October 4th, 2010

TECHNICAL ASSIGNMENT ONE PENN STATE SENIOR THESES

UNIVERSITY SCIENCES BUILDING

NORTHEASTERN U.S.

JUSTIN GREEN

CONSTRUCTION MANAGEMENT ADVISOR: DR. RILEY

TECHNICAL ASSIGNMENT ONE

Justin Green - CM

EXECUTIVE SUMMARY

Technical Assignment One is intended to familiarize an individual with the conditions under which the University Sciences Building is constructed and the scope of work required for completion. This report will provide a background of the existing conditions and project constraints that affect both the design and construction process.

The University Sciences Building is a mixed use facility that will house both students and faculty of the university. It includes 39 research and teaching laboratories for bio-medical engineering, biology, chemistry, and fossil preparation. This 138,000 square foot building also houses 8 educational classrooms, a small auditorium seating 240 students, and a wing dedicated to both administrative and faculty support.

This report will take an in depth view of the building's basic systems, including a unique type of precast concrete used in combination with cast-in-place concrete, as well as a living, breathing biowall that spans the entire height of the facility's atrium space. A cost and schedule breakdown will be given on these systems as well as any client concerns that may be present. Along with building system information, this report will also touch on the existing and local site conditions that are present and the challenges that come with construction in a major U.S. city.

After analyzing the information within the report, a major emphasis has been placed on the description of building systems and the sequencing of these systems. Existing conditions have a huge influence on the planning and success of construction.

The largest challenge present with construction lies in pleasing the owner and meeting the sustainable goals set towards achieving LEED Gold Certification.

TABLE OF CONTENTS

Executive Summary	2
Table of Contents	3
Building Systems Summary	
Required Demolition	4
Structural Steel Frame	4
Cast in Place Concrete	6
Precast Concrete	6
Mechanical System	7
Electrical System	7
Masonry	7
Curtain Wall	8
Support of Excavation	8
Green Features / LEED Certification	9
Project Schedule Summary	10
Project Cost Evaluation	12
Site Plan of Existing Conditions	15
Local Conditions	16
Client Information	17
Project Delivery System	18
Staffing Plan	20

Appendix A - Summary Schedule	21
Appendix B - RS Means CostWorks Report	23
Appendix C - D4 Cost Reports	28
Appendix D - Existing Conditions Site Plan	35
Appendix E - Phased Staffing Plan	37

Northeastern U.S.

BUILDING SYSTEMS SUMMARY

YES	NO	WORK SCOPE
x		Demolition Required?
x		Structural Steel Frame
x		Cast-In-Place Concrete
x		Precast Concrete
х		Mechanical System
x		Electrical System
x		Masonry
x		Curtain Wall
x		Support of Excavation

Figure 1: Building Systems

Figure 2: Arial View of the Site

Demolition

The only demolition required for the University Sciences Building project was the existing parking lot that covered most of the building's footprint. The shaded area in *Figure 2* above shows the size and positioning of the parking lot to be demolished.

Structural Steel Frame

While most of the building is supported by a concrete frame and shear walls, the upper penthouse levels are supported by a steel frame with moment connections *(see Figure 3)*. Sizes of members include W8x40, W8x48, W8x67, and W12x65. Connection details are shown in *Figures 3, 5, and 6*.

Figure 4: Northern Facing Exterior

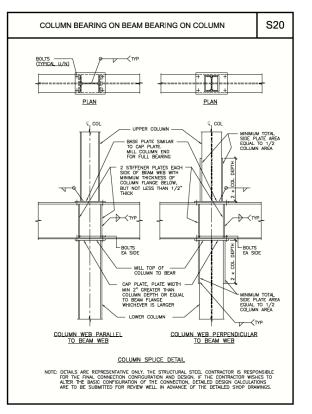


Figure 3: Steel Connection Details

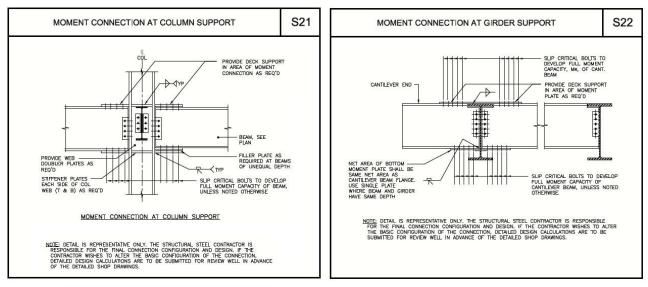


Figure 5: Moment Connection @ Column Support

Figure 6: Moment Connection @ Girder Support

One feature that is typically present in buildings today is the use of a composite floor slab. The University Sciences Building utilizes this construction technique in situations where steel decking is present with cast-in-place concrete resting on top. By rigidly joining the two systems together (steel and concrete), the resulting system is stronger than if the two were independent of one another. While concrete is great in compression but poor in tension, the steel members are strong when in tension. See the composite slab detail in *Figure 7* below.

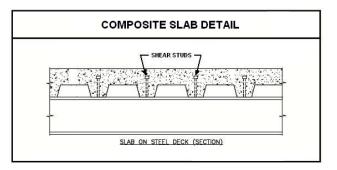


Figure 7: Composite Slab Detail

A tower crane was utilized on this project to erect all of structural steel members. This tower crane was also used for the cast-in-place concrete. It was located in the center of the University Sciences Building's atrium space.

Cast-In-Place Concrete

Reinforced cast-in-place concrete was used for the University Sciences Building's drilled caissons, gradebeams, foundation walls, slab-on-grade, columns, beams, and elevated slabs.

A smoothed-formed finish was used for all of the building's cylindrical columns because they will remain exposed to public view when the project is completed. Any other permanently exposed concrete within the building also require a smooth finish and that all corners/edges be chamfered.

All of the elevated slabs within the building are supported by the filigree precast slabs (see precast concrete directly below for description). These filigree slabs replace the need for any wooden or metal formwork when placing concrete.

As stated earlier, a tower crane (and bucket) was used when placing the concrete.

Precast Concrete

Filigree precast slabs have been implemented on this project. Filigree slabs are essentially really thin concrete precast panels with prestressed reinforcement throughout. They also act as the formwork for the cast-in-place concrete on site. The slabs are first made off-site and then shipped to the jobsite for assembly and shoring. Once secured, the second layer of concrete with reinforcing is placed on top of the precast panels. This process can effectively and efficiently accelerate the construction of structures with improved physical and aesthetic properties.

These precast slabs can also be considered as a sustainable feature because there are fewer materials wasted when forming the concrete slabs.

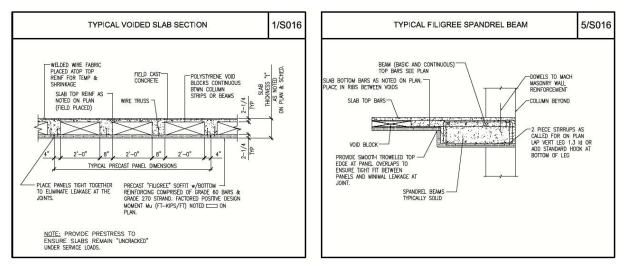


Figure 8: Typical Filigree and Voided Slab Details

These filigree slabs (*shown in Figure 8*) are cast by Mid-State Filigree Systems, Inc. in Cranbury, NJ and the contractor installing these panels is Madison Construction. Sequencing and connection details are a critical component of the installation of any type of precast concrete.

Shop drawings indicate the same sequencing as the rest of the trades and systems on the jobsite. Installation starts at the southwest corner of the building, and progresses in a clockwise manner around the site. These precast panels have also been installed using the tower crane located in the center of the atrium.

Mechanical System

There are 3 different areas of mechanical spaces with the University Sciences Building. One mechanical room is located in the basement of the building, another room is located on the 5th floor of the building, and another two out of three wings of the building on the penthouse level are dedicated to mechanical space.

All of this space is required to house the 2 Cooling Towers, 2 Chillers, 6 Heat exchangers, and 9 Air Handling Units (1 - auditorium, 4 - labs, 1 - offices, 1 - classrooms, 1 - atrium, and 1 - electrical/telecom).

The type of air distribution system used within the building is a Variable Air Volume (VAV) system, which feeds exhaust air through the living biowall to be cleaned and recycled.

The entire building will be sprinkled with a wet stand pipe system in place.

Electrical System

The power source for this building is coming from the adjacent university building (*see Appendix D for a map of existing conditions*) at 13.2 kV on a 15 kV medium voltage cable, and then stepped down to 480/277V, (3 phase, 4 wire).

The electrical system currently in place does not allow for many redundancies in power supply. However, if power were to go out for a limited period of time, there are emergency power and lighting distribution systems in place to continue feeding the building's critical systems.

Masonry

The masonry used for the University Sciences Building's exterior is non-load bearing. Instead, the CMU walls act as a barrier to the outside elements. Thicker and denser walls can better block the sounds of a major city. As a result, the space within the building becomes a more private and intimate space for its occupants.

Northeastern U.S.

The masonry walls will be covered with insulation and a thin aluminum cladding *(shown in Figure 9)*.

The masonry walls are tied into the structure by bolted steel connections from a 3"x15"x'X' continuous bent steel plate that have been embedded into the cast-in-place concrete slabs.

All masonry was placed using the typical tube and plank scaffolding methods.

Figure 9: On-site Mock-up of the Exterior Wall

Curtain Wall

Diamond and Schmitt Architects have designed most of the building's exterior with the use of masonry block and strips of glazing throughout. However, there are a few places on the bottom floor and on the circular rotunda that have a curtain wall system. The circular rotunda has 1/8" clear cricursa curved glass with argon gas filler and the remaining curtain walls are comprised of an outer and inner layer of 1/4" clear tempered glass with a low-E coating and argon gas filler.

Support of Excavation

The only areas of the building that needed excavation were that of the northern wing of the building. Excavation in this area was needed for both the underground mechanical and electrical rooms, as well as the front half of the sloped auditorium. The remaining foundation work did not require much excavation because the foundation consists of drilled concrete caissons.

Excavation supports for the University Sciences Building consisted of steel soldier beams with wooden lagging. The soldier beams were set in previously drilled holes, grouted around the base, and then excavated downward.

Green Features / LEED Certification

The five story biowall located in the atrium of the building will act as a natural air filter to help remove harmful VOCs and CO_2 levels from the air. As air is passed through the wall, impurities are removed by the natural photosynthesis process of the plants.

To feed the plants, water is pumped down the face of the wall and then collected in a basin at the bottom to be pumped back to the top of the biowall for recirculation. Nutrients will be added periodically, but this system of ventilation and air purifying requires a very minimal amount of maintenance.

Figure 10: Typical Filigree and Voided Slab Details

The building was designed to feed the biowall with plenty of natural daylight. Skylights from above and windows on the south face of the building allow for healthy growth of the plants that will be used.

The biowall allows for air within the building to be constantly recycled. In many ways, this is better than most of the ventilation systems used today. The quality of the air is better because it will be cleaner then the city air that would typically be introduced into the "clean" air supply. You also no longer need to re-heat or re-cool the air within the space. With the air being cleaner and more comfortable, its occupants will feel healthier and possibly be more productive. The aesthetics of the space alone contribute to the comfort of the occupants.

The University Sciences Building is currently on pace to receive LEED Gold Certification upon completion.

PROJECT SUMMARY SCHEDULE

*See APPENDIX A for the Project Summary Schedule

<u>Design</u>

The University Sciences Building was bid out in the traditional Design-Bid-Build fashion. This means that there was very little to no overlap between the design and construction phases of the project. It is because of this that Turner Construction is unaware of the specific details in the procurement and design of this facility. In comparison with other facilities of the same occupancy type and location, it was determined that the design phase of the project was in the vicinity of 1 year, or 260 work days.

Members of the construction team are also unaware of the exact time frame of when the design was put out to bid and when the team was awarded the project. Most construction projects have a typical contractor selection period of about a month and a half, resulting in the duration of 35 work days for the bid and award of the CM @ Risk (*For description, see project delivery system section of report*).

Lastly, a major time commitment of any project startup is the permits and approvals needed to begin construction. When researching typical permit request and approval durations in the area, it was found that construction permits can take anywhere from 15 to 90 days depending on what type of permit is being requested. This is what you see in the final line item of the preconstruction phase *(Reference Appendix A)*.

Construction

Sequence

The major sequence of work on this project is such that construction starts on the first floor and raises one floor at a time in a clockwise rotation until the penthouse is reached *(see Figure 11)*. This is similar to a Short Interval Production Schedule (SIPS) schedule where each trade or task is given a particular area of the floor in which each individual trade is allowed 5 days to complete their particular task before moving onto the next area. This type of schedule brings an assembly line approach to construction. However, SIPS schedules only work if there is some kind uniformity to the floor layouts and square footage of each area.

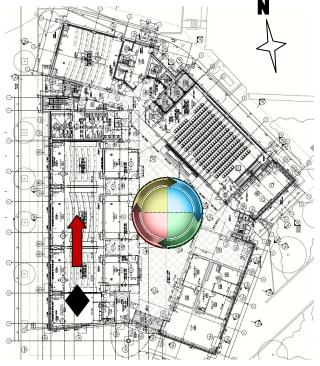


Figure 11: First Floor Layout Showing Sequence

Activity Breakdowns

Foundation work has been broken down into Concrete Piles, Grade Beams & Pile Caps, and Foundation Walls for the purposes of this first Technical Assignment. These make up the majority of the University Sciences Building foundation work. The foundation itself is comprised of 75 drilled caisson piers with grade beams resting on top.

Superstructure can be broken down into concrete slabs & columns and steel located in the penthouse level(s). The concrete slab process in this building is unlike most. Turner utilizes a filigree precast slab and beam system with a layer of cast-in-place concrete on top (see Building Systems for more detail).

Finishes have been broken down into Electrical, Lighting, Mechanical, Plumbing, Fire Protection, Drywall, Paint, and Elevator subtasks. This is the bulk of any construction project and coordination between the different trades is critical.

Key Milestones / Impacts

Duration of construction for the University Sciences Building is from September 9th, 2009 (notice to proceed), to July 1st, 2011. This is a total duration of 473 days of construction and 385 days for preconstruction activities.

To date, no major schedule impacts have been noted, and Turner is on track to have the building fully enclosed before this coming winter. This is critical because building close-in before the winter months can equate to less money wasted in trying to heat the various spaces within the building. Another sequencing strategy to note is that Turner will be filling the entire atrium space with scaffolding. This can affect the time required to perform interior finishes by reducing the amount of time workers spend adjusting their positions in order to finish the work. Less time spent moving around means more time working and better productivity levels.

PROJECT COST EVALUATION

The actual building construction cost for the University Sciences Building is currently around \$50 Million. This cost is a close approximate of Turner's lump sum value plus any change orders that have been accumulated to date.

Project Parameters

Total Square Footage:	138,000 SF
Total Building Perimeter:	750 LF

Construction Cost

Actual:	\$ 50,000,000
Per Square Foot:	\$ 362.32 per SF

Total Project Cost

Actual:	\$ 70,000,000
Per Square Foot:	\$ 507.25 per SF

Major Building Systems Costs and Cost per Square Foot

MAJOR BUILDING SYSTEMS		
SYSTEM	ACTUAL COST	COST PER SF
Concrete	\$ 5,800,000	\$ 42.03
Steel	\$ 800,000	\$ 5.80
Mechanical & Plumbing	\$ 14,000,000	\$ 101.45
Electrical	\$ 6,000,000	\$ 43.48

Figure 12: Building System Totals

R.S. Means Square Foot Estimate

*See APPENDIX B for the R.S. Means Costworks 2010 Breakdown

Total Construction Cost

Actual:	\$ 31,046,000
Per Square Foot:	\$ 224.97 per SF

*These numbers exclude design and construction fees.

D4 Cost Estimate

*See APPENDIX C for the D4 COST V9.5 Estimate Reports

D4 Cost estimation is a database of differing project types, sizes, costs, and locations that can be used in comparing, adjusting, and scaling estimate values to better fit a project's unique conditions. Two case studies most resembling the University Sciences Building have been selected from the database and altered to best fit the conditions on this project.

Case Study #1 - Law Enforcement Lab and Office Facility

Total Construction Cost

Actual:	\$ 24,648,762
Per Square Foot:	\$ 178.61 per SF

Total Project Cost

Actual:	\$ 25,495,012
Per Square Foot:	\$ 184.75 per SF

Case Study #2 - Ezra Taft Benson Science Building

Total Construction Cost

Total

Actual:	\$ 17,592,308
Per Square Foot:	\$ 127.48 per SF
Project Cost	
Actual:	\$ 18 682 400

Actual:	\$ 18,682,490
Per Square Foot:	\$ 135.38 per SF

Cost Comparison

The difference in actual construction cost and the estimated cost of construction can be contributed to a variety of reasons.

A difference of \$18 Million in construction costs can be contributed to the degree of difficulty that comes with this type of facility. The filigree precast slabs used in the University Sciences Building is a special type of floor/beam construction that requires a higher level of expertise. The implementation of a 5-story living biowall along with other LEED accreditation points can also increase the overall cost of design and construction.

Other factors that can contribute to the difference in pricing include location and occupancy type. The 39 research and teaching laboratories require a large mechanical system to handle the HVAC loads within the spaces. A mechanical system with 9 Air Handling Units could be a large reason for the difference in pricing. From a location and site logistical point of view, the fact that the building is located in a major city in the Northeastern United States puts a premium on the cost of labor and materials used.

RS Means online Costworks estimate was the closest to the actual cost of construction. However, limited selection of facility types and building systems decreases the overall accuracy of the estimate. Furthermore, it was difficult to accurately determine the proper building additives and their corresponding quantities. Things like the number of desks, counters, sinks, etc. have a huge impact on the cost of building materials used in a facility that houses both classrooms and laboratories.

The D4 COST estimate was the farthest form the real cost of construction. This is due in part to the limited selection of projects in the database, the lack of comparable projects to this type of facility, and the fact that the program doesn't account for mixed use facilities.

In general, a Square Foot Estimate's degree of accuracy is +/- 10% of the real cost of construction. If the estimates performed could account for the factors mentioned above, these estimates would be closer to 10% of the final building cost.

SITE PLAN OF EXISTING CONDITIONS

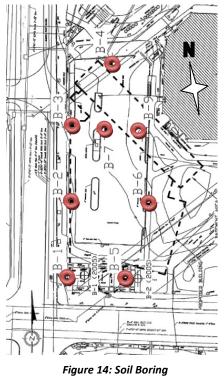
*See APPENDIX D for the Existing Conditions Site Plan created using AutoCAD.

Figure 13: Bing Map of USB in Northeastern U.S.

The site for the University Sciences Building is located in the heart of the University's campus. This means that vehicular and pedestrian traffic will be a concern during all phases of the project. Whether it means blocking of street lanes or installing overhead protection, site safety has to be taken into serious consideration.

Being in a city has its advantages and disadvantages. One perk of this building's location is the easy access to nearby utility lines. Only a minimal amount of utility relocation is required for this facility. Existing utilities can be seen on the Site Plan under *Appendix D*. Some of the major disadvantages include limited space for site storage and material deliveries. This means that more thought has to be put into scheduling and material staging. Less space outside of the building also typically equates to more congestion within the building.

LOCAL CONDITIONS


This university is located in one of the largest cities in the Northeastern United States. Cities are well known for their stick-built steel buildings and large curtain wall facades. This building is different in the fact that it is against the norm by utilizing a heavy concrete and masonry type structure with punch out windows.

To make room for the new facility, old parking had to be demolished. As with any city environment, site logistical planning at the start of the job is critical. Employees must either ride the bus into work, or take the subway train that runs adjacent to the site.

Site congestion and site traffic is another consideration that needs to be taken into account. Turner must coordinate with the city and campus officials about when deliveries or construction will require street and sidewalk closings.

The subsurface conditions for this site were explored by Geosystems Consultants, Inc. using a total of eight test borings (*shown in Figure 14*).

The borings encountered fill at the surface, underlain by alluvium, residual soil/decomposed rock, and relatively intact bedrock. Fill at the surface extended to depths ranging from 4 to 6 feet, but as much as 8 feet. Alluvail soils are soils which were deposited by the action of moving water. The amount of alluvium was found to be variable. Residual soil is the result of complete in-place weathering and decomposition of the parent bedrock. Samples showed thicknesses of residual soil in the range of 5 to 12 feet. Decomposed rock is derived from less developed in-place weathering/decomposition of the parent bedrock, and ranged from 4 to 11 feet in depth between boring samples. Finally, bedrock was encountered at depths ranging from 25 to 34 feet.

Locations

Groundwater depths were measured to be 13.7 feet and 18.4 feet in boring numbers B-1 and B-9, respectively. The corresponding elevations are +28.6' and 28.1', respectively.

Geosystems Consultants, Inc. determined that a conventional shallow-based spread footing would not be suitable for the University Sciences Building due to the magnitude of the column loads and the presence of uncontrolled fill, as well as, the underlying compressible alluvium and medium dense upper portion of the residual soil. Thus, they recommended a deep foundation for the project.

Geosystems concluded that drilled piers bearing on rock would be the most suitable foundation type. Drilled caissons can be installed with essentially no vibrations and would not exert any significant stresses on the adjacent subway tunnels.

Recycling and waste removal capabilities are readily accessible within the city. Because this is a LEED job, I would expect there to be some level of recycling and material re-use, however, I did not observe any substantial efforts applied during my site visit on 8/18/2010.

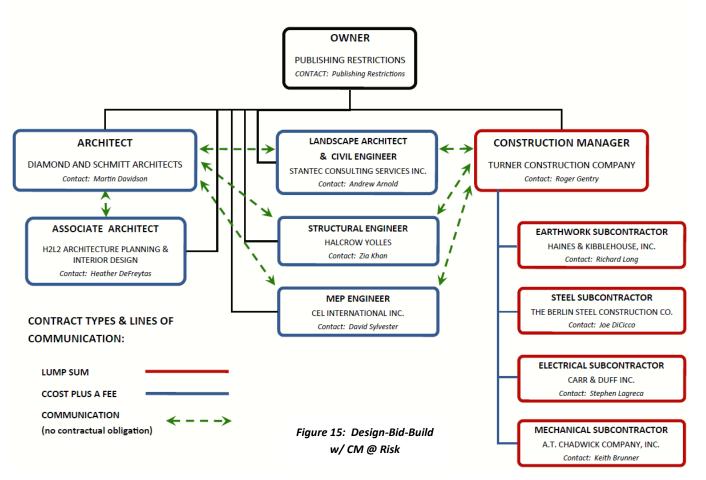
CLIENT INFORMATION

University Sciences Building will be another important addition to a university that is well known and well respected across the nation. With the addition of this facility, the university will take one step closer to the forefront of universities taking an initiative in being more environmentally responsible with their buildings and their energy usage.

The addition of this facility shows the university's commitment to educational growth and learning. The research generated from the facility will contribute to a better understanding of materials and systems on this planet.

Cost, quality, schedule, and safety are some of the key areas of focus for this project. Educational facilities have a very tight budget and a limited amount of governmental funding. It is important that this building has a finial cost that reflects a high level of quality and craftsmanship at an originally agreed upon price of \$70 million or less. To meet this budget, the building must also finish by the summer of next year so that the building can be utilized for the following school year. While cost, quality, and schedule are important, nothing is more important to this client than the safety of its students and the workers on site.

As stated previously, the main concern for this owner is when the project will finish and if it will finish on time (before the next school year). To do this, key sequencing tasks of the owner's interest might include the timely installation of foundations, the placement of floor slabs, installation of key MEP systems and the lead time required for equipment, building close-in, and system commissioning.


Keeping on schedule and under budget at a high level of quality will be the ultimate key to owner satisfaction. A good owner relationship is crucial to the success of any construction project.

PROJECT DELIVERY SYSTEM

Traditional Design-Bid-Build w/ CM @ Risk

The project delivery system for the University Sciences Building is a traditional Design-Bid-Build with a Construction Manager (CM) at Risk. In this process, Diamond and Schmitt Architects prepares a complete set of contract documents before bids are sent out for construction.

Design-Bid-Build Advantages:

Familiarity with the system, improving overall coordination between parties. The owner can get a firm fixed price before any work even begins. Allows for good competitive prices from the open market. Large design/construction staffs are typically unnecessary.

Design-Bid-Build Disadvantages:

No contractor feedback during the design phase.

Can't fast track the project, longer schedule durations.

The contractual relationships between the owner and the architects/engineers are that of a Cost-Plus-A-Fee. This simply means that the architect/engineer agrees to furnish a design for the project, and will be reimbursed a percentage of the overall cost of the building for their profit. The remaining contracts are all considered Lump Sum. These contracts allow for the lowest, most pre-qualified bidders on the market. It is an agreement to perform the work for a fixed price regardless of the cost to the contractor.

Turner and all of their subcontractors are required to provide proof of insurance, payment bonds, and performance bonds.

This delivery system seems appropriate for this type of facility and this type of owner. When an owner has the proper time to fully develop a set of plans, they can achieve the best possible pricing for the university. This is a plus because of the limited funding universities receive from local and state governments. Design-Bid-Build would not be very effective if there was a strict time frame for construction and for projects that need to be *fast tracked* (the start of construction before design is fully complete).

STAFFING PLAN

TURNER ORGANIZATIONAL CHART

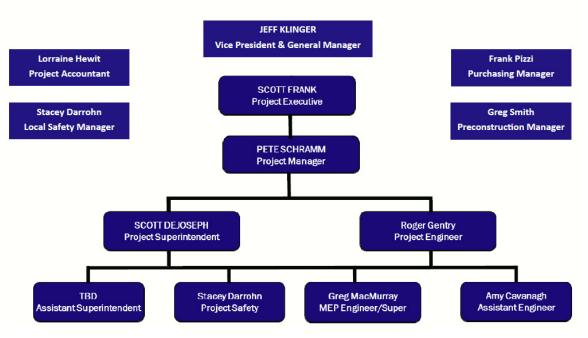
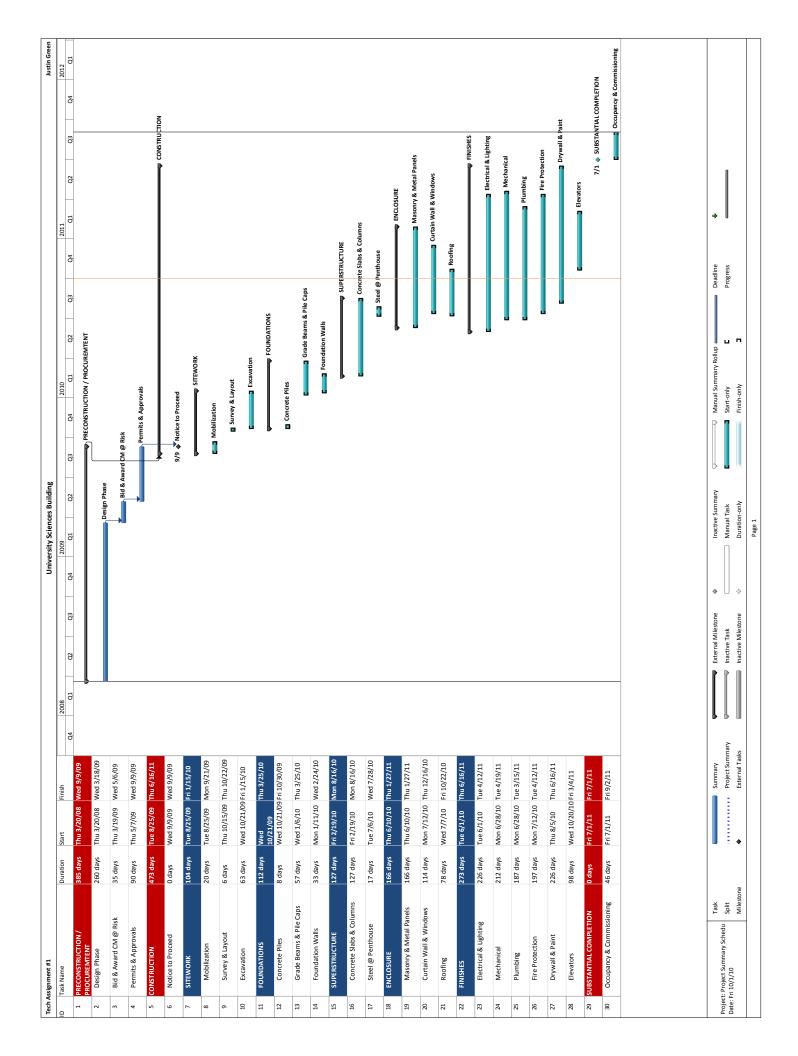


Figure 16: Turner Staffing Plan

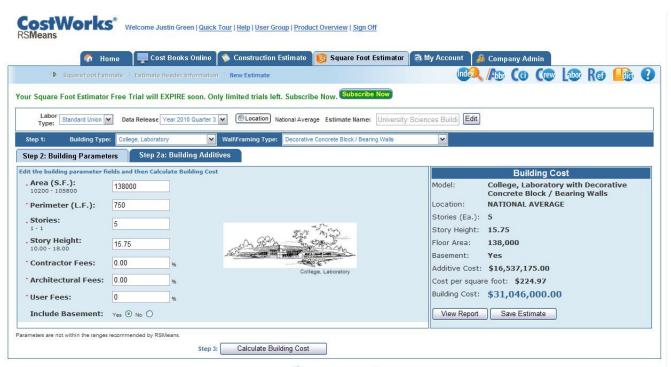
Turner Construction staffs their projects differently from job to job depending on factors such as project type, cost, size, location, and experience. *Figure 16* shows the staffing for the University Sciences Building.

Most organizations have a similar type of layout but with slight differences in job titles or descriptions. This organizational structure starts from the top down. The Project Executive typically oversees a group of 3-5 projects in which they visit the jobsites on a weekly or monthly basis. The Project Manager and everyone below him work on-site for most of, if not the entire duration of the project. Some employees may get added as the work load increases, and some may be moved to other jobs when the project is coming to a close, but these individuals shown above are the core driver of the University Sciences Building.

*See APPENDIX E for the Phased Staffing Plan, showing durations of all staff members involved.


Other key players involved on this job include an Accountant, a Purchasing Manager, and a Preconstruction Manager who play a much larger role during the start-up of a construction project. Lastly, one of the most important positions on any construction staff is the Project and/or Local Safety Managers. Nothing is more important than a workers safety and making sure that each worker gets home to his family at the end of the day.

APPENDIX A - Summary Schedule


APPENDIX B - RS Means CostWorks Report

Northeastern U.S.

Reed Construction Data®

© 2010 Privacy | User Agreement | Site Map | Contact Us | Building Products | RSMeans

Square Foot Cost Estimate Report Estimate Name: University Sciences Building Northeastern U.S. Building Type: College, Laboratory with Decorative Concrete Block / Bearing Walls Location: National Average Stories Count (L.F.): 5.00 Stories Height 15.75 Floor Area (S.F.): 138,000.00 LaborType Union Basement Included: Yes Data Release: Year 2010 Quarter 3 Cost Per Square Foot \$224.97 Costs are derived from a building model with basic components. Scope Total Building Cost \$31,046,000 differences and market conditions can cause costs to vary significantly. Parameters are not within the ranges recommended byRSMeans.

Northeastern U.S.

	% d Tot		Cost Per SF	Cost
A Substructure	1.6'	%	3.59	\$495,000
A1010	Standard Foundations		0.65	\$89,500
	Strip footing, concrete, reinforced, load 11.1 KLF, soil bearing capacity 6 KSF, 12" deep x 24" wide			
	Spread footings, 3000 PSI concrete, load 100K, soil bearing capacity 6 KSF, 4' - 6" square x 15" deep			
A1030	Slab on Grade		0.95	\$131,500
	Slab on grade, 4" thick, non industrial, reinforced			
A2010	Basement Excavation		0.71	\$98,500
	Excavate and fill, 10,000 SF, 8' deep, sand, gravel, or common earth, on site storage			
A2020	Basement Walls		1.27	\$175,500
	Foundation wall, CIP, 12' wall height, pumped, .444 CY/LF, 21.59 PLF, 12" thick			
B Shell	7.5	%	16.91	\$2,334,000
B1010	Floor Construction		3.92	\$540,500
	Cast-in-place concrete column, 12" square, tied, 200K load, 12' story height, 142 lbs/LF, 4000PSI			
	Flat slab, concrete, with drop panels, 6" slab/2.5" panel, 12" column, 15'x15' bay, 75 PSF superimposed loa	d. 153 P		
	Floor, concrete, slab form, open web bar joist @ 2' OC, on bearing wall, 35' span, 20" deep, 125 PSF super			
B1020	Roof Construction		0.72	\$99,000
	Roof, steel joists, 1.5" 22 ga metal deck, on bearing walls, 35' bay, 25.5" deep, 40 PSF superimposed load,	60 PSF		\$00,000
B2010	Exterior Walls		5.09	\$702,000
	Concrete block (CMU) wall, split rib, 8 ribs, hollow, regular weight, 8x8x16, reinforced, vertical #5@16", grou	uted		<i></i>
B2020	Exterior Windows		3.95	\$545,500
	Aluminum flush tube frame, for 1/4"glass,1-3/4"x4", 5'x6' opening, no intermediate horizontals			,,
	Glazing panel, plate glass, 1/4" thick, clear			
B2030	Exterior Doors		2.01	\$277,500
22000	Door, aluminum & glass, with transom, narrow stile, double door, hardware, 6'-0" x 10'-0" opening		2.01	\$211,000
	Door, aluminum & glass, with transom, non-standard, hardware, 3'-0" x 10'-0" opening			
B3010	Roof Coverings		1.12	\$155,000
20010	Roofing, asphalt flood coat, gravel, base sheet, 3 plies 15# asphalt felt, mopped			\$100,000
	Insulation, rigid, roof deck, composite with 2" EPS, 1" perlite			
	Roof edges, aluminum, duranodic, .050" thick, 6" face			
	Flashing, aluminum, no backing sides, .019"			
	Gravel stop, aluminum, extruded, 4", mill finish, .050" thick			
B3020	Roof Openings		0.11	\$14,5
	Skylight, plastic domes, insulated curbs, 30 SF to 65 SF, single glazing			
	Roof hatch, with curb, 1" fiberglass insulation, 2'-6" x 3'-0", galvanized steel, 165 lbs			
	Smoke hatch, unlabeled, galvanized, 2'-6" x 3', not incl hand winch operator			
				A 4 4 6 7 5 6
C Interiors	Destiliers	4%	30.20	\$4,167,50
C1010	Partitions		11.07	\$1,528,00
	Concrere block (CMU) partition, light weight, hollow, 6" thick, no finish			
	Concrere block (CMU) partition, light weight, hollow, 8" thick, no finish			
6 4000	8" concrete block partition		1.00	6469 59
C1020	Interior Doors		1.22	\$168,50
• 4000	Door, single leaf, kd steel frame, kalamein fire, commercial quality, 3'-0" x 7'-0" x 1-3/4"			
C1030	Fittings		0.04	\$6,00
02040	Lockers, steel, single tier, 5' to 6' high, per opening, minimum		5.00	****
C3010	Wall Finishes		5.86	\$808,50
	2 coats paint on masonry with block filler			
	Painting, masonry or concrete, latex, brushwork, primer & 2 coats			
	Wall coatings, epoxy coatings, maximum			
C3020	Floor Finishes		5.49	\$758,00
	Carpet tile, nylon, fusion bonded, 18" x 18" or 24" x 24", 35 oz			
	Composition flooring, epoxy, minimum			
	Vinyl, composition tile, maximum			
C3030	Ceiling Finishes		6.51	\$898,50
	Acoustic ceilings, 3/4"mineral fiber, 12" x 12" tile, concealed 2" bar & channel grid, suspended support			

Northeastern U.S.

D Services	23.5%	52.96	\$7,308,500
D2010	Plumbing Fixtures	15.27	\$2,107,500
	Water closet, vitreous china, bowl only with flush valve, wall hung		
	Urinal, vitreous china, wall hung		
	Lavatory w/trim, wall hung, PE on CI, 18" x 15"		
	Lab sink w/trim, polyethylene, single bowl, double drainboard, 54" x 24" OD		
	Service sink w/trim, vitreous china, wall hung 22" x 20"		
	Shower, stall, fiberglass 1 piece, three walls, 36" square		
	Water cooler, electric, wall hung, wheelchair type, 7.5 GPH		
D2020	Domestic Water Distribution	0.79	\$109,000
	Gas fired water heater, commercial, 100< F rise, 600 MBH input, 576 GPH		
D2040	Rain Water Drainage	0.60	\$82,500
	Roof drain, Cl, soil,single hub, 6" diam, 10' high		
	Roof drain, CI, soil, single hub, 6" diam, for each additional foot add		
D3050	Terminal & Package Units	18.40	\$2,539,000
	Rooftop, multizone, air conditioner, schools and colleges, 25,000 SF, 95.83 ton		
D4010	Sprinklers	2.78	\$383,500
	Wet pipe sprinkler systems, steel, light hazard, 1 floor, 50,000 SF		
D4020	Standpipes	0.26	\$36,000
	Wet standpipe risers, class III, steel, black, sch 40, 6" diam pipe, 1 floor		
D5010	Electrical Service/Distribution	0.65	\$89,500
	Service installation, includes breakers, metering, 20' conduit & wire, 3 phase, 4 wire, 120/208 V, 1000 A		
	Feeder installation 600 V, including RGS conduit and XHHW wire, 1000 A		
	Switchgear installation, incl switchboard, panels & circuit breaker, 1200 A		
D5020	Lighting and Branch Wiring	10.46	\$1,444,000
	Receptacles incl plate, box, conduit, wire, 8 per 1000 SF, .9 W per SF, with transformer		
	Wall switches, 2.0 per 1000 SF		
	Miscellaneous power, 1 watt		
	Central air conditioning power, 3 watts		
	Fluorescent fixtures recess mounted in ceiling, 1.6 watt per SF, 40 FC, 10 fixtures @32watt per 1000 SF		
D5030	Communications and Security	3.62	\$499,000
	Communication and alarm systems, fire detection, addressable, 50 detectors, includes outlets, boxes, conduit and w		
	Fire alarm command center, addressable with voice, excl. wire & conduit		
	Internet wiring, 8 data/voice outlets per 1000 S.F.		
D5090	Other Electrical Systems	0.13	\$18,500
	Generator sets, w/battery, charger, muffler and transfer switch, gas/gasoline operated, 3 phase, 4 wire, 277/480 V, 1		
	Uninterruptible power supply with standard battery pack, 15 kVA/12.75 kW		

Northeastern U.S.

E Equipment & Fu	rnishings	53.9%	121.31	\$16,741,000
E1020	Institutional Equipment		1.48	\$204,000
	Architectural equipment, laboratory equipment glassware washer, distilled water, deluxe			
	Architectural equipment, laboratory equipment glove box, fiberglass, radio isotope			
	Architectural equipment, laboratory equipment, cabinets, wall, open			
	Architectural equipment, laboratory equipment, cabinets, base, drawer units			
	Architectural equipment, laboratory equipment fume hoods, not including HVAC, deluxe includir	ig fixtures		
E1090	Other Equipment		119.83	\$16,537,000
	10 - Laboratory equipment, titration unit, four 2000 ml reservoirs			
	5000 - Laboratory equipment, utility table, acid resistant top with drawers			
	150 - Laboratory equipment, sink, one piece plastic, flask wash, hose, free standing			
	5 - Laboratory equipment, safety equipment, deluge shower			
	30 - Laboratory equipment, safety equipment, eye wash, hand held			
	750 - School furniture, classroom, movable chair & desk type, maximum			
	250 - Auditorium chair, veneer back, padded seat			
	25 - Laboratory equipment, glassware washer, undercounter, maximum			
	60 - Laboratory equipment, fume hood, ductwork, maximum			
	1500 - Laboratory equipment, fume hood, with countertop & base, special, excl. HVAC, minimum			
	40000 - Laboratory Casework, counter tops, acid-proof, excl. base cabinets, maximum			
	4000 - Laboratory Casework, wall cabinets, with doors, 12" x 31"			
	4000 - Laboratory Casework, tall storage cabinets, with glazed doors, 7' high			
	5000 - Laboratory Casework, cabinets, base, drawer units, metal			
	5000 - Laboratory Casework, cabinets, base, door units, metal			
F Special Constru	ction	0.0%	0.00	\$0
G Building Sitewo	rk	0.0%	0.00	\$0

Sub Total	100%	\$224.97	\$31,046,000
Contractor's Overhead & Profit	0.0%	\$0.00	\$0
Architectural Fees	0.0%	\$0.00	\$0
User Fees	0.0%	\$0.00	\$0
Total Building Cost		\$224.97	\$31,046,000

APPENDIX C - D4 Cost Reports

Case Study #1 - Law Enforcement Lab and Office Facility

	Prepared By:	Justin Green Penn State		Prepared For:	Technical Assignment #1	
	Building Sq. Size: Bid Date: No. of floors: No. of buildings: Project Height: 1st Floor Height: 1st Floor Size:	138000 7/1/2009 6 1 95 15 23000		Site Sq. Size: Building use: Foundation: Exterior Walls: Interior Walls: Roof Type: Floor Type: Project Type:	0 Educational PIL CMU GYP EPD CON NEW	
01	General Requireme	ents	18.61		33.25	4,588,255
03	Concrete		3.18		5.68	783,613
04	Masonry		0.89		1.59	219,330
05	Metals		2.21		3.95	544,554
06	Wood & Plastics		1.69		3.02	417,116
07	Thermal & Moistur	e Protection	3.44		6.14	847,827
08	Doors & Windows		1.33		2.37	327,651
09	Finishes		16.29		29.09	4,014,450
10	S pecialties		1.38		2.46	339,508
11	Equipment		2.27		4.05	559,317
12	Furnishings		3.26		5.83	804,311
14	Conveying System	s	0.30		0.54	74,000
15	Mechanical		26.10		46.62	6,433,062
16	Electrical		19.05		34.03	4,695,768
Total B	uilding Costs		100.00		178.61	24,648,762
02	Site Work		100.00		0.00	846,249
Total N	on-Building Costs		100.00		N/A	846,249
Total Pi	roject Costs	—				25,495,012

Building Division Notes

University Sciences Building - Sep 2009 - PA - Other

General Requirements	Summary of work, measurement & payment, field engineering, regulatory requirements, project meetings, submittals, quality control, construction facilities & temporary controls, material & equipment, facility startup/commissioning, contract closeout.
Concrete	Formwork, reinforcement, accessories, cast-in-place, curing, precast.
Masonry	Masonry & grout, accessories, unit.
Metals	Materials, fastening, structural framing, decking, cold formed metal framing, fabrications.
Wood & Plastics	Fasteners & adhesives, rough carpentry, finish carpentry, architectural woodwork.
Thermal & Moisture Protection	Waterproofing, dampproofing, insulation, firestopping, membrane roofing, flashing & sheet metal, joint sealers.
Doors & Windows	Metal doors & frames, wood & plastic doors, entrances & storefronts, metal windows, hardware, glazing.
Finishes	Metal support systems, lath & plaster, gypsum board, tile, acoustical treatment, resilient flooring, carpet, painting, wall coverings.
Specialties	Visual display board, louvers & vents, identifying devices, fire protection, operable partitions, storage shelving, toilet & bath accessories.
Furnishings	Manufacturing casework, rugs & mats.
Elevators	One.
Mechanical	Basic materials & methods, insulation, fire protection, plumbing, HVAC, air distribution, controls, testing, adjusting & balancing.
Electrical	Basic materials & methods, power generation built-up systems, medium voltage distribution, service & distribution, lighting, special systems, controls, testing.

Non-Building Division Notes

University Sciences Building - Sep 2009 - PA - Other

Site Work

Demolition, preparation, earthwork, paving & surfacing, sewerage & drainage, improvements, landscaping.

Project Notes

University Sciences Building - Sep 2009 - PA - Other

Estimate Based On Case: CM000956 - Law Enforcement, Lab & Office Fac. Location: FL - Orlando Date: Jun 1998 Building Size: 80,656

Estimate Based On Case: CM000956 - Law Enforcement, Lab & Office Fac. Location: FL - Orlando Date: Jun 1998 Building Size: 80,656

* Florida Department of Law Enforcement, Laboratory & Office Facility

- * Negotiated Bid Date
- * Orlando, Florida
- * Construction Period Feb 1998 to Aug 2000

Special Project Notes

The Orlando facility for the Florida Department of Law Enforcement has been over four years in the making. The Department of Management Services (DMS) Director of Building Construction, Deborah Whitehouse and the DMS Division of Facilities Management lead by Phil Maher working with FDLE, decided to expand the Florida Department of Law Enforcement, Orlando Facility, by adding onto, and also

renovating, the existing FDLE lab at the Hurston State Office Complex. This key decision made it possible for the design team and the construction manager to develop a facility that would meet the agency's needs within a very challenging budget. A key challenge for the owner, A/E and C/M was to successfully incorporate, and still keep within the budget, the recladding and reroofing of the existing building, that was necessitated by long existing moisture intrusion problems.

"A project such as this can only be successful with close teamwork and excellent communication between owner, construction manager, and architect", says Steve Krone, AIA, of HHCP Architects, Assistant Project Manager and Architect for the Project. "Welbro/Ellis-Don, led by Project Manager Randy Carroll has done an outstanding job of keeping the project on schedule and within budgetary limits and at the same time they have listened to the building users as they walk through the new addition and ask to be informed on the construction process and design intent."

Occupancy of the new 2-story addition took place in early December of 1999 at which time renovation began on the existing 2-story building. Final completion for all work including landscaping and interior improvements was August 2000.

MANUFACTURERS/SUPPLIERS

Exterior Walls - Entrances & Storefronts, Windows: Vistawall. Interior Walls - Gypsum Board: United States Gypsum; Metal Studs: Dietrich. Elevators - Miami Elevator.

Total Building Costs

Total Non-Building Costs

Total Project Costs

Site Work

02

Case Study #2 - Ezra Taft Benson Science Building

		University Scie	ences Building - Se	p 2009 - PA - Other		
	Prepared By:	Justin Green Penn State		Prepared For:	Technical Ass	ignment #1
	Building Sq. Size: Bid Date: No. of floors: No. of buildings: Project Height: 1st Floor Height: 1st Floor Size:	138000 7/1/2009 6 1 95 15 23000		Site Sq. Size: Building use: Foundation: Exterior Walls: Interior Walls: Roof Type: Floor Type: Project Type:	0 Educational PIL CMU GYP EPD CON NEW	
Division			Percent	Sq	Cost	Amount
01	General Requirem	ents	4.41		5.62	775,905
03	Concrete		14.09		17.97	2,479,228
04	Masonry		5.84		7.45	1,027,583
05	Metals		3.18		4.05	559,314
06	Wood & Plastics		1.87		2.38	328,649
07	Thermal & Moistur	e Protection	2.19		2.80	386,051
08	Doors & Windows		2.44		3.12	430,118
09	Finishes		4.15		5.29	729,377
10	Specialties		0.83		1.06	146,282
11	Equipment		16.86		21.49	2,965,757
14	Conveying System	IS	1.06		1.35	186,106
15	Mechanical		33.43		42.61	5,880,401
16	Electrical		9.65		12.30	1,697,536

100.00

100.00

100.00

127.48

0.00

N/A

17,592,308

1,090,182

1,090,182

18,682,490

Case Study #2 - Ezra Taft Benson Science Building

Building Division Notes

University Sciences Building - Sep 2009 - PA - Other		
General Requirements	Project meetings, submittals, quality control, constr. facilities & temp. controls, material & equipment, facility startup/commissioning, contract closeout.	
Concrete	Formwork, reinforcement, accessories, cast-in-place.	
Masonry	Masonry & grout, accessories, unit.	
Metals	Structural framing, joists, decking, cold formed metal framing, fabrications, ornamental.	
Wood & Plastics	Rough carpentry, finish carpentry.	
Thermal & Moisture Protection	Waterproofing, insulation, EIFS, fireproofing, firestopping, membrane roofing, flashing & sheet metal, roof specialties & accessories, skylights, joint sealers.	
Doors & Windows	Metal doors & frames, wood & plastic doors, special doors, entrances & storefronts, metal windows, hardware, glazing.	
Finishes	Metal support systems, tile, gypsum board, acoustical ceilings, painting.	
Specialties	Visual display board, lockers, partitions, toilet & bath accessories.	
Equipment	Darkroom, laboratory.	
Mechanical	Basic materials & methods, insulation, fire protection, plumbing, HVAC, heat transfer, air distribution, controls, testing, adjusting & balancing.	
Electrical	Basic materials & methods, medium voltage distribution, service & distribution, lighting, communications, controls, testing.	

Non-Building Division Notes

University Sciences Building - Sep 2009 - PA - Other

Site Work

Demolition, preparation, shoring & underpinning, paving & surfacing, utility piping materials, improvements.

Project Notes

University Sciences Building - Sep 2009 - PA - Other

Estimate Based On Case: EU960338 - Ezra Taft Benson Science Bldg. Location: UT - Provo Date: Mar 1993 Building Size: 191,310

*Provo, utah

Special Project Notes

The Ezra Taft Benson Science Building houses instructional laboratories for organic, analytical, and physical chemistry along with biochemistry, computer and tutorial labs, chemistry and biochemistry research labs, offices for faculty and graduate students and general classroom spaces.

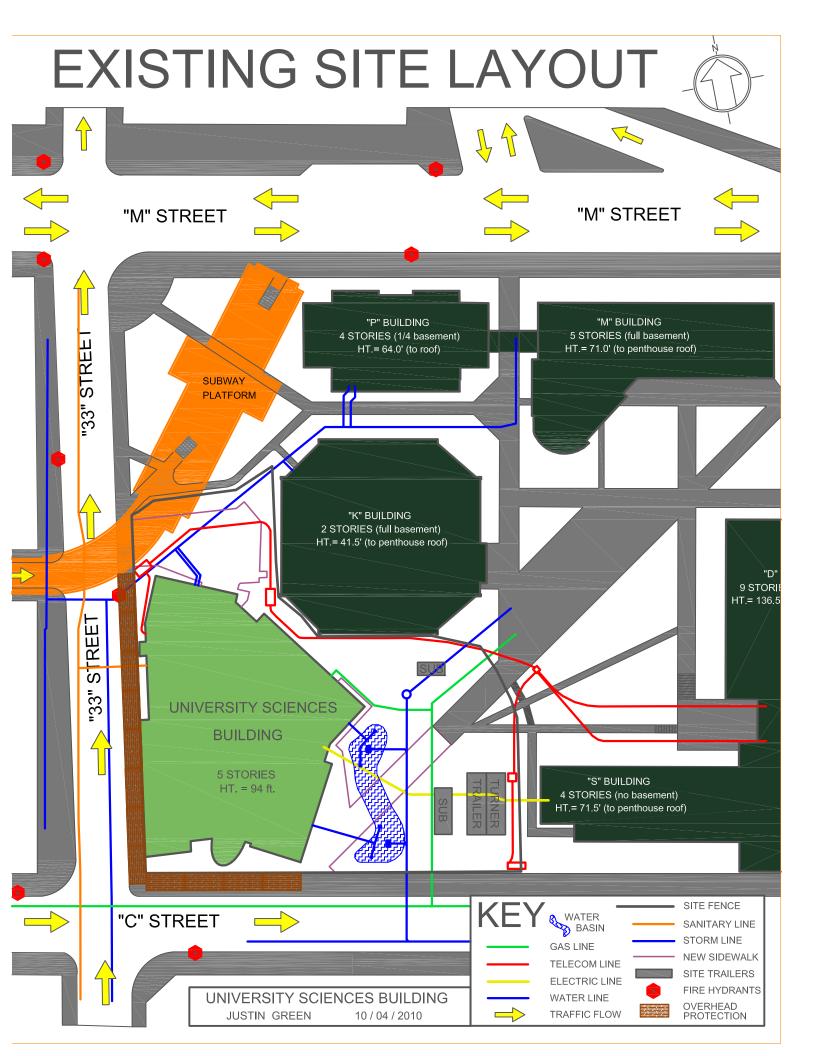
The building includes 80 laboratories, 110 offices, three conference rooms, three lecture rooms, 12 classrooms, and a large study area.

A stringent budget and constricted site contributed to the design solution: a five level main laboratory and office wing, a two level east laboratory and office wing, and a two level west classroom wing, all connected. The laboratories are based on modules that are designed to accommodate current needs as well as unknown future requirements.

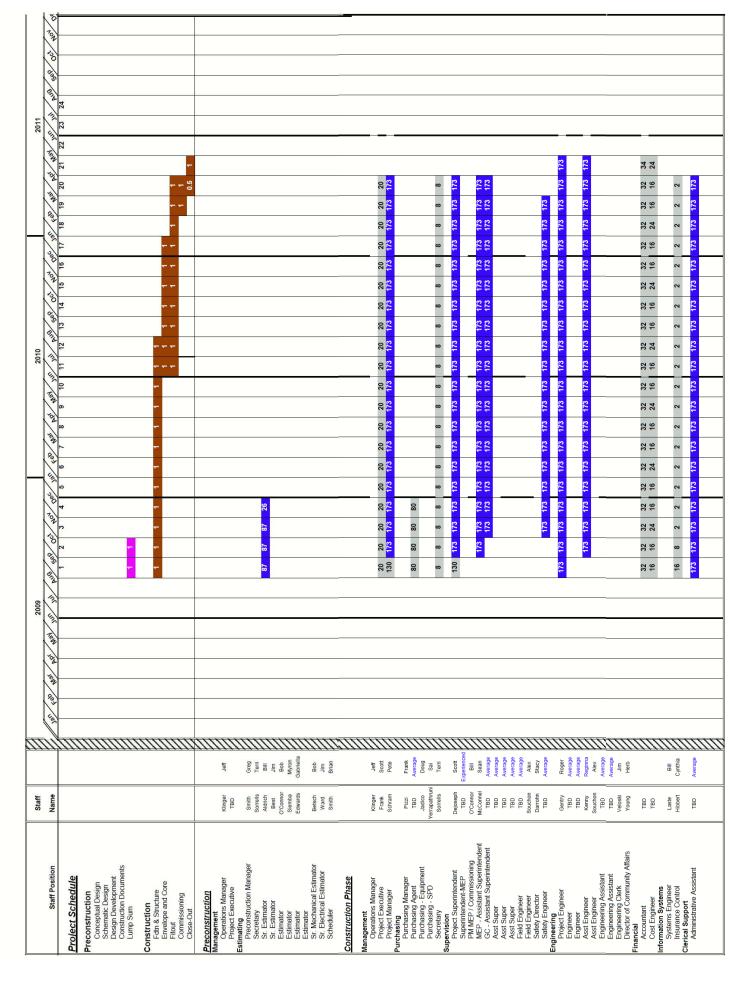
In the central wing, laboratories are organized along both sides of a double loaded corridor with support spaces and student offices interspersed between the labs. Teaching laboratories are located on the ground floor; research laboratories are on the upper levels; vibration and light sensitive laboratories are on the subterranean level. Faculty offices are concentrated at the south end for a magnificent view of the mountains and valley, and help to foster interaction. Environmental and biochemistry labs are combined in the east wing due to unique lab/support ratios and truck access requirements.

Classrooms, lecture rooms, and the large student commons/study area are located in the west wing. The study area, enclosed by glass, provides a north view into a main campus quadrangle. The site for the building provides an edge to this quadrangle.

Suppliers/Manufacturers


Exterior Walls -Masonry Veneer: Interstate Brick EIFS: Dryvit Aluminum Storefront & Windows: Vistawall Metal Doors: Curries Glazing: Viracon Roof -Membrane: Firestone Skylights: Kalwall Floors Tile: Florida Tile Interior Walls -Drywall: United States Gypsum CMU: Lehi Block Painting: Sherwin Williams Acoustical Ceilings: Armstrong Hardware: Schlage, Von Duprin Toilet & Bath Accessories: McKinney Lighting: Peerless Fireproofing: Isolatek International Firestopping: 3M Elevators - U.S. Elevator

APPENDIX D - Existing Conditions Site Plan



APPENDIX E - Phased Staffing Plan

