	2141.48	6591.94
Total	8712.60	67894.99	12636.45	89244.04

Table 10 - Existing Total Monthly and Annual Energy Cost

Once all of the energy rates were obtained, the next step was to use the amount of energy consumption for each energy source per month to find a monthly rate. Then the monthly rates

of natural gas, electricity, and steam were added together to get a total monthly energy cost. The final step was to add all off the months together to get a total annual energy cost. Table 11 shows that during the first month that each semester resumes, energy costs are greatly increased. Each graph follows similar trends. Loads begin to increase around September where they tend to increase until January. They then start to decline until they are low in the summer.

4.6.5 Energy Consumption Summary

Figure 13 - Fractional Energy Consumption Summary

4.7 Overall Evaluation of Mechanical System

The Slippery Rock University Student Union will be attempting to achieve a LEED Rating. The building will hope to score 54 points, which puts it between 50 to 59 points achieving LEED Silver. The designed building has been compared to a baseline model and reports that it will save an estimated 28 percent of total energy on an annual basis allowing for 9 points in the Energy and Atmosphere category. This lower energy consumption allows the SRU Student Union to have the potential to reach LEED Silver rating.

Due to the nature of the building, the energy recovery unit system seems that it can provide thermal comfort and wellbeing to its occupants effectively. With an auxiliary heating and cooling system, the building is capable of using minimal energy while being able to satisfy comfort needs during peak load conditions throughout the entire year. Most spaces are equipped with thermostats that allow for the occupants to control the climate by the VAV with reheat coils.

Overall, the majority of the results appear to be reasonable to the actual design conditions with variation in some cases. The variances can be attributed to the assumptions made in the model. It seems the building has a mechanical system that is considerably oversized in some zones. This is an issue that is hoped to be corrected in the mechanical redesign.

5.0 Overview of Proposed Mechanical Redesign

5.1 Introduction

The general intent of the mechanical depths along with the construction and structural breadths is to maintain and improve efficiencies as well as to value engineer the project as a whole. Changing a number of aspects from the existing building design to incorporate less building materials and green design has carried out this process.

5.2 DOAS with Active Chilled Beams

The mechanical redesign will be evaluating the effects of replacing the current mechanical system with a dedicated outdoor air system with active chilled beams. This redesign will explore the energy savings created by supplying only the minimum amount of outdoor air to fulfill ventilation requirements from ASHRAE Standard 62.1 in specific areas of the building. It incorporates green design by downsizing the air handling units required to move only the ventilation air required through the building along with using less sheet metal for the ductwork within the building, decreasing the amount of material being used. The redesign will explore the benefits and feasibility of using such a system along with a cost analysis of the additional equipment used to determine a payback period.

5.3 Solar Thermal Water Heating System

The purpose of the Solar Thermal Water Heating System design is an attempt to explore the feasibility of replacing the domestic hot water needs provided through the campus steam plant. A study will be conducted in order to determine whether the system output, initial cost, and payback period are worth incorporating the additional system.

6.0 DOAS with Active Chilled Beams – Mechanical Depth

6.1 Redesign Objective

The main objective of the mechanical system redesign is to explore the effects of replacing a portion of the spaces with a dedicated outdoor air system with active chilled beams. Occupant comfort and control is a major consideration in the overall design process, thus the benefits of such a system will be evaluated. The redesign will focus on using chilled beams to adequately and comfortably cool the individual spaces although they are also capable of heating the space as well.

6.2 DOAS with Active Chilled Beam System Design and Evaluation

6.2.1 Active Chilled Beams Background Information

Advantages:

- Uses considerably less supply air allowing for smaller ductwork and air handling units.
- Potentially reduces building construction costs by lower floor to floor heights.
- Minimal maintenance required because there are no moving parts or filters.
- Increases overall occupant comfort with uniform space temperature, individual temperature control, and lower system noise.
- Reduces energy consumption by a reduction in fan energy and higher designed chilled water temperature.
- Ideal for energy recovery wheels.

Disadvantages:

- Increased construction and initial cost compared to VAV system.
- Increased ceiling space consumed compared to a traditional diffuser.
- Humidity must be carefully controlled to prevent condensation from occurring.

Chilled beams operate by a means of convection and induction. The figure below shows a diagram of how the air in the space enters the cavity in the chilled beam where it mixes and is pulled back into the space with the supply air. It is cooled by passing over the chilled water coils prior to being released back into the room. The ratio between the air in the room and outdoor ventilation air is typically between 3 and 6 times the amount of primary supply air.

Figure 14 - Section of a Typical Active Chilled Beam

The energy savings come from several different aspects that make chilled beams an efficient system to incorporate into HVAC design. One reason why chilled beams are so effective is because the chilled water has a much larger cooling capacity when compared to air. Therefore, less chilled water is needed to get an equal amount of cooling. Another area where energy savings come from is the temperature of the chilled water needed for cooling. Due to the nature and operation of chilled beams, an elevated chilled water temperature is possible, in turn using less energy to lower the chilled water supply temperature.

6.2.2 Design Considerations

The buildings mechanical system has several important issues to address in order to provide a clean and healthy indoor environment. First, the HVAC system must be able to remove the sensible loads of the space. This will be taken care of by the use of the active chilled beams in the individual spaces. The system must also provide an adequate amount of outdoor air to properly ventilate the space in accordance with ASHRAE Standard 62.1. Last, the air must be dehumidified to accommodate for the latent heat gains of the space.

Three different energy saving techniques were implemented into the redesign resulting in a considerable amount of energy saved. The first aspect was to use of an enthalpy wheel. Using this enthalpy wheel helps to recover otherwise wasted energy from the exhaust air. This is useful because it preheats or preconditions and also exchanges humidity to the incoming outdoor air therefore less energy is needed by the main heating or cooling coils of the AHU.

Figure 15 - Enthalpy Wheel Diagram

Another technique used to cut energy costs is to assign a portion of the building to a dedicated outdoor air system. This system is more efficient because it typically only requires 50% - 65% of the total amount of air to be pushed through the building when compared to a traditional air handler. This is because the dedicated outdoor air system is sized based off of the ventilation requirements of the spaces it serves. Consequently, pushing less air through the building allows fewer air handlers along with a smaller amount of ductwork, which in turn conserves energy and resources.

The last items used to achieve a better energy performance are the active chilled beams used in the redesign. The chilled beams offer a high level of sensible cooling by the chilled water that flows through the beams cooling the air passing over the pipes. The chilled beams also allow for better stratification of air into the space resulting in enhanced comfort.

6.2.3 System Design

The first step in the design process was to determine what areas of the building were going to use chilled beams as a means of heating and cooling based on the location and function of each space. For simplicity's sake in design and energy modeling, the zones were kept the same and specific energy recovery units were then assigned to DOAS with active chilled beams. The following sketches show the portions of the building with the new DOAS with chilled beams as well as the systems remaining from the existing design.

Figure 16 - Legend of Zone Redesign

Figure 17 - Third Floor Zone Redesign

Figure 18 - Second Floor Zone Redesign

Figure 19 - First Floor Zone Redesign

The new layout allows for energy recovery units ERU-1, ERU-3, and ERU-5 to be consolidated into a single air handler providing proper ventilation to all the spaces that will use chilled beams. The air handler located on the first floor was able to be removed. This was possible because although it was located on the first floor, an existing outdoor air supply duct runs from the roof directly to the air handler. The duct was able to be downsized due to the lower amount of supply air being taken to the spaces. After the zones were finalized, the new system was designed and evaluated. The floor diagram below visually illustrates the redesign.

When designing the active chilled beam system, several design considerations were taken into account in order to achieve occupant comfort and to prevent condensation from occurring. The following table shows the space summer design conditions for cooling.

Spa	Space		Space		Outdoor A	ir Supply
Т _{DB}	75 °F		T _{DB}	55 °F		
RH	50%		RH	50%		
D.P.	55 °F		D.P.	37 °F		
W _{SP}	65 gr/lb		W _{OA}	32 gr/lb		

The first step in sizing the new dedicated outdoor air system with active chilled beams was to determine the amount of outdoor supply air needed to each space. This process was carried out through calculating the minimum ventilation required through ASHRAE Standard 62.1 based on the size of each room and the number of occupants per room. Also, calculations were performed to find the air flow rate needed to satisfy the latent load requirement per space. The design was then based off which ever value was higher to satisfy humidity and ventilation requirements and set as the outdoor requirement per room in the TRACE 700 model. The method of calculating the air flow rate for the latent load is shown below.

Figure 22 - Psychometric Chart with Design Conditions

Using the equation:

 $cfm_{SA} = h_L / .68(w_{SP} - w_{OA})$

where $h_L = (200 \text{ btuh/person}) x$ (# of people)

The total air volume flow rate was found for each space. The table showing each spaces design requirements can be found at the end of the report in Appendix C.

The next step in designing the DOAS system with chilled beams was to select chilled beams from manufacturer data that can adequately meet the sensible load and minimum outdoor air requirements for each space it is applied to. The sensible loads for each room were found by modeling the building in TRACE 700 after being assigned to the dedicated outdoor air system with chilled beams. Each room being assigned to the dedicated outdoor air system has the minimum flow rates manually put in. The follow figure is an example of the information from TRACE 700 that was used to size chilled beams for each space.

COOLING COIL SELECTION								
	Total C ton	Capacity MBh	Sens Cap. MBh	Coil Airflow cfm				
Main Clg	0.1	1.1	1.1	50				
Aux Clg	0.1	1.2	1.2	189				

Figure 23 – Example from TRACE 700 Room Design

Figure 24 below from TROX USA Inc. was used to select the chilled beams for each space. The primary airflow is outdoor air supplied to the space and the aux cooling is the cooling that must be supplied by the chilled beam to the space. In some instances the amount of outdoor air was increased in order to meet the cooling load. This increase in outdoor air supply was included when sizing the air handler. The chilled water supply temperature will be 57 °F in order to remain above of the room dew point of 55 °F and to be 18 °F above the temperature of the space in which the cooling capacities below are based on. The chilled water will raise a minimum 3 °F and maximum of 6 °F after the supply air passes over the chilled water piping. The values in the tables show the variance from different air flow rates. As the air flow decreases, the cooling capacity increases. The following equation is used to determine the capacity of the chilled beams based on a chilled water flow rate of 1.5 gpm.

q = 500 gpm ΔT q = 500 x 1.5 x 3 = 2250 btuh q = 500 x 1.5 x 6 = 4500 btuh

Active Beam	Nozzle Induction				Maximum Chilled Water Flow Rate	NC	Secondary Cooling ²		Total Cooling ³	
Series	Туре	Ratio ¹	CFM/LF	inches H₂O	(GPM)	ne.	BTUH/LF	BTUH/CFM	BTUH/LF	BTUH/CFM
			5.0	0.19		<15	247	49.4	356	71.2
	Α	5.3	8.0	0.48	1.5	23	360	45.0	534	66.8
			11.0	0.91		32	433	39.3	672	61.1
		4.2	8.0	0.18		<13	316	39.5	490	61.3
DID-302-US	в		13.0	0.47		26	419	32.2	702	54.0
			18.0	0.91		35	504	28.0	896	49.8
			13.0	0.22		18	347	26.7	630	48.5
	С	3.2	19.0	0.47		28	432	22.7	846	44.5
			25.0	0.81		36	505	20.2	1050	42.0

Figure 24 - Chilled Beam Performance Chart

The total air flow rate needed for the DOAS system for each space was then found and totaled to select a proper sized air handler with an adequate cooling capacity. An air handler was then sized using TOPSS, an equipment sizing program from Trane. Table 12 shows the amount of outdoor air needed from each existing air handler to provide proper ventilation to each space.

Table 12 – Chilled Beam Performance Chart								
Zone OA Supply (cfm) Cooling (tons)								
ERU-3 Meeting Rooms	10808	15.3						
ERU-5 Bookstore	2432	19.5						
ERU-1 Lobby areas	9603	8.1						
TOTAL	22843	42.9						

Figure 25 - Chilled Beam Performance Chart

Figure 25 above is a 100% outdoor air handler designed to carry 24000 cfm of supply air to the zones selected previously in the report. The new air handler is equipped with an enthalpy wheel that will transfer energy from the exhaust air to the outdoor supply air.

6.2.4 Redesign Schematics

Figure 26 - Air Side DOAS Schematic

Figure 26 shows an air side schematic of the new air handler that will be supplying the assigned spaces with 100% outdoor air. The cooling coil will be supplied with chilled water at a temperature of 45 °F and leaving the coil at 55 °F. The chilled water will be supplied by the district chilled water plant. The heating coil will use low pressure steam to heat the incoming outdoor air from the campus steam plant. Details from sizing the air handler can be found at the end of the report in Appendix D.

Figure 27 - Chilled and Hot Water Chilled Beam Schematic

This schematic demonstrates the chilled beam system to be used in the redesign. For cooling purposes, the district chilled water plant will supply the SRU Student Union with chilled water. As shown above, a heat exchange will be used to provide for sufficient chilled water to the beams. When the chilled water temperature remains at a satisfactory cooling level, the return bypass can be utilized via the 3-way modulating valve. After the chilled water heat exchanger, the chilled water supply to the chilled beams will be at 57 °F in order to provide proper cooling to the space and to remain above the space dew point avoiding condensation on the chilled beams from forming.

The heating system used in the active chilled beams will be supplied by the campus steam plant. Similar to the cooling section, a heat exchanger will heat the water flowing through the chilled beams to allow for proper space heating.

	Chilled Beams Schedule									
Unit Tag	Induction Ratio	Primary Airflow	ΔΡ	Water Flow Rate	Cooling Capacity					
		(cfm/lf)	(in wg)	(gpm)	(btuh/cfm)					
DID-302-US	5.3	5	0.19	1.5	49.4					
DID-602-US	5.3	10	0.89	1.5	63.4					
DID-302-US	5.3	11	0.91	1.5	39.3					
DID-302-US	4.2	18	0.91	1.5	28.0					
DID-302-US	3.2	13	0.22	1.5	26.7					
DID-302-US	3.2	19	0.47	1.5	22.7					
DID-302-US	3.2	25	0.81	1.5	20.2					

Table 13 - Chilled Beams Schedule

Table 14 – Chilled Water Pump Schedule

	Chilled Water Pump Schedule									
Tag	Tag Service Location GPM Total Head (ft) Motor HP Efficiency RPM Electrial Char. Type								Туре	
CW - 1	Chilled Water-Beams	Mech Room	330	90	10	75	1750	480V-3ф-60Hz	End Suction	
CW - 2	Chilled Water-Beams	Mech Room	330	90	10	75	1750	480V-3ф-60Hz	End Suction	

6.2.5 Redesign Energy Consumption and Cost Analysis

The information in this section was calculated by modeling the building in TRACE 700 to find the energy consumption for the building over the course of a year. The following chart shows the energy source distribution of the building.

Figure 29 - Monthly Chilled Water Consumption of Redesign

Figure 29 shows much less energy is consumed during the summer months when the students will not be on campus. This trend appears to be logical based on occupation rates provided by the mechanical engineers. A large step occurs in September when school resumes and remains fairly consistent throughout the academic months. As you can see, natural gas is used as a means of heating; therefore, the use of natural gas is significantly higher in the winter months in order to keep the building at a desirable temperature. As shown in the figure above, steam consumed from the campus steam plant is low until the heating season occurs throughout the winter months. Detailed energy and cost tables can be found at the end of the report in Appendix A.

Figure 30 – Monthly Chilled Water Consumption of Redesign

Figure 30 shows the distribution of chilled water consumed throughout the year. The chilled water is a primary means of cooling a majority of the spaces so the trend increased as summer approaches.
Once the total energy consumption was determined, an overall distribution of cost was analyzed and a total energy cost per month and year was calculated.

Total Monthly and Annual Energy Cost						
Month	Natural Gas (\$)	Electricity (\$)	Steam (\$)	Water (\$)	Total (\$)	
Jan	1931.40	6984.15	1550.62	17.61	10483.78	
Feb	1932.66	6606.43	1207.09	23.48	9769.66	
Mar	1513.80	6911.69	445.00	153.12	9023.61	
Apr	849.12	6886.47	0.00	316.17	8051.76	
May	729.64	3834.05	0.00	234.01	4797.70	
June	211.12	2209.07	0.00	216.40	2636.59	
July	207.64	2383.01	0.00	275.09	2865.74	
Aug	219.24	2167.61	0.00	198.79	2585.64	
Sep	694.84	7626.89	0.00	527.46	8849.19	
Oct	902.48	7073.86	0.00	286.83	8263.17	
Nov	1099.68	6710.18	233.60	176.09	8219.55	
Dec	1775.96	4236.32	1699.66	0.00	7711.94	
Total	12067.58	63629.73	5135.97	2425.05	83258.33	

Table 15 - Total Energy Cost and Consumption of Redesign

Figure 31 - Utility Cost Distribution of Redesign

As shown in the pie chart above, the majority of the energy costs are from the electricity consumption in the building. The table below shows where the energy is consumed along with a cost per square foot for energy of the building.

Redesign Energy Cost Distribution							
	Electric (\$) Gas (\$) Steam (\$) Water (\$) Total Cost (\$) Cost/SF						
Heating	3731.10	5054.29	5135.97		13921.36	0.14	
Cooling	7192.90			2076.47	9269.37	0.09	
Supply Fans	13007.04				13007.04	0.13	
Pumps	659.37				659.37	0.01	
Base Utilities	10423.98	2511.65			12935.63	0.13	
Lighting	16489.62				16489.62	0.17	
Receptacles	12125.72	4501.64			16627.36	0.17	
Totals	63629.73	12067.58	5135.97	2076.47	82909.75	0.85	

Figure 32 - Energy Distribution of Redesign

6.3 System Comparison

Due to the reduction in the amount of supply air being pushed through the building, less sheet metal is required in ductwork. A detailed ductwork quantity takeoff was conducted in Autodesk Quantity Takeoff in order to determine the amount of sheet metal that will be saved with the redesign. After finding the total amount of sheet metal used with the three air handlers being replaced, an estimate of the amount of sheet metal needed for the new ventilation rates was calculated per space. The ductwork was sized based on the air flow rate and number of chilled beams in each space using the same duct sizing schedule as the existing design. The tables below show a detailed quantity takeoff for the existing design and the redesign of the second floor in order to obtain the total pounds of sheet metal. The ratio between the existing and redesign calculated will be applied to the remaining existing sheet metal used in the applicable zones to get an estimate of the total sheet metal saved from the redesign.

	Exisitng Sheet Metal Ductwork Takeoff (Second Floor East)							
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM			
10	4	77	24	0.975	175			
10	6	17	24	0.975	44			
12	5	51	24	0.975	141			
12	6	59	24	0.975	173			
12	8	19	24	0.975	62			
14	5	24	24	0.975	74			
14	6	200	24	0.975	650			
14	7	118	24	0.975	403			
14	8	36	24	0.975	129			
14	10	64	24	0.975	250			
16	8	8	24	0.975	31			
16	10	57	24	0.975	241			
18	12	11	24	0.975	54			
12	3.14	16	24	0.975	49			
14	3.14	44	24	0.975	157			
16	3.14	42	22	1.22	215			
18	3.14	25	22	1.22	144			
20	3.14	70	22	1.22	447			
24	3.14	35	22	1.22	268			
				Total	3705			

Table 17 - Existing Sheet Metal Ductwork Takeoff

The following table is an example of how the sheet metal redesign was evaluated. Below are the spaces of the second floor east plan with the new ventilation rates and ductwork sizes along with the length required to reach the chilled beams from the main supply duct.

	Redesign Sheet Metal Ductwork Assignments						
Room #	Room Name	CFM	Large Dim	Small Dim	Length		
236	Student Lounge	198	12	5	25		
236	Work Area	1650	Circula	ar Ductwork ir	n Takeoff		
237	Student Orgs	132	10	5	24		
238	Student Orgs	198	12	5	21		
239	Student Orgs	198	12	5	22		
240	Office	52	10	4	27		
241	Office	52	10	4	19		
242	Office	52	10	4	18		
243	Student Orgs	352	12	7	24		
244	Student Orgs	352	12	7	31		
245	Student Orgs	352	12	7	20		
247	Conference	200	12	5	35		
248	Office	52	10	4	25		
248	Office	52	10	4	15		
253	Safe Room	52	10	4	12		
254	Office	52	10	4	12		
255	Office	52	10	4	12		
256	Womens Center	150	10	5	12		
257	Office	78	10	4	18		
258	Office	78	10	4	20		
259	Office	78	10	4	16		
260	Resource Area	120	10	5	19		
261	Student Orgs	120	10	5	21		
262	Office	78	10	4	19		
263	Office	78	10	4	19		
264	Office	78	10	4	19		
266	Paint	52	10	4	15		

Table 18 - Redesign Sheet Metal Ductwork Assignments

F	Redesign Sheet Metal Ductwork Takeoff (Second Floor East)							
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM			
10	4	266	24	0.975	605			
10	5	176	24	0.975	429			
12	5	103	24	0.975	285			
12	7	75	24	0.975	232			
12	3.14	16	24	0.975	49			
14	3.14	44	24	0.975	157			
16	3.14	42	22	1.22	215			
18	3.14	25	22	1.22	144			
20	3.14	70	22	1.22	447			
24	3.14	35	22	1.22	268			
				Total	2830			

Table 19 - Redesign Sheet Metal Ductwork Takeoff

The table below shows the ratio between redesign and existing from the tables above being applied to all the spaces being replaced with the dedicated outdoor air system with chilled beams. A detailed ductwork takeoff of the existing design being replaced can be found in Appendix B at the end of the report.

Table 20 – Existing vs. Redesign Ductwork

Sheet Metal in Ductwork						
Supply Return Cost/lb Total Cost						
Existing (lbs)	25474	18354	8.99	\$394,018.08		
Redesign (Ibs)	19458	14019	8.99	\$300,960.42		
Pounds Saved	6016	4335	Total Saved	\$93,057.66		

The ratio calculated between the existing and redesign supply ductwork runs was also used to estimate the sheet metal reduction of the return ductwork in the redesign. The following table shows a cost comparison between the existing and redesign on a first cost basis.

Existing Total of Takeoffs		Redesign Tota	l Takeoffs
VAV Boxes	\$110,081.00	Chilled Beams	\$378,678.00
Air Handlers	\$515,000.00	Piping	\$144,664.60
Diffusers	\$17,152.30	Air Handlers	\$209,000.00
Sheet Metal	\$394,018.08	Sheet Metal	\$300,960.42
		CW Pumps	\$20,822.00
		CW Heat Exchangers	\$24,061.60
Total	\$1,036,251.38	Total	\$1,078,186.62

Table 21 – Existing vs. Redesign Initial Cost Comparison

The new system will be estimated to cost roughly \$42,000 more than the existing design. The major savings in the redesign come from the reduction in air handling units; however, the initial cost of the chilled beams offset the savings. The chilled beam cost estimate is a ballpark estimate that was found by contacting a sales representative. The piping redesign estimate

was found by finding the amount of piping running to the existing VAV boxes located in each individual space. Once that value was found, it was double to account for both the heating and cooling loops to the chilled beams.

After conducting a first cost comparison, an evaluation of the energy savings from the redesign was done to calculate the simple payback period. The information below was determined after analyzing the results obtained from the TRACE 700 energy model simulated over the course of a year for the SRU Student Union and applying the utility rates for the area.

Figure 33 - Existing vs. Redesign Energy Cost Comparison

Redesign Annual Energy Cost						
Natural Gas (\$) Electricity (\$) Steam (\$) Water (\$) Total						
12067.58 63629.3		5135.97	2425.05	83258.33		
	Existing An	inual Energy	Cost			
Natural Gas (\$) Electricity (\$) Steam (\$) V			Water (\$)	Total (\$)		
8712.60	67894.99	0.00	89244.04			

Table 22 - Existing vs. Redesign Annual Energy Cost Comparison

Based on the amount of energy saved each year in the system redesign, a simple payback period was conducted. The active chilled beams require virtually no maintenance, adding to the positive attributes of using such equipment and decreasing the payback period. Table 23 shows the time it takes for the energy savings to pay for the additional first costs of the redesign.

	Chilled Beams Simple Payback Period							
Year	C.B. Additional Cost	Maitenance	Utility Savings	Total				
0	(\$41,934.88)			(\$41,934.88)				
1			\$5,985.71	(\$35,949.17)				
2			\$11,971.42	(\$29,963.46)				
3			\$17,957.13	(\$23,977.75)				
4		\$150.00	\$23,942.84	(\$17,992.04)				
5			\$29,928.55	(\$12,006.33)				
6			\$35,914.26	(\$6,020.62)				
7			\$41,899.97	(\$34.91)				
8		\$150.00	\$47,885.68	\$5,950.80				
9			\$53,871.39	\$11,936.51				
10			\$59,857.10	\$17,922.22				
11			\$65,842.81	\$23,907.93				
12		\$150.00	\$71,828.52	\$29,893.64				
13			\$77,814.23	\$35,879.35				
14			\$83,799.94	\$41,865.06				
15			\$89,785.65	\$47,850.77				
16		\$150.00	\$95,771.36	\$53,836.48				
17			\$101,757.07	\$59,822.19				
18			\$107,742.78	\$65,807.90				
19			\$113,728.49	\$71,793.61				
20		\$150.00	\$119,714.20	\$77,779.32				

Table 23 - DOAS with Chilled Beams Payback Table

Figure 34 – Existing vs. Redesign Annual Energy Cost Comparison

Based off the calculations above, the dedicated outdoor air system with active chilled beams will be paid off at the turn of the 7th year in operation.

6.4 Recommendations and Conclusions

Based on the assumptions and conclusions made above, replacing a portion of the building with a dedicated outdoor air system with chilled beams is a reasonable consideration. Although the new system has an increased initial cost, the money saved in energy quickly pays for the additional first costs. The building will still maintain LEED Status with the redesign and additional energy savings, however the redesign will only be awarded an additional point and will not be able to step up to LEED Gold. The redesign is also feasible because the main objective is to provide occupant comfort and control while incorporating sustainability and green design. This redesign ensures both requirements are integrated into the new system design.

7.0 Solar Thermal Water Heating System – Mechanical Depth

7.1 Introduction

The purpose of this study is to implement a solar thermal water heating system and to explore the benefits and feasibility, if any, of such a system in the SRU Student Union. The building requires roughly 10,000 gallons of hot water for domestic use each day. The new system will be designed to assist in heating the water rather than a sole source of domestic hot water.

7.2 Solar Thermal Water Heating System Design

The system design was created through determining the amount of hot water that can be produced based on the available area on the roof of the first floor. An initial design issue is the space available for the solar collectors. The ideal orientation of a solar collector is facing due south at a tilt within plus or minus 5 degrees of the latitude. For the SRU Student Union, the collectors will be on the southern facing portion of the roof with a tilt of 45 degrees. This positioning will maximize the solar collection throughout the day and year. Below is a model of where the collectors will be placed on the building based on the information presented above.

Figure 35 - SRU Student Union Model with Solar Collectors

After selecting the location and orientation of the collectors, monthly insolation days were found based off the location of the building in order to calculate the amount of energy the collectors can produce throughout the year. The energy outputs in the table below were found by using specific performance data from Apricus model AP-30. Based on the area of the collectors and insolation, the following monthly energy outputs were found and converted to therms in order to find the amount of money saved in purchased steam. The energy output is also based in a change in temperature of 100 $^{\circ}$ F.

	Solar Thermal Domestic Hot Water Heating Output							
Month	Insolation (kWh/m²/day)	Absorber Area (m ²)	Energy Output (kWh)	Therms	Cost (\$)			
Jan	1.69	60	2129	72.7	83.67			
Feb	2.47	60	3112	106.2	122.30			
March	3.31	60	4171	142.4	163.92			
April	4.4	60	5544	189.2	217.88			
May	5.06	60	6376	217.6	250.58			
June	5.68	60	7157	244.3	281.27			
July	5.57	60	7018	239.5	275.81			
Aug	4.96	60	6250	213.3	245.63			
Sept	4.04	60	5090	173.7	200.04			
Oct	2.86	60	3604	123.0	141.64			
Nov	1.77	60	2230	76.1	87.64			
Dec	1.44	60	1814	61.9	71.29			
				Total	2141.65			

The primary means of heating the domestic hot water is done by using steam from the campus steam plant with an auxiliary natural gas backup system. The water heated by the solar collectors will be used to preheat the incoming water supply before being heated to the proper temperature from the campus steam. The schematic below shows the process where an internal heat exchanger transfers the heat from the solar collectors and campus steam to the water that will be used for the domestic hot water supply of the building.

After the total annual output was found, a simple payback period study was conducted to determine the feasibility of the system. Due to the nature of the technology, several federal and state government incentives may apply to the design. After research, the design can potentially be awarded two government incentives to help cover the initial costs of the system. An important assumption made in researching incentives is the building will be treated as commercial due to the office space and retail that accounts for over 50% of the occupied spaces.

The first incentive is the Pennsylvania Sunshine Solar Rebate Program. This incentive can be applied to solar water heat used for domestic hot water. The amount rewarded to a solar thermal system is 35% of the installed costs of the system.

The second incentive is Federal Government issue under the Business Energy Investment Tax Credit. The tax credit applies for an amount of 30% of the initial cost of the solar system. The solar collectors must meet the requirements of the Solar Rating and Certification Corporation according to the standard Operation Guidelines for Certifying Solar Collectors (SRCC OG-100). Below is a section from the AP-30 collector specifications that demonstrates compliance.

Figure 37 - Solar Collector Payback Table with Government Incentives

Both RS Means and cost estimates from the vender were used to find a ballpark initial cost estimate per collector. The collector itself will cost \$2,300.00 for a 30 tube array with an additional installation cost of \$1124.40 per array. The SRU Student Union design uses 25 arrays for a total cost of \$85,610.00. Due to the high initial costs, implementing such a system is not economically feasible unless the government incentives can be applied. Without the incentives, the systems lifespan will run out before the time it takes to receive the payback from the energy savings. The table below shows a simple payback period assuming the building will be granted the government incentives.

If the portion of the green roof is removed, this too offsets the additional costs of the solar collector system. The following table provides a detailed cost breakdown from removing 3000 square feet of the green roof where the solar collectors will be placed.

Green Roof Takeoff									
Green Roof Systems	Cost/SF	Square Footage	Cost						
Plant Medium	\$10.00	3000	\$30,000.00						
Protection Board	\$1.50	3000	\$4,500.00						
Filter Fabric	\$0.75	3000	\$2,250.00						
Waterproofing	\$1.60	3000	\$4,800.00						
Drainage Board	\$1.25	3000	\$3,750.00						
		System Total	\$45,300.00						

Table 25 - Green Roof Section Takeoff

	Solar Water Collector Payback Period Without Incentives										
Year	Cost of Solar Thermal	Utility Savings	Green Roof Savings	Total							
0	(\$85,610.00)		\$45,300.00	(\$40,310.00)							
1		\$2,141.65		(\$38,168.35)							
2		\$4,283.30		(\$36,026.70)							
3		\$6,424.95		(\$33,885.05)							
4		\$8,566.60		(\$31,743.40)							
5		\$10,708.25		(\$29,601.75)							
6		\$12,849.90		(\$27,460.10)							
7		\$14,991.55		(\$25,318.45)							
8		\$17,133.20		(\$23,176.80)							
9		\$19,274.85		(\$21,035.15)							
10		\$21,416.50		(\$18,893.50)							
11		\$23,558.15		(\$16,751.85)							
12		\$25,699.80		(\$14,610.20)							
13		\$27,841.45		(\$12,468.55)							
14		\$29,983.10		(\$10,326.90)							
15		\$32,124.75		(\$8,185.25)							
16		\$34,266.40		(\$6,043.60)							
17		\$36,408.05		(\$3,901.95)							
18		\$38,549.70		(\$1,760.30)							
19		\$40,691.35		\$381.35							
20		\$42,833.00		\$2,523.00							

As shown in the table above, the graph below illustrates a visual representation of the information calculated. The system will be paid for by the 19th year of operation according to the estimated collector energy performance.

Figure 38 - Solar Collector Simple Payback Graph

Table 27 – Solar C	Collector Cost Table v	with Government Incentives
--------------------	------------------------	----------------------------

Cost Breakdown								
Solar Collector Cost	(\$85,610.00)							
Incentive	\$29,963.50							
Tax Credit	\$25,683.00							
Green Roof Savings	\$45,300.00							
Net Savings	\$15,336.50							

7.3 Conclusions and Recommendations

Based on the information provided above, it is difficult to determine whether or not using solar thermal water collectors is worthwhile. Removing the portion of the green roof could potentially cause issues with the space below due to the insulation properties the green roof provides, although the space beneath is an entry vestibule and circulation space. Another issue to consider is the aesthetics that go along with the addition of the solar thermal collectors. The collectors potentially obstruct the views from several offices and meeting rooms located on the second floor. The solar collectors have negligible structural complications and will be less weight when compared to the green roof. With further consideration, the benefits of adding this system don't seem to be overcome the consequences. Without any government incentives, the system should not be considered feasible based on the payback period and additional design and architectural complications.

8.0 Structural Breadth Study

8.1 Design Objectives

The objective of the structural breadth is to change the existing composite steel decking floor system to prefabricated hollow core planks. The evaluation will also explore the effects of doing so by resizing existing girders in order to hold the new loads created by the precast floor planks.

8.2 Assumptions and Design Strategies

Several assumptions were made during the analysis in order to accurately evaluate the floor system. The precast hollow core slabs will use a 2 inch topping to ensure a rigid diaphragm and to avoid further structural complications. The ceiling to floor heights have been designed to remain within ½ inch of the existing depths to decrease potential issues within the other building trades.

The beam and girder orientation has been reversed in order to allow the precast hollow core slabs to carry loads resulting in using fewer beams. Although the orientation has been switched, the girder depths were sized equal to the existing beam depths in order to allow the ductwork servicing the dining and kitchen below to remain unchanged. The redesign is based off a portion of the second floor bearing the weight of the ballroom. This section was selected due to the simple and typical bay design. Due to the nature of the building, few areas of the building have a typical bay layout.

8.3 Floor Slab System Redesign

Superimposed Dead Load – 15 psf Dead Load – 15 psf Live Load (ballroom) – 100 psf

Total Loads - 130 psf

Prestressed Concrete 8"x4'-0" Hollow Core Plank

1 Hour Fire Resistance Rating With 2" Topping

	AL PROPERTIES
$\begin{array}{l} A_c = 301 \text{ in.}^2 \\ I_c = 3134 \text{ in.}^4 \\ Y_{bcp} = 5.09 \text{ in.} \\ Y_{cp} = 2.91 \text{ in.} \\ Y_{ct} = 4.91 \text{ in.} \end{array}$	$\begin{array}{l} \mbox{Precast } b_{*} = 13.13 \mbox{ in.} \\ \mbox{Precast } S_{bop} = 616 \mbox{ in}^3 \\ \mbox{Topping } S_{tet} = 902 \mbox{ in}^3 \\ \mbox{Precast } S_{tep} = 1076 \mbox{ in}^3 \\ \mbox{Precast } W_{t} = 245 \mbox{ PLF} \\ \mbox{Precast } W_{t} = 61.25 \mbox{ PSF} \end{array}$

SAFE SUPERIMPOSED SERVICE LOADS IBC 2006 & ACI 318-05 (1.2 D + 1.6 L)																				
	rand								S	PAN	۹ (F	EET)							
Pa	attern	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
4 - 1/2"ø	LOAD (PSF)	280	256	226	199	190	170	151	137	119	106	93	82	72		\geq	>	<	\leq	
6 - 1/2"ø	LOAD (PSF)	366	341	318	299	271	245	223	211	196	176	159	143	129	113	98	85	74	63	53
7 - 1/2"ø	LOAD (PSF)	367	342	320	300	282	265	243	221	202	189	180	165	151	134	118	104	91	80	69

Figure 39 - Prestressed Hollow Core Plank Selection

The prestressed concrete plank was selected based off the Nitter House specifications for 8" Hollow Core Plank with 2" Topping after calculating the capacity needed to carry the loads from the ballroom. The hollow core plank will be replacing the following 4 ½" normal weight concrete with 3" composite steel deck.

	FLOOR SCHEDULE										
MARK	RK TYPE REINFORCING TOTAL THICKNES										
S1	3 1/2" NW CONC. SLAB ON GALV. 2"- 20GA. COMP. STEEL DECK	REINF. W/ 6X6-W1.4XW1.4 W.W.F.	5 1/2"								
S2	3 1/2" NW CONC. SLAB ON 2"-20 GA. COMP. STEEL DECK	REINF. W/ 6X6-W2.1XW2.1 W.W.F. & #3 @ 12" O.C. OVER GIRDERS	5 1/2"								
S3	4 1/2" NW CONC. SLAB ON 3"-20 GA, COMP. STEEL DECK	REINF. W/ 6X6-W2.1XW2.1 W.W.F.	7 1/2"								

Figure 40 - Existing Composite Steel Decking and Concrete

8.4 Girder Redesign

8.4.1 Sizing Girder

 $W_{TL} = 1.2D + 1.6L$

Superimposed Dead Load - 15 psf

Weight of Prestressed Plank - 86.25 psf

 $W_{TL} = 1.2(15 + 86.25) + 1.6(100) = 281.5 \text{ psf}$

 $M_U = (281.5)(26)(24)^2/8 = 527 \text{ ft*kip}$

From the Steel Construction Manual - W18X71 @ 548 psf capacity

 $M_U = [(281.5)(26) + 71](24)^2/8 = 532.1$ ft-kip < 548 ft-kip therefore W18X71 is OK

8.4.2 Live Load Deflection $\Delta_{LL} = 5 W_{LL} L^4 (1728) / (384 E I)$

E = 29,000,000 psi

I_{W18X71}= 1170 in⁴

 $\Delta_{LL} = 5 (100*4) 24^4 (1728) / (384 * 29000000 * 1170) = 0.088$ inches

Allowable Live Load Deflection:

 $\Delta_{LL} = L / 360 = (24 \text{ ft} * 12 \text{ in/ft}) / 360 = 0.80 \text{ inches}$

0.60 inches < 0.80 inches therefore OK

8.4.3 Total Load Deflection $\Delta_{TL} = 5 W_{TL} L^4 (1728) / (384 E I)$

E 29,000,000 psi

I_{W18X71}= 1170 in⁴

 $\Delta_{TL} = 5 (130*4) 24^4 (1728) / (384 * 29000000 * 1170) = 0.12$ inches

Allowable Total Load Deflection:

 $\Delta_{TL} = L / 240 = (24 \text{ ft} * 12 \text{ in/ft}) / 240 = 1.2 \text{ inches}$

0.12 inches < 1.2 inches therefore OK

A table with the calculations presented above can be found and verified at the end of the report in Appendix E.

-0

24'

21' - 0"

27' - 0"

т

Ι

W40X215

Т

26' - 0" 31' - 0" 26' - 0" 26' - 0" 6' - 0' W24X55 W24X55 W24X55 W24X55 W24X55 W18X40 W14X W24X62 W24X62 W24X76 W24X76 W24X76 I т I W14X22 <u>W24</u>X68 W24X68 W24X76 W24X76 W24X76 Ι Ι Ι

8.4.4 Existing Beam and Girder Design

W21X62

W21X62

W24X62

W21X62

I

W21X62

W21X62

W24X55

W18X35

<u>W24</u>X62

Figure 41 – Existing Steel Beam and Girder Design			
rigule 41 - Existing Steel Dealli and Ghuel Design	Figuro 11 - Evicting	Stool Boom on	d Cirdor Docign
	rigule HI - Laisting	Steel Dealli allo	a Gilder Design

W40X215

т

W21X62

W40X235

т

W21X62

W24X55

W21X62

W21X62

W24X55

8.4.5 Beam and Girder Redesign

Figure 42 - Steel Beam and Girder Redesign

8.5 Recommendations and Conclusions

Overall, the redesign appears to save a considerable amount of steel and time spent on installation. However, applying precast hollow core planks to the entire building would be much more difficult. The precast planks were only assigned to this portion of the building due to the simple and somewhat consistently sized bays of the structure. If precast hollow core planks were to be used throughout the entire building, careful planning and coordination would become a more prevalent issue to minimize additional construction complications.

9.0 Construction Breadth Study

9.1 Objectives

The construction breadth will explore techniques to accelerate construction along with ways to reduce initial cost throughout the building. This breadth couples with the structural breadth such that the precast hollow core slabs will hope to decrease construction time and the cost of steel used in the framing. It is also incorporated into the mechanical breadth by evaluating the effects of using less sheet metal evaluated previously in the report. The following report will describe techniques used to conduct the analysis and obtain results.

9.2 Assumptions and Redesign Methods

The schedule acceleration was determined based off ratios of the amount of material saved through the redesign along with construction and erection times provided through material vendors.

The existing cost analysis was conducted from information off a base bid provided by the architect and engineers. Steel beam and girder takeoffs were done to accurately estimate the steel in the selected section. From the base bid, 10 percent of the total weight of the beam and girders is needed for steel connections. This ratio was also used in the framing redesign.

Several different methods were used in order to accurately estimate the cost of the new structural system. The prestressed hollow core planks were first sized to handle the assumed loads and were then priced for cost per square foot by Nitter House based on plank thickness. The general contractor provided a cost estimate for the 2" topping needed for the precast planks. After resizing the beam and girder frame, the amount of steel (in tons) of the beams and girders was determined based off the self-weight of each member. The weight of connections needed was estimated based off the ratio determined for connections per ton of steel from the existing framing.

9.3 Schedule Acceleration

	Task Name 👻	Duration	🚽 Start 🚽	Finish 🗣
1	EXISTING SCHEDULE			
2	GENERAL CONSTRUCTION			
3	Erect West Steel	14 days	Wed 12/15/10	Mon 1/3/11
4	Deck and Detail West Steel	20 days	Wed 12/29/10	Tue 1/25/11
5	West Slab on Deck	10 days	Wed 1/26/11	Tue 2/8/11
6				
7	HVAC CONSTRUCTION			
8	Install HVAC Piping Levels 1-3	60 days	Fri 2/25/11	Thu 5/19/11
9	Install HVAC Equipment Roof	50 days	Fri 3/18/11	Thu 5/26/11
10	Install Ductwork Levels 1-3	60 days	Fri 3/25/11	Thu 6/16/11
11	Install HVAC Branch Piping 1-3	45 days	Fri 5/13/11	Thu 7/14/11
12	Install Branch Ductwork 1-3	25 days	Fri 5/13/11	Thu 6/16/11
13				
14				
15	REDESIGN SCHEDULE			
16	GENERAL CONSTRUCTION			
17	Erect West Steel	10 days	Wed 12/15/10	Tue 12/28/10
18	Deck and Detail West Steel	15 days	Wed 12/29/10	Tue 1/18/11
19	Plank Erection and Grouting	4 days	Wed 12/29/10	Mon 1/3/11
20	West Slab on Deck	7 days	Wed 1/19/11	Thu 1/27/11
21				
22	HVAC CONSTRUCTION			
23	Install HVAC Piping Levels 1-3	70 days	Fri 2/25/11	Thu 6/2/11
24	Install HVAC Equipment Roof	40 days	Fri 3/18/11	Thu 5/12/11
25	Install Ductwork Levels 1-3	45 days	Fri 3/25/11	Thu 5/26/11
26	Install Branch Ductwork 1-3	19 days	Thu 4/28/11	Tue 5/24/11
27	Install HVAC Branch Piping 1-3	55 days	Fri 5/13/11	Thu 7/28/11

Figure 43 – Existing vs. Redesign Schedules

Based on the schedule above, the precast hollow core planks will accelerate construction time. The accelerated construction of the precast planks saves construction time by over a full week of work. However, the mechanical redesign additional piping runs that will be running to and from the chilled beams will add a considerable amount of time to the schedule. The reduction in ductwork installation does not overcome the time needed to install the piping.

9.4 Overall Cost Analysis of Existing vs. Redesign

9.4.1Existing Cost Analysis

Composite	e Deck and Steel Beam Ta	keoffs and Co	ost Analysis	(Ballroom)
		teel Beams		
Beam Tag	Number of Beams	Length (ft)	lb/ft	lbs
W24X76	6	26	76	11856
W24X55	6	26	55	8580
W24X55	1	31	55	1705
W24X62	2	31	62	3844
W24X68	1	31	68	2108
W18X40	13	24	40	12480
W14X22	14	21	22	6468
W21X62	9	27	62	15066
W14X22	1	27	22	594
W18X35	1	27	35	945
W40X215	2	27	215	11610
W40X235	1	27	235	6345
W14X22	1	24	22	528
W24X62	2	6	62	744
W24X55	1	6	55	330
W24X68	1	6	68	408
Totals	62			83611
	Pounds of Steel Beams	Tons of Steel	\$/ton	Total Cost \$
	83611	41.81	3250.00	135867.88
	Steel Connections Ratio	Tons of Steel	\$/ton	Total Cost \$
	41.27/158=x/15.8	4.18	3250.00	13585.00
				Steel Total \$
				149452.88
		Metal Deckin	g	
	Material	SF	\$/sf	Total Cost \$
	3" Metal Deck	8318	2.50	20795.00
	Con	crete Slab on	Deck	
	Material	Area sf	\$/sf	Concrete Cost
	4.5" topping	8318	8.50	70703.00
				Total Cost
				240950.88

9.4.2 Redesign Cost Analysis

Red	Redesign Precast Planks and Steel Beam Cost Analysis (Ballroom)									
	- Steel Bea	m Redesign								
Tag	Number of Beams	lbs								
Girders										
W14X22	1	27	22	594						
W14X22	1	21	22	462						
W14X22	1	24	22	528						
W21X83	4	27	83	8964						
W14X68	4	21	68	5712						
W18X71	4	24	71	6816						
W14X74	1	21	74	1554						
W18X76	1	24	76	1824						
W18X97	1	27	97	2619						
W24X62	4	6	62	1488						
Const. Bracing										
W14X22	4	31	22	2728						
W14X22	12	26	22	6864						
Totals	38			40153						
	Pounds of Steel Beams	Tons of Steel	\$/ton	Total Cost \$						
	40153	20.08	3250.00	65248.63						
	Steel Connections Ratio	Tons of Steel	\$/ton	Total Cost \$						
	20.08/158 = x/15.8	2.01	3250.00	6532.50						
				Steel Total \$						
				71781.13						
	Precasi	t Hollow Core Plan	k Redesign							
	Plank Thickness	Area sf	\$/sf	Plank Cost \$						
	8" Planks	5616	7.50	42120.00						
	10" Planks	2702	8.50	22967.00						
		8318		65087.00						
		Concrete Toppir	ng							
	Material	Area sf	\$/sf	Topping Cost \$						
		0010								
	2" Topping	8318	2.50	20795.00						
	2" Topping	8318	2.50	Total Cost \$						

9.5 Conclusions

Based on the structural redesign, both the construction time and costs are reduced. The construction is decreased by 10 days and saves a total of \$83,287.75. Although the reductions are minimal, the implementation of precast hollow core planks seems to be a reasonable redesign consideration. The increased mechanical time is a result of increased piping runs throughout the building, however the overall mechanical performance had a considerable increase in efficiency.

10.0 Credits and Acknowledgements

I would like to express my gratitude all of the people who have helped me with my thesis throughout the course of the year. Special thanks go out to the following for all their assistance:

- Herbert Carlson (Slippery Rock University)
- Nick Rosko (CJL Engineering)
- Ray Muecci (CJL Engineering)
- Zach Brehm (Mascaro Construction)
- Mark Taylor (Nitterhouse Inc.)
- Dustin Eplee (Advisor)
- Ron Grimm (DRS Architects)

I would also like to thank my friends in the AE program with me along with those who have already graduated. It couldn't have been done without you!

11.0 List of Figures and Tables

Figure 1 – Campus Site Plan Figure 2 - Legend of Existing Zones Figure 3 – Existing Third Floor Zone Layout Figure 4 - Existing Second Floor Zone Layout Figure 5 – Existing First Floor Zone Layout Figure 6 – Existing Air Side System for ERU 1 – ERU 5 Figure 7 – Existing Typical Energy Recovery Unit Plan Figure 8 - Existing Hot Water Heating System Figure 9 – Existing Heat Transfer System Figure 10 - Existing Monthly Natural Gas Consumption Graph Figure 11 – Existing Monthly Steam Consumption Graph Figure 12 – Existing Monthly Electricity Consumption Graph Figure 13 – Fractional Energy Consumption Summary Figure 14 - Section of a Typical Active Chilled Beam Figure 15 – Enthalpy Wheel Diagram Figure 16 – Legend of Zone Redesign Figure 17 – Third Floor Zone Redesign Figure 18 – Second Floor Zone Redesign Figure 19 – First Floor Zone Redesign Figure 20 – Existing vs. Redesign Riser Diagram Figure 21 –Design Conditions Figure 22 - Psychometric Chart with Design Conditions Figure 23 – Example from TRACE 700 Room Design Figure 24 - Chilled Beam Performance Chart Figure 25 – Chilled Beam Performance Chart Figure 26 - Air Side DOAS Schematic Figure 27 - Chilled and Hot Water Chilled Beam Schematic Figure 28 - Bell and Gossett Pump Series 1531 Performance Curves Figure 29 – Monthly Chilled Water Consumption of Redesign Figure 30 – Monthly Chilled Water Consumption of Redesign Figure 31 - Utility Cost Distribution of Redesign Figure 32 – Energy Distribution of Redesign Figure 33 – Existing vs. Redesign Energy Cost Comparison Figure 34 – Existing vs. Redesign Annual Energy Cost Comparison Figure 35 - SRU Student Union Model with Solar Collectors Figure 36 – Solar Collector Schematic Figure 37 – Solar Collector Payback Table with Government Incentives Figure 38 - Solar Collector Simple Payback Graph Figure 39 - Prestressed Hollow Core Plank Selection Figure 40 – Existing Composite Steel Decking and Concrete Figure 41 – Existing Steel Beam and Girder Design Figure 42 – Steel Beam and Girder Redesign Figure 43 - Existing vs. Redesign Schedules

- Table 1 Electricity Demand and Consumption Rates
- Table 2 Natural Gas Rates
- Table 3 Steam Rates
- Table 4 Outdoor Design Conditions
- Table 5 Indoor Temperature Settings
- Table 6 Peak Loads
- Table 7 Existing On Peak Monthly Natural Gas Consumption Cost Analysis
- Table 8 Existing On Peak Steam Energy Consumption Cost Analysis
- Table 9 Existing On Peak Monthly Electricity Energy Consumption Cost Analysis
- Table 10 Existing Total Monthly and Annual Energy Cost
- Table 11 Fractional Cost of Operation
- Table 12 Chilled Beam Performance Chart
- Table 13 Chilled Beams Schedule
- Table 14 Chilled Water Pump Schedule
- Table 15 Total Energy Cost and Consumption of Redesign
- Table 16 Energy Cost Distribution of Redesign
- Table 17 Existing Sheet Metal Ductwork Takeoff
- Table 18 Redesign Sheet Metal Ductwork Assignments
- Table 19 Redesign Sheet Metal Ductwork Takeoff
- Table 20 Existing vs. Redesign Ductwork
- Table 21 Existing vs. Redesign Initial Cost Comparison
- Table 22 Existing vs. Redesign Annual Energy Cost Comparison
- Table 23 DOAS with Chilled Beams Payback Table
- Table 24 Solar Collector Energy Output and Annual Cost Savings
- Table 25 Green Roof Section Takeoff
- Table 26 Solar Collector Payback Table without Government Incentives
- Table 27 Solar Collector Cost Table with Government Incentives

Appendix A – Energy Consumption and Cost Tables

	Chilled Beams - On Peak Monthly Electricity Energy Consumption Cost Analysis									
	El	ectrcity	Price per k	Vh	Price p	er kW	Monthly	Cost (\$)	Terrill Marshell (Cartelle)	
Month	Consumption (kWh)	Demand (kW)	0 - 40,000 kW	>40,000 kW	0 - 100 kW	> 100 kW	Consumption	Demand	Total Monthly Cost (\$)	
Jan	106988	289	0.05113	0.04615	7.04	6.05	5136.70	1847.45	6984.15	
Feb	95264	316	0.05113	0.04615	7.04	6.05	4595.63	2010.80	6606.43	
Mar	105418	289	0.05113	0.04615	7.04	6.05	5064.24	1847.45	6911.69	
Apr	101332	316	0.05113	0.04615	7.04	6.05	4875.67	2010.80	6886.47	
May	50791	197	0.05113	0.04615	7.04	6.05	2543.20	1290.85	3834.05	
June	19644	166	0.05113	0.04615	7.04	6.05	1105.77	1103.30	2209.07	
July	23282	167	0.05113	0.04615	7.04	6.05	1273.66	1109.35	2383.01	
Aug	19270	162	0.05113	0.04615	7.04	6.05	1088.51	1079.10	2167.61	
Sep	109510	376	0.05113	0.04615	7.04	6.05	5253.09	2373.80	7626.89	
Oct	104868	320	0.05113	0.04615	7.04	6.05	5038.86	2035.00	7073.86	
Nov	100265	295	0.05113	0.04615	7.04	6.05	4826.43	1883.75	6710.18	
Dec	54657	234	0.05113	0.04615	7.04	6.05	2721.62	1514.70	4236.32	
Total	891289	376	0.05113	0.04615	7.04	6.05	43523.39	20106.35	63629.74	

Ch	Chilled Beams - On Peak Monthly Natural Gas Consumption Cost Analysis							
Month	Consumption (therms)	Price per Therm (\$)	Cost (\$)					
Jan	1665	1.16	1931.4					
Feb	1666	1.16	1932.56					
Mar	1305	1.16	1513.8					
Apr	732	1.16	849.12					
May	629	1.16	729.64					
June	182	1.16	211.12					
July	179	1.16	207.64					
Aug	189	1.16	219.24					
Sep	599	1.16	694.84					
Oct	778	1.16	902.48					
Nov	948	1.16	1099.68					
Dev	1531	1.16	1775.96					
Total	10403	1.16	12067.48					

Chilled Bea	Chilled Beams - On Peak Steam Energy Consumption Cost Analysis							
Month	Therms	\$ per therm	Cost (\$)					
Jan	1467	1.057	1550.62					
Feb	1142	1.057	1207.09					
Mar	421	1.057	445.00					
Apr	0	1.057	0.00					
May	0	1.057	0.00					
June	0	1.057	0.00					
July	0	1.057	0.00					
Aug	0	1.057	0.00					
Sep	0	1.057	0.00					
Oct	0	1.057	0.00					
Nov	221	1.057	233.60					
Dev	1608	1.057	1699.66					
Total	4859	1.057	5135.96					

Chilled Bea	Chilled Beams - On Peak Steam Energy Consumption Cost Analysis							
Month	Therms	\$ per therm	Cost (\$)					
Jan	1467	1.057	1550.62					
Feb	1142	1.057	1207.09					
Mar	421	1.057	445.00					
Apr	0	1.057	0.00					
May	0	1.057	0.00					
June	0	1.057	0.00					
July	0	1.057	0.00					
Aug	0	1.057	0.00					
Sep	0	1.057	0.00					
Oct	0	1.057	0.00					
Nov	221	1.057	233.60					
Dev	1608	1.057	1699.66					
Total	4859	1.057	5135.96					

	Total Emission Factors for Delivered Natural Gas								
Pollutant	lb per CF	Therms	Cubic Feet	Amount of Pollutant (Ib)					
CO2	1.16E+00	10403	938350	1088486.00					
NO _x	1.64E-02	10403	938350	15388.94					
SO _x	1.22E+00	10403	938350	1144787.00					
CH₄	7.04E-01	10403	938350	660598.40					
N ₂ O	2.35E-04	10403	938350	220.51					
со	1.36E-02	10403	938350	12761.56					
Lead	2.41E-07	10403	938350	0.23					
Mercury	5.51E-08	10403	938350	0.05					
PM10	8.17E-04	10403	938350	766.63					
PM-unspecified	1.42E-03	10403	938350	1332.46					
Solid waste	1.60E+00	10403	938350	1501360.00					

Tota	Total Emission Factors for Delivered Electricity								
Pollutant	Pollutant Ib per kWh Consu		Amounts of pollutant (lb)						
CO2	1.74E+00	891289	1550842.86						
NO _x	3.00E-03	891289	2673.87						
so _x	8.57E-03	891289	7638.35						
CH ₄	3.59E-03	891289	3199.73						
N ₂ 0	3.87E-05	891289	34.49						
со	8.45E-04	891289	753.14						
Lead	1.39E-07	891289	0.12						
Mercury	3.36E-08	891289	0.03						
PM10	9.26E-05	891289	82.53						
Solid waste	2.05E-01	891289	182714.25						

Appendix B – Equipment Takeoffs

	VAV Box Takeoffs									
VAV Tag	# on 1st Floor E	# on 1st Floor W	# on 2nd Floor E	# on 2nd Floor W	# on 3rd Floor E	# on 3rd Floor W	Total	Cost/box	Total Cost	
А	5	5	6	0	0	1	17	1071	\$18,207.00	
В	1	5	8	0	1	0	15	1153	\$17,295.00	
С	7	4	10	0	2	0	23	1153	\$26,519.00	
D	2	0	2	0	2	0	6	1230	\$8,370.00	
E	4	1	5	0	0	0	10	1395	\$13,950.00	
F	4	0	2	0	3	1	10	1395	\$14,300.00	
G	3	0	0	0	5	0	8	1430	\$11,440.00	
								Total	\$110,081.00	

Existing Air Handler Quantity Takeoff						
Unit Tag	CFM	Cost/unit	Total Cost			
ERU - 1	24000	193000	\$193,000.00			
ERU - 3	24000	193000	\$193,000.00			
ERU - 5	16000	129000	\$129,000.00			
		Total Cost	\$515,000.00			

Existing Supply Diffuser Quantity Takeoff							
Unit Tag	# of items	Cost/unit	Total Cost				
14" Supply	15	97.01	1455.15				
12" Supply	63	93.09	5864.67				
10" Supply	14	91.36	1279.04				
8" Supply	44	90.82	3996.08				
6" Supply	51	89.36	4557.36				
		Total	17152.30				

	Exisitng Sheet Metal Ductwork Takeoff (First Floor East)								
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM				
10	4	85	24	0.975	193				
12"	3.14	85	24	0.975	260				
12	5	168	24	0.975	464				
12	6	37	24	0.975	108				
14	5	242	24	0.975	747				
14	7	336	24	0.975	1147				
14	10	38	24	0.975	148				
16	8	174	24	0.975	679				
16	10	163	24	0.975	689				
20"	3.14	70	22	1.220	536				
24"	3.14	32	20	1.465	294				
24	12	198	22	1.220	1449				
44	16	152	22	1.220	1854				
				Total	8570				

	Exisitng Sheet Metal Ductwork Takeoff (First Floor West)								
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM				
10	4	82	24	0.975	187				
12	5	25	24	0.975	69				
12	6	116	24	0.975	339				
12	8	51	24	0.975	166				
14	8	40	24	0.975	143				
20	10	22	22	1.22	134				
10	3.14	19	24	0.975	48				
20	3.14	44	22	1.22	281				
22	3.14	17	22	1.22	119				
24	3.14	25	22	1.22	192				
				Total	1679				

		ing sheet wetai	Ductwork Takeof	I (Third Floor East	.)
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM
10	4	8	24	0.975	18
10	6	4	24	0.975	10
12	6	81	24	0.975	237
12	8	73	24	0.975	237
12	12	26	24	0.975	101
14	6	61	24	0.975	198
14	7	134	24	0.975	457
14	8	107	24	0.975	383
16	8	63	24	0.975	246
16	10	43	24	0.975	182
18	12	14	24	0.975	68
20	10	13	22	1.22	79
24	10	25	22	1.22	173
24	12	48	22	1.22	351
30	16	161	22	1.22	1506
30	24	17	22	1.22	187
30	30	10	22	1.22	122
36	20	15	22	1.22	171
46	20	61	22	1.22	819
16	3.14	114	22	1.22	583
18	3.14	12	22	1.22	69
20	3.14	24	22	1.22	153
22	3.14	20	22	1.22	141
24	3.14	10	22	1.22	77
26	3.14	72	22	1.22	598
28	3.14	29	20	1.465	311
30	3.14	131	20	1.465	1507
34	3.14	46	20	1.465	600
				Total	9584

	Exisitng Sheet Metal Ductwork Takeoff (Third Floor West)								
Large Dim	Small Dim	Length (Inft)	Gage Number	Pounds/SF	Pounds of SM				
10	4	17	24	0.975	39				
10	6	10	24	0.975	26				
12	6	52	24	0.975	152				
12	7	26	24	0.975	80				
14	10	12	24	0.975	47				
14	10	36	24	0.975	140				
14	10	22	24	0.975	86				
16	8	14	24	0.975	55				
16	10	16	24	0.975	68				
18	12	28	24	0.975	137				
20	12	18	22	1.22	117				
24	12	13	22	1.22	95				
24	10	19	22	1.22	131				
7	3.14	52	24	0.975	93				
12	3.14	42	24	0.975	129				
14	3.14	24	24	0.975	86				
16	3.14	10	22	1.22	51				
24	3.14	53	22	1.22	406				
				Total	1937				

	Chilled Beam Quanity Takeoffs								
Beam Length	# on 1st Floor	# on 2nd Floor	# on 3rd Floor	Total	Cost/beam	Total Cost			
4 ft	13	9	0	22	\$1,052.00	\$23,144.00			
6 ft	35	41	38	114	\$1,534.00	\$174,876.00			
8 ft	13	29	37	79	\$2,092.00	\$165,268.00			
10 ft	2	0	4	6	\$2,565.00	\$15,390.00			
					Total	\$378,678.00			

Redesign Air Handler Quantity Takeoff						
Unit Tag	CFM	Cost/unit	Total Cost			
ERU - CB	24000	\$193,000.00	\$193,000.00			

Additional Hot and Chilled Water Piping Takeoff							
Тад	Length	Cost/lf	Total cost				
4" Steel CW	250	\$70.91	\$17,727.50				
1" Steel CW	650	\$22.06	\$14,339.00				
2" Copper CW	1000	\$39.79	\$39,790.00				
1.5" Copper CW	640	\$30.19	\$19,321.60				
1.25" Copper CW	400	\$25.05	\$10,020.00				
1" Copper CW	1650	\$19.80	\$32,670.00				
.75" Copper CW	650	\$16.61	\$10,796.50				
		Total	\$144,664.60				

Appendix C – Room Assignments

Room #	Space Name	А,	Sensible Load (Mbh)	CFM Supply	Aux CFM	Ratio	Chilled Beam	# of Beams	Length	I.R./cfm	Primary CFM	Cooling Capacity	Linear Feet
104	Entry Lobby	1717	8.9	130	858	6.6	DID-302-US	4	6	A-11	264	10.4	26
113	Office	107	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
114	Office	113	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
116	Building Manager	109	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
117	Work/Storage	157	1	50	159	3.2	DID-302-US	1	4	C-13	52	1.4	4
118 119	Conference Directory	227 112	5.3 2.3	250 65	837 354	3.3 5.4	DID-302-US	2	6 6	C-25 A-11	300 66	6.1	12 6
119	VP assistant	112	2.3	65	354	5.4	DID-302-US DID-302-US	1	6	A-11 A-11	66	2.6	6
120	Univ UN Oper	938	7.8	220	1134	5.2	DID-302-US	5	4	A-11	220	8.6	20
124	Coop Act	309	1.2	50	189	3.8	DID-302-US	1	6	C-13	78	2.1	6
125	Dir Coop	93	1.2	65	174	2.7	DID-302-US	1	6	C-13	78	2.1	6
126	Stor/Server	81	0.3	65	174	2.7	DID-302-US	1	6	C-13	78	2.1	6
136	Café	1255	16.2	820	1640	2.0	DID-302-US	6	8	C-25	912	18.4	48
137	Café Storage	302	1.2	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
139 140	Bank Bookstore Storage	782 4828	3.3 24.2	130 600	513 3428	3.9 5.7	DID-302-US DID-302-US	1 7	10 8	C-13 A-11	130 616	4.1 24.2	10 56
140	Bookstore Storage Accounts	115	0.5	33	165	5.0	DID-302-03	1	4	C-13	52	1.4	4
143	Accounts Receivable	110	0.4	40	168	4.2	DID-302-US	1	4	C-13	52	1.4	4
144	Store manager	103	0.5	33	165	5.0	DID-302-US	1	4	C-13	52	1.4	4
146	Employee Lounge	211	1.2	114	251	2.2	DID-302-US	1	6	C-19	114	2.5	6
147	Bookstore Textbooks	400	1.5	120	450	3.8	DID-302-US	1	10	C-13	130	2.6	10
148	Vestibule	76	1.4	82	200	2.4	DID-302-US	1	6	C-13	78	2.1	6
149	Dressing room	38	0.6	75	193	2.6	DID-302-US	1	6	C-13	78	2.1	6
150	Bookstore	7277	76.8	1250	10665	8.5	DID-602-US	21	6	C-10	1260	79.8	126
202 203	Small Lounge Cultural Lounge	2487 836	10.9 7.6	800 330	1650 1173	2.1 3.6	DID-302-US DID-302-US	4	8	C-25 B-18	800 330	16.2 10.4	32 18
203	Fireplace Lounge	1349	26.3	1100	3981	3.6	DID-302-US	6	8	C-25	1200	34.1	48
236	Student Lounge	479	6.7	165	980	5.9	DID-302-US	3	6	A-11	198	7.8	18
236	Work Area	2786	24.5	1650	3300	2.0	DID-302-US	11	6	C-25	1650	33.3	66
237	Student Orgs	250	5	85	713	8.4	DID-302-US	2	6	A-11	132	5.2	12
238	Student Orgs	250	7.5	170	1079	6.3	DID-302-US	3	6	A-11	198	7.8	18
239	Student Orgs	250	7.5	170	1079	6.3	DID-302-US	3	6	A-11	198	7.8	18
240	Office	83	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
241	Office	83	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
242	Office	84	1	50	174	3.5	DID-302-US	1	4	C-13	52	1.4	4
243	Student Orgs	240	11	255	1558	6.1	DID-302-US	4	8	A-11	352	13.8	32
244	Student Orgs	240	11	255	1558	6.1	DID-302-US	4	8	A-11	352	13.8	32
245 247	Student Orgs Conference	240 201	11 5.6	255 175	1558 389	6.1 2.2	DID-302-US DID-302-US	4	8	A-11 C-25	352 200	13.8	32 8
247	Office	172	1.4	50	181	3.6	DID-302-US	1	4	C-13	52	1.4	4
248	Office	55	0.4	50	155	3.1	DID-302-US	1	4	C-13	52	1.4	4
253	Safe Room	91	0.1	25	162	6.5	DID-302-US	1	4	C-13	52	1.4	4
254	Office	87	1.1	50	177	3.5	DID-302-US	1	4	C-13	52	1.4	4
255	Office	87	1.1	50	177	3.5	DID-302-US	1	4	C-13	52	1.4	4
256	Womens Center	413	7.2	150	740	4.9	DID-302-US	5	6	A-5	150	7.4	30
257 258	Office Office	93 93	1.2	75 75	375 375	5.0 5.0	DID-302-US DID-302-US	1	6 6	C-13 C-13	78 78	2.1 2.1	6 6
259	Office	93	1.2	75	375	5.0	DID-302-03	1	6	C-13	78	2.1	6
260	Resource Area	233	5.4	100	553	5.5	DID-302-US	3	8	A-5	120	5.9	24
261	Student Orgs	232	5.4	100	550	5.5	DID-302-US	3	8	A-5	120	5.9	24
262	Office	92	1.2	75	375	5.0	DID-302-US	1	6	C-13	78	2.1	6
263	Office	92	1.2	75	375	5.0	DID-302-US	1	6	C-13	78	2.1	6
264	Office	92	1.2	75	375	5.0	DID-302-US	1	6	C-13	78	2.1	6
266 301	Paint Circulation/Lobby	81 3360	0.3 50.4	25 1650	162 3300	6.5 2.0	DID-302-US DID-302-US	1 11	4 6	C-13 C-25	52 1650	1.4 64.8	4 66
301	Theater/Multipurpose	2803	72.4	2000	10402	5.2	DID-302-US	23	8	A-11	2021	79.5	184
303	Catering Kitchen	1042	20.6	400	2911	7.3	DID-302-03	10	8	A-11 A-5	400	21.4	80
328	Circulation	1440	4.3	425	902	2.1	DID-302-US	3	6	C-25	450	9.1	18
330	Large Meeting	954	5.9	825	1669	2.0	DID-302-US	6	6	C-25	900	18.1	36
331	Large Meeting	954	4.9	825	1659	2.0	DID-302-US	6	6	C-25	900	18.1	36
333	Small Meeting	486	5.1	350	888	2.5	DID-302-US	2	8	C-25	400	8.1	16
334	Small Meeting	435	5	425	850	2.0	DID-302-US	2	8	C-25	400	8.1	16
337 339	Medium Meeting Large Meeting	720 1237	12.8 10.5	825 1000	1650 2143	2.0 2.1	DID-302-US DID-302-US	6 4	6 10	C-25 C-25	900 1000	18.1 20.1	36 40
339	Medium Meeting	698	10.5	825	1650	2.1	DID-302-US	6	6	C-25 C-25	900	18.1	36
202B	Upper Lobby	1591	14.3	750	1500	2.0	DID-302-US	5	6	C-25	750	15.2	30
				21367	76938			221	-		22843	698.23	1466
				-									

Gary Haffely Mechanical

Room #	Space Name	Az	Ra	R _P	Pz	Vbz=Voz	CFM	QL	Latent CFM
102	Corridor	2518	0.06	0	0	151.08	1000	0	0
104	Entry Lobby	1717	0.06	5	5	128.02	1450	1000	82
105	Storage	81	0.12	0	0	9.72	100	0	0
106	Corridor	713	0.06	0	0	42.78	400	0	0
108	Utility	35	0.12	0	0	4.2	50	0	0
109	Womens Toilet	211	0.06	0	0	0	60	0	0
110	Mens Toilet	211	0.06	0	0	0	60	0	0
113	Office	107	0.12	10	1	22.84	100	200	16
114	Office	113	0.12	10	1	23.56	100	200	16
116	Building Manager	109	0.12	10	2	33.08	100	400	33
117	Work/Storage	157	0.12	0	0	18.84	200	0	0
118	Conference	227	0.12	10	15	177.24	410	3000	245
119	Directory	112	0.12	10	4	53.44	190	800	65
120	VP assistant	112	0.12	10	2	33.44	240	400	33
121	Univ UN Oper	938	0.12	10	10	212	960	400	163
122	Storage	61	0.12	0	0	7.32	50	0	0
124	Coop Act	309	0.12	10	1	47.08	265	200	16
125	Dir Coop	93	0.12	10	1	21.16	90	200	16
126	Stor/Server	81	0.12	10	1	19.72	200	200	16
133	Corridor	1416	0.06	0	0	84.96	530	0	0
135	Corridor	361	0.12	0	0	43.32	225	0	0
136	Café	1255	0.18	10	50	725.9	850	10000	817
137	Café Storage	302	0.12	0	0	36.24	400	0	0
138	UPS	1916	0.12	0	0	229.92	1200	0	0
139	Bank	782	0.06	10	8	126.92	620	1600	131
140	Storage	4828	0.12	0	30	579.36	5620	6000	490
141	Utility	40	0.12	0	1	4.8	50	200	16
142	Accounts	115	0.12	5	2	23.8	150	400	33
143	Accounts Receivable	110	0.12	5	2	23.2	150	400	33
144	Store manager	103	0.12	5	2	22.36	150	400	33
145	IT/Copy	130	0.06	0	0	7.8	50	0	0
146	Employee Lounge	211	0.12	7.5	7	77.82	250	1400	114
147	Bookstore Textbooks	400	0.12	7.5	7	100.5	350	1400	114
148	Vestibule	76	0.06	0	0	4.56	50	0	0
149	Dressing room	38	0.06	0	1	2.28	110	200	16
149	Storage	38	0.06	0	0	2.28	100	0	0
150	Bookstore	7277	0.12	5	75	1248.24	11520	15000	1225

Gary Haffely Mechanical

			i		i				
202	Small Lounge	2487	0.12	10	50	798.44	1000	10000	817
202	Storage	106	0.12	0	0	12.72	75	0	0
203	Cultural Lounge	836	0.12	10	20	300.32	1180	4000	327
204	Fireplace Lounge	1349	0.12	10	65	811.88	2600	13000	1062
218	Corridor	741	0.06	0	0	44.46	800	0	0
228	Mens Toilet	258	0.06	0	0	15.48	250	0	0
229	Womens Toilet	355	0.06	0	0	21.3	250	0	0
231	Utility	31	0.12	0	0	3.72	100	0	0
233	Corridor	212	0.06	0	0	12.72	800	0	0
233	Corridor	643	0.06	0	0	38.58	300	0	0
235	Commuter Pantry	93	0.12	0	0	11.16	125	0	0
236	Student Lounge	479	0.12	10	10	157.48	1200	2000	163
236	Work Area	2786	0.12	10	100	1334.32	1910	20000	1634
237	Student Orgs	250	0.12	10	5	80	425	1000	82
238	Student Orgs	250	0.12	10	5	80	400	1000	82
239	Student Orgs	250	0.12	10	5	80	300	1000	82
240	Office	83	0.12	10	1	19.96	75	200	16
241	Office	83	0.12	10	1	19.96	75	200	16
242	Office	<mark>84</mark>	0.12	10	1	20.08	140	200	16
243	Student Orgs	240	0.12	10	5	78.8	400	1000	82
244	Student Orgs	240	0.12	10	5	78.8	400	1000	82
245	Student Orgs	240	0.12	10	5	78.8	400	1000	82
247	Conference	201	0.12	10	10	124.12	500	2000	163
248	Office	172	0.12	10	1	30.64	550	200	16
248	Office	55	0.12	10	1	16.6	250	200	16
253	Safe Room	91	0.12	0	0	10.92	75	0	0
254	Office	87	0.12	10	1	20.44	75	200	16
255	Office	87	0.12	10	1	20.44	75	200	16
256	Womens Center	413	0.12	10	5	99.56	500	1000	82
257	Office	93	0.12	10	1	21.16	310	200	16
258	Office	93	0.12	10	1	21.16	310	200	16
259	Office	93	0.12	10	1	21.16	310	200	16
260	Resource Area	233	0.12	10	4	67.96	690	800	65
261	Student Orgs	232	0.12	10	5	77.84	850	1000	82
262	Office	92	0.12	10	1	21.04	310	200	16
263	Office	92	0.12	10	1	21.04	310	200	16
264	Office	92	0.12	10	1	21.04	310	200	16
266	Paint	81	0.12	0	0	9.72	300	0	0
301	Circulation/Lobby	3360	0.06	5	100	701.6	3600	20000	1634
303	Theater/Multipurpose	2803	0.06	10	100	1368.18	7000	24000	1961
303	Catering Kitchen	1042	0.18	10	20	387.56	1750	4000	327
312	Catering Storage	380	0.13	0	0	45.6	200	4000	0
313	Green Room	142	0.06	0	0	8.52	250	0	0
314	Toilet	142	0.06	0	0	7.5	20	0	0
319	Mens Toilet	340	0.06	0	0	20.4	250	0	0
320	Womens Toilet	454	0.06	0	0	27.24	250	0	0
320	Custodial	25	0.12	0	0	3	100	0	0
323	Toilet	55	0.06	0	0	3.3	100	0	0
324	Corridor	525	0.06	0	0	31.5	165	0	0
325	Storage	275	0.12	0	0	33	165	0	0
326	Tech	119	0.12	10	2	34.28	100	400	33
327	Pantry	127	0.12	0	0	15.24	140	0	0
328	Circulation	1440	0.06	5	25	211.4	1200	5000	408
330	Large Meeting	954	0.12	10	50	614.48	2400	10000	817
331	Large Meeting	954	0.12	10	50	614.48	2100	10000	817
333	Small Meeting	486	0.12	10	20	258.32	900	4000	327
334	Small Meeting	435	0.12	10	25	302.2	900	5000	408
337	Medium Meeting	720	0.12	10	50	586.4	1700	10000	817
339	Large Meeting	1237	0.12	10	60	748.44	2100	12000	980
340	Medium Meeting	698	0.12	10	50	583.76	1400	10000	817
341	Storage	435	0.12	0	0	52.2	325	0	0
202B	Upper Lobby	1591	0.12	10	45	640.92	800	9000	735

Appendix D – Air Handler Design

Fan section		M	odule Position:	1
Fan sec [1]-1				
Run Result	Meets	Fan airflow		24731 cfm
Section type	Fan	Overall ESP		1.000 in H2O
Fan application	Exhaust fan	Unit entering ESP		0.500 in H2O
Unit size	50	Unit discharge ESP		0.500 in H2O
Inlet location	Front inlet	Elevation		0.00 ft
Fan orientation	Plenum fan	Minimum temperature		40.00 F
Fan discharge	Back top	Design temperature		70.00 F
Access door location	Right	Fan size and type	40in. belt-drive p	lenum, class 1
Drive location	Right side drive	Plenum fan back discharge	1st back recta	ngular opening
Design sequence	D	Total brake horsepower		24.409 hp
Motor horsepower per fan	25 hp	Total brake horsepower at min temp		25.875 hp
Motor class	NEMA premium compliant ODP	Total static pressure		3.192 in H2O
Motor voltage	460/3	Speed		949 rpm
Cycle	60 cycles/sec	Fan module pressure drop		1.257 in H2O
Drive service factor	1.5 fixed drive	Static pressure origin	Prog	ram calculated
Motor RPM	1800			

Wheel			Module Position:	6
Wheel type	Energy wheel	EW Outside air bypass damper		No
Wheel size	25000 CFM	Recirculation damper		No
Motor voltage	460/3	Filter type	4" high eff 95% eff	- MERV 14
Leaving supply airflow	24678 cfm	Section length		64.750 in
Supply air wheel PD	1.146 in H2O	Section height		151.750 in
CDQ Regeneration air bypass damper	No	Section width		125.500 in
CDQ Supply air bypass damper	No	Section weight		2470.0 lb
EW Exhaust air bypass damper	Yes			

Fan section		N	Iodule Position:	8
Fan sec [8]-1				
Run Result	Meets	Overall ESP		2.000 in H2O
Section type	Fan	Unit entering ESP		1.000 in H2C
Fan application	Supply fan	Unit discharge ESP		1.000 in H2O
Unit size	50	Elevation		0.00 f
Inlet location	Back inlet	Minimum temperature		40.00 F
Fan orientation	Plenum fan	Design temperature		70.00 F
Fan discharge	Front top	Fan size and type	40in. belt-drive	plenum, class 2
Access door location	Right	Total brake horsepower		38.478 hj
Drive location	Right side drive	Total brake horsepower at min temp	p	40.789 h
Design sequence	D	Total static pressure		5.560 in H20
Motor horsepower per fan	40 hp	Speed		1116 rpn
Motor class	NEMA premium compliant ODP	Fan module pressure drop		2.028 in H2O
Motor voltage	460/3	Section height		75.750 ir
Cycle	60 cycles/sec	Section length		57.500 ir
Drive service factor	1.5 fixed drive	Section width		125.500 ii
Motor RPM	1800	Section weight		2401.0 I
Fan airflow	24678 cfm	Static pressure origin	Pro	ogram calculate

Slippery Rock University Student Union, Slippery Rock, PA Advisor: Dustin Eplee – 4/7/2011

Filter section			Module Position:	10
Section type	Filter	Filter area		50.00 sq ft
Unit size	50	Filter face velocity		494 ft/min
Filter type	Long Bag filter	Filter pressure drop		0.831 in H2O
Filter frame	Bag/cartridge filter frame	Prefilter pressure drop		0.650 in H2O
Access door location	Right	Filter section pressure drop		1.481 in H2O
Primary filter type 1	30in. bag - 85% eff - MERV 13	Section length		37.250 in
Prefilter filter type	2" Coated pleated media - MERV	Section width		125.500 in
	7			
Design sequence	В	Section height		75.750 in
Filter airflow	24678 cfm	Section weight		710.5 lb
Filter condition	Mid-life			

Coil section			Module Position:	11
Coil s [11]-1				
Run Result	Exceeds	Coil type		NS
Section type	Horizontal coil	Rows		1 row
Unit size	50	Fin type		Sigma flo fins
Section size	Medium	Fin material		Aluminum fins
Wheel capacity	Use energy wheel values	Tube diameter	1in. tube di	ameter (25.4 mm)
Coil application	Heating coil	Tube matl/wall thickness	.031" (0.787r	nm) copper tubes
Changeover coil	No	Corrosion resistant coating		None
System type	Steam	Coil face velocity		524 ft/min
Coil supply/cabinet side	Right	Air pressure drop		0.080 in H2O
Coil casing	Galvanized	Fluid volume		7.95 gal
Coil height	Unit coil height	Steam pressure drop		4.593 in H2O
Drain pan	Galvanized	Coil condensate		947.14 lb/hr
Drain connection location	Right	Total cap coil #1		448.05 MBh
Design sequence	В	Total cap coil #2		448.05 MBh
Apply AHRI ranges	Yes	Coil face area		47.08 sq ft
Coil performance airflow	24678 cfm	Coil rigging weight		303.5 lb
Coil elevation	0.00 ft	Coil section pressure drop		0.080 in H2O
Entering dry bulb	49.92 F	Section length		14.000 in
Leaving dry bulb	83.41 F	Section height		75.750 in
Total capacity	896.10 MBh	Section width		125.500 in
Fin spacing	42 Per Foot	Section weight		620.5 lb
Steam pressure	15.00 psig			

Appendix E – Girder Redesign Calculations

Girder Redesign:

Sizing Girder:

W_{TL} = 1.2D + 1.6L Superimposed Dead Load – 15 psf Weight of Prestressed Plank – 86.25 psf

$$\begin{split} W_{TL} &= 1.2(15 + 86.25) + 1.6(100) = 281.5 \text{ psf} \\ M_U &= (281.5)(26)(24)^2 / 8 = 527 \text{ ft*kip} \\ \text{From the Steel Construction Manual - W18X71 @ 548 psf capacity} \\ M_U &= [(281.5)(26) + 71](24)^2 / 8 = 532.1 \text{ ft-kip} < 548 \text{ ft-kip therefore W18X71 is OK} \end{split}$$

Live Load Deflection

$$\begin{split} \Delta_{LL} &= 5 \; W_{LL} \, L^4 \, (\, 1728) \; / \; (\, 384 \; \text{E I} \,) \\ &\quad E = 29,000,000 \; \text{psi} \\ &\quad I_{W18X71} = 1170 \; \text{in}^4 \\ \Delta_{LL} &= 5 \; (100^*4) \; 24^4 \, (\, 1728) \; / \; (\, 384 * 4286826 * 1170 \,) = 0.088 \; \text{inches} \end{split}$$

Allowable Live Load Deflection:

 Δ_{LL} = L / 360 = (24 ft * 12 in/ft) / 360 = 0.80 inches 0.088 inches < 0.80 inches therefore OK

Total Load Deflection:

$$\begin{split} \Delta_{TL} &= 5 \ W_{TL} \ L^4 \ (\ 1728) \ / \ (\ 384 \ E \ I \) \\ &= 29,000,000 \ psi \\ &I_{W18X71} = 1170 \ in^4 \\ \Delta_{TL} &= 5 \ (130^*4) \ 24^4 \ (\ 1728) \ / \ (\ 384 \ ^* \ 4286826 \ ^* \ 1170 \) = 0.11 \ inches \\ Allowable \ Total \ Load \ Deflection: \\ \Delta_{TL} &= L \ / \ 240 = (\ 24 \ ft \ ^* \ 12 \ in/ft \) \ / \ 240 = 1.2 \ inches \\ 0.11 \ inches < 1.2 \ inches \ therefore \ OK \end{split}$$

Gary Haffely Mechanical

Slippery Rock University Student Union, Slippery Rock, PA Advisor: Dustin Eplee – 4/7/2011

Beam Sizing and Deflection Checks													
Beam Tag	W	Length of Beam	Weight of Beam	Trib Width	Inertia (I)	Moment (M _u)	With S-W ($M_{\rm U}$)	Capacity	Δ_{LL}	Allowable Δ_{LL}	Δ_{TL}	Allowable Δ_{TL}	Check
	psf	ft	plf	ft	in ⁴	ft-k	ft-k	ft-k	in	in	in	in	
W14X68	281.5	21	68	26	722	403.5	407.2	431	0.08	0.7	0.11	1.05	<
W14X74	286	21	74	28.5	795	449.3	453.4	473	0.08	0.7	0.10	1.05	<
W18X71	281.5	24	71	26	1170	527.0	532.1	548	0.09	0.8	0.11	1.2	~
W18X76	286	24	76	28.5	1330	586.9	592.3	611	0.08	0.8	0.10	1.2	<
W18X97	286	27	97	28.5	1750	742.8	751.6	791	0.09	0.9	0.12	1.35	<
W21X83	281.5	27	83	26	1830	666.9	674.5	735	0.09	0.9	0.12	1.35	~