Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Slippery Rock University Student Union Slippery Rock, PA

By Gary Haffely

April 12, 2011

Option: Mechanical

Advisor: Dustin Eplee

Project Information

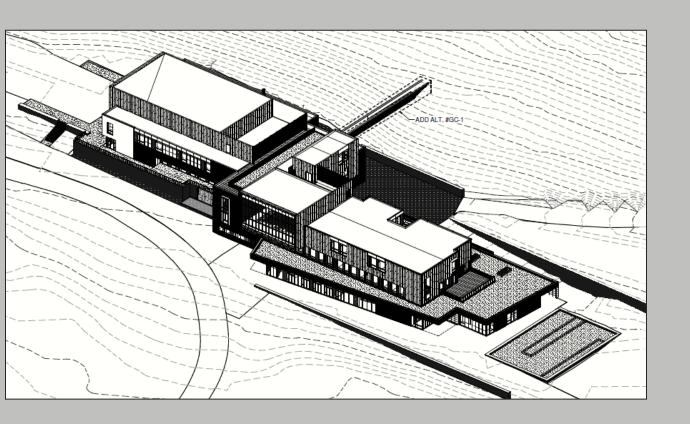
Introduction

- Project Information
- Project Goals
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Building Name: SRU Student Union

Location: Slippery Rock, PA

Occupancy type: Student Center, Office


Size: 105,000 SF

Total Cost \$32,000,000

Number of Stories: 3 Floors

Project Start July 2010

Project Finish November 2011

Project Goals

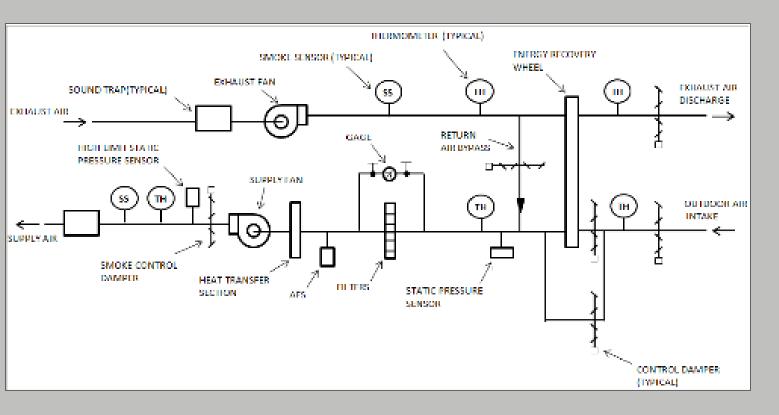
Introduction

- Project Information
- Project Goals
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

- Achieve LEED Silver Certification
- Create a center gathering space for students, faculty and visitors
- Demonstrate the benefits of green building design and sustainability
- Provide enhanced comfort and control to occupants

Existing Mechanical System – Air Side

- Introduction
- Existing Mechanical System Design Overview
 - Air Side
 - Heating
 - Cooling
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

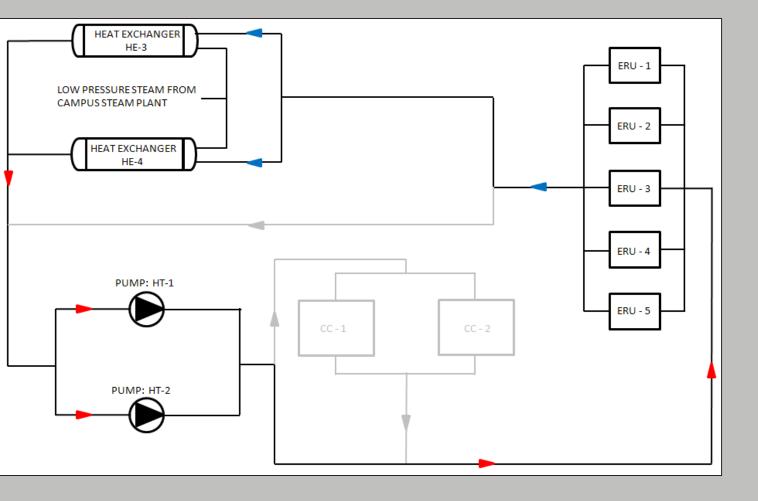

- (5) VAV Air Handling Units with energy recovery wheel, heat pump, and variable frequency drives
- (3) Make-up Air Units
- Ductless Split System

Utility Rates:

- Electricity: \$0.0462/kWh

- Natural Gas: \$1.16/therm

- Steam: \$1.057/therm



Existing Mechanical System – Heating

- Introduction
- Existing Mechanical System Design Overview
 - Air Side
 - Heating
 - Cooling
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Water Source Heat Transfer System

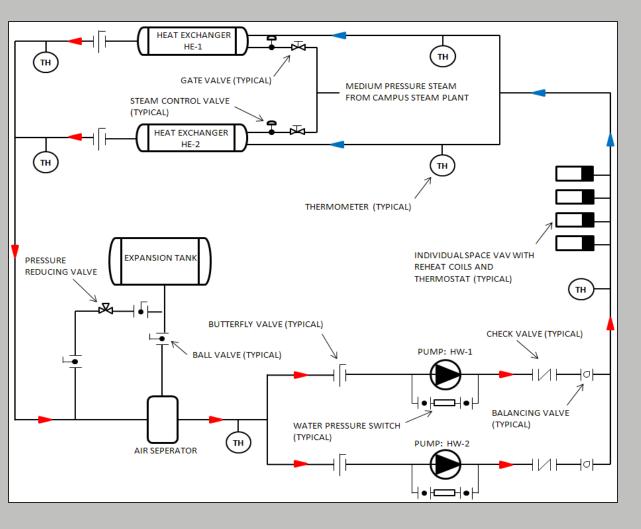
- Primary heating

Existing Mechanical System – Heating

- Introduction
- Existing Mechanical System Design Overview
 - Air Side
 - Heating
 - Cooling
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Water Source Heat Transfer System

- Primary heating


Hot Water Heating System

Secondary heating

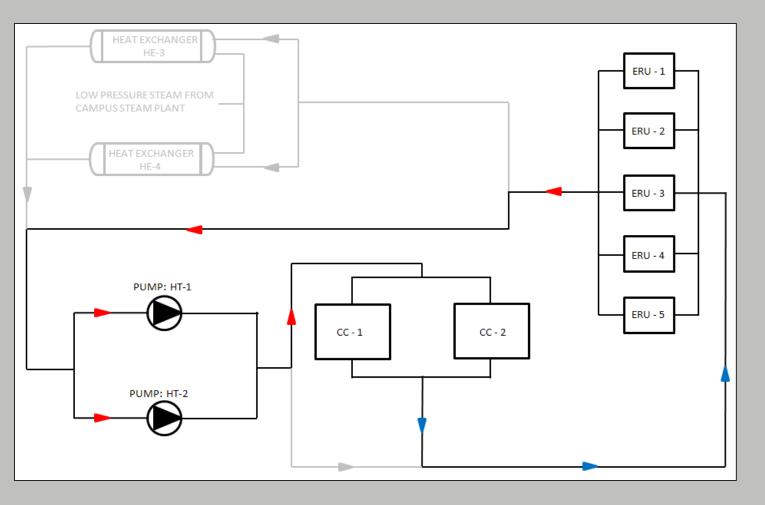
Peak Heating Load

-6,630 Mbh peak heating load

\$16,425.00/year

- Introduction
- Existing Mechanical System Design Overview
 - Air Side
 - Heating
 - Cooling
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

-(2) 175 ton Closed Circuit Coolers


Water Source Heat Transfer System

Primary cooling

Peak Cooling Load

- 293 ton peak cooling load

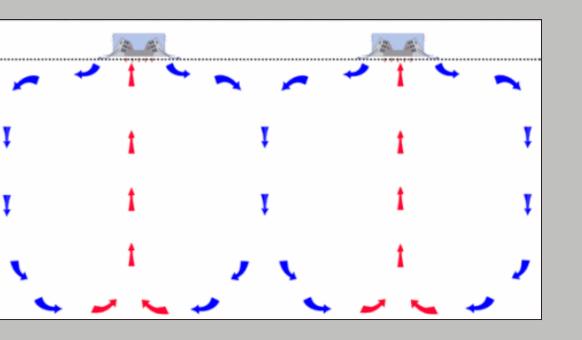
\$9,900.00/year Cooling

Redesign Goals

Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Overall Redesign Goals:


- Apply alternative space heating and cooling techniques
- Incorporate renewable energy sources
- Reduce energy consumption

DOAS Objectives

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

DOAS with Active Chilled Beams Objectives:

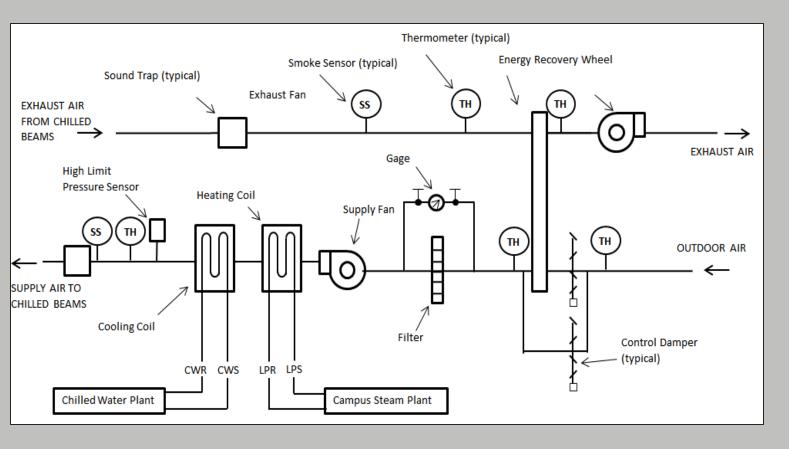
- Use a dedicated outdoor air system with active chilled beams to adequately heat, cool and ventilate spaces
- Maintain space comfort and control
- Reduce the number of AHU's
- Decrease amount of sheet metal from ductwork

Redesign System Components

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Redesign Energy Saving Techniques:

- 1. Dedicated Outdoor Air System
- Uses minimum ventilation required
- Decouples latent and sensible loads
- Consumes less building materials

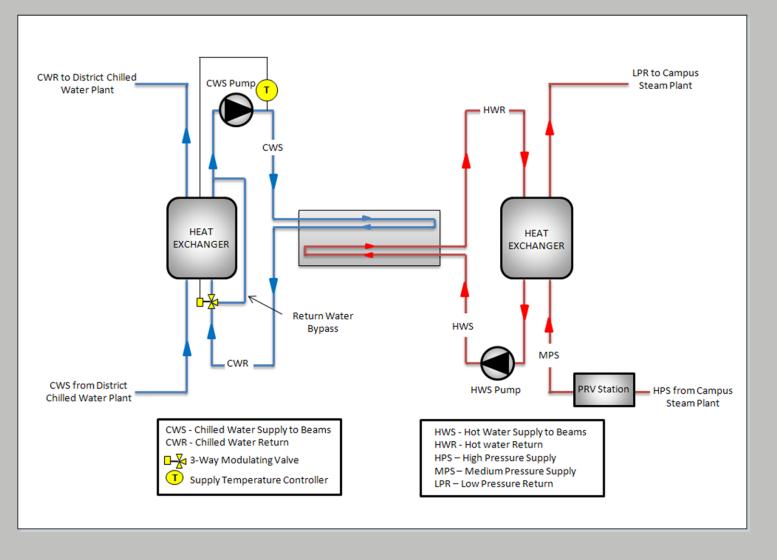


Redesign System Components

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Redesign Energy Saving Techniques:

- 1. Dedicated Outdoor Air System
- 2. Enthalpy Wheel
- Recovers otherwise wasted energy from exhaust air
- Preheats and preconditions incoming outdoor air reducing load on coils

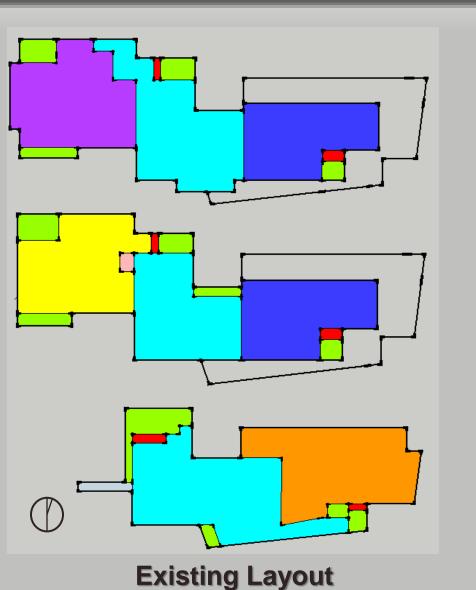


Redesign System Components

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Redesign Energy Saving Techniques:

- 1. Dedicated Outdoor Air System
- 2. Enthalpy Wheel
- 3. Active Chilled Beams
- Treats sensible space loads
- Uses simple space controls
- Reduces fan energy consumption


Existing vs. Redesign

Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Green: Heating Only - Stairs
Light Blue: ERU 1 - Theater, lounges
Yellow: ERU 2 - Dining, corridors
Dark Blue: ERU 3 - Meeting rooms
Purple: ERU 4 - Ballrooms
Orange: ERU 5 - Bookstore
Pink: MUA - Kitchen

Red: Ductless Split System - Electrical, IT

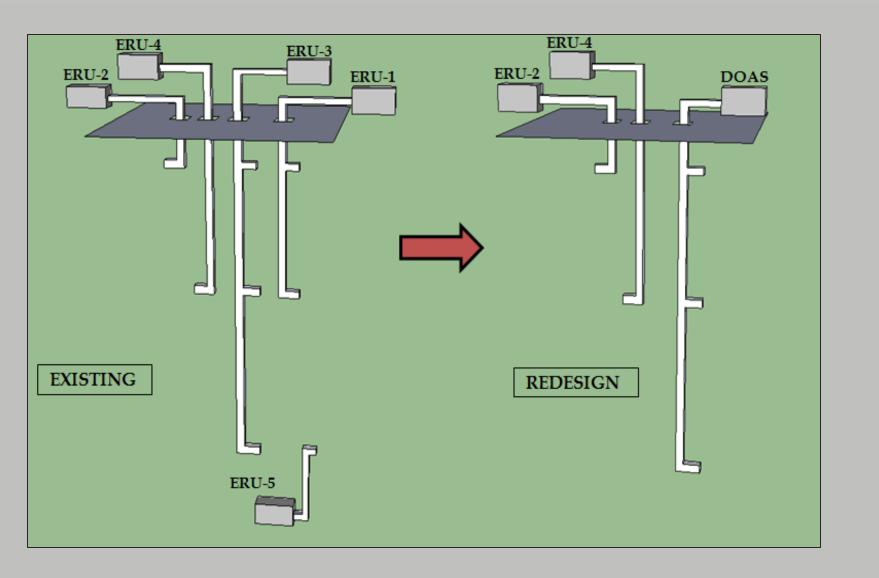
Green: Heating Only - Stairs

Purple: ERU 4 - Ballroom

Yellow: ERU 2 - Dining, corridors

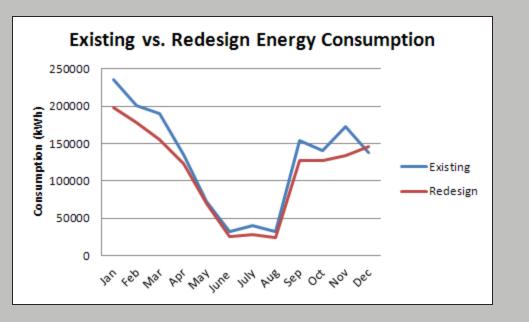
Dark Blue: DOAS - Bookstore, meeting, offices

Pink: MUA - Kitchen


Red: Ductless Split System - Electrical, IT

Redesign Layout

Existing vs. Redesign


- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Energy and Cost Evaluation

Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

ergy Consumption (kWh)				
ing	1544209			
sign	1338466			
Savings	205743			

Estimated Payback: 7 years

Existing Annual Energy Cost							
atural Gas (\$)	Electricity (\$)	Steam (\$)	Water (\$)	Total (\$)			
8712.60	67894.99	12636.45	0.00	89244.04			
Redesign Annual Energy Cost							
atural Gas (\$)	Electricity (\$)	Steam (\$)	Water (\$)	Total			
12067.58	63629.73	5135.97	2425.05	83258.33			

Annual Cost Savings = \$5,985.71

Existing Tot	al of Takeoffs	Redesign Total Takeoffs		
AV Boxes	\$110,081.00	Chilled Beams	\$378,678.00	
ir Handlers	\$515,000.00	Piping	\$144,664.60	
iffusers	\$17,152.30	Air Handlers	\$209,000.00	
neet Metal	\$394,018.08	Sheet Metal	\$300,960.42	
		CW Pumps	\$20,822.00	
		CW Heat Exchangers	\$24,061.60	
Total	\$1,036,251.38	Total	\$1,078,186.62	

Additional Cost = \$41,935.24

DOAS Redesign Conclusions

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

DOAS with Active Chilled Beams Conclusions:

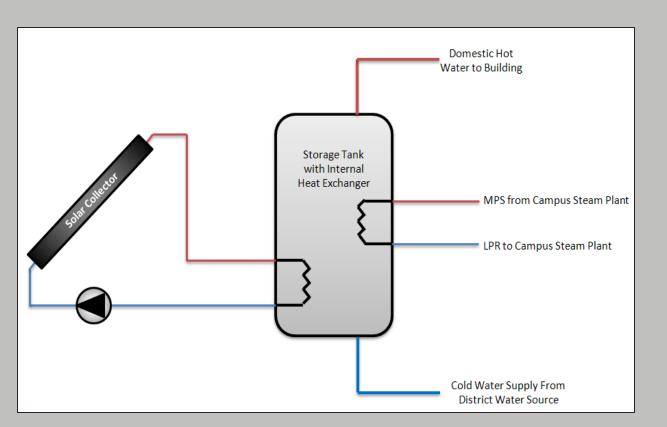
- Meet heating, cooling and ventilation requirements while reducing energy consumption
- Successfully reduced the amount of sheet metal and total number of air handlers used in the system
- Maintained space comfort and control

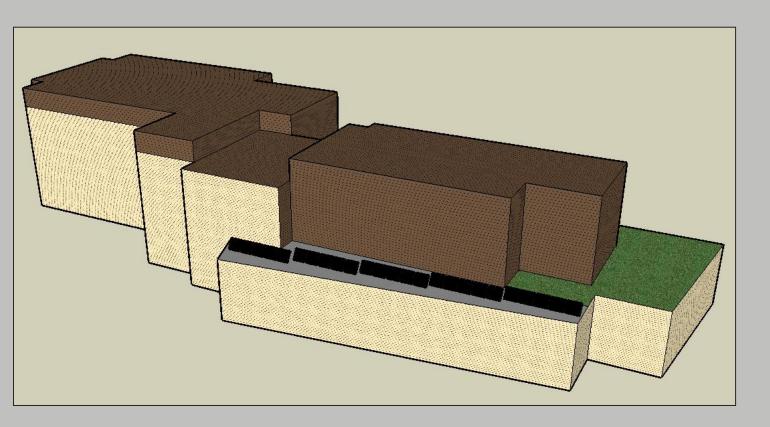
Solar Collector Objectives

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Solar Thermal Water Heating System Objectives:

- Utilize solar collectors to reduce steam consumption used for domestic hot water
- Maximize system performance
- Determine system feasibility




Solar Collector Design

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Solar Thermal Water Heating Design:

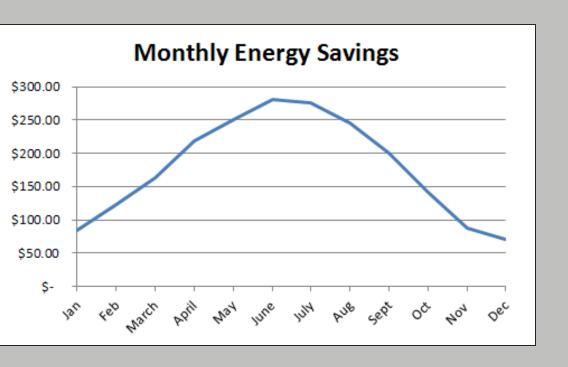
- Replace 3000 square feet of green roof with 25 evacuated tube arrays
- Orient collectors facing south at a tilt of 40 degrees

Southern Face of SRU Student Union

Solar Collector Cost Evaluation

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Solar Thermal Water Heating Cost Analysis:


- Total First Cost: **\$85,610.00**

- Total Annual Energy Savings: **\$2,141.65**

- Green Roof Savings: \$45,300

Estimated payback without government incentives: 18.8 years

Cost Breakdown			
Solar Collector Cost	(\$85,610.00)		
ncentive	\$29,963.50		
Γax Credit	\$25,683.00		
Green Roof Savings	\$45,300.00		
Net Savings	\$15,336.50		

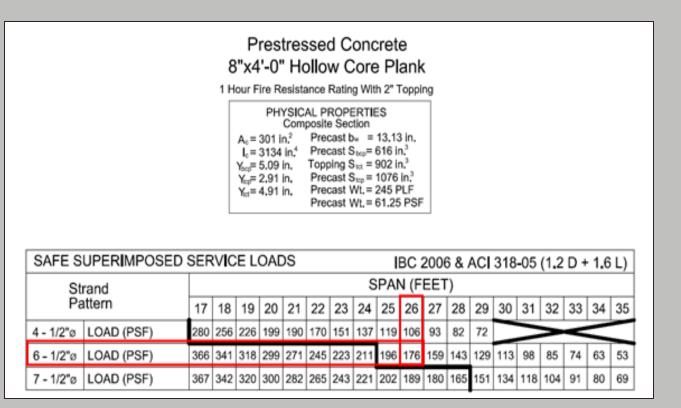
Solar Collector Design Conclusions

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

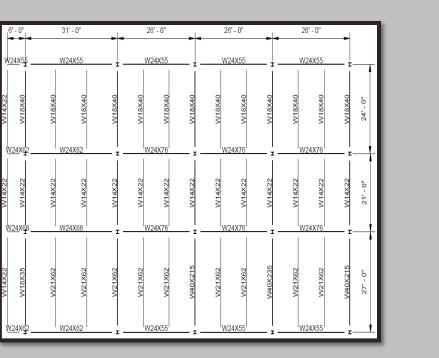
System Conclusions:

- Advantages:
 - Incorporate renewable energy sources
 - Energy savings
- Disadvantages:
 - Collectors affect building aesthetics
 - Partial obstruction of interior office views
- Successfully reduced steam consumption while maximizing possible system performance
- Not worthwhile unless government incentives apply

Structural Redesign Objectives


- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Structural Breadth Objectives:


- Change existing composite steel deck floor system to precast hollow core planks in the ballroom
- Resize beam and girder framing based on new load
- Determine total cost and feasibility of new system

Superimposed Dead Load – 15 psf Dead Load – 15 psf Live Load (ballroom) – 100 psf

Total Loads – 130 psf

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Existing Layout

" _	31' - 0"	26' - 0"	26' - 0"	26' - 0"	_	
¥	W14X22	W14X22	W14X22	W14X22	_,	
1/2017	W18X76	W18X71	W18X71	W18X71	24' - 0"	
¥	W14X22	W14X22	W14X22	W14X22		
C	W14X55	W14X22	W14X22	89 X FI M	21' - 0"	
1 2 1 2 1 2 1	W18X97	WZ1X83	W21X83	WZ1X83	27' - 0"	
¥	W14X22	W14X22 I	W14X22	W14X22		

Redesign Layout

	Beam Sizing and Deflection Checks												
Beam Tag	W	Length of Beam	Weight of Beam	Trib Width	Inertia (I)	Moment (M _U)	With S-W ($M_{\mbox{\tiny U}}$)	Capacity	Δ_{LL}	Allowable Δ_{LL}	Δ_{TL}	Allowable Δ_{TL}	Check
	psf	ft	plf	ft	in ⁴	ft-k	ft-k	ft-k	in	in	in	in	
W14X68	281.5	21	68	26	722	403.5	407.2	431	0.08	0.7	0.11	1.05	>
W14X74	286	21	74	28.5	795	449.3	453.4	473	0.08	0.7	0.10	1.05	>
W18X71	281.5	24	71	26	1170	527.0	532.1	548	0.09	0.8	0.11	1.2	>
W18X76	286	24	76	28.5	1330	586.9	592.3	611	0.08	0.8	0.10	1.2	>
W18X97	286	27	97	28.5	1750	742.8	751.6	791	0.09	0.9	0.12	1.35	>
W21X83	281.5	27	83	26	1830	666.9	674.5	735	0.09	0.9	0.12	1.35	V

Structural Redesign Conclusions

Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

Structural Breadth Conclusions:

- Overall Cost Savings: \$83,287.75
- Will speed construction time
- Difficult to apply to entire building

	Steel Beam Redes	ign	
ounds of Steel Beams	Tons of Steel	\$/ton	Total Cost \$
40153	20.08	3250.00	65248.63
eel Connections Ratio	Tons of Steel	\$/ton	Total Cost \$
20.08/158 = x/15.8	2.01	3250.00	6532.50
			Steel Total \$
			71781.13
Precas	t Hollow Core Plan	k Redesign	
Plank Thickness	Area sf	\$/sf	Plank Cost \$
Planks	5616	7.50	42120.00
" Planks	2702	8.50	22967.00
	8318		65087.00
	Concrete Toppi	ng	
Material	Area sf	\$/sf	Topping Cost \$
Topping	8318	2.50	20795.00
			Total Cost \$

157663.13

Steel Beam Redesign								
ounds of Steel Beams	Tons of Steel	\$/ton	Total Cost \$					
83611	41.81	3250.00	135867.88					
teel Connections Ratio	Tons of Steel	\$/ton	Total Cost \$					
41.27/158 = x/15.8	4.18	3250.00	13585.00					
			Steel Total \$					
			149452.88					
Metal Decking								
Plank Thickness	Area sf	\$/sf	Plank Cost \$					
Metal Deck	8318	2.50	20795.00					
	Concrete Slab on I	Deck						
Material	Area sf	\$/sf	Topping Cost \$					
Topping	8318	8.50	70703.00					
			Total Cost \$					
			240950.88					

Existing

Redesign

Credits and Acknowledgements

Advisor: Dustin Eplee SRU Student Union

- Introduction
- Existing Mechanical System Design Overview
- Proposed Redesign Overview
- Mechanical Depth
 - DOAS with Active Chilled Beams
 - Solar Thermal Water Heating System
- Structural Breadth Study
- Credits and Acknowledgements

- Herbert Carlson: Slippery Rock University
- Nick Rosko: CJL Engineering
- Dustin Eplee: Thesis Advisor
- Friends and Family

